
Making Speech Recognition Work on the Web

by

Christopher J. Varenhorst

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2011

c© Massachusetts Institute of Technology 2011. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2011

Certified by .
James R. Glass

Principal Research Scientist
Thesis Supervisor

Certified by .
Scott Cyphers

Research Scientist
Thesis Supervisor

Accepted by .
Christopher J. Terman

Chairman, Department Committee on Graduate Students

Making Speech Recognition Work on the Web

by

Christopher J. Varenhorst

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2011, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

We present an improved Audio Controller for Web-Accessible Multimodal Interface toolkit
– a system that provides a simple way for developers to add speech recognition to web
pages. Our improved system offers increased usability and performance for users and greater
flexibility for developers. Tests performed showed a %36 increase in recognition response time
in the best possible networking conditions. Preliminary tests shows a markedly improved
users experience. The new Wowza platform also provides a means of upgrading other Audio
Controllers easily.

Thesis Supervisor: James R. Glass
Title: Principal Research Scientist

Thesis Supervisor: Scott Cyphers
Title: Research Scientist

2

Contents

1 Introduction and Background 7

1.1 WAMI - Web Accessible Multimodal Toolkit 8

1.1.1 Existing Java applet . 11

1.2 SALT . 12

1.3 VoiceXML . 13

1.4 Google Chrome Speech API . 13

1.5 Flash . 14

2 Design 16

2.1 Design Goals . 18

2.2 Flash . 19

2.2.1 Invisible Flash Object . 20

2.2.2 Speex . 21

2.2.3 WAV Playback . 21

2.2.4 Object Insertion . 22

3

2.2.5 Security Panel . 23

2.3 Wowza module . 26

2.3.1 Record URL . 28

2.3.2 Decoding Speex . 28

2.3.3 Posting data to WAMI . 29

2.4 Default UI . 30

3 Applications 32

4 Experiments and Analysis 36

4.1 Network Performance Experiment . 36

4.2 Analysis of Network Performance . 37

5 Future Work and Conclusion 40

5.1 Further user study . 40

5.2 Speex and Speech Recognition . 41

5.3 Using Wowza and Speex across Audio Controllers 41

5.4 Conclusion . 42

4

List of Figures

1-1 WAMI toolkit core platform. Shaded boxes show standard core components.

White clouds indicate application-specic components. [11] 8

1-2 This is the code for complete web page that uses WAMI. Developers need to

only use a minimal amount of Javascript to employ web based speech recognition. 10

2-1 Preliminary design of of WAMI extension. Audio data is taken from Flash

client over RTMP, transcoded to PCM, and sent to the speech recognition

system. 17

2-2 Example of a crossdomain.xml served at a web domain’s root that permits

Flash clients from all domains to access this domain’s contents. 22

2-3 The Flash security dialogue. The user must grant our application access to

their microphone to use WAMI. This panel is 220x145 pixels and this cannot

be changed. 23

5

2-4 This is the Flash Security Panel after the browser’s zoom level has been

changed. Because Flash content does not scale like the Flash object’s con-

tainer, the contents are ’too big’ for the container. 25

2-5 These are the parameters given to the FFmpeg process. See Section 2.3.2 for

an explanation. 29

2-6 The Idle, Connecting, and Recording states of the default microphone UI. The

button also lightens slight on mouse over. 31

3-1 A screenshot of WAMI TicTacToe example application. Users use simple

phrases to fill in the square on a TicTacToe board with their symbols. 33

3-2 A screenshot of Quizlet.com’s Voice Scatter using the Flash Based audio con-

troller. In this instance of the game, users use their voice to match state to

their capitals . 34

3-3 A screenshot of Quizlet.com’s Voice Race using the Flash Based audio con-

troller. In this instance of the game, users use their voice to state the capital

of the state before it moves too far to the right. 35

4-1 ipfw settings used for simulating various networking environments. 37

4-2 Flash vs. Java Applet performance in various networking environments. Flash

shows consistent improvement. 39

4-3 Network Requirements for the different Audio Controllers. 39

6

Chapter 1

Introduction and Background

With the widespread proliferation of the web, there is pressure to extend its functionality.

A key area of opportunity is in the area of speech based applications. Existing browsers and

standards have little support for audio or microphone access, let alone speech applications.

The WAMI Toolkit ([11]) was created in 2008 to address this need. Built on top of existing

web technologies, WAMI allows developers to deploy multimodal interfaces incorporating

voice to any user with a web browser. WAMI has been very successful internally and with a

few larger external users. It has been regularly used for data collection, and several papers

have been published that make use of data collected using the WAMI toolkit[12]. Despite

is successes, WAMI has been slow to receive support from a broad base of web application

developers in general. Much of this stems from frustration end-users can experience when

recording their voice for WAMI to process. In this thesis I describe my extension to WAMI’s

desktop speech input system, alleviating much of this frustration and discuss the problem of

7

speech input on the web in general.

Before describing our final solution I outline WAMI in its current state, its drawbacks,

and discuss various related work.

1.1 WAMI - Web Accessible Multimodal Toolkit

Figure 1-1: WAMI toolkit core platform. Shaded boxes show standard core components.
White clouds indicate application-specic components. [11]

WAMI, the Spoken Language System Group’s Web-Accessible Multimodal Interface

8

Toolkit makes it relatively simple to bring a speech based application to the web. By

making this process easy and offering it as a service to the public, WAMI can promote

the development of speech based applications, and support further development of speech

recognition technology.

WAMI makes building speech applications easy by abstracting away the difficult parts

away from the developer. WAMI handles the speech recognition and the audio recording.

All the developer needs to make a WAMI application is to include a Javascript library and

specify the grammar that they want to match the speech from the users to. The grammar

defines the universe of possibilities the user could say, limiting what the recognizer will

match the audio with. The user also must specify a response handler that is called with the

recognition results after a user has recorded their voice.

WAMI itself is divided into a few key systems. (See Figure 1-1). A Javascript component

is responsible for interfacing with the developer’s code and inserting the Audio Controller.

The Audio Controller is an embedded Java applet responsible for recording the user’s audio

from within the browser, sending this audio to the speech recognizer, and playing back audio.

The speech recognizer accepts audio and matches it against the grammar. The WAMI web

server manages the session of each user and logs information.

The Audio Controller is a critical part of the WAMI Toolkit. It is responsible for trans-

ferring speech data between the client and the server. There are separate Audio Controllers

for different devices because web technologies do not yet support a standard way to accept

9

<html>

<head>

<title>WAMI Parrot</title>

<script src="http://wami.csail.mit.edu/portal/wami.js"> </script>

<script>

var myWamiApp;

function onLoad() {

// JSGF grammar the speech will be matched on

var jsgf =

"#JSGF V1.0;\n" +

"grammar parrot;\n" +

"public <top> = hello wami | i want a cracker | feed me;\n";

var handlers = {"onRecognitionResult" : onWamiRecognitionResult};

myWamiApp = new Wami.App(document.getElementById(’AudioContainer’),

handlers, "json", {}, {}, {"language" : "en-us", "grammar" : jsgf });

}

function onWamiRecognitionResult(result) {

alert("You said: " + result.hyps[0].text);

setTimeout("myWamiApp.replayLastRecording()", 500); //playback audio

}

</script>

</head>

<body onload="onLoad()">

<div id="AudioContainer"></div> <!-- The record button will be put here -->

Hold the button and say: "Hello WAMI" or "I want a cracker!" or "Feed me!"

</body>

</html>

Figure 1-2: This is the code for complete web page that uses WAMI. Developers need to
only use a minimal amount of Javascript to employ web based speech recognition.

10

speech from a user. WAMI has various Audio Controllers for Android, iPhone, and the

desktop browser. For this thesis I focus on my development on the desktop browser based

Audio Controller

1.1.1 Existing Java applet

A central task of any speech recognition system is accepting audio input from the speaker.

This presents a particular challenge over the web as no standards exist supporting micro-

phone or device input. The W3C is drafting support for a <device> tag that will eventually

support microphone input inside HTML but the arrival of its implementation in browsers is

still unclear.

To accept microphone input over the web, WAMI’s existing Audio Controller is based on

Java applet technology. Java-enabled web browsers are able to run specially packaged Java

programs called applets inside of a web page. These fall outside of the HTML standard.

WAMI’s original Audio Controller used this technology because it’s a straight forward way

to provide access to the system’s microphone. The applet works well within a laboratory

environment but unfortunately can lead to a poor user experience “in the wild.”

Developers are reluctant to make use of applets because not all user environments can

run them reliably. A consistent pain point in user experience has always been WAMI’s Java

applet based Audio Controller. Despite a %91 market penetration, only %57 of the users of

Quizlet.com successfully complete the WAMI test page. The current Java applet can have

11

a considerable startup time, requires a separate security approval from the user, and is not

allowed in some environments. Moreover, major web browsers seem reluctant to continue

support for Java applets. The OS X version of Google Chrome has only marginal applet

support (WAMI does not function). The existing Java applet also has unnecessarily larger

bandwidth requirements, limiting its use in low bandwidth low latency environments and

causing subsequent frustration for the users. The applet also dictates the interface with

which the user will record the voice, preventing application developers from customizing the

experience to suit their own specific needs. These downsides primarily motivate my work to

improve this experience.

1.2 SALT

One of the first pushed to bring speech recognition to the web was Kuansan Wang’s Speech

Application Language Tags or SALT[14]. It described an XML based markup language

embedded in HTML that adds voice recognition properties to web application[7]. This was

one of the first major attempts to bring a standard web speech recognition format to the

web. SALT was heavily promoted by Microsoft, but unfortunately never gained acceptance

from the W3C and has eventually replaced by VoiceXML. Microsoft created an add-in for

Internet Explorer that allowed the casual user’s browser to interpret SALT tags, but these

never became widespread.

12

1.3 VoiceXML

SALT’s “successor”, VoiceXML is an W3C approved standard in XML format for speci-

fying interactive voice dialogues between a human and a computer[10]. Though possible,

VoiceXML implementation have failed to have much support for integrating dialogue sys-

tems directly into web pages, and more often relay on a secondary Voice Browser to interact

with VoiceXML applications.

1.4 Google Chrome Speech API

The W3C HTML Speech Incubator Group was formed in August 2010 with the goal of

integrating speech technologies into HTML5, while avoiding fragmentation and continuing

to leverage the capabilities of an open web. Developers at Google submitted a Speech Input

API Specification Draft to this group in October 2010. Google has implemented most of this

draft in the Google Chrome browser. [8]

The Google implementation differs from WAMI in several key ways:

• The initial implementation of this draft only provides generic speech-to-text support

for filling out forms. It does not provide powerful grammar matching.

• It cannot be used in a multimodal way. While Chrome is accepting speech from a user,

no other activity from the user is allowed.

• Finally, and perhaps most importantly, it can only be used in recent versions of the

13

Chrome browser. The specification also does not say who is to provide the speech

recognition service, and at this time it seems unlikely the major browser vendors are

about to develop their own recognition service.

This specification also leap frogs over attempts to first even allow web developers microphone

access from within a browser without the use of plugins.

1.5 Flash

Flash is a platform for developing rich internet applications. It is an embedded plugin

included in browsers allowing them to view and use Flash content. Flash offers several

capabilities that HTML alone does not, and, most importantly, it has become the most widely

used method for accepting microphone input over the web. Flash has several advantages

over Java applets including better performance, nearly ubiquitous browser support, and a

smoother user experience.

Flash also makes use of the new patent and license free speech codec Speex. This codec

is designed for capturing human speech, so its suits our needs quite well. Speex accomplishes

this by using information about what sounds are important for the understanding of speech.

For example, background noise and ambient silence are not relevant to speech comprehension

so Speex can identify these components and de-value them. Speex can also identify the

more important sounds like vowels and encode more information for these, while including

less information for less important parts of speech sounds such as fricatives (the “f” and

14

“s” sounds). By communicating in Speex we can also reduce bandwidth requirements (see

Section 4.2).

Unfortunately, Flash has several differences from Java applets that make development

of a Flash based Audio Controller for WAMI a less straightforward process. Flash runs in

a sandboxed environment with only limited access to the underlying system and with only

limited functionality. This is part of what permits Flash to achieve such a smooth experience,

though, because a browser can permit a Flash object to immediately run and expect it will

not harm the user’s environment. Therefore, before we can access the user’s microphone

to record information for WAMI, we must present a security panel to the user and they

must approve access. I explain some of the idiosyncrasies and necessary workarounds of this

process in Section 2.2.5.

In Flash’s sandboxed environment, the only direct way to export audio data recorded

from a microphone is to send it across a network using Adobe’s proprietary RTMP protocol.

Adobe sells a server product intended to accept this data but its cost is prohibitive1 and its

support for Linux is minimal. Originally RTMP was maintained as a proprietary protocol

by Adobe, prompting numerous developers to reverse engineer it and release open source

and commercial alternatives to Adobe’s own Flash Media Server. In 2009 Adobe did release

an RTMP specification but it failed to included numerous details essential to a complete

implementation. In the work discussed later, we selected the Wowza Media Server[9] for its

relative cheap price, high quality support, and extensibility.

1The middle tier Flash Media Server is $4,410

15

Chapter 2

Design

In this chapter I describe the goals of our improved Audio Controller, the solution’s high-

level architecture, and final implementation details and related technical information. The

flow of information through the components of the system is as follows. (See Figure 2-1 for

a sketch of the system design)

• To prompt the user for audio information, a WAMI Flash Audio Controller is presented

to the user on a WAMI enabled site.

• The user interacts with the controller in their browser, recording their voice with a

microphone.

• Audio is encoded as Speex on the client’s browser and sent to the Wowza media server

using RTMP.

• A Wowza module determines the record URL for posting data to, and passes the Speex

16

Figure 2-1: Preliminary design of of WAMI extension. Audio data is taken from Flash client
over RTMP, transcoded to PCM, and sent to the speech recognition system.

17

data to the transcoding service.

• The trancoding service converts the waveform into 8kHz sampled unsigned 16-bit little

endian sampled PCM, and forwards this to a speech recognizer server.

At no point in this process is the information substantially buffered or batched. In good

conditions, the speech recognizer will start receiving audio to process one half second after

the user starts recording. The delay is mainly there for FFmpeg to start transcoding audio.

The other components of the WAMI architecture are unchanged.

2.1 Design Goals

The goal of the Flash based Audio Controller is to provide an excellent user experience right

away while making it easy for web developers to customize WAMI to suit their own needs

and desired user experience. To this end, the specific audio interface GUI is not specified

by WAMI but is entirely configurable by the user. WAMI exists as the “pipes” providing

speech recording and recognition in the background but not dictating any user experience.

However, to encourage rapid prototyping, a default UI is provided if the developer asks for

it. This allows powerful customization for those that need it, but instant usability for those

that don’t. A particularly difficult aspect of a GUI implementation is dealing with the Flash

microphone permission panel. To make things easier on the developer, WAMI allows users

to customize the UI, but still takes much of the difficultly out of dealing with this particular

aspect.

18

2.2 Flash

The Flash object communicates with the WAMI Javascript application through the API

specified below. Flash is able to accept calls and insert functions directly into Javascript,

enabling simple and tight integration.

These are javascript functions the Flash object exposes to the WAMI Javascript library.

• startRecording(startedCallback, doneCallback, failCallback) - When called

this starts recording audio from the microphone. Once recording starts, it calls the

startedCallback in the Javascript. doneCallback is called when recording is stopped.

• stopRecording() - This stops the audio recording and triggers the doneCallback.

• getActivityLevel() - This returns the microphone activity level (volume) between 1

and 100.

• playWAVFromURL(url, doneCallback) - This plays a WAV file at the specified URL.

If the URL is on a different domain, the root of the URL must contain a valid

crossdomain.xml. See Section 2.2.3.

• stopPlaying() - stops WAV playback and triggers the doneCallback.

The Flash object must also be initialized with a number of parameters that are important

for controlling its behavior.

19

• onSecurityGranted - This is the name of function to be called if the microphone

security checks succeeds. See Section 2.2.5.

• onSecurityWarning - This is the name of function to be called if the microphone

security checks fails. See Section 2.2.5.

• recordURL - This is the WAMI URL that recorded audio should be posted to. Its is

encoded in a special way, as described in Section 2.3.1.

• wowzaLocation - This is the IP or hostname of the Wowza server.

All callbacks are specified as strings since Flash cannot accept anonymous Javascript

functions as parameters. Its important to note that this API is a private API only used for

communication between the Flash object and the WAMI Javascript library. Developers do

not interact directly with it.

2.2.1 Invisible Flash Object

Since we don’t want to dictate any particular interface for developers, we design our Flash

object responsible for microphone access to be “invisible” to the user. Literally this means

that a transparent, 1 by 1 pixel Flash object is inserted into the page. This object then

communicates with the rest of page through a specified Javascript API.

20

2.2.2 Speex

Flash 10 supports encoding audio in the Speex format. Speex is a patent and license free

codec designed for encoding human speech. Flash’s Speex implementation samples at 16kHz

and allows the encode quality to be adjusted between 0 and 10. At an encode quality of

10, Speex data is encoded at 42.2kilobits/sec, while at 0 only 3.95 kilobits/sec is required.

For our initial implementation, an encode quality of 7 (23.8 kbps) was chosen. Since the

intention of Speex is the efficiently capture the “important“ parts of human speech, the

encode quality’s effects on recognition quality is not yet fully understood. This is discussed

further in Section 5.1.

2.2.3 WAV Playback

The WAMI Audio Controller is also responsible for the playback of audio when necessary.

Unfortunately no universal method of WAV playback exists in today’s browser landscape.

Recent versions of most major browsers support the playback of WAV files natively in

the browser using the <audio> described in the latest HTML5 specfication. Unfortunately

though, many users have browsers that do not yet support these features so an alternative

needs be explored. Flash cannot natively play WAV files either, however Flash is powerful

enough to allow the implementation of a WAV player. Using the popforge library ([5]) we

include a WAV player in our Audio Controller.

However, because our WAV player processes files by first requesting them in a generic

21

way, our requests are subject to the Flash’s cross-domain policy, which by default forbids

generic access to data on the domains that the Flash object is not hosted. This would not

be an issue if we used Flash’s native media player API, but because we need to access the

WAV file in a generic way, our requests are subject to this policy. To permit Flash to access

other domains, those domains must include a crossdomain.xml file at their root directory

permitting Flash client’s access. For example, the crossdomain.xml file for facebook.com

is located at http://facebook.com/crossdomain.xml

See Figure 2-2 for an example of a crossdomain.xml file that permits access to it from

all domains. This is the file that currently exists at the root directory of our WAMI server.

<cross-domain-policy>

<site-control permitted-cross-domain-policies="master-only"/>

<allow-access-from domain="*"/>

<allow-http-request-headers-from domain="*" headers="*"/>

</cross-domain-policy>

Figure 2-2: Example of a crossdomain.xml served at a web domain’s root that permits
Flash clients from all domains to access this domain’s contents.

2.2.4 Object Insertion

Flash is a browser extension, so the means of including it in a web page can vary across

browsers. When inserting the WAMI Flash objects into a webpage, we must take browser

vendor and version into account. We also need to ensure that the user has Flash installed

already, and that the version they do have installed is adequate. To make this easier to

22

Figure 2-3: The Flash security dialogue. The user must grant our application access to their
microphone to use WAMI. This panel is 220x145 pixels and this cannot be changed.

manage, we use the popular open source project SWFObject Javascript library to managing

Flash insertion. When minified SWFObject is less than 1k bytes, keeping its overhead

minimal. SWFObject also aids in configuring the initialization parameters given to the

Flash objects.

2.2.5 Security Panel

The Flash platform requires approval from the user before access to a microphone is granted.

To prevent malicious manipulation of this process, Flash offers the developer very little

control over how this process is presented to the user. Unfortunately this requires us to

implement a workaround to provide a good user experience.

As documented above, the Flash object that is responsible for providing the WAMI

functionality is hidden in the page and not visible to the user. However, the only way that

Flash permits the microphone security dialogue to be displayed to the user is inside a Flash

23

window (see Figure 2-3). This window must be at least the size of the security dialogue,

which happens to be 220x145 pixels.

To support this, we have to show the user another Flash object when it’s been detected

that permission is required. Unfortunately in the permissions dialogue, granting permission

without clicking “Remember” only grants permission to that particular Flash object, so for

our hidden Flash object to ever receive permission, the “Remember” button must be clicked

by the user.

Complicating things further, a Flash object initialized without microphone permission

will never have microphone permission until a security dialogue within that object grants it.

Because our hidden object can never show this dialogue, we must reinitialize when permission

is granted. Complicating thing once again, Flash does not provide a way for an application

to know when the user has finished with the security panel. This is a known bug and has

was first listed on Adobe’s support site 4/15/2008. Regrettably it still remains unaddressed.

However a workaround is posted that continually performs an event that throws an exception

if the Security Panel is visible to detect when it is closed. We implement this workaround to

determine when the panel is closed and our hidden Flash object will have security permission.

Its also important to note that the 220x145 security panel does not take into account

the current zoom level of the browser. Zoom level is a common browser feature that allows

arbitrary scaling of webpage content. Since the contents of Flash are not rendered by the

browser, it does not scale as its container does and often times the contents of a Flash object

24

Figure 2-4: This is the Flash Security Panel after the browser’s zoom level has been changed.
Because Flash content does not scale like the Flash object’s container, the contents are ’too
big’ for the container.

will appear cut off or obscured. (See Figure 2-4 for an example of this.) Complicating things

further, no standard means of detecting a browser’s zoom level exists, making a workarounds

more difficult. There is no established workaround for this, though its remains an infrequent

problem. Adobe’s own website does not take browser zoom level into account. For a relevant

discussion on browser zoom level see [1].

The Flash security panel is particularly cautious to protect itself from “clickjacking at-

tacks”. Clickjacking, which can be understand as an instance of the “confused deputy”

problem, is when a user is tricked into interacting with a web application in a way the user

does not intend [13]. In this context, a clickjacking attack would be one that deceives the

user into granting a malicious Flash application microphone permission without intending to

do so. To avoid this, the security panel will not respond to clicks if any part of it is covered

by another other element, and it will not accept clicks until it has been fully visible for at

least 2 seconds. These protections have a number of side affects that can negatively affect

user experience:

25

• If tightly bound, the security panel will not appear if a brower’s zoom level

is below 1. This is because unlike most other elements of a web page, Flash objects

do not scale with the zoom level. This causes the Flash container to be smaller than

its contents, preventing it from being displayed

• The security panel is unresponsive for the first two seconds To ensure that

the user has seen the security panel before it can be used, it will not accept clicks for

the first 2 seconds. This is an undocumented feature of the security panel and was

discovered after testing.

2.3 Wowza module

After audio has left the client’s browser over RTMP, the RTMP must be decoded and the

media processed by the server. To handle the multiple simultaneous RTMP streams we make

use of the Wowza Media Server[9].

Wowza provides us with a scalable platform for managing the streaming of audio com-

municated in Adobe’s Flash’s RTMP communication. Wowza also provides the RTMPT and

RTMPS implementation that forwards RTMP over HTTP and SSL+HTTP respectively for

bypassing network restrictions.

After accepting the audio information at Wowza, we need to forward it to the WAMI

service. WAMI needs audio in an unencoded 8kHz 16-bit PCM format. To accommodate

this, we developed a Wowza module that uses FFmpeg[4] to decode the Speex data to PCM,

26

and then posts it over HTTP to that WAMI session’s particular record URL. An overview

of this process follows:

1. Start FFmpeg process. See 2.3.2 for the exact FFmpeg parameters.

2. Decode record URL from the Wowza stream instance name. (Section ??)

3. Open HTTP connection to record URL and start an HTTP POST.

4. Start pipeMover thread to continuously move incoming audio to FFmpeg, and the

FFmpeg output to the HTTP connection

5. Write first FLV headers to buffer. These are used to let FFmpeg know what type

of media follows in the rest of the stream.

6. Continue to write incoming audio data to buffer

7. Stop streaming, flush buffers and close.

8. Wait for FFmpeg to finish conversion.

9. Flush final FFmpeg output to HTTP connection and close the connection.

10. Kill FFmpeg process if it still exists.

All of the above are done in memory without on-disk buffering. Unix pipes, STDIN, and

STDOUT are used to put Speex in and bring PCM out of the FFmpeg process.

27

2.3.1 Record URL

Audio data coming in to Wowza needs to be posted to the correct record URL for WAMI to

process. This record URL contains a session specific ID. To keep the communication simple,

the record url is “piggy-backed” to Wowza by encoding it in the Wowza instance name.

This is just a piece of information associated with a particular stream. There are character

restrictions on this instance name, so the record URL is transformed.

The transformation is identical to a base 64[2] encoding with the exception that “/” in

the base64 encoded result is turned into “=S”. This is because a “/” cannot be escaped

directly, and cannot be part of a valid instance name. “=S” can never occur in a base64

encoding.

2.3.2 Decoding Speex

Wowza takes care of re-assembling the RTMP traffic, but offers no capability to transcode the

media. To accomplish the media conversion we use the powerful and open source FFmpeg[4]

media processor. Though interfacing more directly with FFmpeg’s media processing library,

libavcodec, would have allowed us more control over the conversion, calling FFmpeg directly

meets our requirements without adding unnecessary complexity.

The parameters given to FFmpeg can be seen in Figure 2-5.

• analyzeduration .5 Instructs FFmpeg to only examine the incoming data for half a

second before it starts decoding. (note: this option is not documented [3])

28

ffmpeg -analyzeduration .5 -i - -acodec pcm_s16le -ar 8000 -f s16le -

Figure 2-5: These are the parameters given to the FFmpeg process. See Section 2.3.2 for an
explanation.

• -i - indicates the incoming data is coming over the STDIN stream.

• -acodec pcm s16le tells FFmpeg the output should be PCM format with unsigned

16-bit sample size little-endian.

• -ar 8000 Sets the audio sampling rate to 8000Hz.

• -f s16le Sets the output format to raw PCM unsigned 16 bit little-endian. 1

• The final - sets the output to be the STDOUT.

2.3.3 Posting data to WAMI

While FFmpeg is decoding Speex data to PCM that information is continuously sent over an

HTTP POST connection to the WAMI record URL. All audio data is posted continuously

over the same HTTP connection, allowing WAMI to start processing the information as soon

as it comes in. The Wowza and WAMI servers are located on the same local network so

network communication delays are minimal.

1The codec and the container format happen to be redundant in this case, but FFmpeg usually needs
both so we set them explicitly

29

2.4 Default UI

WAMI provides a default microphone GUI to ensure an easy start for developers. We

attempted to create a modern looking GUI that would be usable in most standard WAMI

applications. There are three important states we need to represent. (See Figure 2-6)

• Idle state – At this point the UI is fully initialized and ready to start recording audio.

To start recording, users just click once. When the mouse comes over the audio, the

button lightens slightly in reaction. It appears as an un-pressed button.

• Connecting state – This the how the UI looks while establish connection. This is the

same look when its opening up its initial connection to the Wowza server when started,

and briefly during the delay between when the user clicks, and when the microphone

starts sending audio data.

• Recording state – This is the state of the UI while audio is being recorded and being

sent to the Wowza server. The microphone volume level is displayed by the raising

and falling of red over the black microphone icon. The button also appears depressed.

The UI appears as a button that is depressed when clicked by the user. The microphone

icon is familiar to most users that have experience with voice application. The minimal size

lets developers embedded it in application unobtrusively. It will also appear in the connection

30

Figure 2-6: The Idle, Connecting, and Recording states of the default microphone UI. The
button also lightens slight on mouse over.

state while the security dialogue is shown since it has not yet been granted permission to

record audio.

31

Chapter 3

Applications

The improved Flash Audio Controller can be used with only minimal changes on all pre-

existing WAMI systems. These changes could be even simpler, but the in process of updating

the audio controller, the WAMI Javascript interface was also implemented to ease work for

developers. The work to convert existing applications still remains minimal. To demonstrate

this, initially the WAMI Voice TicTacToe example application was converted to use the

updated controller. See a screenshot of this in Figure 3-1.

To demonstrate this, Quizlet.com was converted to use the improved Flash Audio Con-

troller. This was a minimal upgrade requiring that we only change the javascript library

reference and adjust a few configuration parameters. Some alterations had to be made to

accommodate the Flash security panel. For the the improved Voice Scatter game see Figure

3-2. For the improved Voice Race game see Figure 3-3.

32

Figure 3-1: A screenshot of WAMI TicTacToe example application. Users use simple phrases
to fill in the square on a TicTacToe board with their symbols.

33

Figure 3-2: A screenshot of Quizlet.com’s Voice Scatter using the Flash Based audio controller. In this instance of the
game, users use their voice to match state to their capitals

34

Figure 3-3: A screenshot of Quizlet.com’s Voice Race using the Flash Based audio controller. In this instance of the game,
users use their voice to state the capital of the state before it moves too far to the right.

35

Chapter 4

Experiments and Analysis

4.1 Network Performance Experiment

One of the major goals of our improved Audio Controller was to improve WAMI performance

in a poor networking environment. One of the key attributes affecting users experience is

the time between when a user stops recording their voice and when WAMI responds with

recognition results. To demonstrate that Flash will improve this key metric, we measured the

recognition response delay for a standard recognition battery in various simulated networking

environments and then compared the results. The average utterance was approximately 5

seconds long.

To simulate the networking environment, ipfw or the FreeBSD IP packet filter was used.

Using ipfw allows us to limit bandwidth, simulate random packet loss, network delay, and

network queue. The settings for the various environments can be found in Figure 4-1. These

36

Connection Type Bandwidth Packet Loss Rate Delay
Slow Cellular 350kbit/s %10 350ms
Fast Cellular 800kbit/s %3 200ms

DSL 5000kbit/s %1 75ms
High Speed 100Mb/s %0 0ms

Figure 4-1: ipfw settings used for simulating various networking environments.

settings were applied to both incoming and outgoing traffic.

Slower network environments were simulated but the Java applet Audio Controller would

fail to function in these environments. The same application and recognition response in-

strumentation was used for both the Java applet and the Flash.

4.2 Analysis of Network Performance

As seen in Figure 4-2 our improved Audio Controller improves recognition response time in

all tests, including significant response gains in poor networking environments. Even the

36% improvement in response time is significant, and reveals that a larger portion of the

prior WAMI overheard was spent preparing and processing audio information on the client.

This test also reveals that WAMI will continue to function adequately and degrade gracefully

even in the poorest of networking environments.

Though more in-depth research can be done (see Section 5.2) we can speculate on the

various causes of this improved performance. The primary cause for improvement is un-

doubtably the Flash Audio Controller’s smaller bandwidth requirements compared to the

37

applet’s (see Figure 4-3). However we still see a 36% improvement in the high speed net-

working environment, when bandwidth is not a limiting factor.

Another potential source of improvement is changing the transport protocol from HTTP

to RTMP. Real Time Media Protocol (RTMP) is designed from the ground up to handle

live media streams. RTMP has various features related to the transmission and reception of

large streams of video and data but those are mostly irrelevant for our purposes. Compared

to HTTP, RTMP has much smaller headers and can dynamically adjust fragment size as

needed.[6]

Flash may also simply perform faster than Java in closing the audio transmission, enabling

WAMI to send a recognition response faster.

38

Figure 4-2: Flash vs. Java Applet performance in various networking environments. Flash
shows consistent improvement.

Bandwidth Requirement Resource size
Java Applet Audio Controller 176 kbits/s 92.6 KB
Flash Audio Controller 64 kbits/s 6.7 KB

Figure 4-3: Network Requirements for the different Audio Controllers.

39

Chapter 5

Future Work and Conclusion

5.1 Further user study

Though all indicators point to our new Flash based Audio Controller improving the end

users’ experience, a public re-launch of the WAMI project and continued deployments will

ultimately provide data to prove this is so. Over the coming months plans are being made

to launch WAMI publicly, and release it on our long time partner Quizlet.com. Quizlet’s

larger user base will ultimately let us know if we have improved the experience for the end

user.

On Quizlet, the key indicators will be the change in the number of users using speech

based games, as well as the percentage of users that attempt to play a speech based game

and succeed. Overall all the key indicator swill be the number of different WAMI application

deployed and the amount of traffic they have. Fortunately these are all easy to measure.

40

5.2 Speex and Speech Recognition

In the future we will wish to better understand the relationship between Speex and recog-

nition quality. This could potentially lead to gains in performance. At the moment we

convert incoming Speex audio to 8kHz PCM, but we could just as easily convert it to 16kHz

PCM provided we have models prepared. During the conversion process we’re synthesizing

or approximating what the audio is thought to be. The relationship between Speex’s encode

quality and usefulness of the converted PCM for speech recognition is also not understood. It

is possible we can substantially reduce Speex’s bandwidth requirements even further without

a significant effect on recognition quality.

One avenue of interest is to explore Speex’s variable-bit-rate encoding technique. This

technique, unfortunately not yet implemented in Flash, lets Speex dynamically adjust the

bit-rate to accommodate the “difficulty” of the audio. This would allow Speex to have even

lower bandwidth requirements while still maintaining roughly the same quality. However,

variable-bit-rate’s effect on speech recognition quality is not understood. It is encouraging

that all of Google’s recent distributed speech recognition systems transfer audio to the server

using the Speex codec.

5.3 Using Wowza and Speex across Audio Controllers

The Wowza media server setup provides a robust and scalable means of accepting live mul-

timedia streams and transcoding them for speech recognition processing. Though Flash

41

necessitated this technology, it can still used by non-Flash clients.

Currently the Android and iPhone Audio Controller for WAMI send their audio directly

for recognition in the raw format discussed above. This unnecessarily strains the network

capacity of these mobile devices. The Wowza architecture is fully capable of accepting other

Speex streams (or other audio encoding) over RTMP and sending those on for recognition

results. If these clients sent Speex we’d gain performance on the devices and decrease

minimum network standards.

Wowza was designed from the ground up as robust and fault tolerant media server plat-

form. It will likely scale and grow smoother than other means of accepting audio from users.

Further research and testing needs to be done to demonstrate this.

5.4 Conclusion

Our improved Flash based Audio Controller for the WAMI system provides a greatly im-

proved usability, performance, and flexibility to the developer. Wowza provides us with a

robust and reliable platform for receiving and delivering real time audio and video in future

WAMI applications.

42

Bibliography

[1] Stack overflow discussion of detecting browser zoom level.

http://stackoverflow.com/questions/1713771/how-to-detect-page-zoom-level-in-all-

modern-browsers, 2010.

[2] Base 64 encoding. http://en.wikipedia.org/wiki/Base64, 2011.

[3] Ffmpeg documentation. http://www.ffmpeg.org/ffmpeg-doc.html, 2011.

[4] Ffmpeg project. http://www.ffmpeg.org, 2011.

[5] Popforge actionscript library. http://code.google.com/p/popforge/, 2011.

[6] Rtmp specification (omits important details). http://www.adobe.com/devnet/rtmp.html,

2011.

[7] Salt tags. http://en.wikipedia.org/wiki/Speech Application Language Tags, 2011.

[8] W3c html speech incubator group. http://www.w3.org/2005/Incubator/htmlspeech/,

2011.

43

[9] Wowza media server. http://www.wowzamedia.com, 2011.

[10] Matt Oshry et. al. Voicexml 2.1. http://www.w3.org/TR/voicexml21/, 2007.

[11] Alexander Gruenstein, Ian McGraw, and Ibrahim Badr. The wami toolkit for develop-

ing, deploying, and evaluating web-accessible multimodal interfaces. In Proceedings of

the 10th international conference on multimodal interfaces, ICMI ’08, pages 141–148,

New York, NY, USA, 2008. ACM.

[12] Alexander Gruenstein, Ian Mcgraw, and Andrew Sutherland. A self-transcribing speech

corpus: collecting continuous speech with an online educational game. In the Speech

and Language Technology in Education (SLaTE) Workshop, 2009.

[13] Robert Hansen and Jeremiah Grossman. Clickjacking.

http://www.sectheory.com/clickjacking.htm, 2008.

[14] Kuansan Wang. SALT: a spoken language interface for web-based multimodal dialog

systems. In Proceedings of ICSLP—Interspeech 2002: 7th International Conference on

Spoken Language Processing, Denver, CO, USA, pages 2241–2244, 2002.

44

	Introduction and Background
	WAMI - Web Accessible Multimodal Toolkit
	Existing Java applet

	SALT
	VoiceXML
	Google Chrome Speech API
	Flash

	Design
	Design Goals
	Flash
	Invisible Flash Object
	Speex
	WAV Playback
	Object Insertion
	Security Panel

	Wowza module
	Record URL
	Decoding Speex
	Posting data to WAMI

	Default UI

	Applications
	Experiments and Analysis
	Network Performance Experiment
	Analysis of Network Performance

	Future Work and Conclusion
	Further user study
	Speex and Speech Recognition
	Using Wowza and Speex across Audio Controllers
	Conclusion

