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Master of Science in Electrical Engineering and Computer Science

Abstract

This thesis focuses on the problem of detecting word-level mispronunciations in nonnative
speech. Conventional automatic speech recognition-based mispronunciation detection sys-
tems have the disadvantage of requiring a large amount of language-specific, annotated
training data. Some systems even require a speech recognizer in the target language and
another one in the students’ native language. To reduce human labeling effort and for gener-
alization across all languages, we propose a comparison-based framework which only requires
word-level timing information from the native training data. With the assumption that the
student is trying to enunciate the given script, dynamic time warping (DTW) is carried out
between a student’s utterance (nonnative speech) and a teacher’s utterance (native speech),
and we focus on detecting mis-alignment in the warping path and the distance matrix.

The first stage of the system locates word boundaries in the nonnative utterance. To
handle the problem that nonnative speech often contains intra-word pauses, we run DTW
with a silence model which can align the two utterances, detect and remove silences at the
same time.

In order to segment each word into smaller, acoustically similar, units for a finer-grained
analysis, we develop a phoneme-like unit segmentor which works by segmenting the self-
similarity matrix into low-distance regions along the diagonal. Both phone-level and word-
level features that describe the degree of mis-alignment between the two utterances are ex-
tracted, and the problem is formulated as a classification task. SVM classifiers are trained,
and three voting schemes are considered for the cases where there are more than one matching
reference utterance.

The system is evaluated on the Chinese University Chinese Learners of English (CU-
CHLOE) corpus, and the TIMIT corpus is used as the native corpus. Experimental results
have shown 1) the effectiveness of the silence model in guiding DTW to capture the word
boundaries in nonnative speech more accurately, 2) the complimentary performance of the
word-level and the phone-level features, and 3) the stable performance of the system with or
without phonetic units labeling.

Thesis Supervisor: James Glass
Title: Senior Research Scientist
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Chapter 1

Introduction

1.1 Overview of the Problem

Computer-Aided Language Learning (CALL) systems have gained popularity due to the

flexibility they provide to empower students to learn at their own pace. Instead of physically

sitting in a classroom and following pre-defined schedules, with the help of CALL systems,

students can study the language they are interested in on their own, as long as they have

access to a computer.

Pronunciation, vocabulary, and grammar are the three key factors to mastering a foreign

language. Therefore, a good CALL system should be able to help students develop their

capability in these three aspects. This thesis focuses on one specific area – Computer-Aided

Pronunciation Training (CAPT), which is about detecting mispronounced words, especially

in nonnative speech, and giving feedback. Automatic speech recognition (ASR) is the most

intuitive solution when people first looked into the problem of building CALL systems, and

recognizer-based CAPT has long been a research topic. However, when doing so, the limits

of current ASR technology have also become a problem.

In this thesis, a comparison-based mispronunciation detection framework is proposed.

Within our framework, a student’s utterance is directly compared with a teacher’s instead

of going through a recognizer. The rest of this chapter describes the motivation and the

assumptions of the proposed system, presents an overview of the whole system framework,

and outlines the content of the remaining chapters.

17



1.2 Overview of the System

1.2.1 Motivation

In order to automatically evaluate a student’s pronunciation, the student’s speech has to be

compared with some reference models, which can be one or more native speakers of the target

language. As will be discussed in detail in Chapter 2, the conventional approach of detecting

mispronunciation relies on good automatic speech recognition (ASR) techniques. However,

a recognizer-based approach has several disadvantages. First, it requires a large amount of

training data that is carefully transcribed at the phone-level in the target language, which is

both time-consuming and expensive. Also, since native and nonnative speech differ in many

aspects, a CAPT system usually also requires an acoustic model trained on nonnative speech,

resulting in the need of well-labeled nonnative training data.

Besides the fact that preparing training data requires extensive human labeling efforts,

these two disadvantages also lead to recognizer-based approaches being language-dependent.

A new recognizer has to be built every time we want to build a CALL system for a different

target language. What is worse is that the nonnative acoustic model has to take different

native languages of the students into account. There are 6,909 languages according to the cur-

rently most extensive catalog of the world’s languages [1]. However, commercially-available

recognizers only feature around 50 languages that are frequently used in the world [2]. There-

fore, there is definitely a need for investigating a non-recognizer-based, language-independent

approach to building a CAPT system.

As a result, instead of using a recognizer, we turn to a comparison-based approach. The

intuition is that if a student’s utterance is very “close” to a teacher’s in some sense, then

he/she should be performing well. Inspired by the unsupervised pattern matching techniques

described in the next chapter, we carry out dynamic time warping (DTW) to align two

utterances and see if the student’s looks similar to the teacher’s. By locating poorly matching

regions, we can thus detect mispronunciations. Our approach does not require any linguistic

knowledge of the target language and the student’s native language, and thus it should be

language-independent. To avoid the problem of requiring too much human labeling effort,

we also propose an unsupervised phone segmentor to segment each word into smaller units

18



for a finer-grained analysis.

1.2.2 Assumptions

To envision the implementation of our framework into a CALL system, imagine a script-

based system, which can be a reading game or a guided dialogue. Given a text sentence

displayed on the screen, the first assumption would be that the student is trying his/her best

to pronounced what he/she saw on the screen. If the student does not know how to read the

given sentence, there would be a play button that could provide a reading example from a

“teacher”. If the student does not know how to read a certain word, he/she could also choose

to play only the audio of that word. These functions are based on our second assumption –

for every script in our teaching material, there is at least one recording from a native speaker

of the target language, and we have word-level timing labels on the recording.

We believe these assumptions are fairly reasonable, since nowadays we can access a huge

amount of audio data on the Internet easily. The content varies from news and public speeches

to TV series, and all of them provide us with more than enough audio materials for language

learning. Annotating word boundaries is a fairly simple task that every native speaker of the

target language can do, unlike phone-level annotations, which are typically done by experts.

1.2.3 The Proposed Framework

Fig. 1-1 shows the flowchart of our system. Our system detects mispronunciation on a word

level, so the first stage is to locate word boundaries in the student’s utterance. Dynamic

time warping (DTW) is a technique that is often used when aligning two sequences. Here

we propose to incorporate a silence model when running DTW. In this way, we can align

the two utterances, detect and remove silence in the student’s utterance at the same time.

The aligned path, together with the word boundaries of the teacher’s utterance, can help us

locate word boundaries in the student’s utterance.

After segmenting the student’s utterance into words, the second stage is to determine

whether each word is mispronounced or not. Here we first propose an unsupervised phoneme-

like unit segmentor that can further segment a word into smaller units. Some specially de-
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Figure 1-1: System overview (with single reference speaker)

signed features that describe the shape of the aligned path and the appearance of the distance

matrix are extracted, either within a word or within those phone-like units. Given the fea-

tures, together with the word-level labels, we form the problem of detecting mispronunciation

as a classification problem. Support vector machine (SVM) classifiers are trained and used

for prediction. If there are more than one reference speaker, i. e. more than one teacher’s

recording for a script, we further examine three voting schemes to combine the decisions from

separate alignments.

1.2.4 Contributions

The main contribution of this thesis is the comparison-based mispronunciation detection

framework that requires only word-level timing information on the native training data.

We have approached this problem through three steps. First of all, we present how to

accurately locate word boundaries in a nonnative utterance through an alignment with a

native utterance. We extend basic DTW to incorporate a silence model, which allows the

DTW process to be more flexible in choosing the warping targets.

Second, we propose an unsupervised phoneme-like unit segmentor that can divide an

utterance into acoustically similar units. With these units, the system can work without

phonetic unit human labeling.
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Last but not least, we introduce a set of word-level and phone-level features and demon-

strate their ability in detecting mispronunciations. These features are extracted based on the

shape of the aligned path and the structure of the distance matrix. We perform a series of

experiments to show that combining features at both levels can achieve the best performance.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2 presents background and related work, including recognizer-based approaches

to mispronunciation detection and pattern matching techniques. The native and nonnative

corpora we use for experiments are also introduced.

Chapter 3 illustrates the first stage of our system – word segmentation. Experimental

results showing how accurately DTW can capture the word boundaries in nonnative speech

are reported and discussed.

Chapter 4 introduces a phoneme-like unit segmentor, which is used to segment each word

into smaller acoustically similar units for more detailed analysis. The evaluation is done on

the task of phonetic boundary detection.

Chapter 5 explains how we extract features for mispronunciation detection in detail.

Experimental results showing the performance of the framework with respect to different

amount of information are presented and discussed.

Chapter 6 concludes the thesis with a summary of the contributions and suggests possible

future research directions.
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Chapter 2

Background and Related Work

2.1 Pronunciation and Language Learning

Non-native speakers, especially adults, are easily affected by their native language (L1) when

learning a target language (L2). Pronunciation involves many different dimensions. It is

known that the error patterns a language learner makes are correlated with his/her level

of competency [5, 12, 13]. As a student embarks on learning a new language, the most

common errors are at the phonetic level, such as a substitution, insertion, or deletion of one

or more phones. These errors are due to the unfamiliarity with phoneme inventories and

the phonological rules of L2. The student might substitute an unfamiliar phoneme with a

similar one that exists in L1. A famous example would be Japanese learners of English of

beginning levels substituting /s/ for /th/, and /l/ for /r/ [13, 31]. Also, due to the lack of

vocabulary, when seeing a word for the first time, the student might not know the correct

rules to pronounce it. For example, a vowel in English has different pronunciations depending

on its context.

As the student becomes more proficient, these kinds of errors may happen less frequently,

and instead, prosody becomes an important issue. Lexical stress, tone, and time duration are

some categories on the prosodic level. Previous work has shown that prosody has more impact

on learners’ intelligibility then the phonetic features do [3, 33]. However, the prosodic aspects

of a language are sometimes hidden in details. Learning these details involves correctly

perceiving the target language. Nonetheless, a student’s L1 may limit his/her ability to
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become aware of certain prosodic features in L2. For example, for many language learners

who have non-tonal native languages, it is difficult to distinguish the tones in tonal languages

such as Mandarin Chinese or Cantonese even when perceiving, not to mention producing

those tones [28, 34].

When designing a CALL system, people are more concerned about the precision of the

system, rather than the recall, as it would discourage the student from learning if the system

detects many errors that are in fact good pronunciations [5, 13]. In addition to correctly

detecting the above errors, the feedback provided by the system is also critical. Multimodal

feedback is popular, such as messages in text, audio playback, and animation of the lips or

vocal tract, as they can improve the comprehensibility of the system and thus the learning

efficiency.

2.2 Computer-Assisted Pronunciation Training (CAPT)

CAPT systems are a kind of CALL system that are specially designed for the purpose of

pronunciation training. There are two types of evaluation: individual error detection and

pronunciation assessment. The former is about detecting word or subword level pronunciation

errors and providing feedback, while the latter is about scoring the overall fluency of a student.

As the focus of this thesis is on word-level mispronunciation detection, here we only present

previous work in this area.

2.2.1 Individual Error Detection

ASR technology can be applied to CAPT in many different ways. Kewley-Port et. al [21] used

a speaker-independent, isolated-word, template-based recognizer to build a speech training

system for children. The spectrum of a child’s input speech is coded into a series of 16-

bit binary vectors, and is compared to the stored templates by computing the percentage

of matching bits relative to the total number of bits of each template. That number is

used as the score for indicating how good the articulation is. Wohlert [37] also adopted a

template-based speech recognizer for building a CAPT system for learning German. Dalby

and Kewley-Port [10] further compared two types of recognizers: a template-based system
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which performs pattern matching and a HMM-based system which is based on nondetermin-

istic stochastic modeling. Their conclusion is that an HMM-based recognizer performs better

in terms of accuracy in identifying words, while a template-based recognizer works better in

distinguishing between minimal pairs.

Witt and Young [36] have proposed a goodness of pronunciation (GOP) score, which

can be interpreted as the duration normalized log of the posterior probability of a speaker

saying a phone given acoustic observations. Phone dependent thresholds are set to judge

whether each phone from the forced alignment is mispronounced or not. The 10 subjects

for their experiment spoke a variety of L1s, which were Latin-American Spanish, Italian,

Japanese and Korean. Their experimental results show that pronunciation scoring based

on likelihood scores from a recognizer can achieve satisfactory performance. Also based on

posterior probabilities, Franco et. al [15] trained three recognizers by using data of different

levels of nativeness and used the ratio of the log-posterior probability-based scores from each

recognizer to detect mispronunciation. In recent work, Peabody [28] proposed to anchor the

vowel space of nonnative speakers according to that of native speakers before computing the

likelihood scores.

Some approaches incorporated the knowledge of the students’ L1 into consideration. They

focused on predicting a set of possible errors and enhancing the recognizer to be able to

recognize the wrong versions of pronunciations. These error patterns can be either hand-

coded from linguistic knowledge or learned in a data-driven manner.

Meng et. al [24] proposed an extended pronunciation lexicon that incorporates possible

phonetic confusions based on the theory of language transfer. Possible phonetic confusions

were predicted by systematically comparing phonology between the two languages. They

performed a thorough analysis of salient pronunciation error patterns that Cantonese speakers

would have when learning English. Kim et. al [22] also carefully constructed phonological

rules that account for the influence of Korean (L1) on English (L2). Harrison et. al [18]

considered context-sensitive phonological rules rather than context-insensitive rules. Qian

et. al [29] adopted the extended pronunciation lexicon and proposed a discriminatively-trained

acoustic model that jointly minimizes mispronunciation and diagnosis errors to enhance the

recognizer.
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Most recently, Wang and Lee [35] further integrate GOP scores with error pattern detec-

tors. Their experimental results show that the integrated framework performs better than

using only one of them in detecting mispronunciation within a group of students from 36

different countries learning Mandarin Chinese.

2.3 Posteriorgram-based Pattern Matching in Speech

Dynamic time warping (DTW) is an algorithm that finds an optimal match between two

sequences which may vary in time or speed. It has played an important role in early template-

based speech recognition. The book written by Rabiner and Juang [31] has a complete

discussion about issues such as what the distortion measures should be, and how to set time-

normalization constraints. In early work, the distortion measure might be based on filter

bank output [32] or LPC features [27]. More recently, posterior features have been applied to

speech recognition, and have also been successfully applied to facilitate unsupervised spoken

keyword detection. Below we introduce the definition of the posteriorgram, and present some

previous work on posteriorgram-based pattern matching applications.

2.3.1 Posteriorgram Definition

Phonetic Posteriorgram

A posteriorgram is a vector of posterior probabilities over some predefined classes, and can

be viewed as a compact representation of speech. Given a speech frame, its phonetic poste-

riorgram should be a N × 1 vector, where N equals the number of phonetic classes, and each

element of this vector is the posterior probability of the corresponding phonetic class given

that speech frame. Posteriorgrams can be computed directly from likelihood scores for each

phonetic class, or by running a phonetic recognizer to generate a lattice for decoding [19].

Gaussian Posteriorgram

In contrast to the supervised phonetic posteriorgram, a Gaussian posteriorgram (GP) can be

computed from a set of Gaussian mixtures that are trained in an unsupervised manner [38].
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For an utterance S = (fs1 , fs2 , ..., fsn), where n is the number of frames, the GP for the ith

frame is defined as

gpfsi = [P (C1|fsi), P (C2|fsi), ..., P (Cg|fsi)], (2.1)

where Cj is a component from a g-component Gaussian mixture model (GMM) which can

be trained from a set of unlabeled speech. In other words, gpfsi is a g-dimensional vector of

posterior probabilities.

2.3.2 Application in Speech

Application in Speech Recognition

Aradilla et. al [4] re-investigated the problem of template-based speech recognition by us-

ing posterior-based features as the templates and showed significant improvement over the

standard template-based recognizers on a continuous digit recognition task. They took ad-

vantage of a multi-layer perceptron to estimate the phone posterior probabilities based on

spectral-based features and used KL-divergence as the distance metric.

Application in Keyword Spotting and Spoken Term Discovery

Spoken keyword detection for spoken audio data aims at searching the audio data for a

given keyword in audio without the need of a speech recognizer, and spoken term discovery

is the task of finding repetitive patterns, which can be a word, a phrase, or a sentence, in

audio data. The initial attempt by Hazen et al. [19] was a phonetic-posteriorgram-based,

spoken keyword detection system. Given a keyword, it can be decoded into a set of phonetic

posteriorgrams by phonetic recognizers. Dynamic time warping was carried out between the

posteriorgram representation of the keyword and the posteriorgram of the stored utterances,

and the alignment score was used to rank the detection results.

To train a phonetic recognizer, one must have a set of training data with phone-level labels.

Zhang et. al [38] explored an unsupervised framework for spoken query detection by decoding

the posteriorgrams from a GMM which can be trained on a set of unlabeled speech. Their

following work [39] has shown that posteriorgrams decoded from Deep Boltzmann Machines

can further improve the system performance. Besides the aligned scores, Muscariello et. al [26,
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25] also investigated some image processing techniques to compare the self-similarity matrices

(SSMs) of two words. By combining the DTW-based scores with the SSM-based scores, the

performance on spoken term detection can be improved.

2.4 Corpora

In this thesis, we are proposing a comparison-based framework, and thus, we require a dataset

in the target language (English) and a dataset in a nonnative language, which is Cantonese

in our case. The two datasets must have utterances of the same content for us to carry

out alignment, and this is also the reason why we choose the TIMIT corpus as the English

dataset (target language), and the Chinese University Chinese Learners of English (CU-

CHLOE) corpus [24] as the nonnative dataset, which contains a set of scripts that are the

same as those in TIMIT. The following sub-sections describe the two corpora.

2.4.1 TIMIT

The TIMIT corpus [16] is a joint effort between Massachusetts Institute of Technology (MIT),

Stanford Research Institute (SRI), Texas Instruments (TI), and the National Institute of

Standards and Technology (NIST). It consists of continuous read speech from 630 speakers,

438 males and 192 females from 8 major dialect regions of American English, with each

speaking 10 phonetically-rich sentences. All utterances are phonetically transcribed and the

transcribed units are time-aligned.

There are three sets of prompts in TIMIT:

1. dialect (SA):

This set contains two sentences which are designed to expose the dialectal variants of

the speakers, and thus were read by all 630 speakers.

2. phonetically-compact (SX):

This set consists of 450 sentences that are specially designed to have a good coverage

of pairs of phonetic units. Each speaker read 5 of these sentences, and each prompt

was spoken by 7 speakers.

28



3. phonetically-diverse (SI):

The 1,890 sentences in this set were selected from existing text sources with the goal of

maximizing the variety of the context. Each speaker contributed 3 utterances to this

set, and each sentence was only read by one speaker.

2.4.2 CU-CHLOE

The Chinese University Chinese Learners of English (CU-CHLOE) corpus is a specially-

designed corpus of Cantonese speaking English collected at the Chinese University of Hong

Kong (CUHK). There are 100 speakers (50 males and 50 females) in total, who are all uni-

versity students. The speakers were selected based on the criteria that their native language

is Cantonese, they have learned English for at least 10 years, and their English pronunciation

is viewed as intermediate to good by professional teachers.

There are also three sets of prompts in the CU-CHLOE corpus:

1. “The North Wind and the Sun”:

The first set is a story from the Aesop’s Fable that is often used to exemplify languages

in linguistic research. The passage was divided into 6 sentences after recording. Every

speaker read this passage.

2. specially designed materials :

There are three sets of materials designed by the English teachers in CUHK.

• Phonemic Sounds (ps): There are 20 sentences in this subset.

• Confusable Words (cw): There are 10 groups of confusable words. For example,

debt doubt dubious, or saga sage sagacious sagacity.

• Minimal Pairs (mp): There are 50 scripts including 128 pairs of words, such as

look luke, cart caught, or sew sore.

Each speaker recorded all the prompts in these three subsets.

3. sentences from the TIMIT corpus :

All sentences from the SA, SX and the SI set in TIMIT are included.
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All recordings were collected using close-talking microphones and were sampled at 16kHz.

Overall, each speaker contributed 367 utterances to this corpus, so there are 36,700 recordings

in total, consisting of 306,752 words. Of these utterances, 5,597 (36,874 words from all sets

of prompts except the TIMIT recordings) were phonetically hand transcribed.

Previous work on this corpus focused on recognizer-based methods, such as building a

lexicon that incorporates possible pronunciations of words and compares whether the recog-

nizer’s output is the same as the correct pronunciation [24], or anchoring the vowel space

of nonnative speakers according to that of native speakers and adopting likelihood scores to

train a classifier [28].

2.4.3 Datasets for Experiments

In order to carry out alignment, we use the part of the CU-CHOLE corpus that is based

on TIMIT prompts for experiments. We divide the 50 male and 50 female speakers into 25

males and 25 females for training, and the rest for testing, so there is no speaker overlap

between the training set and the test set.

In previous work by Peabody [28], annotation on word-level pronunciation correctness

were collected through Amazon Mechanical Turk (AMT). Each turker (the person who per-

forms a task on the AMT platform) was asked to listen to an audio recording and click on

a word if it was mispronounced. There were three turkers labeling each utterance. Only the

words whose labels got agreement among all three turkers are used, and only the utterances

which have at least one mispronounced word are included in the dataset. Details about the

labeling process can be found in [28].

In order to further decrease word overlap between the training and the test set, we chose

the prompts in the SI set for training, and SX for testing. The native utterances come from

the TIMIT corpus, but only reference speakers of the same sex as the student are used for

alignment. In the end, there is only one matching reference utterance for each student’s

utterance in the training set, compared to 3.8 reference utterances on average in the test set.

The details about the dataset are shown in Table 2.1.
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# utterances (# unique) # words # mispronounced words (ratio)
training 1196 (827) 9989 1523 (15.25%)
testing 1065 (348) 6894 1406 (20.39%)

Table 2.1: Dataset

2.5 Summary

In this chapter, we have introduced 1) the background on different types of pronunciation

errors, 2) previous work on CAPT system, especially focusing on individual error detection,

and on posteriorgram-based pattern matching approaches in speech, and 3) the two corpora

that are used in this thesis. The posteriorgram-based pattern matching approaches motivated

us to carry out DTW between a native utterance and a nonnative utterance. The difference

to a spoken term detection task is that we have to not only consider the aligned scores, but

also look into the aligned path for a more detailed analysis. In the following chapters, we

will explain how we apply this idea to the task of mispronunciation detection.
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Chapter 3

Word Segmentation

3.1 Motivation

Assume we are given a teacher’s utterance with word-level timing labels. To locate word

boundaries in a student’s utterance, we can align the two utterances, and map the word

boundaries in the teacher’s utterance to the student’s utterance through the aligned path. A

common property of nonnative speech is that there can sometimes be a long pause between

words, since the student may need time to consider how to pronounce a certain word. For

a more accurate analysis of a word, those pauses have to be removed. One possible solution

may be to apply a Voice Activity Detector (VAD) on the student’s input utterance before

subsequent analyses. However, building a good VAD is in itself a research problem, and it

would introduce computational overhead to our system.

In this chapter, we propose to perform dynamic time warping (DTW) with a silence

model, which not only compares each frame in a nonnative utterance with that of a native

utterance, but also considers the distance to some frames of silence. In this way, we can

align the two utterances and detect silence at the same time. Experimental results show

that incorporating a silence model helps our system to identify word boundaries much more

precisely.
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3.2 Dynamic Time Warping with Silence Model

3.2.1 Distance Matrix

Given a teacher frame sequence T = (ft1 , ft2 , ..., ftn) and student frame sequence S =

(fs1 , fs2 , ..., fsm), an n × m distance matrix, Φts, can be built to record the distance be-

tween each possible frame pair from T and S. The definition of the distance matrix Φts

is

Φts(i, j) = D(fti , fsj), (3.1)

and D(fti , fsj) denotes any possible distance metric between fti and fsj . Here n is the total

number of frames of the teacher’s utterance and m the student’s. The representation of a

frame of speech, fti or fsj , can be either a Mel-frequency cepstral coefficient (MFCC) (a 13-

dim or 39-dim vector if with first and second-order derivatives) or a Gaussian posteriorgram

(a g-dim vector if it is decoded from a g-mixture GMM). If we use MFCCs to represent the

two utterances, D(u, v) can be the Euclidean distance between two MFCC frames u and v.

If we choose a Gaussian posteriorgram (GP) as the representation, D(u, v) can be defined as

− log (u · v) [19, 38].

Fig. 3-1 shows six examples of distance matrices. We can tell that in both the MFCC-

based and GP-based distance matrices between two utterances of the same content and

from the same gender (Fig. 3-1a and 3-1b), there generally is a dark blue path (i. e. a low-

distance path) starting from the top left corner and ending the bottom right corner along

a quasi-diagonal. This observation motivates the idea aligning the two utterances for direct

comparison. Things change a little when we align two utterances of the same content but

produced by different genders (Fig. 3-1c and 3-1d), where the path becomes less clear because

of the difference in vocal tracts. However, there is obviously no such path in the distance

matrices of different content (Fig. 3-1e and 3-1f).

For the comparison between MFCC-based and GP-based distance matrices, obviously,

there are more dark blue regions (i. e. low-distance regions) in GP-based distance matrices.

Ideally, each mixture in the GMM should correspond to one phonetic unit in the training

data. However, since the GMM was trained in an unsupervised fashion, each resulting
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(a) MFCC, same content, same gender (b) GP, same content, same gender

(c) MFCC, same content, different gender (d) GP, same content, different gender

(e) MFCC, different content, same gender (f) GP, different content, same gender

Figure 3-1: Examples of distance matrices and the corresponding spectrograms. (MFCC:
using MFCC to represent speech, GP: using Gaussian posteriorgram to represent speech; F:
female, M: male) The colorbar next to each matrix shows the mapping between the color and
the distance values. Low distances tend to be in blue, and high distances tend to be in red.
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mixture actually binds several acoustically similar units together. Therefore, when decoding,

two phonetically similar frames may have a similar probability distribution over mixtures

even though they are different phones, resulting in low distance between them. We can

conclude that using MFCC can help us avoid confusion between different phonetic units.

However, as stated in Chapter 2, many posteriorgram-based approaches have been proven to

be useful in many pattern-matching-based applications. In these work, MFCCs have been

shown to be sensitive to differences in vocal tracts, while the mixtures in GMM capture more

difference in the acoustic characteristics of phonetic units. Therefore, at this stage, we cannot

determine for sure which representation is better for our application. We therefore consider

both MFCC-based and GP-based distance matrices when carrying out experiments.

3.2.2 Dynamic Time Warping (DTW)

Given a distance matrix, Φts, we carry out global dynamic time warping (global DTW) to

search for the “best” path starting from Φts(1, 1) and ending at Φts(n,m), and the “best”

path is the one along which the accumulated distance is the minimum. By doing so, the

resulting path should be an “optimal” alignment between T and S.

The formal definition of the global DTW we carry out is as follows. Let ψ be a sequence

of l index pairs, ((ψ11, ψ12), (ψ21, ψ22), ..., (ψl1, ψl2)). ψ is a feasible path on an n×m distance

matrix Φ if it satisfies the following constraints:

1. ψ11 = ψ12 = 1, ψl1 = n and ψl2 = m

2. ψi+11 − ψi1 ≤ 1 and ψi+12 − ψi2 ≤ 1, ∀i = 1, 2, ..., l − 1

The first constraint is due to ψ being a global path, and the second one comes from the fact

that we are aligning two sequences in time. Let Ψ be a set of all feasible ψ’s. As a result,

the best alignment between T and S will be

ψ∗ts = argmin
ψ∈Ψ

l∑
k=1

Φts(ψk1, ψk2). (3.2)

The problem of searching for the best path can be formulated as a dynamic programming

problem. We define an n × m cumulative distance matrix Cts, where Cts(i, j) records the
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minimum accumulated distance along a legal path from (1, 1) to (i, j). To find ψ∗ts, the first

pass would be to compute each element in Φ†ts from the following

Cts(i, j) =



Φts(i, j), if i = j = 1

Cts(i, j − 1) + Φts(i, j), if i = 1, 1 < j ≤ m

Cts(i− 1, j) + Φts(i, j), if j = 1, 1 < i ≤ n.

min(Cts(i− 1, j), Cts(i, j − 1), Cts(i− 1, j − 1)) + Φts(i, j), otherwise

(3.3)

When computing, we keep track of which direction, i. e. (i− 1, j), (i, j − 1) or (i− 1, j − 1),

leads to a minimum cumulative distance along a path ending at position (i, j). Then, the

second pass backtraces from (n,m) for the recorded indices.

3.2.3 DTW with Silence Model

In a comparison-based framework, to determine whether a frame in the student’s utterance

is silence or not, we look at whether it is “close” to silence. In other words, we can also

calculate its distance to silence.

We define a 1 ×m silence vector, φsil, which records the average distance between each

frame in S and r silence frames in the beginning of T . φsil can be computed as

φsil(j) =
1

r

r∑
k=1

D(ftk , fsj) =
1

r

r∑
k=1

Φts(k, j). (3.4)

Fig. 3-2 shows two examples of silence vectors, one obtained from an MFCC representa-

tion, and one from a GP, and the corresponding spectrograms. From the spectrogram we

can see that there are three long pauses in the utterance, one at the beginning from frame

1 to frame 44, one at the end from frame 461 to frame 509, and one intra-word pause from

frame 216 to frame 245. In the silence vectors, these regions do have relatively low average

distance to the first 3 silence frames from a reference utterance compared to that of other

frames.

To incorporate φsil, we consider a modified n ×m distance matrix, Φ′ts. Let Bt be a set
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(a) spectrogram

(b) MFCC-based silence vector

(c) GP-based silence vector

Figure 3-2: The spectrogram (in (a)) and the corresponding silence vectors φsil, (b): MFCC-
based and (c): GP-based, with r = 3

of indices of word boundaries in T . Then, each element in Φ′ts can be computed as

Φ′ts(i, j) =

min(Φts(i, j), φsil(j)), if i ∈ Bt

Φts(i, j), otherwise

(3.5)

At word boundaries of the native utterance, Φ′ts would be φsil(j) if it is smaller than Φts(i, j),

i. e. sj is closer to silence. If there is a segment of pause in S, say (fsi , fsi+1
, . . . fsj), there

would be a low-distance horizontal “silence” band in Φ′ts, as the value of each element in that

band comes from φsil. The ordinary DTW can be carried out on Φ′ts to search for the best

path. While backtracing, if the path passes through elements in Φ′ts that were from φsil, we

could determine that the frames those elements correspond to are pauses.

Another way to think of running DTW on this modified distance matrix, Φ′ts, is to allow

the path to jump between the original distance matrix Φts and the silence vector φsil, i. e.
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consider the possibility of sj being a frame of silence, at word boundaries in T when running

the original DTW. Therefore, we can reformulate the first pass of the original DTW. To

simplify the notation, we further define

φs(i, j) =

∞, i /∈ Bt

φsil(j), i ∈ Bt

(3.6)

Then, Eq. 3.3 becomes

Cts(i, j) =



min(Φts(i, j), φs(i, j)), if i = j = 1

Cts(i, j − 1) + min(Φts(i, j), φs(i, j)), if i = 1, 1 < j ≤ m

Cts(i− 1, j) + min(Φts(i, j), φs(i, j)), if j = 1, 1 < i ≤ n

min(Cts(i− 1, j), Cts(i, j − 1), Cts(i− 1, j − 1))

+ min(Φts(i, j), φs(i, j)), if 1 < i ≤ n, 1 < j ≤ m

(3.7)

When computing Cts, we keep track of both the direction and also whether an element comes

from φsil or not. The second pass uses the same backtracing procedure as before, but this

time the path contains extra information about whether each element belongs to silence or

not.

Locating word boundaries in S is then easy. We first remove those pauses in S according

to the information embedded in ψ∗ts. Then, we can map each word boundary in T through

ψ∗ts to locate boundaries in S. If there are multiple frames in S aligned to a boundary frame

in T (i. e. a horizontal segment in the path), we choose the midpoint of that segment as the

boundary point.

Fig. 3-3 shows an example of how we locate word boundaries, and how including a silence

model affects DTW alignment. We can see that the silence model not only helps us detect

intra-word pauses (the blue segments in Fig. 3-3a), but also affects the direction of the aligned

path, especially when there are no intra-word pauses in the reference utterance, which is

usually the case. If there is no silence between words in the native utterance, the silence

in the nonnative utterance may not have low distance to the beginning of the next word in
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(a) with silence model

(b) without silence model

Figure 3-3: Comparison of the aligned path from MFCC-based DTW (a) with, and (b) without
silence model. The red line shows the aligned path ψ∗ts, and the blue segments in (a) indicate
the silence detected from the silence model. The purple lines on the student’s spectrogram
mark the word boundaries. The yellow dotted lines illustrate how we locate word boundaries
by finding the intersection between the word boundaries in the teacher’s utterance and the
aligned path. (the script: “the scalloped edge is particularly appealing”)
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the native utterance when we perform alignment at a word boundary. Thus, if there is no

silence model to consider, the path would choose a warp that can lead to lower accumulated

distance.

3.3 Experiments

In this stage, we focus on examining how well DTW with a silence model can capture the

word boundaries in nonnative speech.

3.3.1 Dataset and Experimental Setups

We use nonnative data in both the training set and the test set for evaluation, resulting in

2,261 utterances, including 19,732 words. Ground truth timing information on the nonnative

data is generated by running a standard SUMMIT recognizer [40] for forced alignment. We

extract 39-dimensional MFCC vector, including first and second order derivatives, at every

10-ms frame. A 150-mixture GMM is trained on all TIMIT data. Note that we did not

include the CU-CHLOE data into GMM training since experimental results show that this

would make the mixtures implicitly discriminate between native and nonnative speech instead

of different phones.

For evaluation, we consider

1. deviation in frame: the absolute difference in frame between the detected boundary

and the ground truth,

2. accuracy within a 10-ms window : the percentage of the detected boundaries whose

difference to the ground truth are within 1 frame,

3. accuracy within a 20-ms window : the percentage of the detected boundaries whose

difference to the ground truth are within 2 frames.

On average, there are 2.34 same-gender reference utterances for one nonnative utterance.

If there is more than one reference native utterance for an utterance, the one that gives the

best performance is considered.
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3.3.2 Word Boundary Detection

We first examine how the parameter r, the size of the silence window in the beginning of

each teacher’s utterance, affects the performance. Fig. 3-4 shows that the performance is

relatively stable with respect to different r’s, as long as the window size is not so big that it

includes some non-silence frames.

Figure 3-4: Performance in terms of average deviation in frames vs. different sizes of the
silence window

To understand how incorporating a silence mechanism can help improve the performance,

four scenarios are tested as shown in Table 3.1. Compared with the cases where no silence

model is considered, with the help of the silence model, MFCC-based DTW obtains a 40.6%

relative improvement and GP-based DTW has a 31.6% relative improvement in terms of

deviation in frames. In both cases, more than half of the detected word boundaries are

within a 20-ms window to the ground truth.

deviation (frames) accuracy (≤ 10ms) accuracy (≤ 20ms)
MFCC 10.1 35.2% 45.2%

GP 9.5 38.2% 47.7%
GP+sil 6.5 41.5% 51.9%

MFCC+sil 6.0 42.2% 53.3%

Table 3.1: Performance of word segmentation from same-gender alignment under different
scenarios (MFCC: MFCC-based DTW, GP: GP-based DTW, sil: silence model)

The silence model helps both GP and MFCC-based approaches due to the significant
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precision recall f-score
MFCC-based 90.0% 77.4% 83.2%

GP-based 86.1% 72.3% 78.6%

Table 3.2: Performance of the silence model detecting silence frames based on best aligned
pairs

amount of hesitation between words in the nonnative data. In fact, the total time duration

of these 2,261 utterances is about 226 minutes long, with 83 minutes of silence (37.0%). If

we view the silence model as a VAD and evaluate its performance, the results are shown in

Table 3.2, where precision is the ratio of the number of correctly detected silence frames to the

total number of detected frames, recall is the ratio of the number of correctly detected silence

frames to the total number of silence frames in ground truth, and f-score is the harmonic

mean of the two. We can see that for both MFCC-based and GP-based approaches, the model

can detect most of the silence frames with high precision, and thus, the word boundaries can

be more accurately captured.

Moreover, the higher f-score of MFCC-based DTW for detecting silence can also account

for the gap between the performance of MFCC-based and GP-based approaches as shown

in Fig. 3-4. There are two possible explanations of the lower performance of the GP-based

approach. First of all, there may be more than one mixture in the unsupervised GMM that

captures the characteristics of silence. Therefore, when decoding, silence frames in different

utterances may have different distributions over the mixtures, and thus the distance would

not be very low. Fig. 3-5 shows the normalized histogram over the most likely component,

i. e. the mixture with the highest posterior probability after decoding, of all silence frames in

the native and nonnative utterances. Although the most likely component that corresponds

to silence is the 101th mixture component for both cases, there are over 60% silence frames

in the nonnative data having this behavior, while only around 40% in the native data. The

mismatch between the decoded probability distributions causes the problem.

One may argue that the above problem is solvable by decreasing the number of mixtures

when training the GMM so that one phonetic unit can be captured by exactly one component.

However, empirical experiences have shown that this would only cause a higher degree of

confusion and even further decrease the granularity in analysis. Therefore, choosing the
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(a) (b)

Figure 3-5: Normalized histograms of the most likely component for silence frames

number of mixtures is an important issue when considering posteriorgram-based approaches.

Another possible solution might be to train a special silence Gaussian by using the first r

silence frames from the training data, and use the rest of the frames to train a GMM. Then,

φs(i, j) can be computed from the posteriorgrams decoded from the special silence Gaussian,

and Φts(i, j) can be computed from the posteriorgrams decoded from the GMM.

The second explanation of the lower performance of GP-based DTW is the lower dis-

criminability of the GP-based distance measure. To show this, we compute the difference

between the average distance between a silence frame in the nonnative utterance, as well as

the boundary frames in the native utterance, and the average distance between the same

silence frame to the first r silence frames in the native utterance. In other words, for each

silence frame fsj in S, we compute 1
|Bt|

∑
i∈Bt Φts(i, j) − φsil(j). If this number is greater

than 0, Φ′ts will choose the element from φsil (recall Eq. 3.5) and correctly record the frame

in the nonnative utterance as silence. Fig. 3-6 shows the histograms of the results from

silence frames of all nonnative utterance. For an MFCC representation, there are 37.0% of

the silence frames having lower distance to the non-silence boundary frames in the reference

utterance, while for a GP representation, it is 40.4% of the data. These numbers tell us that

there is a slightly higher probability for the GP-based DTW of misidentifying silence frames

as non-silence ones, and thus the performance on word boundary detection would be lower.

In the above analyses, we only consider the reference speaker that gives the best perfor-
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(a) MFCC-based (b) GP-based

Figure 3-6: Histograms of the average distance between one silence frame in S to all non-
silence frames in T minus the corresponding distance from the silence vector φsil, i. e. the
average distance between the given silence frame in S to r silence frames in T , in terms of
either MFCC or GP representation

mance if there is more than one reference utterance for a script. Here we examine how poor

the result could be for each scenario in order to understand the range of the performance.

Table 3.3 lists the best and the worst performance, as well as the results when we randomly

pick one native speaker as the teacher for each script. There are two things worth noticing

from the table. First, the worst performances of the scenarios with a silence model are still

better than the best performances of those without the model. This again shows the fact that

there are plenty of intra-word pauses, and removing them is one of the keys to improving the

detection of word boundaries. However, the f-score on detecting silence frames based on the

worst aligned pairs is 80% for MFCC-based and 76% for GP-based DTW, which are not too

deviation (frames) MFCC MFCC+sil GP GP+sil
best 10.1 6.0 9.5 6.5

worst 14.4 9.2 12.7 9.0

random 11.2 (0.1) 7.2 (0.1) 10.8 (0.1) 7.6 (0.1)

Table 3.3: Comparison between the best and the worst performance of word boundary de-
tection, focusing on deviation in frames between the detected boundary and the ground truth.
The last row comes from randomly picking one reference utterance during evaluation, and
the whole process is carried out 10 times. Both average (and standard deviation) of the
performance is listed for the random case.
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bad compared to the numbers in Table 3.2. Therefore, another factor affecting performance

might be the essence of the native utterances. We have carried out various analyses on how

the quality of the native utterances relate to the performance on word boundary detection.

The speaking rate, the time duration of the utterance, the length of silence within the ut-

terance, the dialect region of the native speaker, and the normalized accumulated distance

along the aligned path are several components we have inspected. However, there is no ob-

vious relation between all the above factors and the performance. As a result, we believe the

performance is more related to the interaction between the voice characteristics of the native

and nonnative speaker.

Second, the results from randomly choosing the reference speakers gives us an idea of how

the performance would be in general. This is particularly important, since, in real application,

we won’t have access to the word boundary information of the student’s utterance, it would

be hard to determine which native speaker would give the best result. From the table we can

see that the performance of alignments based on randomly chosen references is closer to that

of the best alignments, and the low standard deviations suggest that the worst case does not

occur with high probability. In order to further improve the performance of word boundary

detection, one may consider voting from multiple reference speakers, or even combining the

outputs from MFCC-based and GP-based DTW. However, we will leave this as future work.

3.3.3 Comparison of Alignment Between Same/Different genders

In the previous sub-section, we only considered alignments based on teacher and student pairs

of the same gender. However, it is well known that MFCCs are sensitive to vocal tract shape,

and unsupervised GMMs might have a problem of having some mixtures implicitly capturing

the characteristic of one gender and some other mixtures capturing the other gender. Here

we examine how the performance is when aligning two utterances from different genders.

In order to compare the two settings, we use a subset of 1,000 nonnative utterances

that have reference speakers of both genders, with a total of 7,617 words. There are, on

average, 3.6 reference speakers of the same gender, and 3.3 of the different gender, for each

nonnative utterance in this subset. Table 3.4 shows the experimental results. We can see

that alignments based on different-gender speaker pairs have greatly affected the worst case
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scenario. For the best case, the performance dropped about 1.2 frames in average, while that

of the worst case dropped about 3.2 frames, and this also leads to an average of 2.0-frame

increase in the random case. These results show that alignment from different-gender pairs

of speakers do have lower performance.

In our current framework, we are assuming that the gender of the student is known. If

such information is missing, a possible solution is to train a male GMM and a female GMM

by using all data from the two genders, respectively. Given an input utterance from the

student, we can decode the utterance by using both GMMs, see whether the input utterance

is more likely to be a male utterance or a female one, and then use the GMM that matches

the best to decode the final posteriorgrams. Still, in this stage, we are not sure how this 2.0

frame difference will affect the overall performance on mispronunciation detection. Therefore,

in Chapter 5, we will carry out DTW between different genders and focus on the output of

the whole framework.

deviation (frames) MFCC MFCC+sil GP GP+sil

same-gender
best 7.3 4.5 7.1 5.1

worst 17.6 12.2 15.0 11.1
random 11.5 7.5 10.5 7.8

different-gender
best 8.8 5.5 8.3 6.1

worst 21.0 15.1 18.2 14.3
random 13.9 9.4 12.5 9.4

Table 3.4: Comparison between the performance based on same/different-gender alignment.
The best and the worst performance are listed, as well as results based on randomly picked
reference speakers, averaged across 10 trials.

3.4 Summary

In this chapter, we have presented the first stage of our mispronunciation detection framework

– word boundary detection. Intra-word pauses happen very often in nonnative speech. Re-

moving pauses can not only give us more precise knowledge about where the word boundaries

are in a nonnative utterance, but also helps the subsequent analysis, since we will extract

features based on the aligned path and the distance matrix, if there is silence in the student’s

utterance but not in the teacher’s, then there will definitely be a mismatch. To deal with
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this problem, instead of building a speech/non-speech classifier, we extend basic DTW to

incorporate a silence model. The silence model computes the distance of each frame in the

nonnative utterance to some frames of silence. When running DTW, the path can consider

the possibility of a frame in student’s utterance being silence, instead of trying to align it

with frames from the teacher’s utterance that are very different from it. This approach does

not add complexity to the original DTW, since it just provides one more choice for the path

to consider. Another advantage of this method is that to compute the silence vector φsil, we

need to average only the first few rows of the distance matrix Φ (which is already computed).

In other words, we don’t require extra data or annotations in order to obtain a good silence

model. This does assume the beginning of the recording is silence however.

Experimental results have shown that DTW works well in aligning a native utterance with

a nonnative one. This also implies that DTW-based keyword spotting approaches can work

on nonnative speakers. Second, the silence model can detect pauses between words with a

high f-score of 83%, and improves the relative frame deviation performance on locating word

boundaries in nonnative speech by over 40%.
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Chapter 4

Unsupervised Phoneme-like Unit

Segmentation

4.1 Motivation

When aligned with a teacher’s utterance, a good pronunciation and a bad one will have

different effects on the distance matrix. Fig. 4-1a shows the alignment between a teacher

and a student who pronounced the word “aches” correctly as /ey k s/, while Fig. 4-1b is the

alignment between the same teacher and a student who mispronounced the word as /ey ch

ix s/. The most obvious difference between the two is that there is a high-distance region in

Fig. 4-1b, which is the distance between /ch ix/ in the student’s utterance and /k/ in the

teacher’s.

Ideally, a good alignment between two sequences should be of 45◦ (i. e. diagonal in distance

matrix). However, this is usually not the case, since the speaking rate of two speakers will

not be exactly the same, and that of a nonnative speaker is usually slower. Fig. 4-2 contains

a histogram of the time difference between a student and a teacher saying the same sentence,

after removing silence in each utterance and considering both the training and testing data.

It is clear that most of the time, a student spends more time pronouncing a given script

than a teacher. Also, the relative duration of a phone within a word in nonnative speech

and native speech are often different. Again, take Fig. 4-1 for example. The phone /ey/

pronounced by the teacher is about 21-frame long, taking up 57% of the whole word, while
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that pronounced by student (a) is about 17-frame long and takes up about 52%, and by (b)

is about 15-frame long with a relative ratio of 33%.

(a) good pronunciation (b) mispronunciation

Figure 4-1: GP-based distance matrices of alignment between a teacher saying “aches” and (a)
a student who pronounced correctly, (b) a student who mispronounced as /ey ch ix s/

Figure 4-2: Difference in time duration between a student and a teacher saying the same
sentence
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Since neither the absolute time duration, nor the relative duration of a phone within a

word is the same between a student and a teacher, the aligned path in the distance matrix

would not be 45◦ (diagonal), even though the student may pronounce the phone correctly.

Therefore, before extracting features, we need to further divide each word into smaller phone-

like units for analysis. Then, word-level and phone-level features can be extracted to predict

whether a word is mispronounced or not.

4.2 Related Work

Segmenting speech into sub-word units, such as phones, has been a research topic for many

years, since accurate segmentation can potentially improve the effectiveness of training data

for speech recognition. An HMM-based forced alignment is the most commonly used ap-

proach to segment an utterance into phone-level units. However, it requires pre-trained

acoustic models and linguistic knowledge. In the 1970’s, Bridle and Sedgwick [6] proposed

an acoustic segmentation method that was based on successively sub-dividing an utterance

to optimize a segmentation criterion, which was the sum of the squares of the approximation

errors. Cohen [8] developed a probabilistic model for segmenting speech into phoneme-size

units, and introduced how to set a prior on segment length and compute the likelihood.

Glass et. al [17] dealt with the segmentation problem by representing the speech signal with

a multi-level acoustic description, in which each level corresponds to acoustically meaningful

units.

More recently, Dusan et. al [11] introduced a spectral transition measure (STM), which

is the mean squared value of the rate of change of each dimension of the MFCC. After

calculating STM for every frame, a peak picking method and a post-processing method

are proposed and used to detect phone boundaries. Estevan et. al [14] adopt maximum

margin clustering (MMC), which is an unsupervised two-class classification technique, at

every frame along the time index. After clustering, the distance between the two clusters is

also computed, and a distance vs. time relation can be obtained in the end. If at a specific

time, the distance is low, this means that the samples near that time index are similar to

each other. As a result, boundaries can be determined by locating peaks in the distance vs.
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time relation. Qiao et. al [30] assume that the number of phones in an utterance is known

beforehand, formulate the segmentation problem in a probabilistic framework, and develop

three different objective functions based on statistics and information theory analysis. While

all of the above are one-stage and bottom-up segmentation methods, Lee et. al [23] further

integrate the tasks of segmentation, clustering segments and modeling each cluster into a

complete acoustic modeling framework. Their process is iterative: sub-word models are

trained based on the hypothesized phone boundaries, and the newly learned models are used

to segment the utterances.

(a) /ey k s/ (b) /ey ch ix s/ (c) /ey k s/

Figure 4-3: GP-based self aligned matrices of (a): the student in Fig. 4-1a, (b): the student
in Fig. 4-1b, and (c): the teacher in both Fig. 4-1a and 4-1b

4.3 The Self-Similarity Matrices (SSMs)

Let Φtt be the self-aligned distance matrix of T , where Φtt(i, j) = D(fti , ftj). Φtt is a square,

symmetric, matrix and symmetric from the diagonal (see Fig. 4-3). Along the diagonal, each

low-distance block indicates frames that are phonetically-similar. These frames may relate

to a single phoneme, a part of a diphthong, or a chunk of acoustically-similar phonemes.

Therefore, to segment a word into smaller phoneme-like units, we can focus on finding the

boundaries between those blocks.

Jensen has extracted features related to the rhythm and tempo of a pop song and com-

puted the self-similarity matrices for the task of music segmentation [20]. Similarly, blocks

along the diagonal may indicate a structural segment in music, such as an intro, chorus,

verse, bridge or outro. Here we first deployed his idea of segmenting the SSMs and further
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incorporate prior knowledge on the length of each segment in hopes of regulating the size of

the resulting segments.

4.4 Optimizing the Unit Boundaries

4.4.1 Known number of phones in a word

Following the formulation in [20], given the number of phones in a word, K, we can determine

the boundaries by minimizing the sum of the average distance in the lower-triangle of each

possible block:

(b∗0, b
∗
1, ..., b

∗
K−1) = argmin

(b0,b1,...,bK−1)
1=b0<b1<...<bK−16n

K−1∑
z=1

1

bz − bz−1

bz−1∑
y=bz−1

y∑
x=bz−1

Φtt(y, x), (4.1)

where (b0, b1, ..., bK−1) are the K possible starting indices of each segment. The whole opti-

mization process can be regarded as a shortest-path searching problem on a graph as shown in

Fig. 4-4a, with the constraint that the path length is known to be K. Thus, the optimization

problem can be solved using dynamic programming (refer to Appendix A). One thing worth

mentioning is that when averaging the distance, we only divide the total distance by the

length of the segment instead of the area of the block. This is because empirical results have

shown that dividing by the area would cause the high distance region in a large segment to

be averaged out too much and thus bring only little influence on the boundary decision [20].

4.4.2 Unknown number of phones in a word

If the number of phones in a word is unknown, we can include that into the optimization

process and perform joint optimization on the segment boundaries as well as the number

of segments. Here we denote the unknown number of segments as Ku, and the formulation

becomes

(b∗0, b
∗
1, ..., b

∗
K∗
u−1, K

∗
u) = argmin

(b0,b1,...,bKu−1,Ku)
1=b0<b1<...<bKu−16n

1≤Ku≤n

Ku−1∑
z=1

α +
1

bz − bz−1

bz−1∑
y=bz−1

y∑
x=bz−1

Φtt(y, x), (4.2)
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(a) When the number of phones in a word is known, segmentation can be formu-
lated as searching for the shortest path with a fixed number of steps.

(b) When the number of phones in a word is unknown, a regularization term α
can be introduced to avoid generating too many segments.

(c) A prior, which is a function of segment length, can be further incorporated
to guide the process to generate segments of reasonable length.

Figure 4-4: A graphical view to the problem of segmentation. An arc between state i and j
represents a segment starting at i and ending at j − 1. c(i, j) is the cost introduced by the
corresponding segment, which equals to 1

j−i
∑j−1

y=i

∑y
x=i Φtt(y, x).
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where the parameter α is introduced as a regularization term to avoid generating too many

segments. If it is large, then the total penalty would be high and thus fewer segments would

be favored. Similarly, this formulation can be transformed into a shortest-path searching

problem on a graph shown in Fig. 4-4b, and K∗u would be the length of the resulting shortest

path.

Figure 4-5: Histogram of phone length and the fitted gamma distribution

4.4.3 Including a prior on segment length

The α in Eq. 4.2 proposed by Jensen [20] seems somewhat heuristic, since it is only a scalar,

and thus it only cares about the number of segments but does not consider what kind of

segments have been generated. Fig. 4-5 is the histogram of phone duration in frame from

all utterances in the TIMIT corpus. We can see that there is obviously a distribution over

phone duration. In other words, the duration of a phone is more likely to fall within a certain

region than the others. Therefore, we can fit the histogram by using a gamma distribution,

which is commonly used in speech processing techniques to model duration, and treat it as

a prior to guide the segmentation. As a result, Eq. 4.2 becomes

(b∗0, b
∗
1, ..., b

∗
K∗
u−1, K

∗
u) =

argmin
(b0,b1,...,bKu−1,Ku)

1=b0<b1<...<bKu−16n
1≤Ku≤n

Ku−1∑
z=1

β × prior(bz − bz−1) +
1

bz − bz−1

bz−1∑
y=bz−1

y∑
x=bz−1

Φtt(y, x), (4.3)
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where β is a weight between the prior and the average distance. We set prior(len) to be

− log(Γ(len, θ)), where θ is the parameters from the fitted gamma distribution. In fact, for

the case where the number of phones in a word is known beforehand, we can also incorporate

the same prior to force the segments that were generated to have a more reasonable length.

Thus, Eq. 4.1 can be rewritten as

(b∗0, b
∗
1, ..., b

∗
K−1) =

argmin
(b0,b1,...,bK−1)

1=b0<b1<...<bK−16n

K−1∑
z=1

β × prior(bz − bz−1) +
1

bz − bz−1

bz−1∑
y=bz−1

y∑
x=bz−1

Φtt(y, x).
(4.4)

4.5 Experiments

4.5.1 Dataset

We evaluate the performance of our phoneme-like unit segmentor on the task of phonetic

boundary detection. Note that our goal is to segment SSMs into low-distance blocks along

the diagonal, and each of those regions may not necessarily correspond to one single phone.

Though our goal is not exactly the same as the task, the result can still give us some basic

ideas about how the segmentor works.

The TIMIT training set, which includes 4,620 utterances consisting of 172,460 phones,

is a commonly used dataset for evaluating speech segmentation since it consists of reliably

hand labelled data. Precision, recall and f-score are the three metrics we use for evaluation.

A 20-ms tolerance window is allowed between a true boundary and a detected boundary. We

examine both the cases where the number of segments is known and unknown, and compare

the results with those from the one-stage segmentation framework.

4.5.2 Experimental Results

Four scenarios were examined: either an MFCC-based, or GP-based SSM, with or without a

prior. For the case where the number of phones in an utterance is known, the precision is the

same as the recall since the number of the detected boundaries is the same as the number

of the reference boundaries. We can see that MFCC-based approaches perform better than
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GP-based ones because of the confusion between acoustically similar phonetic units that the

GP representation has. This also explains why the prior helps GP-based segmentation but

not MFCC-based segmentation, as the acoustically similar region in a GP-based SSM will

be larger, the prior can guide the optimization process to segment each unit into a more

reasonable size. After carefully examining the results from a number of utterances, we found

that many of the missed boundaries are related to stops. As the duration of the release might

be very short, deleting the boundary between the closure and the release only merges a small

portion of high-distance into the combined segment, and this cost can be amortized by other

segments, which is a classic problem with averaging.

precision (%) recall (%) f-score (%)

known # phones

MFCC w/ prior (β = 1) 74.8 74.8 74.8
MFCC w/o prior 74.8 74.8 74.8

GP w/ prior (β = 5) 72.3 72.3 72.3
GP w/o prior 71.5 71.5 71.5
Qiao et. al [30] 77.5 77.5 77.5

unknown # phones

MFCC w/ prior (β = 20) 63.2 76.7 69.3
MFCC w/o prior (α = 30) 64.3 80.3 71.4

GP w/ prior (β = 5) 60.4 80.0 68.9
GP w/o prior (α = 10) 61.5 77.1 68.4

Dusan et. al [11] 66.8 75.3 70.8

Table 4.1: A summary of the results

When the number of phones in an utterance is unknown, the performance drops because of

the lower precision. Fig. 4-6 shows an example of the resulting segmentation of an utterance

whose SSM is shown in Fig. 4-6d. In a fully unsupervised case (i. e. without knowing

the number of segments beforehand), the segmentor tends to over-generate boundaries (see

Fig. 4-6b), and again, the prior helps GP-based segmentation a little, but not the MFCC-

based one. Compared with Dusan and Rabiner [11], our approach improves the performance

slightly when segmenting MFCC-based SSM with a fixed regularization term α.
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4.6 Summary

In this chapter, we have introduced a phoneme-like unit segmentor that can segment a

word (or an utterance) into smaller subword units based on its self-similarity matrix. The

motivation is to divide each word into phonetically similar units so that we can have a

more precise analysis of each subword region, without any requiring human labeling efforts.

Evaluation was carried out on the task of phonetic boundary detection. Experimental results

have shown that our approach can improve the performance on fully unsupervised phonetic

boundary detection, while in general, it has a tendency to over-generate segments. However,

as shown in Fig. 4-6, by mapping the boundaries onto the SSM, we can see that each segment

does have low self-distance. Therefore, our goal of segmenting each word into phonetically

similar units is achieved.
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(a) spectrogram and the reference boundaries (both blue and green)

(b) segmentation with known number of phones in the utterance and without prior

(c) segmentation with unknown number of phones in the utterance and without prior

(d) MFCC-based self-similarity matrix

Figure 4-6: The script: “she had your dark suit in greasy wash water all year”. The green
lines in (a) are those deleted in both (b) and (c). The black lines in (b) and (c) represent
correctly detected boundaries, while the red dotted lines represent insertions.
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Chapter 5

Mispronunciation Detection

Fig. 5-1 shows the examples of a teacher saying “aches”, one student mispronouncing as

/ey ch ix s/ and the other one pronouncing correctly. The distance matrices are shown in

Fig. 5-1d and 5-1e, and Fig. 5-1a, 5-1b and 5-1c are the SSMs of the teacher and the two

students, respectively. We can see that there is indeed a high-distance region between the

teacher’s /k/ and the student’s /ch ix/. This high-distance region also causes the warping

path to be not in quasi-diagonal. Also, there is an obvious difference between the SSMs. On

the basis of theses observations, in this chapter, we describe the design of phone-level and

word-level features in detail.

5.1 Feature Extraction

5.1.1 Phone-Level Features

To divide each word into smaller units for analysis, we adopt the phoneme-like unit segmentor

described in the previous chapter on reference utterance. The dotted lines in Fig. 5-1c are

the resulting boundaries for example. After that, we use the aligned path, together with the

unit boundaries, to segment the distance matrix into several blocks (see the regions bounded

by dotted lines in Fig. 5-1d, 5-1e). Then, the phone-level features can be extracted within

each block.

Though the segmentor we use does not guarantee to segment the reference word into
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(a) student: /ey ch ix s/ (b) student: /ey k s/

(c) teacher: /ey k s/ (d) (e)

Figure 5-1: (a) and (b) are the self-aligned matrices of two students saying “aches”, (c)
is a teacher saying “aches”, (d) shows the alignment between student (a) and the teacher,
(e) shows the alignment between student (b) and the teacher. The dotted lines in (c) are the
boundaries detected by the unsupervised phoneme-unit segmentor, and those in (d) and (e) are
the segmentation based on the detected boundaries and the aligned path, i. e. the intersection
between the warping path and the self-similarity boundaries of the teacher’s utterance

phones but into acoustically similar frames, it still suffices our needs. As we are looking

for mismatches within a sub-region, if a segment in the teacher’s utterance corresponds to

two consecutive phones that are acoustically similar in GP representation, the corresponding

segment from the student’s utterance should also be acoustically similar not only within itself

but also with that of the teacher’s, if the student is doing well.

Another thing worth mentioning is that, if the student made a mistake, each segment in

the student’s utterance will not necessarily be the same phone as the corresponding segment

in the teacher’s. Take Fig. 5-1d for example. The distance between the /k/ from the teacher

and the /ch ix/ from the student is high, so the aligned path would not choose to go across

that region, resulting in the /s/ from the teacher mapping to the second part of /ch/ and

/ix s/ from the student. On the other hand, each phone in the student’s utterance matches

perfectly to the teacher’s in Fig. 5-1e.

Several kinds of features have been designed based on the assumption that within each
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block, if the aligned path is off-diagonal, or the average distance is high, there is a higher

probability that the word is mispronounced. We can divide the features into the following

categories. Fig. 5-2 illustrates the terms used in computing the features.

Figure 5-2: An illustration of phone-level features

Aligned Path

Ideally, a good alignment should result in a path along the diagonal of each region. If the

student mispronounced a word, no matter whether it is an insertion, deletion, substitution

or a mix of the three, there must be some high-distance regions along the diagonal of the

distance matrix, and thus the aligned path would be off-diagonal. If a path is off-diagonal,

there will be some vertical or horizontal segments within it. Therefore, we can treat the

longest vertical/horizontal segments of the aligned path as a feature describing the shape of

the path. However, an off-diagonal path does not necessarily mean a mispronunciation. It

could be the case where most of the elements in a region from a distance matrix have very low

63



values, i. e. two segments are well matched, but there are some slightly higher values around

the diagonal, so the path is warped to the off-diagonal. Therefore, we should further look

at the average distance along the diagonal, as well as the average distance along the aligned

path, and compare the two of them. As a result, there are five features in this category:

• RATIO MAX SEG: the ratio of the length of the longest vertical/horizontal segment

to the length of the aligned path (max seg len/path len)

• AVG PATH SCORE: the average distance along the aligned path (path score/path len)

• AVG DIAG SCORE: the average distance along the diagonal (diag score/diag len)

• DIFF AVG DIAG PATH SCORE: the difference between the above two

(AVG DIAG SCORE−AVG PATH SCORE )

• RATIO AVG DIAG PATH SCORE: the ratio between the two

(AVG DIAG SCORE/AVG PATH SCORE )

Distance Matrix

Besides the aligned path, the high-distance regions in the distance matrix are also good

indications to whether there is mispronunciation. We extract one feature based on it:

• MEAN SCORE: the average distance across the region

Duration

The time duration is also an important aspect of pronunciation. Not only the absolute time

duration of a phone but also its relative duration with respect to the word are crucial. We

design three features to compare the absolute/relative time duration of a phoneme-like unit

in the teacher’s utterance and the corresponding one in the student’s utterance.

• RATIO ABS DUR: the ratio between the absolute time duration of the segment in

S and the absolute time duration of the segment in T , or the ratio of the opposite,

whichever is larger (max(width/heigh, height/width))
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• DIFF REL DUR: the absolute difference between the relative time duration of the

segment with respect to the whole word in S and the relative time duration of the

segment with respect to the whole word in T (|rel width− rel height|)

• RATIO REL DUR: the ratio of the relative time duration of the two segments

(max(rel width/rel height, rel height/rel width))

Comparison with the Reference

Sometimes, a distance matrix may look fuzzy and it is hard to tell whether it links to mispro-

nunciation or not. At these times, it is better to have some examples of good pronunciation

versus bad ones. Unfortunately, when processing each pair of a teacher and a student, what

we have at hand are only the two utterances. Still, we can regard the teacher as a “good

student”, look at the SSM of the teacher to have a sense of a good alignment, and compare

the SSM with the distance matrix from the student. On the basis of this idea, we develop

three features:

• DIFF MEAN REF SCORE: the difference between the average distance of the re-

gion from the distance matrix and of the region from the SSM of the reference word

(MEAN SCORE−MEAN REF SCORE )

• DIFF AVG PATH REF SCORE: the difference between the average distance along the

aligned path in the distance matrix and the average distance along the diagonal of the

SSM. Note that the best alignment in an SSM is the diagonal.

(AVG PATH SCORE−AVG PATH REF SCORE )

• DIFF AVG DIAG REF SCORE: the difference between the average distance along the

diagonal in the distance matrix and the average distance along the diagonal of the SSM

(AVG DIAG SCORE−AVG PATH REF SCORE )

Others

For the last phone-level feature, we take an overall view of the segmented phoneme-like

unit. We first average the speech features that represent the frames within a unit, say
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f̄ti = 1
b∗i+1−b∗i

∑b∗i+1−1
j=b∗i

ftj for the teacher, and also f̄si for the student, and treat f̄ti and f̄si

as two single vectors representing the unit in the teacher’s utterance and the student’s,

respectively. Then, we take D(f̄ti , f̄si) as another phone-level feature.

Phone-level Features Summary

For all of the features described above, larger values indicate worse alignment. We pick

the maximum value among all segments for each category to form the final feature vector.

The idea is that if there is a phone being mispronounced, the whole word is mispronounced,

and thus we can take the most badly aligned phone (and therefore probably the most badly

pronounced phone) in the word to represent the whole word. Experimental results have

shown that doing so gives much better results than averaging all features across all phones

within the word, since this would average out the misbehavior of a specific phone. In the

end, we have a 13-dim phone-level feature for each word.

5.1.2 Word-Level Features

From Fig. 5-1a-5-1c, we can see that a mispronounced version (Fig. 5-1a, with one substitution

and one insertion errors) results in a different appearance of the SSM. Note that this isn’t

true all the time. For example, if the student mispronounced the word as /ow k s/, the SSM

would still look similar to the teacher’s as there are also three phonetic units. But in this

case, the distance matrix would not have three low-distance blocks along the diagonal.

On the basis of these observations, we can also detect mispronunciation from the word-

level by comparing the two SSMs from the teacher and the student saying the same word, or

the SSM from the teacher and the distance matrix. The features can be categorized as the

following.

Aligned Path

Just as the phone-level features related to the aligned path, we can also extract features

on the word-level in the same manner. Though the diagonal of the distance matrix of a

word does not necessarily represent the most precise alignment between phones due to the
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difference in their time duration, it still serves as a good target to compare with. There are

four features under this category:

• AVG WORD PATH SCORE: the average distance along the aligned path

• AVG WORD DIAG SCORE: the average distance along the diagonal

• DIFF AVG WORD DIAG PATH SCORE: the difference between the above two

(AVG WORD DIAG SCORE−AVG WORD PATH SCORE )

• RATIO AVG WORD DIAG PATH SCORE: the ratio between the two

(AVG WORD DIAG SCORE/AVG WORD PATH SCORE )

(a) before rewarping (top: SSM of the student,
bottom-left: SSM of the teacher, bottom-right: dis-
tance matrix)

(b) after rewarping (top: SSM of the student,
bottom-left: SSM of the teacher, bottom-right: dis-
tance matrix)

Figure 5-3: An example of how the SSMs and the distance matrix would change after being
rewarped. A vertical segment would expand the student’s utterance, and a horizontal one
would expand the teacher’s. The orange boxes in (b) shows the resulting expansion from the
orange segment in (a), and the yellow boxes in (b) shows the resulting expansion from the
yellow segment in (a).

Element-wise Comparison

The most direct way to compare two images is to compute their pixel-wise difference. To

compute the element-wise difference between two matrices, the first step is to make sure they
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are of the same size. Before, T is of length n and S is of length m. The aligned path ψ∗ts is

a sequence of l index pairs, ((ψ∗11, ψ
∗
12), (ψ

∗
21, ψ

∗
22), . . . , (ψ

∗
l1, ψ

∗
l2)). T and S can be rewarped

into two sequences of the same length, l, according to ψ∗ts:

Tw = (ftψ∗
11
, ftψ∗

21
, . . . , ftψ∗

l1
), Sw = (fsψ∗

12
, fsψ∗

22
, . . . , fsψ∗

l2
). (5.1)

Then Φw
ts can be computed from Tw and Sw, Φw

tt from the self-alignment of Tw, and Φw
ss from

the self-alignment of Sw. All of the above three matrices are of size l × l, and thus four

features can be extracted:

• DIFF SSM T S: absolute element-wise difference between the self-aligned matrices Φw
tt

and Φw
ss, averaged by the total area l × l

• DIFF SSM T DISMAT: absolute element-wise difference between the self-aligned ma-

trix Φw
tt and the rewarped distance matrix Φw

ts, averaged by the total area l × l

• DIFF BLOCK T S: absolute element-wise difference between the self-aligned matrices

Φw
tt and Φw

ss averaged by the total area, only focusing on the regions along the diagonal,

which are resulted from applying the phoneme-like unit segmentor on Φw
tt

• DIFF BLOCK T DISMAT: absolute element-wise difference between Φw
tt and Φw

ts aver-

aged by the total area, only focusing on the regions along the diagonal

Image Structure

Directly computing the element-wise difference between two matrices may not be robust

enough. What we really care about is whether the underlying “structure” of the two matrices

are similar. Muscariello et. al [25, 26] have proposed to view an SSM as an image and applied

image processing techniques to extract the edge information from it. They have shown that

this method helps in the task of spoken term detection. Similarly, we can also take advantage

of this technique to compare the edge information of two SSMs of the same word.

The image processing techniques that has been used is called the local histograms of

oriented gradients (local HOGs) [9], which is basically computing the distributions of local
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Figure 5-4: The flowchart of extracting local histograms of gradients

gradients and edge orientations. Fig. 5-4 is the flowchart of how to compute local HOGs.

Here we explain this process step by step:

1. Gradient Computation:

For each pixel, i. e. each element in the matrix, apply a simple 1-D mask [−1, 0, 1]

centered on it to compute the x-direction gradient. Apply [1, 0,−1]T to compute the

y-direction gradient. By combing the above two, we can obtain the magnitude and the

orientation of the gradient centered at a specific location. Fig. 5-5 shows an example

of an input image (Fig. 5-5a), the pixel-wise gradient (Fig. 5-5b) and the pixel-wise

gradient of only the diagonal regions (Fig. 5-5c). We can see that the gradients around

the boundary between a low-distance region and a high-distance region will be large so

that the gradient map can tell us something about the structure of the matrix.

2. Spatial / Orientation Binning:

A cell is a local spatial region consisting of several pixels. Each pixel within a cell can

have a vote to the orientation bins that are evenly spaced over 0◦ − 360◦, weighted by

the magnitude of its gradient. As a result, each cell has a histogram of orientations.

3. Block Normalization:

A block is a group of cells. The normalization is carried out within each block by first

concatenating the histograms of all cells within it to a vector v. Then, L2-norm is used

for normalization: v→ v/
√
‖v‖22 + ε2.

The final output is a vector which is the concatenation of all normalized histograms over

all the blocks. We pick the size of a cell to be 3 × 3 pixels, and the size of a block to be
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(a) input image: Φw
tt (b) pixel-wise gradients (c) pixel-wise gradients only in the diag-

onal regions (the gradients in the other
regions are set to 0)

Figure 5-5: An example of the results of gradient computation (the length of the arrows
represents the magnitude, and the direction the arrows point to is the orientation)

3 × 3 cells. The number of orientation bins is set to 18. There is an overlap of 2 cells in

the x-direction or the y-direction of blocks. Again, we focus on the rewarped version of the

matrices, Φw
tt,Φ

w
ss and Φw

ts. Four kinds of features are extracted:

• DIFF HOG SSM T S: absolute difference between the local HOGs of Φw
tt and Φw

ss, av-

eraged by the length of the HOGs vector

• DIFF HOG SSM T DISMAT: absolute difference between the local HOGs of Φw
tt and

Φw
ts, averaged by the length of the HOGs vector

• DIFF HOG BLOCK T S: absolute difference between the local HOGs of the diagonal

regions of Φw
tt and Φw

ss, averaged by the length of the HOGs vector

• DIFF HOG BLOCK T DISMAT: absolute difference between the local HOGs of the

diagonal regions of Φw
tt and Φw

ts, averaged by the length of the HOGs vector

Acoustic Features

The final set of features are the raw acoustic features averaged across the word duration, as

some words are easier to be mispronounced, and we encode this information through the raw

acoustic features. In the end, we have a 16 + d-dim word-level feature for each word, where

d equals to the dimension of the acoustic features. Table 5.1 summarizes all the features we

use in this work.
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type category features

Phone-Level

Aligned Path RATIO MAX SEG,
AVG PATH SCORE,
AVG DIAG SCORE,
DIFF AVG PATH DIAG SCORE,
RATIO AVG PATH DIAG SCORE

Distance Matrix MEAN SCORE
Duration RATIO ABS DUR, DIFF REL DUR,

RATIO REL DUR
Comparison with the Reference DIFF MEAN REF SCORE,

DIFF AVG PATH REF SCORE,
DIFF AVG DIAG REF SCORE

Others D(f̄ti , f̄si)

Word-Level

Aligned Path AVG WORD PATH SCORE,
AVG WORD DIAG SCORE,
DIFF AVG WORD PATH DIAG SCORE,
RATIO AVG WORD PATH DIAG SCORE

Element-wise Comparison DIFF SSM T S,
DIFF SSM T DISMAT,
DIFF BLOCK T S,
DIFF BLOCK T DISMAT

Image Structure DIFF HOG SSM T S,
DIFF HOG SSM T DISMAT,
DIFF HOG BLOCK T S,
DIFF HOG BLOCK T DISMAT

Acoustic Features average raw acoustic features across the
duration of the word

Table 5.1: A summary of the features used in our mispronunciation detection framework
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5.2 Classification

Given the extracted features and a set of good or mispronounced labels, detecting mispro-

nunciation can be treated as a classification task. We adopt libsvm [7] to implement SVM

classifiers with an RBF kernel. From Table 2.1 we can see that the ratio between the positive

training samples (mispronounced words) and the negative training samples (good words) is

low. This causes the learning problem to be hard. To deal with the data-imbalance problem,

we divide the negative training data into five, and combine each fifth with all the positive

training samples to form five balanced training sets. Five classifiers can be trained, and

during testing, their output probabilities are averaged to form the final output.

We treat the alignments of different teachers’ utterances and the same student’s utterance

in the training set as different training samples. For the test set, if there are multiple matching

reference utterances for a student’s utterance, the following three different voting schemes

are used to combine the output probability from the classifiers:

• random vote: randomly pick one reference speaker and consider its output only

• max-margin vote: pick the output whose absolute difference between the predicted

probability for the two classes is the maximum

• average vote: average the output probability from all the reference speakers

5.3 Experiments

5.3.1 Experimental Setup and Evaluation Metrics

We follow the same experimental setup described in section 3.3.1: 39-dim MFCCs at every

10 ms and a 150-mixture GMM trained on all TIMIT data. The parameters of the SVM

are optimized for different scenarios, respectively. Precision, recall and f-score are used for

evaluation. They are defined as

pr =
TM

TM + FM
, re =

TM

TM + FG
, f =

2 · pr · re
pr + re

, (5.2)
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where TM is the number of mispronunciations correctly identified by the classifier, FM is the

number of hypothesized mispronunciations that were actually considered to be acceptable,

and FG are those that are misclassified as good pronunciations.

5.3.2 Baseline

For baseline, we build a naive framework with only three features which are a subset of word-

level features, AVG WORD PATH SCORE, AVG WORD DIAG SCORE and

DIFF AVG WORD PATH DIAG SCORE. In other words, the baseline considers word-level

features related to the DTW score only. It does not involve any analysis on the shape of the

aligned path or the pattern of the distance matrix, or the use of the unsupervised phoneme-

like unit segmentor.

5.3.3 Performance Under Different Voting Schemes

(a) MFCC-based framework (b) GP-based framework

Figure 5-6: Performance under different voting schemes

Fig. 5-6 shows the ROC curves for different voting schemes, either based on MFCC-based

alignment (Fig. 5-6a) or GP-based alignment (Fig. 5-6b). First of all, for both MFCC-based

and GP-based alignments, average voting scheme works the best, with max-margin the second

and random voting the worst. For the baseline, average voting and max-margin voting have

similar performance, while random voting is still the worst. This result is coherent with the

common claim that comparison-based methods require a lot of reference data. However, since
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we do not need phone-level labelings, we believe this effort should still be less than that of

building a recognizer. In the following sections, we will only consider the performance from

average voting for different scenarios.

MFCC (proposed) GP (proposed) MFCC (baseline) GP (baseline)
f-score (%) 63.7 63.0 42.8 39.3

Table 5.2: Best performance under each scenario

Table 5.2 shows the best performance under each scenario. There are many factors af-

fecting the overall performance, e.g. erroneous labels from AMT, and the confusions between

phones in GMM. Nevertheless, our framework improves the baseline by at least 49% rela-

tively. This shows that merely considering the distance along the aligned path is not enough.

Extracting features based on the shape of the aligned path or the appearance of the distance

matrix, or segmenting a word into subword units for more detailed analysis, can give us more

information about the quality of the alignment, and thus the quality of the pronunciation.

5.3.4 Comparison Between Different Levels of Features

Figure 5-7: Performance with different levels
of features

f-score (%) MFCC-based GP-based

phone-level 59.1 61.4

word-level 61.3 60.0

overall 63.7 63.0

baseline 42.8 39.3

Table 5.3: Best f-scores from different levels
of features

Fig. 5-7 shows the ROC curves for either word-level or phone-level features only and with

either MFCC-based DTW or GP-based DTW, and Table 5.3 compares the best f-scores from

different cases. First of all, compared with the baseline, a system with word-level features only

can achieve a relative increase around 45%. This again shows the benefits of having features
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Figure 5-8: The overall performance can be improved by combining different levels of features
from different speech representation

that compare the structure of the distance matrices. A system with phone-level features

only improves the performance by 47% relative to the baseline. This also proves that an

analysis which is beyond word-level can exhibit more details about the alignment. Finally,

we can see that combining the features from different levels did help improve the performance.

This indicates that the features from the two levels have complimentary information to one

another.

One thing worth noticing is that on the word level, an MFCC-based framework performs

better than a GP-based framework, while it is the opposite on the phone level. This is

interesting since it seems that the phoneme-like unit segmentor performs better in terms

of detecting phone boundaries when using MFCC-based SSMs (recall the results from Sec-

tion 4.5). Our experimental results may suggest that GP-based aligned paths preserve more

details, while the MFCC-based distance matrices preserve more structural information.

Inspired by the observation that MFCC-based alignment and the GP-based one have

different strength on the phone-level and the word-level, we further try to combine word-

level and MFCC-based features with phone-level and GP-based features to see how the

performance would be. Fig. 5-8 shows an encouraging result, where the overall performance
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is further improved to an f-score of 65.1% when combining the two. This result implies that

not only the word-level and the phone-level features have complimentary information, but

also the MFCC-based and the GP-based features.

5.3.5 Performance with Different Amount of Information

In this sub-section, we examine how different amount of information can affect the perfor-

mance of our framework. Note that in our original framework, we only need the information

of word-level timing on the teacher’s utterance. In the following, we further add information,

such as the word-level timing on the student’s utterance and the phone-level timing on the

teacher’s utterance, to see how the performance will change.

The Effect of Word Segmentation

First we focus on the word-level features. Before, the word-level timing on the nonnative

utterance is obtained from running DTW with a silence model. Here we consider two more

cases: the first one incorporates the word-level timing information from the forced-alignment

results from a recognizer (i. e. with more accurate word boundaries), and the second one

runs DTW without a silence model (i. e. with less accurate word boundaries).

Fig. 5-9 demonstrates the word-level performance with different amount of information.

Not surprisingly, without a silence model, the word segmentation becomes less precise and

(a) MFCC-based framework (b) GP-based framework

Figure 5-9: Performance with different amount of information (word-level features only)
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the resulting word segments may include a lot of silence, causing the system performance to

drop. However, the improvement benefited from more precise word boundaries is not very

large. For an MFCC-based framework (Fig. 5-9a), there is only a 0.9% absolute increase in

the best f-score from our original framework to using the forced alignment, and there is even

a 1.1% absolute decrease for a GP-based framework (Fig. 5-9b). These results imply that

the trade-off between the system performance and the required amount of knowledge on the

data is not much, which is good for a system that aims at lowering the need of human efforts

on data preparation.

The Effect of the Unsupervised Phoneme-like Unit Segmentor

For the phone level analysis, our framework makes use of a phoneme-like unit segmentor

which incorporates a prior on segment length and does not assume the number of phones in

a word to be known beforehand. Here we consider two other cases: 1) run a phoneme-like

unit segmentor that knows the number of phones beforehand (i. e. partial knowledge), and

2) obtain the phone-level timing information on the teacher’s utterance from human labeling

(i. e. full knowledge).

The resulting ROC curves are shown in Fig. 5-10. For an MFCC-based framework (Fig. 5-

10a), there is no obvious order of which case performs the best and which one the worst, while

having full knowledge of the phone timing decreases the performance of a GP-based system

(a) MFCC-based framework (b) GP-based framework

Figure 5-10: Performance with different amount of information (phone-level features only)
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(Fig. 5-10b). This may suggest that for phone-level analysis, an exact segmentation of the

word into phonemes is not the most important issue, as long as each segment is acoustically

similar within itself. Even though a segment may not correspond to exactly one phone, it can

be viewed as a unit that should be aligned equally well to a segment in a student’s utterance.

In fact, since the segmentor finds the unit boundaries by optimizing the criterion in

Eq. 4.3, and it can always obtain the global optimum, if the resulting boundaries are not the

same as those from human labelings, this implies that the regions bounded by human labeling

do not have the lowest sum of distance, and thus some regions may not be phonetically similar

within itself in terms of the speech representation we choose. As the subsequent feature

extraction is still based on distance matrices and SSMs of the same speech representation,

the matching between the two explains the reason why phone-level human labelings do not

really help the system.

Overall Performance

To examine how the overall performance would change with different amount of information,

four scenarios are compared, as shown in Table 5.4. The order of the amount of information

is case 4 > case 3 > case 2 > case 1, and case 1 is our original framework. Fig. 5-11 shows

the experimental results.

phone
unsupervised segmentor w/
unknown number of phones

timing information ob-
tained from human labeling

word
DTW w/ silence model case 1 case 3

forced alignment case 2 case 4

Table 5.4: Four scenarios that were implemented for overall performance comparison

According to Fig. 5-11, case 4 performs the best in an MFCC-based framework (Fig. 5-

11a), but the margin is really small. Similarly, case 3 and case 4 perform slightly better in

a GP-based framework (Fig. 5-11b), but there isn’t really a significant difference. Therefore,

we can conclude that for the overall performance of the system, our current framework is

comparable with the one that has complete detailed timing information on the data. As a

result, in the future, we can focus on designing more sophisticated features and finding a
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(a) MFCC-based framework (b) GP-based framework

Figure 5-11: Performance with different amount of information (both word-level and phone-
level features). See Table 5.4 for the description of each case.

better representation of speech without worrying too much about the segmentation of the

utterances.

5.3.6 Performance based on Same/Different-gender Alignments

In the last part of the experiments, we examine how alignments between a teacher and a

student of different genders would affect the system performance. Again, we use a subset of

1,000 utterances in the test set that have reference speakers from both genders. The training

data is still the same, i. e. with same-gender alignment only. The goal is to see whether

the alignments based on different-gender pairs are capturing the same information as the

alignments based on same-gender pairs. If the gender does not affect the alignment but only

the pronunciation does, the performance on detecting mispronunciation should be similar.

Table 5.5 summarizes the experimental results. The performance with different-gender

precision (%) recall (%) f-score (%)
same-gender (MFCC) 60.9 67.3 63.9

same-gender (GP) 57.3 70.2 63.1
different-gender (MFCC) 21.1 89.6 34.2

different-gender (GP) 21.0 93.8 34.3

Table 5.5: Performance on detecting mispronunciation based on same/different-gender align-
ment
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alignments drops about 47% relative to the performance based on same-gender alignments.

The low precisions means that the system misclassified a lot of words as bad pronunciations

but they are actually correct ones. This indicates that the aligned path between a teacher

and a student of the different genders might be off-diagonal or with high distance so that it

is viewed as a bad alignment when compared with an alignment based on a pair of same-

gender speakers. We can thus infer from the results that the alignments based on different

genders are not only affected by the phone identities but also the acoustic characteristics of

different genders. As we learn from this table that these two kinds of alignments contain dif-

ferent information in them, we should only consider same-gender alignments when detecting

mispronunciation.

5.4 Summary

In this chapter, we have introduced the mispronunciation detection stage of our framework.

The basic flow of this stage is to first segment each word into smaller subword units, extract

phone-level and word-level features and adopt SVM classifiers to predict whether the word

is mispronounced or not.

We have introduced a set of specially designed phone-level and word-level features. These

features focus on describing the shape of the aligned path and the structure of the distance

matrix. Through a series of experiments, we have shown that the phone-level and word-level

features can capture different aspects of pronunciation errors, and combining the two can

give the best performance.

Also, we have examined how the system performance would be if we have more information

on the data. Experimental results indicate that our system performance is relatively stable

with respect to the decrease of the amount of information that is being used.
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Chapter 6

Summary and Future Work

In this chapter, we summarize the thesis and suggest possible future research directions.

6.1 Summary and Contributions

In this thesis, we have presented a mispronunciation detection framework that works by ana-

lyzing the alignment between a student’s utterance and a teacher’s. The motivation is to avoid

the problem of requiring well-labeled training data needed for conventional speech recognizer-

based methods. The whole framework can be divided into three components – word segmen-

tation, phoneme-like unit segmentation, and mispronunciation detection. Within each block,

we propose several ideas to gradually tackle the challenges of not having enough information

from human labelings. In the following, we summarize our main contributions.

In Chapter 3, we present the first stage of our framework – word segmentation. A student’s

utterance will not contain timing information on it. With the assumption that the student is

trying to enunciate the given script, we carry out DTW to align the student’s utterance with

a reference utterance. Then, the word boundaries can be located by finding the intersection

between the boundaries in the teacher’s utterance and the aligned path. To deal with pauses

which commonly appear between words in nonnative speech, we propose to run DTW with

a silence model, which can simultaneously align the two utterances and detect silence in the

student’s utterance. Experimental results have shown the effectiveness of the silence model.

In Chapter 4, an unsupervised phoneme-like unit segmentor is proposed. The motivation
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is to segment each word into smaller phonetically similar units for analysis at a finer level.

The segmentor works by dividing the self-similarity matrix of an utterance into a number

of low-distance blocks along the diagonal. A dynamic programming solution to optimizing

the segmented boundaries is presented. Though the goal is not segmenting a word into a

single phoneme per acoustic unit, experimental results show that the proposed segmentor

can achieve satisfying performance on the task of phonetic boundary detection.

In Chapter 5, we introduce a set of features that capture the shape of the aligned path

and the structure of the distance matrix. SVM classifiers were used for the task of classifying

whether a word is mispronounced or not. Experimental results have demonstrated that word-

level and phone-level features capture complementary characteristics of mispronunciation,

and the system performs equally well even if without phonetic unit labelings. Therefore,

in the end, we only need word-level timing information on the native speech to build this

system. In fact, if we have multiple native recordings of the same content, we only need

word-level timing labels on one of them, and we can use that information to label the rest of

the native utterances. As a result, the effort to prepare the teaching materials is much less

than the effort to build a speech recognizer.

6.2 Future Work

On the basis of the framework presented in this thesis, there are many potential applications

that can extend this work. Below we suggest some possible directions.

6.2.1 A More Complete Framework

The current system framework is an initial attempt at detecting pronunciation errors, includ-

ing insertion, deletion and substitution errors. However, one common error that students

often make is having a wrong lexical stress pattern. For now we cannot detect this kind of

error through MFCC-based or GP-based alignment, since those features were not designed

for extracting pitch information from speech. However, we believe the alignment technique

can also be used for aligning two pitch sequences. Stress can be further divided into word-

level, or sentence-level stress. Therefore, the alignment can be carried out either between two
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whole utterances, or between word segments that were previously found from MFCC-based

or GP-based alignment.

Lastly, to further aid student learning, a good CAPT system should not only point out

that they made errors, but also show what kind of errors were made. This would require the

system to be able to distinguish between different types of errors. To achieve such a goal,

one possible solution might be to train different detectors for different types of pronunciation

errors.

6.2.2 A More Accurate Representation of Pronunciation

In our experiments, we use the Gaussian posteriorgram in hopes of representing speech

in a more compact way. It has the advantage that it can be obtained completely in an

unsupervised fashion. However, the performance of a GP-based framework compared to

an MFCC-based framework is not as good as how a GP-based method performs in other

unsupervised pattern matching tasks, such as spoken term detection. Though an MFCC-

based framework performs slightly better in our experiments, MFCC still suffers from being

sensitive to vocal tract differences.

Recent research results have shown that Deep Belief Learning techniques have great po-

tential in improving speech-related applications from speech recognition to unsupervised

speech pattern discovery. With only a small amount of labels, one can obtain results that

are comparable to those from supervised training [39]. This characteristic satisfies our goal

of requiring as little knowledge or annotation effort from humans as possible when building

a CAPT system.

Moreover, unsupervised acoustic modeling methods are also improving. Another way

to add some supervision in an unsupervised manner may be to first perform unsupervised

segmentation. Then, assign each cluster a label ,and use those labels to train models and

then decode posteriorgrams.
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6.2.3 Application to Other Languages

Within our framework, we did not require any linguistic knowledge of the target language

(English) and the students’ L1 (Cantonese). In the entire process, from MFCC extraction, GP

decoding, DTW alignment, to feature extraction and classifier prediction, we did not include

any kind of information about the “language” itself. What the system does is simply look for

differences between a teacher’s utterance and a student’s utterance. Thus, this comparison-

based framework offers a considerable advantage in its applicability to any languages, not

only for the case in which the target language differs, but also in situations where the L1s

of the students are different. In the future, it would be interesting to actually carry out

experiments on other languages to see how the performance holds.

6.2.4 Implementation of a Web-based CALL System

The Spoken Language Systems group at MIT has launched many web-based language learning

games, ranging from reading games, translation games, or dialogues. Among these systems,

one common theme is that they are all recognizer-based, and do not focus on correcting

pronunciation errors.

A natural next step might be to integrate pronunciation evaluation into these existing

language learning games. In the future, it would also be worthwhile to provide a platform

for users to upload audio or video content of native speech that are of personal interest,

empowering learners to take advantage of our framework to create their own language learning

systems.
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Appendix A

Implementation of the Unsupervised

Phoneme-like Unit Segmentor

In this appendix, we show how to formulate the unsupervised phoneme-like unit segmentor

described in Chapter 4 into a dynamic programming problem and present the implementation.

First we start with the implementation of the segmentor with known number of segments.

Recall Eq. 4.1. This whole process can be formulated into a dynamic programming problem

in a sense that, if there are K segments in this sequence, and we fix the first cut at b∗1, then

(b∗2, b
∗
3, . . . , b

∗
K−1) should also be the optimal solution from segmenting the sub-SSM starting

from b∗1 to the end. Bearing this in mind, we start the implementation by building a scoreMat

in which element (i, j) records the cost of having a segment starting at i and ending at j.

Recall that cost(i, j) = 1
j−i+1

∑j
y=i

∑y
x=i Φtt(y, x). The scoreMat can be computed as shown

in Function 1.

Then, we build a costMat and an idxMat. The (i, j)th element in costMat records the

minimum sum of cost of segmenting the sub-SSM starting from j to the end into i segments,

and the (i, j)th element in idxMat keeps track of the place of the first cut that leads to the

minimum sum of cost. These two matrices can be built in a row-by-row manner. In other

words, to compute the i+ 1th row in the two matrices, we can adopt the results from the ith

row. This is because when computing costMat(i + 1, j), given any location where the first

cut is, say x, we know its total cost to be cost(j, x− 1) + costMat(i, x). Therefore, what we

need to do is to find the best x and record it in idxMat(i+ 1, j), and the corresponding cost

in costMat(i+ 1, j). Assume there should be K segments. In the end, we only have to look
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up idxMat(K, 1) and backtrace from it to find all the cut boundaries. Function 2 describes

how we compute them, and Function 3 describes the backtracing process.

To generalize the above computation to unknown number of segments, we can simply run

Function 2 with input K equal to nframe, which is the maximum possible number of cuts

on the SSM. After running Function 2, we can determine K∗u, the optimal number of cuts,

by searching for the minimum cost in the first column of costMat. To incorporate a prior,

we can add β × prior(j − i+ 1) to scoreMat(i, j) in Function 1.

Function 1 Computing scoreMat

1: function computeZeroCutScore(ssm, nframe) . ssm: the target SSM, nframe:
the length of the input utterance

2: for i = 1→ nframe do
3: for j = i→ nframe do
4: scoreMat(i, j)← 0
5: for y = i→ j do
6: for x = i→ y do
7: scoreMat(i, j)← scoreMat(i, j) + ssm(y, x)/(j − i+ 1)
8: end for
9: end for

10: end for
11: end for
12: return scoreMat
13: end function
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Function 2 Computing costMat and idxMat

1: function findBestCut(scoreMat, nframe,K) . K: the total number of segments
2: for i = 1→ nframe do . base case: 1 segment
3: costMat(1, i)← scoreMat(i, nframe)
4: idxMat(1, i)← i
5: end for
6: for x = 2→ K do
7: for i = 1→ nframe− x do
8: minScore← scoreMat(i, i) + costMat(x− 1, i+ 1)
9: minIdx← i+ 1

10: for j = i+ 1→ nframe− x do
11: tempScore← scoreMat(i, j) + costMat(x− 1, j + 1)
12: if tempScore < minScore then
13: minScore← tempScore
14: minIdx← j + 1
15: end if
16: end for
17: costMat(x, i)← minScore
18: idxMat(x, i)← minIdx
19: end for
20: end for
21: return costMat, idxMat
22: end function

Function 3 Backtracing

1: function backTrace(idxMat,K)
2: x← K
3: bid← 1
4: while x > 0 do
5: bid← idxMat(x, bid)
6: x← x− 1
7: boundary.push back(bid)
8: end while
9: return boundary

10: end function
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