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Abstract

Context-dependent acoustic modeling is commonly used in large-vocabulary Automatic
Speech Recognition (ASR) systems as a way to model coarticulatory variations that occur
during speech production. Typically, the local phoneme context is used as a means to
define context-dependent units. Because the number of possible context-dependent units
can grow exponentially with the length of the contexts, many units will not have enough
training examples to train a robust model, resulting in a data sparsity problem.

For nearly two decades, this data sparsity problem has been dealt with by a clustering-
based framework which systematically groups different context-dependent units into clus-
ters such that each cluster can have enough data. Although dealing with the data sparsity
issue, the clustering-based approach also makes all context-dependent units within a cluster
have the same acoustic score, resulting in a quantization effect that can potentially limit the
performance of the context-dependent model.

In this work, a multi-level acoustic modeling framework is proposed to address both the
data sparsity problem and the quantization effect. Under the multi-level framework, each
context-dependent unit is associated with classifiers that target multiple levels of contex-
tual resolution, and the outputs of the classifiers are linearly combined for scoring during
recognition. By choosing the classifiers judiciously, both the data sparsity problem and
the quantization effect can be dealt with. The proposed multi-level framework can also be
integrated into existing large-vocabulary ASR systems, such as FST-based ASR systems,
and is compatible with state-of-the-art error reduction techniques for ASR systems, such
as discriminative training methods.

Multiple sets of experiments have been conducted to compare the performance of the
clustering-based acoustic model and the proposed multi-level model. In a phonetic recog-
nition experiment on TIMIT, the multi-level model has about 8% relative improvement in
terms of phone error rate, showing that the multi-level framework can help improve pho-
netic prediction accuracy. In a large-vocabulary transcription task, combining the proposed
multi-level modeling framework with discriminative training can provide more than 20%
relative improvement over a clustering baseline model in terms of Word Error Rate (WER),
showing that the multi-level framework can be integrated into existing large-vocabulary
decoding frameworks and that it combines well with discriminative training methods. In
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a speaker adaptive transcription task, the multi-level model has about 14% relative WER
improvement, showing that the proposed framework can adapt better to new speakers, and
potentially to new environments than the conventional clustering-based approach.

Thesis Supervisor: James R. Glass
Title: Senior Research Scientist
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Chapter 1

Introduction

Automatic Speech Recognition (ASR) is the task of outputting a word sequence that cor-

responds to a given speech utterance. Over the years, ASR has been applied to many

types of applications such as dictation [93, 78, 73], voiced-based information retrieval

[31, 133, 28, 42], automatic processing and documentation of audio data [89, 36, 45],

computer-aided language learning [124, 127, 98], speech-to-speech translation [72, 121],

etc. While there are many ASR related applications, it is generally agreed upon that higher

ASR accuracy results in better service [107, 61, 88]. In this thesis, we investigate a novel

multi-level acoustic modeling framework that can improve the recognition accuracy of ex-

isting ASR systems.

1.1 Current Approach

Figure 1-1 illustrates a generic modeling framework of a state-of-the-art ASR system.

Given a recorded speech waveform, the feature extraction module converts the waveform

into a sequence of fixed-dimensional acoustic feature vectors (observations). The acoustic

model scores the feature vectors, and provides scores for different phoneme sequences. The

lexicon module applies lexical constraints and maps the phoneme sequences into possible

word sequences. The word sequences are re-scored by the language model based on prior

linguistic knowledge. Scores provided by the acoustic model, the lexicon, and the language

model are incorporated by the search module to find the best-scoring word sequence. More
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Figure 1-1: Modeling framework of a state-of-the-art ASR system.

details of the modeling framework of ASR systems can be found in Chapter 2. In this the-

sis, we work on developing a novel acoustic modeling framework that can further improve

the ASR performance on large-vocabulary speech recognition tasks.

1.1.1 Context-Dependent Acoustic Modeling

In natural speech, a phonetic unit can be pronounced (realized) differently depending on

its nearby phonetic units. Figure 1-2 shows several examples of how the realization of

a phoneme “t” in American English can be affected by its nearby phonetic contexts. To

model such coarticulatory variations, context-dependent acoustic modeling is commonly

used in existing ASR systems. Given an acoustic observation (feature vector), x, a context-

dependent acoustic model seeks to score x with respect to both its phonetic identity and

its nearby contexts; for example, how likely does x belong to the triphone unit “d-iy+n”,

an “iy” with left context “d” and right context “n”, as in the word “dean”? As we increase

the amount of contextual information being considered, the set of possible labels can grow

exponentially with the length of the contexts. Take an ASR system with 60 basic phonetic

units for example. A triphone acoustic model can have 603 = 216, 000 possible triphone

units. Because the number of possible context-dependent labels can grow very large, many

context-dependent units may have limited occurrences or even unseen in the training data,
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tea beatentree steep city

Figure 1-2: Acoustic realizations of the phoneme “t” with different nearby phonetic con-
texts. Each plot denotes the spectrogram of an utterance of the underlying word. For each
spectrogram, the horizontal axis represents time, the vertical axis represents frequency, and
the dark points represent the time-frequency locations with high energy level. The realiza-
tion of “t” in the word “tea” is usually called the “canonical” realization. Compared with
the “canonical” realization, the “t” in the word “tree” is retroflexed. In the word “steep”,
the “t” is in a cluster with “s”, becoming unaspirated. The “t” in the word “city” is realized
as a flap. In the word “beaten”, the “t” realized as a glottal stop.

resulting in a well-known data sparsity problem for training acoustic model parameters. To

exploit the advantages of a context-dependent acoustic model, the data sparsity problem

must be dealt with appropriately.

One commonly used approach to deal with the data sparsity problem is clustering [76].

By grouping a sufficient amount of context-dependent units into clusters, each cluster can

have enough training examples to train a robust model (classifier) that provides scores for

the cluster during recognition. When grouping the context-dependent units, a clustering

algorithm typically encounters a trade-off between the context resolution and the number

of training examples, as illustrated in Figure 1-3. For more than a decade, decision tree

clustering [129, 58] has been used in almost every modern ASR system to select a good

operating point in the trade-off.

Although decision tree clustering has been shown to be effective in dealing with the

data sparsity problem and provides a reasonable context-dependent model, it still inevitably

quantizes a certain number of contexts. The context-dependent units within a cluster will

always have the same acoustic scores, and become acoustically indistinguishable to the

recognizer. Such a quantization effect is not negligible. Take a conventional triphone-
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Figure 1-3: The trade-off between contextual resolution and the amount of training ex-
amples. If the clustering algorithm groups only a few context-dependent units into each
cluster, the clusters can still preserve a variety of different contexts. However, some clus-
ters might be less robust in response to new data due to a lack of training examples. On the
other hand, if a cluster groups a lot of context-dependent units together, it can have more
training examples to improve its generalization ability toward new data, but the resulting
acoustic model cannot tell the recognizer much about the contexts.

based large-vocabulary ASR system for example, the number of clustered states is typically

on the order of 103 ∼ 104. On the other hand, the number of valid triphone states can

easily grow up to the order of 105 for large-vocabulary systems, which is a difference of

about one or two orders of magnitude, compared with the number of clustered states. The

quantization effect can potentially limit the discriminative power of the context-dependent

model. If such an effect can be dealt with appropriately, the acoustic model performance

can potentially be further improved.

1.1.2 Discriminative Training

Discriminative training is another commonly-used acoustic modeling technique which can

refine model parameters and further reduce ASR errors. Instead of seeking model parame-

ters that maximize the likelihood of the acoustic feature vectors given the labels, discrimi-

native training methods seek parameters that minimize the degree of confusions occurring

in the training data. Typically, the discriminative training procedure consists of two steps.

First, construct a smooth and efficiently computable objective function that reflects the

confusions. Second, update the model parameters to optimize the objective function.

Several types of objective functions have been proposed in the literature that have

shown significant improvement on a variety of Large-Vocabulary Continuous Speech Recog-

nition (LVCSR) tasks, including Minimum Classification Error (MCE) training [62, 86],

Maximum Mutual Information (MMI) training [119], Minimum Phone Error (MPE) train-

ing [101], and their variants with margin-based [80, 130, 100, 87] modification. In terms of
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optimizing approaches, the gradient-based method [18, 86] and Baum-Welch-based method

[7, 41, 8, 109, 101] are two commonly-used approach. More details about discriminative

training methods can be found in Chapter 2.

Discriminative training has been shown to be effective in reducing ASR errors in a

variety of tasks. Therefore, when designing a new modeling framework, it is desirable to

make the new framework compatible with discriminative training to take advantage of its

error reduction capability.

1.2 Proposed Approach

1.2.1 Motivation

The goal of this research is to develop an acoustic modeling technique that addresses the

data sparsity problem while avoiding the quantization effect that potentially limits the per-

formance of conventional context-dependent acoustic modeling frameworks. Not every

context-dependent unit has enough training examples due to data sparsity, but can we still

model different units differently? Can the new framework provide improvement over exist-

ing acoustic modeling frameworks? Will the new framework be compatible with commonly

used error reduction techniques such as discriminative training methods to further improve

ASR performance? To answer these questions, in this thesis, we propose a multi-level

acoustic modeling framework that seeks to achieve the following goals:

• Address the data sparsity problem of context-dependent acoustic modeling while

avoiding the quantization effect.

• Be compatible with state-of-the-art error reduction framework such as discriminative

training methods

• Be able to be embedded into existing ASR systems, and improve the system perfor-

mance on real word tasks.
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{``iy’’ with left context ``d’’ and right context `` n’’?}

{``iy’’ with left context ``d’’?}
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Fewer Training 
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{ iy  with left context d ?}

{``iy’’ with right context ``n’’?}

{``High_Vowel’’ with left context ``d’’?}
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Figure 1-4: Sets of questions that can identify the triphone “d-iy+n”. Questions in a lower
level set are less specific compared to questions in an upper level set, but the classifiers
associated with questions in the lower sets can have more training examples. Except for
the top set, each question in the lower level sets ignores certain contexts. However, when
combined with other questions in the set, the fine-grained contexts can still be recovered.

1.2.2 Method Overview

To see how the proposed multi-level acoustic modeling works, we can think of scoring

an acoustic feature vector, x, with respect to a context-dependent unit as providing a soft

decision to an identification question of the unit, e.g. {is x an “iy” with left context “d”

and right context “n”?}. Although we can try to build a classifier that answers the question

directly, sometimes such classifier might not be reliable due to the data sparsity problem.

Instead of directly answering the specific question, we can try to answer more general

questions such as: {is x an “iy” with left context “d”?} AND {is x an “iy” with right

context “n”?}. If we answer “yes” to both questions, we can still identify the context-

dependent unit as “d-iy+n”. The two classifiers that correspond to this pair of questions can

have more training examples, because each of them requires less contextual specification.

We can arbitrarily tune the resolution of the contextual questions that can be asked, as

illustrated in Figure 1-4.

Therefore, each context-dependent unit can be associated with classifiers that identify

contexts at multiple levels of resolution. When given an input acoustic feature vector, the

outputs of the classifiers can be combined for scoring. Since any pair of context-dependent

units differ in some way, if the classifiers are judiciously selected based on the principle that

the intersection of contexts can uniquely specify a particular context-dependent unit (as de-

scribed in Figure 1-4), the pair of context-dependent units would have a least one different
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scoring classifier. In this way, each context-dependent unit can have a different score, and

thus resolve the quantization effect. If certain context-dependent unit does not have enough

training example, its corresponding bottom level classifiers can still have enough training

examples and can be used for scoring. In this way, the data sparsity problem is dealt with.

Details of the multi-level modeling framework, including how it can be combined with

discriminative training and be embedded in the existing ASR system, are discussed in

Chapter 3. While a particular set of classifiers was used in this thesis, classifier selec-

tion is not limited to what was used in the experiments. The general principle that should

be followed is to ensure that each context-dependent unit has a unique scoring mechanism

to resolve quantization, and that each classifier used for scoring has enough training ex-

amples to avoid data sparsity. Thus, there are many possible classifier choices that could

satisfy these criteria.

1.3 Contributions

• Proposed a novel context-dependent modeling framework that deals with both data

sparsity and context quantization.

– Designed a multi-level modeling framework that associates each context-dependent

unit with classifiers identifying contexts at multiple levels of contextual resolu-

tion, and combine the classifier outputs for scoring. The proposed framework

ensures any pair of context-dependent units have at least one differing scor-

ing classifier to deal with quantization, and keeps classifiers with insufficient

training data from being used for scoring to avoid data sparsity.

• Provided compatible implementation of the proposed multi-level framework for ex-

isting ASR systems and state-of-the-art error reduction frameworks.

– Embedded the multi-level model in an existing Finite State Transducer (FST)[53]

based recognizer, and provided general implementation guidelines for other

types of ASR systems.
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– Integrated the multi-level modeling framework with discriminative training meth-

ods, and implemented training schemes such as computation of objective func-

tion and parameter update in a distributed computation paradigm.

• Improved accuracy of ASR system on large-vocabulary real word recognition tasks.

– Provided overall more than 20% relative improvement in word error rate, com-

pared with a clustering-based baseline, on a large-vocabulary speech recogni-

tion task of academic lectures, showing that the mutli-level framework inte-

grated well with an existing large-vocabulary ASR system.

– Provided about 15% relative improvement on a large-vocabulary speaker adap-

tation task, suggesting that the multi-level model has better adaptability to new

data.

1.4 Thesis Outline

The organization of this thesis is as follows. Chapter 2 reviews mathematical formula-

tion of modern ASR systems, context-dependent acoustic modeling, discriminative train-

ing methods, and finite state transducers. Chapter 3 introduces the formulation of the pro-

posed multi-level model and its implementation, including how to integrate it with dis-

criminative training, and merge it into an existing ASR decoding framework. Chapter 4

describes a phonetic recognition experiment on the TIMIT corpus. Chapter 5 reports the

large-vocabulary speech recognition results on the MIT lecture corpus. Speaker adaptation

experiment results are reported in Chapter 6, followed by the conclusion and future work

in Chapter 7.
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Chapter 2

Background:

Speech Recognition Techniques

In this chapter we review background materials related to this thesis. We start with the

mathematical framework of modern Automatic Speech Recognition (ASR) systems, in-

cluding model assumptions and decoding algorithms. Then we discuss the basic modeling

components of an ASR system, including language models, lexicon/pronunication mod-

els, and acoustic models, and describe how to learn the model parameters. Mathematical

methods that will be used or referred to in later parts of the thesis, including Maximum-

Likelihood (ML) estimation, Lagrange multipliers, the Expectation-Maximization (EM) al-

gorithm, and the Forward-Backward algorithm, will also be covered. After that, we discuss

in more detail two commonly-used techniques for modern ASR systems, context-dependent

acoustic modeling and discriminative training. Finally, we introduce Finite-State Transduc-

ers (FSTs) and show how they can be used to form a decoding module for ASR systems.

2.1 Automatic Speech Recognition

Given a speech utterance, the sequence of acoustic feature vectors X extracted from the

waveform can be thought of as the observable data, and the word sequence W can be

thought of as the underlying hypothesis to be inferred from the data. Following this notion,

the decoding procedure of an ASR system can be formulated as finding the word sequence
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W∗ that maximizes the posterior probability p(W|X) under the Maximum A Posteriori

(MAP) decision criterion [24]:

W∗ = arg max
W

p(W|X) (2.1)

= arg max
W

p(X,W)

p(X)
(2.2)

= arg max
W

p(X|W)p(W). (2.3)

The first term p(X|W) in Equation (2.3) is generally referred to as the likelihood of the

data, and the second term p(W) is referred to as the prior distribution by statisticians, or as

the language model by researchers in speech related fields.

2.1.1 Model Assumptions and Approximations

Because both the speech utterance and the word sequence can be of variable length, model-

ing the full dependencies between the feature vectors and the words can be computationally

intractable. For computational efficiency, certain model assumptions are typically applied

to simplify computation.

For the prior distribution, it is typically assumed that the word sequence forms a gen-

eralized (higher order) finite-state Markov chain, where the joint probability of a word se-

quence can be decomposed as a product of the conditional probability of each word given a

fixed length history. This approximation results in the well known n-gram language model

[116], and the probability of a sequence of K words can be computed by

p(w1, w2, . . . , wK) = p(w1)
K∏
i=2

p(wi|wi−1, . . . , w1) (2.4)

= p(w1)
n−1∏
i=2

p(wi|wi−1 . . . w1)
K∏
i=n

p(wi|wi−1, . . . , wi−n+1), (2.5)

where the first equality is by chain rule and the second equality is based on the n-gram

approximation. Note that the generalized Markov chain formed by the n-gram language

model can be converted into a normal Markov chain by expanding the state space of the
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chain to incorporate the histories.

For the likelihood term, a Hidden Markov Model (HMM) [104] is typically used to

provide a computationally efficient modeling framework. The HMM makes two main as-

sumptions:

1. There exists a hidden state sequence, S, that forms a Markov chain that generates the

observation vectors.

2. Given the state st at any time point, the corresponding observation xt is conditionally

independent of other observations and states.

Under these assumptions, the decoding criterion becomes

W∗ = arg max
W

∑
S

p(X,S|W)p(W) (2.6)

= arg max
W

∑
S

∏
t

p(xt|st)p(S|W)p(W). (2.7)

The hidden state sequence S is generally used to provide a sub-word/phonetic level repre-

sentation of speech. In practice, each sub-word unit, e.g. a (context-dependent) phoneme,

is modeled by a fixed number of states, and the lexical constraints provided by the lexicon

can be embedded in the p(S|W) term. Under this formulation, the p(xt|st) term provides

a scoring mechanism of acoustic feature vectors with respect to the phonetic states and thus

corresponds to the acoustic model.

In general, if there is a state sequence that dominates other sequences in a likelihood

sense, the summation in Equation (2.7) can be replaced by a max and the decoding criterion

can be approximated by jointly finding the best word and state sequence:

(W∗,S∗) = arg max
W,S

∏
t

p(xt|st)p(S|W)p(W). (2.8)

The relation of the decoding criterion in Equation (2.8) with the components shown in

Figure 1-1 can be interpreted as follows. For each acoustic feature xt, the Acoustic Model

computes the likelihood of xt being generated from each state st. The likelihoods from

the Acoustic Model are jointly considered with the lexical constraints p(S|W) from the
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Lexicon and the prior p(W) from the Language Model by the Search Module to find the

best scoring word sequence W∗ and state alignment S∗.

Since both the word sequence and the state sequence can be formulated as Markov

chains under the model assumptions, we can further extend the state space such that every

valid pair of (W,S) in the original space can be represented by a sequence S in the ex-

tended space. (This can be done with the composition operation that will be described in

Section 2.4). As a result, the decoding process can be reduced to finding the best extended

state sequence:

S∗ = arg max
S

p(X,S) (2.9)

= arg max
S

∏
t

p(xt|st)p(S), (2.10)

which can be solved efficiently using a Viterbi algorithm [120] based on dynamic program-

ming [11, 21].

2.1.2 Viterbi Decoding

The basic idea of the Viterbi decoding algorithm is that the optimal state sequence contains

an optimal substructure under the HMM assumptions, and therefore can be found using a

dynamic programming-based algorithm [104]. For any given time index t, the best state

sequence that reaches a particular state s at time t has to pass one of the states s′ at time

t− 1. Because of the Markov property, given the state at time t− 1, how the chain behaves

from time t − 1 to time t is independent from how it behaved from time 1 to time t − 1.

Therefore, if the best sequence that reaches s at time t contains the state s′ at time t− 1, its

prefix from time 1 to time t− 1 must also be the best sequence that reaches s′ at time t− 1.

Otherwise, a better path can be constructed by replacing the prefix with the best sequence

that reaches s′ at time t − 1. Since the best sequence contains an optimal substructure,

if at each time point we can remember the hub-state from the previous time point, when

we reach the end of the utterance, we can trace back the hub-states to find the best state

sequence.
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Mathematically, given a sequence of T observations {x1, . . . ,xT}, for any time index t

and state index s, we can define the best score of reaching s at time t

δ(X, t, s) =

p(x1, s1 = s), if t = 1,

max{s1,...,st−1} p(x1, . . . ,xt, s1, . . . , st−1, st = s), if 2 ≤ t ≤ T.

(2.11)

With this definition, the joint probability of {x1, . . . ,xT} and the best state sequence

{s∗1, . . . , s∗T} in Equation (2.9) can be denoted by maxs δ(X, T, s). Using the conditional

independence properties of HMM, for 2 ≤ t ≤ T , we can rewrite δ(X, t, s) in a recursive

form:

δ(X, t, s) = max
{s1,...,st−1}

p(x1, . . . ,xt, s1, . . . , st−1, st = s) (2.12)

= max
{s1,...,st−1}

p(x1, . . . ,xt−1, s1, . . . , st−1)p(s|st−1)p(xt|s) (2.13)

= max
s′

max
{s1,...,st−2}

p(x1, . . . ,xt−1, s1, . . . , st−2, st−1 = s′)p(s|s′)p(xt|s) (2.14)

= max
s′

δ(X, t− 1, s′)p(s|s′)p(xt|s), (2.15)

where the second equality is from the conditional independence assumptions of HMM and

the third equality holds from the optimal substructure argument.

In practice, to prevent underflow, instead of directly computing the joint probability,

log-probability is computed. Let δ̃(X, t, s) = log(δ(X, t, s)), and the recursive formula

becomes

δ̃(X, t, s) =

log(p(s)) + log(p(x1|s)), if t = 1,

maxs′ δ̃(X, t− 1, s′) + log(p(s|s′)) + log(p(xt|s)), if 2 ≤ t ≤ T.

(2.16)

To keep track of the best state sequence, we can use a set of back pointers

ψ̃(X, t, s) = arg max
s′

δ̃(X, t− 1, s′) + log(p(s|s′)) + log(p(xt|s)), (2.17)

for 2 ≤ t ≤ T and for each state s. Using {δ̃(X, t, s)} and {ψ̃(X, t, s)} to keep track
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Algorithm 2.1 Viterbi Decoding Algorithm
Input: Sequence of feature vectors X = {x1, . . . ,xT}
Output: Best state sequence S = {s∗1, . . . , s∗T}

for all state s do
δ̃(X, 1, s)← log(p(s)) + log(p(x1|s))

end for

for t = 2→ T do
for all state s do
δ̃(X, t, s)← maxs′ δ̃(X, t− 1, s′) + log(p(s|s′)) + log(p(xt|s))
ψ̃(X, t, s)← arg maxs′ δ̃(X, t− 1, s′) + log(p(s|s′)) + log(p(xt|s))

end for
end for

s∗T ← arg maxs δ̃(X, T, s)
for t = T − 1→ 1 do

s∗t ← ψ̃(X, t+ 1, s∗t+1)
end for

of the best current score and best previous state, the decoding can be done efficiently. A

pseudo-code for how the decoding procedure works is described in Algorithm 2.1.

In practice, especially in real-time ASR applications, the decoder only keeps a subset

of states as an active frontier at each time point, and only expands the search for the next

time point from the active frontier. To decide the set of states in the active frontier, several

pruning criteria, such as score differences from the current best score, are typically applied.

The pruning criteria correspond to trade-off between accuracy and decoding speed, and thus

may vary between applications.

2.1.3 Language Model

Parameters and Maximum-Likelihood Estimation

Given a vocabulary of size V , the n-gram language model consists of a set of parameters

θ = {θhv} to represent the probability of seeing a word wv given a word history h, where

the parameters are subject to the constraint
∑V

v=1 θ
h
v = 1 for each history h. To estimate

the model parameters, Maximum-Likelihood (ML) estimation [3] is typically used. For a
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given text corpus D, the log probability of observing D under the set of parameters θ can

be computed by the following equation

log(pθ(D)) =
∑
h∈HD

∑
wv

c(D, hwv) log(θhv ), (2.18)

where HD is the set of n-gram histories used to express the word sequences in D, and

c(D, hwv) is the number of times the wordwv occurred after h in the corpus. The Maximum-

Likelihood (ML) estimation seeks to find the language model parameters θ that maximizes

Equation (2.18).

Lagrange Multipliers

In addition to maximizing the log-likelihood expression in Equation (2.18), the language

model parameters have to satisfy the sum-to-one constraint
∑V

v=1 θ
h
v = 1 for each history h

appearing in the training corpus. To deal with the sum to one constraint for each history, the

Lagrange Multiplier [12] method can be applied, and the optimization criterion becomes

max
{θhv }

min
{ξh}

∑
h∈HD

∑
wv

c(D, hwv) log(θhv ) +
∑
h∈HD

ξh(
V∑
v=1

θhv − 1), (2.19)

where ξh is the Lagrange multiplier for the word history h. Note that for a certain h, if∑V
v=1 θ

h
v < 1, the minimizer can set ξh to −∞ to make the objective function −∞, and,

similarly, it can set ξh to∞ if
∑V

v=1 θ
h
v > 1. In this way, maximizer has to choose a set of

parameters that satisfies all the sum to one constraints.

To find the optimal value, we can take the partial derivatives of Equation (2.19) with

respect to {θh1 , θh2 . . . , θhV} for each h and make the derivatives equal to zero:

c(D, hwv)
θhv

+ ξh = 0 ∀v ∈ V . (2.20)

Solving the system of equations in Equation (2.20) gives the optimal value under ML esti-

mation:

θ̂hv =
c(D, hwv)
c(D, h)

, (2.21)
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where c(D, h) =
∑V

v=1 c(D, hwv) is the number of occurrences of h in D.

From Equation (2.21), we can see that the ML estimation assigns zero to the probability

p(wv|h) if the sequence hwv never occurs in the training corpusD. This fact makes the ML

estimated model unable to generalize to new data. To ensure generalization, it is necessary

to smooth the model parameters; that is, to assign some non-zero probabilities to the unseen

n-grams. Many effective ways of assigning the probability mass have been proposed in the

literature, including Good-Turing smoothing [64, 40], Kneser-Ney smoothing [66], and

Modified Kneser-Ney [17] smoothing.

In general, if the language model is trained on text data related to the recognition task,

the ASR performance is better than a model trained on generic texts [56]. If the recogni-

tion task covers a variety of possible topics, adapting the language model to the topic of

the speech can provide some improvement [67, 111, 51, 54]. If an ASR system is to be

deployed in a domain with limited amount of data, appropriate interpolation of language

models from partially related domain may be required [55].

2.1.4 Lexicon/Pronunciation Model

Compared with other modeling components of an ASR system, the lexicon/pronunciation

model is probably the component that requires the most knowledge from human experts.

In a conventional ASR system, an expert-designed lexicon is typically used to decompose

the words into sequences of sub-word units which are usually language-specific phonemes.

Figure 2-1 shows some examples of mappings between words and sequences of phonemes.

Although the canonical pronunciations provided by an expert-designed lexicon cover a

majority of how the words are pronounced in actual speech, it still has limitations. Two

main problems that an expert lexicon might have difficulties to deal with are pronunciation

variation and Out-Of-Vocabulary (OOV) words.

Pronunciation variation can result from many causes [117]. For example, interaction

between words in continuous speech can cause assimilation, reduction, deletion, and inser-

tion of phonemes [131]. Also, a speaker may change speaking style and/or word pronun-

ciations based on situations (formal/informal) and audience. In addition to intra-speaker
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automatic 
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:  ao t ax m ae t ax k 

i hspeech
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:  s p iy ch

:  r eh k ax g n ih sh ax n 

Figure 2-1: Examples of lexical mappings from words to phonemes.

variation, regional differences such as dialects and accents can also cause a large degree of

inter-speaker variation. To deal with coarticulatory variations, pronunciation rules designed

based on acoustic-phonetic knowledge [131, 52] and context-dependent acoustic modeling

can be used. For style and inter-speaker variation, learning a probabilistic pronunciation

model from examples [5, 4] might be a potential solution.

Out-of-vocabulary (OOV) words can harm ASR performance in several ways. The rec-

ognizer might generate a sequence of short words in the lexicon to represent the OOV word,

resulting in extra insertion errors. The recognizer can also modify nearby words around the

OOV in the recognition output, resulting in extra substitution errors. One way to mitigate

the problem is to detect OOVs and represent it with a special label in the recognition output

[10, 48, 9]. Another idea is to have a systematic way of learning pronunciations for new

words to increase the vocabulary coverage [19]. Building hybrid systems [13, 123] that are

able to represent the OOVs with sequences of letter-to-sound, grapheme-based, sub-word

units can also help reduce the effect of OOVs.

In addition to dealing with pronunciation variations and OOVs, another open question

is whether we can exclude the expert knowledge when constructing the mapping between

words and sub-word units. A solution to this question would be very helpful to develop

ASR systems for languages with limited knowledge sources. While grapheme-based recog-

nition systems have been shown to be effective for certain languages [65, 118], it remains

open that is there a universal approach across all types of languages.

2.1.5 Acoustic Model

The acoustic model provides a scoring mechanism of the acoustic observations with respect

to the set of states. Specifically, given an acoustic observation, xt, the acoustic model
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produces a conditional probability of seeing xt, p(xt|s), for each state s. In most modern

ASR systems, such scoring is done by a Gaussian Mixture Model (GMM). Given a feature

vector x and a state label s, the log-likelihood of x with respect to s can be computed by

lλ(x, s) = log(
Ms∑
m=1

ωsmN (x;µsm,Σ
s
m)), (2.22)

where the mixture weight, ωsm, is subject to the constraint
∑Ms

m=1 ω
s
m = 1, and the term

N (x;µsm,Σ
s
m) is the multivariate Gaussian density function with mean µsm, and covari-

ance matrix Σs
m, as described in Equation (A.1). In most ASR systems, the covariance

matrices are assumed to be diagonal for computational efficiency and for ease of parameter

estimation.

Before we show how to perform ML estimation for Gaussian Mixture Model (GMM)

parameters for each Hidden Markov Model (HMM) state from a sequence of acoustic ob-

servations, we first consider a simpler case: given a set of vectors {x1,x2, . . . ,xK} inde-

pendently drawn from a GMM of M mixture components, how can we estimate the GMM

parameters under the ML criterion? To see how to estimate the parameters, we have to first

understand how a vector is drawn from a GMM.

Under the assumptions of the GMM, a vector is drawn as follows. First, pick a mixture

component m with probability ωm, and then draw a random vector from the Gaussian

distribution with mean µm, and variance Σm. If, in addition to the vectors {x1, . . . ,xK},

the indices of the mixture components {m1,m2, . . . ,mK} from which each vector was

drawn were also recorded, then we can compute the log-likelihood of the complete data;

that is, the log-likelihood of seeing both the vectors and the component indices by

log(pλ(X,M)) =
K∑
k=1

log(ωmk) log(N (xk;µmk ,Σmk)). (2.23)

Note that for each mixture componentm, the mean µm and variance Σm are only related to

the set of vectors that are drawn from the mixture m. As a result, we can collect the set of

vectors and use the ML estimation formula in Appendix A to find the optimal values of µm

and Σm that maximize Equation (2.23). To get the optimal mixture weight, we can count
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the number of occurrences of each component and divide the count by the total number of

vectors K, just as we did for the language model.

However, in many applications, the indices of the mixture components are typically not

available from the data. In such a incomplete data scenario, each vector can potentially be

drawn from any of the mixture components. As a result, to compute the log-likelihood of

seeing the vectors, we have to marginalize all possible assignments of mixture components,

and the log-likelihood of the data X = {x1, . . . ,xK} can be computed by

log(pλ(X)) =
K∑
k=1

log(
M∑
m=1

ωmN (xk;µm,Σm)). (2.24)

However, unlike the log-likelihood of the complete data, the log-likelihood of the form

in Equation (2.24) does not have a closed-form optimal solution, so an iterative optimiza-

tion procedure is required.

Expectation-Maximization (EM) Algorithm

The Expectation-Maximization (EM) algorithm [25] is an iterative procedure commonly

used to perform Maximum-Likelihood (ML) estimation for models under which the com-

putation of the log-likelihood of the observed data involves marginalization of hidden vari-

ables. For such models, the log-likelihood of seeing both the data and the true assignment

of the hidden variables is much easier to optimize than the log-likelihood of seeing just

the observable data. Since the true assignment of the hidden variables is unknown, the

EM algorithm first uses the data and the current model parameters to compute the posterior

probability of each particular assignment being the true assignment of the hidden variables.

After the posterior distribution of the assignments is computed, the EM algorithm then uses

the distribution to compute the expectation of the completed log-likelihood of the data and

the assignment of the hidden variable. The expectation is then used as an auxiliary function

for optimization. Since the auxiliary function is a linear combination of a set of functions

that are relatively easy to optimize, the auxiliary function itself is also relatively easy to

optimize. Also, as shown in Appendix B, the auxiliary function used by the EM algorithm

is a strong sense auxiliary function [99], and therefore optimizing the auxiliary function

39



guarantees an improvement of the log-likelihood until the iterative procedure converges.

To summarize, each iteration of the EM algorithm consists of two steps: an Expectation

step (E-step) and a Maximization step (M-step). The procedures of the two steps can be

summarized as follows:

• E-step: Compute the posterior probabilities of hidden variables and sufficient statis-

tics that are required to optimize the auxiliary function, based on the data and the

current model parameters.

• M-step: Update the model parameters to the optimal point of the current auxiliary

function using the sufficient statistics from the E-step.

When estimating the GMM parameters from independently drawn vectors, the posterior

probabilities that need to be computed in the E-step are

rkm =
ωmN (xk;µm,Σm)∑M

m′=1 ωm′N (xk;µm′ ,Σm′)
, ∀k,m, (2.25)

where the numerator is the likelihood of seeing xk drawn from the mixture component

m, and the denominator is the likelihood of seeing xk. Note that although the posterior

probability rkm depends on xk and the current GMM parameters, it is treated as a constant

during the M-step of the EM algorithm. Therefore, we do not attach notations related to

xk and the GMM parameters to the posterior probability to stress that they are treated as

constants during maximization.

After the posterior probabilities are computed, the auxiliary function can be expressed

by
K∑
k=1

M∑
m=1

rkm[log(ωm) + log(N (xk;µm,Σm))]. (2.26)

Note that the terms related to µm in Equation (2.26) can be expressed by

K∑
k=1

rkm log(N (xk;µm,Σm)), (2.27)

which is similar to Equation (A.2) except for the scaling coefficients {rkm}. Since tak-

ing a partial derivative is a linear operation, we can first compute the partial derivative
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of log(N (xk;µm,Σm)) for each xk, as was done in Appendix A, and then multiply by

{rkm}. As a result, the best µm that maximizes Equation (2.26) satisfies the condition∑K
k=1 rkm(xk − µm) = 0, and therefore can be computed by

µ̂m =

∑K
k=1 rkmxk∑K
k=1 rkm

. (2.28)

Similarly, the ML estimate of the covariance matrix Σm can be computed by

Σ̂m =

∑K
k=1 rkmxkx

T
k∑K

k=1 rkm
− µ̂mµ̂T

m. (2.29)

For the mixture weight, we can think of {rkm} as partial counts and divide the sum of

partial counts by the total number of vectors. As a result, the optimal weight that maximizes

Equation (2.26) becomes

ω̂m =

∑K
k=1 rkm
K

. (2.30)

To compute the quantities required in Equations (2.28-2.30), we can accumulate a set

of sufficient statistics for each mixture component m during the E-step:

ϑm =
K∑
k=1

rkm, (2.31)

Om(X) =
K∑
k=1

rkmxk, (2.32)

Om(X2) =
K∑
k=1

rkmxkx
T
k. (2.33)

During the M-step, the sufficient statistics can be used to update the model parameters

for the next EM iteration. While the EM algorithm provides an iterative procedure of im-

proving the model parameters in the Maximum-Likelihood sense, it does not tell how to

initialize the GMM parameters. To initialize the GMM parameters, the K-means algorithm

[83] is a commonly-used method. Another common approach is to start with one com-

ponent and split one component1 at a time after several EM iterations, until the desired

number of components is reached, as was done in [128].

1Typically, the one with largest variance, but there are some implementations that split the component
with largest mixture weight.

41



Forward-Backward Algorithm

So far we have shown how to do ML estimation for GMM parameters from a set of inde-

pendently drawn vectors. Estimating the GMM parameters for each state under the HMM

framework involves a few more steps, for the following reasons:

1. Under HMM assumptions, the observed vectors are not independent unless the un-

derlying state sequence is given.

2. The states are not independent but are governed by a Markov chain.

Although it is more complex than the example we have gone through, we can still apply

the EM algorithm to estimate the parameters. Because a feature vector is conditionally in-

dependent from everything else if given its underlying state, the key is finding the posterior

distribution of the states at any given time point.

The Forward-Backward algorithm [104, 6] is a commonly-used algorithm to find the

posterior probability of each state at any time point, given a sequence of observation vec-

tors under a HMM framework. The Forward-Backward algorithm consists of a forward

procedure and a backward procedure. Given a sequence of observation vectors X =

{x1, . . . ,xT} and the current model parameter set λ, the forward procedure computes and

records the forward probability

αλ(X, t, s) = pλ(x1, . . . ,xt, st = s), (2.34)

the probability of seeing the observation up to the time point t and reaching state s, for

each time point t and state s. Under the HMM assumptions, the forward probabilities can

be computed efficiently using the following recursive formula

αλ(X, t+ 1, s) =
∑
s′

pλ(x1, . . . ,xt,xt+1, st = s′, st+1 = s)

=
∑
s′

pλ(x1, . . . ,xt, st = s′)pλ(st+1 = s|st = s′)pλ(xt+1|st+1 = s)

=
∑
s′

αλ(X, t, s′)pλ(st+1 = s|st = s′)pλ(xt+1|st+1 = s). (2.35)
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The backward procedure computes and records the backward probability

βλ(X, t, s) = pλ(xt+1, . . . ,xT |st = s), (2.36)

the probability of seeing the remaining observations given that the chain reaches state s at

time t. Similar to the forward probabilities, the backward probabilities can also be com-

puted recursively. To initialize the recursion, we set βλ(X, T, s) = 1, ∀s. Given the back-

ward probabilities at time t, the backward probabilities at time t-1 can be computed by

βλ(X, t− 1, s) =
∑
s′

pλ(xt, st = s′,xt+1, . . . ,xT |st−1 = s)

=
∑
s′

pλ(st = s′|st−1 = s)pλ(xt|st = s′)pλ(xt+1, . . . ,xT |st = s′)

=
∑
s′

pλ(st = s′|st−1 = s)pλ(xt|st = s′)βλ(X, t, s′), (2.37)

where the second equality holds because given st, {xt,xt+1, . . . ,xT} are conditionally in-

dependent of st−1.

Using the forward and backward probabilities, we can compute the posterior probability

for each state s at time t as

γts = pλ(st = s|X) =
pλ(x1, . . . ,xt, st = s,xt+1, . . . ,xT )

pλ(x1, . . . ,xT )

=
pλ(x1, . . . ,xt, st = s)pλ(xt+1, . . . ,xT |st = s)

pλ(x1, . . . ,xT )

=
αλ(X, t, s)βλ(X, t, s)∑
s′ αλ(X, t, s′)βλ(X, t, s′)

, (2.38)

where the second equality is from the fact that given st, {x1, . . . ,xt} and {xt+1, . . . ,xT}

are conditionally independent, and the third equality is from the definitions of the forward

and backward probabilities, and from the law of total probability (for the denominator).

After the posterior probabilities are computed, we can collect the sufficient statistics for
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each mixture component m of each state s

ϑsm =
T∑
t=1

γtsr
s
tm, (2.39)

Osm(X) =
T∑
t=1

γtsr
s
tmxt, (2.40)

Osm(X2) =
T∑
t=1

γtsr
s
tmxtx

T
t , (2.41)

where rstm can be computed using Equation (2.25).

For each utterance in the training set, we can compute the posterior probabilities using

the Forward-Backward algorithm, and accumulate statistics in Equation (2.39-2.41) per

utterance. After the statistics are summed up, we can update the GMM parameters for each

mixture m of each state s by

ωsm =
ϑsm
T
, (2.42)

µ̂sm =
Osm(X)

ϑsm
, (2.43)

Σ̂
s

m =
Osm(X2)

ϑsm
− (µ̂sm)(µ̂sm)T, (2.44)

where T is the total number of observation vectors in the training set. The update formulas

in Equations (2.42-2.44) are also known as Baum-Welch updates [8, 99].

In practice, the reference word sequence Y corresponding to each training utterance is

also given, and therefore the objective function to be optimized should be log(pλ(X,Y)),

the log-likelihood of seeing both the acoustic observations and the word sequence (rather

than log(pλ(X)), the log-likelihood of seeing just the acoustic observations). To optimize

such an objective function, the EM algorithm and the Forward-Backward algorithm can

be still applied, but the state space should be constrained such that it only allows state

sequences that correspond to the word sequence. Typically, the set of allowable states and

transitions at each time point can be represent efficiently by a lattice as shown in Figure 2-

2. The Forward-Backward algorithm can still be used, but instead of considering all states

and transitions, only the valid states and transitions provided by the lattice are considered.
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s1

s2

s3

iy1

iy2

t=1 t=6t=5t=4t=3t=2 t=9t=8t=7

iy3

Figure 2-2: An example lattice of an utterance of “see” with 9 acoustic observations.
The word “see” is represented by a sequence of two phonemes “s” and “iy”, where each
phoneme is modeled by a 3-state sequential HMM. The dots represent the states at each
time point, and the black line segments represent the allowable transitions in the lattice.
Given the word constraint, the allowable state at t = 1 should be the first state of “s”, and
the allowable state at t = 9 should be the last state of “iy”. The red line segments form a
valid state sequence under the word level constraint.

One final remark concerning parameter learning is that while the transitions between

basic sub-word units are mainly governed by the lexicon and language model, the state

transition probabilities within a sub-word unit can also be estimated from the observation

vectors using the Forward-Backward algorithm. Let as′s be the transition probability from

state s′ to s. At each time point t > 1, we can compute the posterior probability of being at

state s′ at time t-1 and state s at time t by

ςts′s =
pλ(x1, . . . ,xt−1, st−1 = s′, st = s,xt, . . . ,xT )

pλ(x1, . . . ,xT )
(2.45)

=
αλ(X, t− 1, s′)as′spλ(xt|s)βλ(X, t, s)∑

z αλ(X, t, z)βλ(X, t, z)
. (2.46)

After the posterior probability at each time point is computed, the transition probability can

be updated similarly to the mixture weights by

âs′s =

∑T
t=1 ςts′s
T

. (2.47)
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2.2 Context-Dependent Acoustic Models

2.2.1 Overview

Given an acoustic feature vector x, the acoustic model predicts how likely x belongs to a

phonetic state, s, and provides scores to identity questions such as whether x belongs to

the first state of the phoneme “iy”. A context-dependent acoustic model seeks to extend

the prediction and jointly predicts the current phonetic identity of x and its nearby phonetic

contexts; for example, if x belongs to the first state of an “iy” with left context “d” and

right context “n”, as in the word “dean”.

Considering acoustic-phonetic contexts can provide potential advantages from several

perspectives. First, it can provide a modeling framework to model coarticulatory variations

as shown in Figure 1-2 and phonological effects such as the gemination of consonants, as in

the phrase “gas station”. Second, the acoustic feature vector extracted at a given time point

typically incorporates temporal information from nearby regions. Considering context can

potentially better utilize temporal information captured by the feature vectors and improve

ASR performance. Third, because the nearby predictions made by the context-dependent

model must match in context, it can provide acoustic-level constraints that can potentially

help refine the search. Context-dependent acoustic modeling has been successful in reduc-

ing ASR errors since it was proposed [110, 20, 75, 76], and it has now become a standard

modeling component for almost all modern ASR systems.

2.2.2 Notation

To model the acoustic-phonetic contexts, the basic sub-word units used by a recognizer are

expanded such that the contextual information can be incorporated. For example, a diphone

unit incorporates the identities of the current phonetic label and the previous phonetic label

(left context); a triphone unit incorporates the current label, the previous label, and the

next label (right context); a quinphone unit incorporates the current label, the previous two

labels, and the next two labels. Note that an “iy” with left context “s” in the word “see” is

different from an “s” with right context “iy” (as in “see”). To show the differences, the left
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word sequence

phoneme sequence

h

see you

s iy y uw

ldiphone sequence

triphone sequence

sil!s s!iy iy!y y!uw

sil!s+iy s!iy+y iy!y+uw y!uw+sil

quinphone sequence <>!sil!s+iy+y sil!s!iy+y+uw s!iy!y+uw+sil iy!y!uw+sil+<>   

Figure 2-3: Example of representing word sequence with context-dependent phonetic units.
The label “sil” denotes silence and the label “<>” denotes the sentence boundary.

context is typically attached with a minus “-” symbol, and right context is attached with

a “+” symbol in the representation of context-dependent units [129]. Figure 2-3 shows

an example of representing a word sequence using context-dependent units. Note that the

sequential context-dependent units for a word sequence must match in the context. For a

HMM based ASR system, such constraint can be maintained by allowing transitions from

one context-dependent unit to another only when the corresponding contexts agree.

2.2.3 Data Sparsity Problem

Although modeling the phonological contexts has many potential advantages, exploits such

advantages requires the context-dependent acoustic model must be able to provide a reliable

score for each context-dependent state. Generating reliable scores for the states, however,

is not trivial due to data sparsity. Take an ASR system with 60 basic phonetic units for ex-

ample, it can have 602 = 3, 600 possible diphones and 603 = 216, 000 triphones, and each

context-dependent phonetic unit can have multiple HMM states. While lexical constraints

can rule out a significant number of units, it is still very common that a large-vocabulary

triphone-based ASR system can have about 105 triphone states. Because the number of

context-dependent states can grow very large, many context-dependent states may have a

limited amount of training data to train a reliable model (classifier) for scoring. To leverage

the advantages of context-dependent modeling, the data sparsity problem has to be dealt

with. In the following, we review several approaches proposed in the literature to deal with

the data sparsity problem.
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2.2.4 Addressing Data Sparsity

Clustering-Based Approach

The basic idea of using clustering to deal with data sparsity is that by grouping sufficient

numbers of context-dependent units into clusters, each cluster can have enough training

examples to train a reliable scoring model. In terms of clustering method, hierarchical

clustering algorithms [46] that can keep track of the history of how the clusters are formed

are typically used for ease of model analysis and parameter tuning. Among hierarchical

clustering algorithms, the (top-down) decision tree clustering [129, 58] is commonly used

in that the algorithm has a closed-form solution at each step and that the cluster of an unseen

unit can be found easily by walking down the decision tree. More details of the decision

tree clustering algorithm are described in Section 2.2.5.

Reduction-Based Approach

The basic idea of the reduction-based approach is to reduce the problem of modeling a

longer context-dependent unit into a problem of modeling the composition of a set of

shorter units. Shorter units can have more training examples, and thus the data sparsity

problem can be mitigated. One example of the reduction based approach is the quasi-

triphone modeling proposed in [82]. In the quasi-triphone approach, the HMM states of a

triphone are decomposed into a left context sensitive diphone state at the beginning, several

context independent states in the middle, and a right context sensitive diphone state at the

end. Another way of decomposing a triphone is to use the Bayesian approach proposed

in [90]. Under a Bayesian assumption, a triphone can be represented by a product of two

diphone probabilities divided by the monophone probability of the center unit. Using re-

duction and composition, it can mitigate the sparsity problem. However, if some reduced

units still do not have enough training examples, and certain degree of clustering might still

needed.

48



left strong fricative 

      or  affricate? 
Yes No 

      left  retroflex? 

No Yes 

left stop consonants? 

Yes No 

Yes No 

     left  {ch jh sh zh}? 

       right {l el}? 

Yes No 
“sh-iy+t” 

“ch-iy+t” 

“s-iy+l” 

“z-iy+l” 

“r-iy+l” “r-iy+k” 

“r-iy+d” 

“d-iy+n” 

“t-iy+n” 

“f-iy+l” 

“v-iy+l” 

Figure 2-4: Example of clustering the contexts of the high vowel “iy” using the decision
tree clustering algorithm.

2.2.5 Decision Tree Clustering

The decision tree clustering algorithm utilizes a set of manually constructed binary ques-

tions based on acoustic-phonetic knowledge as potential ways to split the data. The algo-

rithm starts with a single root node, meaning all the units are grouped into one cluster. At

each step of the algorithm, a leaf node of the tree is picked, and a binary question is applied

to split the node into two. The node and the question are selected such that the objective

function of the clustering can be maximized. The algorithm continues until a stopping cri-

terion is reached. Appendix D describes the mathematical details of how to select the best

splitting question at each step.

Figure 2-4 is an example of clustering the contexts of the phoneme “iy” using the de-

cision tree clustering. After the clustering finishes, the data corresponding to each leaf

node are collected to train a GMM for the scoring of the context-dependent units within the

leaf node during decoding. Since each context-dependent phonetic unit can have multiple

states, the clustering can be done at the state level (e.g, growing a decision tree for each

state of “iy”). Experiment results in [129] showed that doing state-level clustering can yield

slightly better performance.
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Related Methods

Decision tree clustering has been shown to be effective in producing reasonable clusters for

context-dependent acoustic models on various tasks, and therefore is commonly used as a

standard procedure when building an ASR system. In the literature, several methods have

been proposed for decision tree-based modeling. We review some of them as follows.

Instead of splitting nodes using the best splitting question at each step, the Random

tree method [115] picks a random question from the set of top ranking questions. The

randomization can produce multiple trees to create different context-dependent acoustic

models on which multiple ASR systems can be built. During recognition time, the outputs

from different systems can be combined using methods such as ROVER [27] to further

reduce the recognition errors. However, because of the randomness, the improvement of

the Random tree method is not always stable.

Instead of trying to create multiple trees, another idea is how can we better utilize an

existing tree. When growing the decision tree, if the splitting stops earlier, each cluster will

have more training examples, and the classifiers trained from the clusters may be more ro-

bust and generalizable to new data. On the other hand, if the tree grows deeper, the clusters

can maintain more context information for the recognizer. For each context-dependent unit,

if it can be associated with both types of classifiers for scoring, the recognition accuracy

can be improved, as shown in the hierarchical acoustic modeling framework proposed in

[16].

2.2.6 Limitations of Current Approaches

While the methods described above deal with the data sparsity problem to some degree,

each of them has certain limitations. In this section, we first summarize the limitations

of the existing methods, and then we discuss the properties we would like to see in the

proposed context-dependent acoustic modeling framework.

The main limitation of the clustering-based approach is the quantization effect. The

context-dependent states clustered together in a leaf node will always have the same acous-

tic scores, making them acoustically indistinguishable to the recognizer. The quantization
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effect is not negligible. In a conventional triphone based ASR system, the number of clus-

tered states are in the range of 103 ∼ 104, and compared with the number of triphone states,

the difference is of one or two orders of magnitude. To exploit the advantages of context-

dependent acoustic modeling, such quantization effect should be appropriately addressed.

Another limitation of the clustering-based approach is that the sharing of data is con-

strained by the clustering result. In the decision tree example of Figure 2-4, the data for

“r-iy+l” might be helpful in building a model for “z-iy+l”, but the decision tree does not

allow such kind of data sharing. The improvement shown in the Random tree method [115]

suggests that having different ways of sharing the data might be beneficial. The improve-

ment shown in the hierarchical acoustic modeling method [16] suggests that grouping data

with multiple levels of granularity might be helpful.

For reduction-based approaches, although it is possible to address the data sparsity

problem while keeping the context-dependent states distinguishable from each other, a pure

reduction-based approach does not consider the fact that if some context-dependent units

have many occurrences in the training data, it may be beneficial to incorporate a classifier

that directly models the occurrences of the context-dependent state as a part of the modeling

framework.

In sum, the main desired properties of a context-dependent acoustic model can be de-

scribed as follows:

• Address both the data sparsity problem and the quantization effect.

• Allow flexible sharing of data.

• When enough data are available, enable models to target the finest-level of context

resolution.

Also, it would be beneficial if the modeling framework can be compatible with state-of-the-

art error reduction methods such as discriminative training to exploit their error reduction

capability.
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2.3 Discriminative Training

2.3.1 Goal

In Section 2.1.5, we introduced how to perform ML estimation for acoustic model param-

eters. However, on various tasks [62, 119, 125, 101, 86, 100], the ML trained acoustic

model did not yield best performance. This is because the optimality criterion of the ML

training in general does not hold for speech data [125]. To further improve the acoustic

model performance, discriminative training methods have been proposed and have shown

significant improvements over ML-trained models on many large-vocabulary speech recog-

nition tasks. Therefore, when proposing a new acoustic modeling framework, it would be

beneficial to make it compatible with discriminative training methods to take advantage of

its error reduction capability.

Instead of seeking model parameters that can maximize the likelihood of the data, dis-

criminative training methods seek parameters that can minimize the confusions that occur

in the training data. In general, discriminative training methods consist of two steps: First,

construct a smooth and efficiently computable objective function that reflects the degree

of confusions; second, adjust the model parameters such that the objective function can

be optimized. In the following sections, we review several commonly used discriminative

training criteria and optimization methods proposed in the literature.

2.3.2 Training Criteria and Objective Functions

Minimum Classification Error Training

The Minimum Classification Error (MCE) training method [62, 86] seeks to minimize the

number of incorrectly recognized (classified) utterances in the training data. Let Xn be

the sequence of acoustic observations of the nth training utterance, and let Yn be the corre-

sponding reference words. Given a set of model parameters, λ, the recognizer can compute

the score (log-likelihood) of the reference, log(pλ(Xn,Yn)), and the score of any hypoth-

esized word string, log(pλ(Xn,W)). An error occurs if the best scoring hypothesis has a

better score than the reference string, and therefore the number of incorrectly recognized
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utterances can be computed by

Nerr =
N∑
n=1

sign[ max
W 6=Yn

log(pλ(Xn,W))− log(pλ(Xn,Yn))], (2.48)

where N is the number of training utterances, the function sign[d] returns 1 if d is positive,

and 0 otherwise. Although Nerr reflects the degree of confusions made by the recognizer

and is efficiently computable using the Viterbi algorithm, it is difficult to optimize because

both the sign function and the max function are not continuous, nor differentiable with

respect to the model parameters.

To construct a smooth objective function for optimization, certain relaxations have to be

applied toNerr. The sign function in Equation (2.48) is typically relaxed to a continuously

differentiable sigmoid function `(d) = 1
1+exp(−ζd)

, where the value of ζ determines the

sharpness2 of the sigmoid function around d = 0. The max function can be relaxed by a

scaled log-sum of the scores of the K best hypothesis strings. Using the two relaxations,

the MCE objective function can be expressed by

LMCE(λ) =
N∑
n=1

`(− log(pλ(Xn,Yn)) + log(

 1

K
∑

W∈WK
n

exp(η log(pλ(Xn,W)))

1/η

)),

(2.49)

where WK
n is the set ofK best hypotheses for the nth utterance, and η is a scaling coefficient

that determines how important the best hypothesis is compared with other hypotheses3.

One advantage of using the log-sum for relaxing the max is that when taking the partial

derivative of the objective function with respect to the model parameters, the form of the

partial derivative is similar to posterior probability, and so the Forward-Backward algorithm

can be used. The MCE loss function in Equation (2.49) is continuously differentiable, and

can be optimized using methods described in Section 2.3.3.

2Typically, ζ is set such that ζd can be of the range [−5, 5] for most of the utterances. This can generally
be done by setting ζ inversely proportional to the number acoustic observations of the utterance for each
utterance.

3In the experiments conducted in this work, the η was always set to 1.0 for convenience.
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Maximum Mutual Information Training

Given the acoustic observation sequence Xn and the reference label Yn of an utterance,

the mutual information between observation and the label can be computed by

I(Xn; Yn) = log(
p(Xn,Yn)

p(Xn)p(Yn)
). (2.50)

The Maximum Mutual Information (MMI) training method [119, 125] seeks to maximize

the sum of the mutual information between the acoustic observations and the reference la-

bels of all the training utterances. Because the probability of seeing the reference label, Yn,

is determined by the language model (and lexicon), changing the acoustic model parame-

ters λ does not affect the probability. Therefore, we can drop the p(Yn) term in Equation

(2.50) when constructing the objective function for MMI training, so the objective function

can be expressed by

FMMI(λ) =
N∑
n=1

log(
pλ(Xn,Yn)

pλ(Xn)
)

=
N∑
n=1

[log(pλ(Xn,Yn))− log(
∑
W

pλ(Xn,W))]. (2.51)

Note that under the HMM, the two terms in the MMI objective function are already con-

tinuously differentiable with respect to the acoustic model parameters, thus no relaxation

is needed. Also, in some research, the MMI training is referred to as Conditional Maxi-

mum Likelihood (CML) [126, 94] in the sense that although both Xn and Yn are given,

the algorithm seeks to maximize pλ(Yn|Xn) rather than pλ(Xn,Yn).

Minimum Phone Error Training

The Minimum Phone Error (MPE) training method [101] seeks to minimize the amount of

phone errors that occur during recognition. Given the reference phone sequence and the

phone sequence of the recognition output, the number of phone errors can be computed by

summing the number of phone substitutions (Subp), the number of phone deletions (Delp),

and the number of phone insertions (Insp) by aligning the two hypothesis and reference
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phone strings using dynamic programming [21]. Minimizing the phone errors is equivalent

to maximizing the unnormalized phone accuracy:

PhoneAcc = Nump − Subp − Delp − Insp

= Corrp − Insp, (2.52)

where Nump is the total number of phones in the reference and Corrp is the number of

phones in the reference that are correctly recognized. Although the phone accuracy can be

efficiently computed, it requires the alignment of the best hypothesis (which requires a max

operation similar to the case of the MCE training). Therefore, the exact phone accuracy is

not a continuously differentiable function with respect to the acoustic model parameters. As

a result, relaxation is required. A commonly used relaxation method was proposed in [99],

whereby an approximated (per arc) accuracy is computed for each phone arc considered by

the recognizer, and the relaxed utterance phone accuracy can be computed by a weighted

sum of the per arc accuracies.

The set of possible phone sequences considered by the recognizer and the correspond-

ing time alignments can be represented efficiently by a phone lattice. Given a phone arc z

of the reference phone string and a phone arc q in the recognition lattice, the approximated

accuracy of q with respect to z is defined in [99] by

Acc(q, z) =

 −1 + 2e(q, z), if z and q are the same phone

−1 + e(q, z), if different phones

 , (2.53)

where e(q, z) is the proportion of the length of z that overlaps with q. The intuition behind

the above definition is that a phone arc q can potentially be an insertion (-1 to phone ac-

curacy), but if it overlaps with a phone arc z in the reference alignment, it can contribute

partially to either substitution (0 to phone accuracy) or correctness (+1 to phone accuracy).

Using this notion, the approximated accuracy of q with respect to the reference Yn can be

represented by

Acc(q,Yn) = max
z∈Yn

Acc(q, z). (2.54)
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Figure 2-5: Computing approximated phone accuracy on a phone lattice. The blue line
segments represent the phone alignment of the reference word “seed”. The red arcs are
the phone arcs corresponding to recognition output. The first number corresponding to
each phone arc is its posterior probability, and the second number is the approximated
phone accuracy for the arc. For example, the red “s” arc covers entire reference arc for
“s”, and thus has an approximated accuracy of 1. The arc corresponds to “p” overlaps
with 1

3
of the reference phone arc for “s” (but only overlaps with 1

5
of the reference “iy”

arc), and thus has an approximated accuracy of −2
3
. Summing the approximated per arc

accuracy with posterior probabilities as the weights results in 1.8, while the actual phone
accuracy of the recognition output is 2.0. Note that the phone lattice also implies there are
only 3 phone sequences considered by the recognizer: “s iy”( as in the word “see”) with
posterior probability 0.5, “s p iy d”(“speed”) with probability 0.3, and “s iy t”(“seat”) with
probability 0.2.

Figure 2-5 illustrates an example of how to compute the approximated phone accuracy

on a phone lattice. The posterior probabilities of the phone arcs can be computed by the

Forward-Backward algorithm.

Note that given a lattice, changing the acoustic model parameters only affects the poste-

rior probabilities of seeing the phone arcs, but not the approximated accuracies of the arcs.

The approximated accuracy of each utterance can be thought of as a linear combination of

the posterior probabilities with combination coefficients as the per arc approximated ac-

curacy. Also, the posterior probabilities are continuously differentiable with respect to the

model parameters. Therefore, the per utterance approximated accuracy is also continuously

differentiable given the recognition lattices. As a result, the MPE objective function can be
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computed by summing over the approximated accuracy of the training utterances

FMPE(λ) =
N∑
n=1

∑
q∈An

∑
W:q∈W pλ(Xn,W)∑

W′ pλ(Xn,W′)
Acc(q,Yn), (2.55)

where An is the set of phone arcs in the recognition lattice of the nth utterance, and the

term before Acc is the posterior probability of the arc q being traversed. In general, the

recognition lattices are recomputed after several MPE updates.

Margin-Based Training Methods

Given an acoustic observation x, the acoustic model provides the score of x with respect to

each state, and effectively is doing a classification on x. In recent years, encouraged by the

success of Support Vector Machines (SVMs) [14], which are maximum margin classifiers,

several researchers have proposed incorporating classification margin in the discriminative

training of acoustic model parameters in order to increase the generalization ability of the

model. In [80], it was proposed that when computing the MCE training loss function, the

scores of the competing hypotheses should be increased by a positive constant margin. In

[112], it was suggested that the margin should be proportional to the edit distance between

the reference and the competing hypothesis. Inspired by the idea proposed in [112], the

notion of the string distance-based margin was incorporated in the MMI training, and a

Boosted-MMI training criterion [100] was proposed:

FBMMI(λ) =
N∑
n=1

log(
pλ(Xn,Yn)∑

W pλ(Xn,W) exp(ρE(W,Yn))
), (2.56)

where E(W,Yn) denotes the edit distance between W and Yn, which can be either at

word-level, phone-level, or state-level. The relations between margin-based variants of

discriminative training methods were further studied in [87]. In general, when the train-

ing error rate is not too high, considering the margin can help reduce recognition error.

However, the experimental results in [15] show that if the training error rate is high, then

considering the margin does not provide much gain.
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2.3.3 Optimizing Parameters

In general, the optimization of acoustic model parameters under a discriminative training

criterion can be done iteratively via the following procedures.

1. Forced-Alignment Step: For each training utterance, compute and store the recogni-

tion score and the state/phone alignment in the constrained search space where only

the reference words Yn can be generated. (Lattices can be used to store multiple

alignments.)

2. Recognition Step: Allow the recognizer to search through the unconstrained space,

compute the scores, alignments, and posterior probabilities of the recognition hy-

potheses, and store the results in recognition lattices.

3. Accumulation Step: Scan through the outputs of the previous steps, and accumulate

the statistics of model parameters needed in the update step under the guidance of

the discriminative objective function.

4. Update Step: Use the accumulated statistics to update the model parameters.

In general, during the recognition step, a weaker language model (typically a unigram

language model) is used to force the acoustic model to fix more training errors, and to

reduce the amount of time to generate the recognition outputs. Some pruning might also

be required to restrict the size of recognition lattices. In terms of the update step, two

commonly-used methods are the Gradient-Based method [18, 86] and the Extended Baum-

Welch (EBW) method [99]. In the following, we use several discriminative training criteria

as examples and show how to apply the two types of update methods. More specifically, we

will show how to update the GMM parameters. The model parameters λ to be learned con-

sist of three parts, the mixture weights {ωsm}, the mean vectors {µsm}, and the covariance

matrices {Σs
m}.

Extended Baum-Welch Method

We use Maximum Mutual Information (MMI) training as an example to show how to use

the Extended Baum-Welch (EBW) method as an iterative procedure to update the acoustic

58



model parameters under a discriminative training criterion. The key to applying the EBW

method is to construct a weak-sense auxiliary function [99] for the training criterion. Given

an objective function F (λ) and the current model parameters λ̄, a weak-sense auxiliary

function Q(λ, λ̄) satisfies

∂F (λ)

∂λ

∣∣∣
λ=

¯λ
=
∂Q(λ, λ̄)

∂λ

∣∣∣
λ=

¯λ
. (2.57)

More details about the auxiliary function can be found in Appendix B.

To construct a weak-sense auxiliary function, note that the MMI objective function can

be represented by the difference of two terms: the numerator term
∑N

n=1 log(pλ(Xn,Yn))

and the denominator term
∑N

n=1 log(pλ(Xn)). The numerator term is the objective function

of the ML training of λ with word references, and the denominator term is the objective

function of the ML training without references. Under the principle of the EM algorithm,

both terms can have a strong-sense auxiliary function for optimization. Let Qnum(λ, λ̄) be

the auxiliary function for the numerator term, and Qden(λ, λ̄) be that of the denominator

term. Because a continuously differentiable strong-sense auxiliary function is also a weak-

sense auxiliary function (as shown in Appendix B), we can construct a weak-sense auxiliary

function for MMI by

QMMI(λ, λ̄) = Qnum(λ, λ̄)−Qden(λ, λ̄) +Qsm(λ, λ̄), (2.58)

where Qsm(λ, λ̄) is a smoothing term with maximum at λ = λ̄. The reason to have the

smoothing term is to ensure that the optimum for QMMI(λ, λ̄) would not be too far away

from λ̄ such that optimizing the weak-sense auxiliary function can ensure improvement on

the MMI objective function.

To optimize the auxiliary function of MMI training, we can first compute the sufficient

statistics for each term in Equation (2.58). Given the lattices from the Forced-Alignment

step (numerator lattices), statistics of Qnum(λ, λ̄) for each state s and mixture component

m, including ϑnumsm , Onumsm (X), and Onumsm (X2), can be computed using Equations (2.39-

2.41). Similarly, ϑdensm , Odensm (X), and Odensm (X2) can be computed using recognition lattices

(denominator lattices).
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To update the GMM means, if we think of posterior probabilities as partial counts,

a similar formulation as in Appendix A can be applied, and we can have ∂Qnum(λ,λ̄)
∂µs

m
=

(Σ̄
s
m)−1(Onumsm (X)−ϑnumsm µsm) for the mean of themth mixture component of state s. (This

is how we obtained Equation (2.43).) Similarly, the partial derivative of the denominator

term with respect to the mean can also be computed using the denominator statistics. For

the smoothing term, the partial derivative is equal to (Σ̄
s
m)−1νsm(µ̄sm − µsm), where νsm is

a scalar that controls how close the optimal µ̂sm of the auxiliary function is to the current

mean µ̄sm. Adding the contribution of the three partial derivatives, and setting it equal to

zero, the EBW update equation for the mean is

µ̂sm =
Onumsm (X)−Odensm (X) + νsmµ̄

s
m

ϑnumsm − ϑdensm + νsm
. (2.59)

Typically, a large enough νsm is chosen such that the denominator of Equation (2.59) is

strictly positive.

The update equation can be interpreted as follows. The mean µsm can be thought of as

a weighted average of the training acoustic feature vectors aligned with state s and mixture

component m. If state s appears in a numerator lattice at a certain time point, the feature

vector at that time point would contribute a positive example to the mean. Adjusting the

mean based on the positive examples can increase the auxiliary function Qnum(λ, λ̄) as

we have done in ML training. Conversely, if the state s appears in the denominator lattice

at a certain time point, the feature vector at that time point would be a negative example,

or one that we want the mean to be dissimilar to. Making the mean dissimilar to the

negative examples decreases Qden(λ, λ̄), and thus also improves QMMI(λ, λ̄). The νsm

term reflects how close we believe µsm is to µ̄sm, and thus can be seen as a prior count.

As a result, to compute the update of the mean, we can sum up first order statistics of the

positive, negative, and prior examples, and divide the sum by the total number of counts

(including positive, negative, and prior), as shown in Equation (2.59).

To update the covariance matrix Σs
m, similar concepts to the ones described above can

still be applied, except that we need to consider the second order statistics of the three types

of examples. As shown in the ML estimation example in Equation (2.44), the covariance
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matrix is the average of the second order statistics minus µsm(µsm)T. Similarly, the EBW

update for the covariance matrix can be expressed by

Σ̂
s

m =
Onumsm (X2)−Odensm (X2) + νsm(Σ̄

s
m + µ̄sm(µ̄sm)T)

ϑnumsm − ϑdensm + νsm
− µ̂sm(µ̂sm)T, (2.60)

where νsm(Σ̄
s
m + µ̄sm(µ̄sm)T) is the second order statistics of the prior examples, and µ̂sm

can be computed from Equation (2.59).

To update the mixture weights, using −ϑdensm

ω̄sm
ωsm instead of −ϑdensm log(ωsm) as part of

the auxiliary function for the denominator term is easier to optimize [99]. Note that the

latter expression has the same partial derivative as the first one, but is linear with respect

to the parameter to be optimized. We can also add a smoothing term, which results in the

auxiliary function for the mixture weights of state s to be computed by

Ms∑
m=1

ϑnumsm log(ωsm)− ϑdensm
ω̄sm

ωsm + csm(ω̄sm log(ωsm)− ωsm), (2.61)

where csm is a non-negative constant and the smoothing term has a maximum at ωsm = ω̄sm.

As shown in [99], if we set csm = −ϑdensm

ω̄sm
+ maxm

ϑdensm

ω̄sm
, the linear terms related to ωsm can

cancel out, and the auxiliary function becomes

Ms∑
m=1

[ϑnumsm log(ωsm) + csmω̄
s
m log(ωsm)] + max

m

ϑdensm
ω̄sm

, (2.62)

where the last term is just a function of parameters from the previous step and can be treated

as a constant in the current iteration. Using Lagrangian multipliers [12] on Equation (2.62),

we can find the update equation for the mixture weights

ω̂sm =
ϑnumsm + csmω̄

s
m∑Ms

m′=1 ϑ
num
sm′ + csm′ω̄sm′

. (2.63)

As described in [99], typically the mixture weights are updated for several iterations before

recomputing the numerator and denominator statistics.

Note that although we use the weak-sense auxiliary function and its partial derivatives

to explain the update equations for the EBW method, the auxiliary function and the partial
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derivatives need not be computed. During the update, only the statistics appearing in the

update Equations (2.59-2.63) need to be computed. In practice, the statistics from ML

training are also used in the update to further smooth the model in order to prevent over-

training. The use of ML statistics in the update is called I-smoothing in [99]. For the

MMI training, I-smoothing is equivalent to scaling the numerator statistics by a constant

larger than one, but for other training criterion such as MPE training, the statistics for I-

smoothing need to be computed separately. In general, the EBW method provides closed-

form update equations for the parameters, but a good heuristic is typically needed to adjust

the smoothing constants.

Gradient-Based Method

For the gradient-based method, the key is to compute the gradient of the objective function

with respect to the model parameters. If the gradient can be computed, the objective func-

tion can be improved by moving the parameters along an appropriate direction indicated

by the gradient. (The direction of the movement is of the same sign as the gradient for

maximization problems, and of opposite sign for minimization problems.) To compute the

gradient, we can utilize the chain rule and the linearity of the differential operation.

For an acoustic feature vector x appearing in the training data, and a HMM state s,

let aλ(x, s) = log(pλ(x|s)) be the acoustic score of x with respect to the state s. Because

the acoustic model parameters affect the discriminative training objective function via the

acoustic scores, and because the derivative of the acoustic score with respect to the model

parameters is of closed form, we can compute the gradient as follows. First, compute the

partial derivative of the objective function with respect to each acoustic score. Second,

compute the partial derivative of the acoustic score with respect to the parameters. Then,

the gradient can be computed by summing the product of the two partial derivatives over

all acoustic scores:

∂L
∂λ

=
N∑
n=1

∑
xnt

∑
s

∂L
∂aλ(xnt, s)

∂aλ(xnt, s)

∂λ
, (2.64)

where xnt denotes the vector at time t in the nth utterance. In the following, we use Min-
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imum Classification Error (MCE) training as an example, to illustrate how to compute the

gradient in Equation (2.64).

For each utterance, the Forced-Alignment step can provide the score log(pλ(Xn,Yn)),

and the Recognition step can provide the scores {log(pλ(Xn,W)) : W ∈ WK} for the

top K competing hypotheses. The scores can be used to compute the per utterance loss

function in Equation (2.49). Let εn denote the per utterance loss, and let dn denote the

score difference within the sigmoid function

dn = − log(pλ(Xn,Yn)) + log(

 1

K
∑

W∈WK
n

exp(η log(pλ(Xn,W)))

1/η

) (2.65)

To compute the gradient, we can first take the partial derivative of the MCE loss function

with respect to dn

∂L
∂dn

=
∂

∂dn

1

1 + exp(−ζdn)
= ζ

−ζ exp(−ζdn)

[1 + exp(−ζdn)]2
= ζεn(1− εn), (2.66)

where the partial derivative is of maximum 0.25ζ when εn = 0.5 and the ratio ζεn(1−εn)
0.25ζ

decreases as ζ increases. This property shows that MCE training gives more weight to the

utterances near the decision boundary, and becomes more focused as ζ increases. Exper-

iments in [85] show that choosing an appropriately large value of ζ for training results in

better model performance.

After the partial derivative with respect to dn is computed, the next step is to take the

partial derivatives of dn with respect to the acoustic scores. Given the nth training utterance,

let S be a valid state alignment that correspond to Yn, and let xnt be the acoustic feature

vector at time t. For each state s, if the state sequence S contains s at time t, then the

joint probability pλ(Xn,S,Yn) will contain exp(aλ(xnt, s)) under the HMM formulation.

On the other hand, if S does not contain s at time t, pλ(Xn,S,Yn) will be a constant with

respect to the score aλ(xnt, s). As a result, we can have the following

γrefnts = γYn
ts =

∂

∂aλ(xnt, s)
log(pλ(Xn,Yn)) =

∑
S:st=s

pλ(Xn,S,Yn)∑
S pλ(Xn,S,Yn)

, (2.67)
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which can be computed efficiently using the Forward-Backward algorithm on the forced-

alignment lattice of Yn. Similarly, for each competing hypothesis W, we can compute

γWts . As a result, the partial derivative of the second (big) term in Equation (2.65) with

respect to aλ(xnt, s) can be computed by summing the contributions of each competing

word sequence:

γcompnts =
∑

W∈WK

exp(η log(pλ(Xn,W)))∑
W′∈WK exp(η log(pλ(Xn,W)))

γWts , (2.68)

where the term in the middle can be thought of as the adjusted relative importance of each

competing hypothesis. As a result, the gradient of the MCE objective function can be

rewritten as

∂L
∂λ

=
N∑
n=1

∑
xnt∈Xn

∑
s

−[ζεn(1− εn)(γrefnts − γcompnts )]
∂aλ(xnt, s)

∂λ
. (2.69)

Computing the partial derivative of the acoustic score with respect to model parameters

in Equation (2.69) consists of two steps. The posterior probability of each mixture com-

ponent can be computed using Equation (2.25), and the partial derivatives with respect to

each mean and covariance can be computed as shown in Appendix A. Since keeping the

covariances positive definite after each update requires extra work, for the gradient-based

method, a diagonal GMM is typically used. Even though each dimension can be treated

independently, the variance at each dimension should still be positive. To avoid checking

the constraint on the variance during the optimization, instead of computing the gradient

with respect to the variance and updating the variance, the gradient with respect to the

square root of the variance is computed and the square root is updated at each iteration.

In this way, even though the square root of the variance can go negative, the variance is

still kept positive. After the gradient is computed, the model parameters can be updated by

Quasi-Netwon methods such as the Quickprop algorithm [85]. Details of the Quickprop

algorithm can be found in Appendix G.

Remarks

In the previous paragraphs we have reviewed two update methods for discriminative train-

ing. Both of which have their advantages and disadvantages. For the gradient descent

method, the only thing that needs to be computed is the gradient. However, the step size
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for the gradient-based method needs to be selected appropriately; it might overshoot if set

too large, or it might converge very slowly if set too small. The EBW method provides

closed-form solution for each update, but the smoothing constants need to be set heuris-

tically. Although we used MMI training as an example for the EBW update and MCE

training for the gradient-based update, the training methods are not limited to a particu-

lar update method. In subsequent experiments discussed in Chapter 4-6, we use gradient-

based MCE training to refine the ML trained GMM parameters.

2.4 Finite-State Transducers for ASR
A Finite-State Transducer (FST) is a finite-state machine that can map strings of input

symbols to strings of output symbols. Basic FST operations such as composition, deter-

minization, and minimization make it easy to modularize each block when designing a

complex system using FSTs. Generic algorithms of FST operations can be implemented

once and used for many applications. Over the years, FSTs have been successfully used for

many speech and natural language processing related applications [92, 53, 113].

When each arc between two FST states is associated with a weight or score, it is com-

monly referred to as a weighted FST. However, in this thesis, we ignore the distinction and

just use FST to refer to a weighted FST by default. Given an input string to an FST, the

best weighted output string can be found using a dynamic programming-based (Viterbi)

search algorithm. The algebra operations of FST weights are defined by a semiring. A

more formal definition of FST and semiring based on [113] is described in Section 2.4.1.

Note that a Markov chain can be represented using an FST by choosing a semiring such

that the arc weight reflects the transition probability from one state to another. If we think

of the acoustic observation sequence as the input string and the word sequence as the output

string, then we can build a HMM-based ASR system using FSTs. Section 2.4.2 shows an

example of this.

2.4.1 Definitions
Weight Semirings

A semiring K = (K,⊕,⊗, 0̄, 1̄) is defined on a set K with addition operator ⊕, multiplica-

tion operator ⊗, identity element for addition 0̄, and identity element for multiplication 1̄.
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The addition and multiplication operations on elements of a semiring K satisfy all required

conditions of a Field in algebra theories [29], including closure, associativity, commutativ-

ity, and distributivity, except that some element in K may not have an additive inverse. For

an FST, the ⊗ operation defines how to combine the weights of a series of transitions, and

the ⊕ operation defines how to combine the weights of parallel paths.

There are several commonly used semirings for speech and language applications [113].

The real semiring (R,+,×, 0, 1), is a semiring on the set of real numbers with conventional

addition and multiplication operations. The FST weights under a real semiring can be di-

rectly used to represent the model probabilities. To avoid underflow errors, the log version

of the real semiring (−∞∪R, log sum,+,−∞, 0) is often used to compute the (log) pos-

terior probabilities in the Forward-Backward algorithm. Note that log sum of two weights

w1 and w2 can be computed by

log sum(w1, w2) = log(exp(w1) + exp(w2))

= max(w1, w2) + log(1 + exp(min(w1, w2)−max(w1, w2))), (2.70)

where the second equation provides better numerical stability. Another commonly used

semiring is the tropical semiring (R ∪ ∞,min,+,∞, 0). The tropical semiring can be

used to represent − log probabilities of paths during Viterbi decoding described in Section

2.1.2, where at each time point the− log of the state transition and observation probabilities

are added to a path, and only the most probable path among the parallel paths reaching a

particular state is kept.

Finite-State Transducer

A weighted Finite-State Transducer T over a semiring K is defined by a tuple

(I,O,S,T, i,F, κ, %) [113], where I is the set of input symbols, O is the set of output

symbols, S is the set of states, T is the set of transitions, i is the initial state, F is the set of

final states, κ is the initial weight, and % is the final weights function % : f ∈ F→ K.

A transition of T is defined by a tuple t = (p[t], n[t], li[t], lo[t], u[t]). The transition t

is an arc from the source state p[t] to the destination state n[t] that takes an input symbol
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li[t] and produces an output symbol lo[t] with weight u[t]. Note that the input symbol of a

transition can be empty (meaning that the transition does require an input symbol), and so

can the output symbol. A special symbol ε is used to handle such empty cases.

A sequence of N transitions connecting the initial state and a final state forms a per-

missible path π = t1t2 . . . tN , with p[t1] = i, n[tN ] ∈ F, and ∀j = 1, 2, . . . , N − 1, n[tj] =

p[tj+1]. The input (label) sequence associated with the path π is li[π] = li[t1]li[t2] . . . li[tN ].

Similarly, the output (label) sequence associated with π is lo[π] = lo[t1]lo[t2] . . . lo[tN ].

The semiring K specifies how the weights can be combined for an FST. The path weight

of a permissible path can be computed by u[π] = κ⊗ u[t1]⊗ u[t2]⊗· · ·⊗ u[tN ]⊗ %(n[tN ]).

The combined weight for a set of K paths can be computed by u[π1, π2, . . . , πK ] = u[π1]⊕

u[π2]⊕ · · · ⊕ u[πK ]

Given a sequence of input symbols, an FST accepts the input sequence if it results

in a permissible path. If the FST accepts an input sequence, it produces a set of output

sequences and their corresponding weights. If the input sequence is rejected, the FST may

or may not generate output sequences, depending on the implementation.

Basic FST Operations

There are several commonly used FST operations for speech and language processing ap-

plications. The definitions of the operations are provided below, and Section 2.4.2 will

shows some example usages of these operations. There have been several existing FST

Libraries such as [53] that have the basic operations implemented and can be applied to

various applications.

• Composition: The operation FX ◦ FY takes in two FSTs and produces an FST that

has the input symbols of FX and the output symbols of FY . Given an input sequence,

the composed FST functions as though FX took the input sequence and then FY took

the corresponding outputs of FX to generate the final output sequences.

• Projection: The operator projectii(·) replaces the output symbol of each transition

with the input symbol of the transition. (The source state, destination state, and the

weight are kept the same.) Similarly, projectoo(·) replaces the input symbol with
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output symbol, and projectoi(·) swaps the input and output symbols.

• Determinization: the operator det(·) determinizes the FST such that there is only one

path for each distinct pair of input and output sequences.

2.4.2 Building a HMM based ASR System with FSTs

A Simplified Example

Figure 2-6 illustrates a toy example of how to use FSTs with a real semiring to construct

a HMM- based recognizer. For each FST in the figure, each circle represents a state. The

state pointed by the left-most arrow is the initial state (typically state 0), and the states with

double circles are the final states. For each arc, the first label denotes the input symbol of

the transition, the second label denotes the output symbol, and the final number denotes the

weight. If the input or output symbol is empty, the ε symbol is used. If the weight of an arc

is omitted, it means that the weight is equal to the multiplicative inverse, and is 1 for the

real semiring.

The conditional distribution of seeing an observation given a particular state can be

represented by the Acoustic Model (A) FST in Figure 2-6(a). In this example, there are two

types of observations, x1 and x2, and two phonetic states, s1 and s2. Under the model, the

conditional probability of seeing x1 given state s1 is 0.25, and the conditional probability

of seeing x2 is 0.75. Because the Acoustic Model independently scores each observation,

the A FST only has one single state.

There are two words z1 and z2 considered by the recognizer. For the word z1, there

are two possible pronunciations, “s1 s1” with probability 0.2 and “s1 s2” with probability

0.8. The word z2 only has one pronunciation “s2 s2”. The lexical constraints specify the

conditional probability of seeing a particular state sequence given a word sequence, and

can be represented by the Lexicon (L) FST in Figure 2-6(b). Also, the L FST has a closure

arc from the last state of each word back to the initial state; these closure arcs allow the

FST to accept multiple numbers of words.

The marginal (prior) distribution of the word sequences can be represented by a Lan-

guage Model (G) FST. Figure 2-6(c) illustrates how to represent a bigram language model
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(f) Search space for input sequence {x1, x2, x2, x1}.

Figure 2-6: A simplified Example of constructing HMM based recognizer using FSTs with
real semiring.

69



using an FST. The probability of seeing z1 as the first word of the utterance is 0.75, and

the probability of seeing z2 as the first word is 0.25. Given the previous word is z1, it has

probability 0.5 of seeing either z1 or z2; given the previous word is z2, it has probability 0.7

of seeing z2 and 0.3 of seeing z1, as represented by the transitions of the state 2 in Figure

2-6(c). Note that the G FST can end in any state.

The sequential constraints specified by the Lexicon and the Language Model can be

combined using the composition operation. Figure 2-6(d) shows the composed FST. Under

the real semiring, since the L FST represents the conditional distribution of state sequences

given a word sequence, and since the G FST represents the marginal distribution of word

sequences, the composed L ◦ G FST also describes the joint distribution of the state and

word sequences.

The FST used for decoding can be constructed explicitly by composing the Acoustic

Model (A) FST with the L ◦ G FST, as shown in Figure 2-6(e). Given a sequence of

observations, the search space can be expanded by traversing the decoding FST according

to the observations, and the Viterbi algorithm can be used to find the best path. Figure

2-6(f) represents the search space for the observation sequence {x1, x2, x2, x1}. In this

example, the best permissible path has probability of 0.0108 and consists of traversing the

state sequence 0 → 1 → 3 → 5 → 7 using the upper arcs. The corresponding output

word sequence is “z1 z1”. The marginal probability of seeing the observation sequence can

also be computed by performing det(projectii(·)) operation on the FST in Figure 2-6(f),

where the projection operation will make the output symbol of each arc the same as the

input symbol, and the determinization operation will sum up the probabilities of parallel

paths that correspond to each distinct input sequence.

Large-Vocabulary ASR

To build a large-vocabulary ASR system using FSTs requires several additional compo-

nents and practical considerations. To enable context-dependent acoustic modeling, a Con-

text (C) FST is required to translate the sequences of context-dependent phonetic units to

sequences of basic phonetic units. Because a context-dependent phonetic unit can consist

of multiple HMM states, a Model Topology (M) FST is used to represent the state topolo-
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gies within a phonetic unit. Pronunciation rules that seek to capture pronunciation variation

can also be implemented as a Pronunciation Rule (P) FST [52]. To prevent underflow when

computing the probabilities, the tropical semiring is used. Theoretically, the decoding FST

can be constructed explicitly by sequentially composing the FSTs, as shown in Figure 2-7.

A M C P L G o o o o o 

 log!"(#,$,%)& =   log!"(#|$)&  log!"($|%)&  log'(p(%)) 

Figure 2-7: Decoding FST for a large-vocabulary HMM based ASR system.

In practice, such an FST is very large and is never physically composed. Instead, the

acoustic scores are dynamically computed as needed and are added to arc weights. For a

large-vocabulary triphone based system, statically composing the M FST with subsequent

FSTs can still require a huge amount of memory during the composition operation, and can

result in a huge FST. Appendix E describes the reason for such a memory/space explosion,

and briefly illustrates an implementation of dynamic state expansion that addresses the

problem. Typically, only the C ◦ P ◦ L ◦ G FST is statically composed for a triphone or

quinphone based system.

Remarks

An FST representation can make it convenient to perform many operations during model

training and to re-score recognition results. For example, performing recognition in the

forced-alignment mode can be done by composing the C ◦ P ◦ L ◦ G FST with a word

reference FST. Figure 2-8 is an example of the word string FST for “automatic speech

recognition”. By composing C ◦ P ◦ L ◦ G with the FST in Figure 2-8, the recognizer will

align the utterance with word string “automatic speech recognition”. In addition, the recog-

nition lattices can also be represented by FSTs, and by just changing the semiring, one can

either compute the best sequence or compute the posterior probabilities on the recognition

lattices. To re-score the recognition result using a higher order language model, the differ-

ences between the higher and lower order language models can be computed beforehand.
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During re-scoring, the recognition lattice generated with a lower order language model can

be composed with the FST that stores the differences between the language models. The

new best path can then be found by performing a Viterbi-based search on the newly com-

posed FST. Also, FSTs make it easier to modularize each modeling component. Because

of these conveniences and advantages, more and more ASR systems are now implemented

using FSTs.

0 1
automatic:automatic

2
speech:speech

3
recognition:recognition

Figure 2-8: An FST that only accepts the word string “automatic speech recognition” and
outputs the same word string.

2.5 Chapter Summary

In this chapter, we reviewed the mathematical framework of Hidden Markov Model (HMM)

based ASR system, and described how to learn the model parameters for each model-

ing component. Based on the HMM assumptions, the decoding mechanism can be sum-

marized as follows. The Acoustic Model provides instant, independent scoring for each

acoustic observation with respect to phonetic states, the Lexicon and Language Model pro-

vide long-term, linguistic, sequential constraints, and the Viterbi decoding algorithm jointly

considers the instant scores and the sequential constraints and utilizes dynamic program-

ming to find the best word hypothesis. We also showed that such a decoding mechanism

can be implemented efficiently using Finite-State Transducers (FSTs).

In terms of acoustic modeling techniques, we first reviewed the context-dependent

acoustic modeling that seeks to incorporate the effect of nearby acoustic-phonetic con-

texts during scoring, and we pointed out the limitations of current modeling frameworks.

We then introduced the concept of discriminative training that seeks to reduce ASR errors

by adjusting acoustic model parameters to optimize an objective function that reflects the

confusions of the recognizer on the training data. We reviewed multiple commonly used

training criteria and explained how to update the model parameters under discriminative

training.
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Chapter 3

Multi-level Acoustic Modeling

3.1 Motivation

In Chapter 2, we described how an HMM-based ASR system utilizes an acoustic model in

its decoding process to score each acoustic observation (feature vector) x with respect to

each phonetic state s. For the rest of this thesis, we use aλ(x, s) to denote the acoustic score

of x with respect to the state s. In a conventional setting, a GMM is associated with each

state, and the log-likelihood of x with respect to the GMM is used as its acoustic score. Let

lλ(x, s) denote the log-likelihood of x with respect to the GMM associated with state s.

For modern ASR systems, context-dependent acoustic models are typically used to

model coarticulatory variations during the speech production process. Under the context-

dependent modeling framework, the set of states is expanded such that the scoring of an

acoustic observation can depend on its nearby phonetic contexts. Because the number of

states can become very large when contexts are considered, many states might not have

enough training examples to train robust GMM parameters, resulting in a data sparsity

problem.

To handle the data sparsity problem, a clustering algorithm is commonly used to group

the states into clusters such that each cluster can have enough training examples. Although

clustering deals with data sparsity, it also introduces a quantization effect; that is, the states

within a cluster share the same GMM parameters, and therefore always have the same

acoustic scores, becoming acoustically indistinguishable from each other. For a conven-
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tional large-vocabulary ASR system, the number of clusters is generally in the range be-

tween 103 ∼ 104, while the number of context-dependent states can be larger than 105.

Therefore, the effect of quantization is significant and can potentially limit the power of a

context-dependent acoustic model.

To exploit the advantages of context-dependent acoustic modeling, both the data spar-

sity and the quantization effect have to be dealt with appropriately. In the following sec-

tion, we use an output code concept to illustrate the problem of the conventional modeling

framework, and provide some insight on how to address the problems of data sparsity and

quantization.

3.1.1 An Output Code Illustration

An output code [26, 108] is an effective technique for multi-class classification problems.

Under the output code framework, a complex multi-class classification problem is broken

down into a set of simpler, and more basic classification problems. When doing classifica-

tion, the outputs of the basic classifiers are combined via an output code matrix to provide

classification scores for the classes in the original multi-class problem.

If we think of each context-dependent state as a class, and the GMMs as basic classi-

fiers, we can use an output code matrix to describe the relations between the acoustic scores

and the GMM log-likelihoods in the conventional acoustic modeling framework. Figure 3-

1 illustrates a simplified 3-state example. If each state has enough training examples, each

state has its own GMM. Therefore, the corresponding output code matrix is an identity

matrix, as shown in Figure 3-1(a). However, if certain states do not have enough examples,

clustering is used to group the states. Because the states within a cluster share the same

GMM, the corresponding rows in the output code matrix become identical, and cause the

quantization effect, as shown in Figure 3-1(b).

Therefore, under the output code interpretation, to deal with data sparsity is to ensure

each basic classifier has enough training examples, and to deal with the quantization effect

is to ensure that there are no identical rows in the output code matrix. In the following

section, we discuss several practical concerns when designing an output code framework
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(b) s2 and s3 grouped into the cluster c2.

Figure 3-1: An output code illustration of the relations between acoustic scores and GMM
log-likelihoods in a conventional acoustic modeling framework. Clustering is used to deal
with data sparsity, but it also results in identical rows in the output code matrix, causing a
quantization effect.

for context-dependent acoustic modeling.

3.1.2 Design Considerations

Under the output code framework, each context-dependent state is treated as an individual

class, and let {s1, . . . , sK} be the set of states. To provide scores for the states, a set of

L basic classifiers {c1, . . . , cL} is trained. Given an acoustic observation, the outputs of

the basic classifiers are combined through a K × L output code matrix M to generate the

scores for the states.

Designing a well-functioning output code matrix and its corresponding classifiers, how-

ever, is not trivial. Since the number of states, K, is large, there is a huge space of potential

classifier choices. Moreover, as shown in Figure 3-2, one output code may be more suit-

able than another depending on the data. To function well, the design of an output code

should capture some relationships between different classes of the data. In the following

paragraphs, we discuss the relationships between the output code matrix, the classifiers,

and the training data in more detail, and point out several practical design considerations.

If an entry Mij is non-zero, the basic classifier cj contributes to the score for the state

si, and thus is associated with the state si. BecauseK (and L) can be large, when designing

the output code, each state should only have a few associated classifiers to keep non-zero

entries of M sparse. In theory, the value of Mij can be negative as shown in Figure 3-2.
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(d) Linear classifiers. (e) Decision boundaries with the code in (c)

Figure 3-2: A 4-class example of designing an output code matrix with linear classifiers.
Looking at the data in (a), we can see that there exist linear classifiers that can separate
class 1 from class 2 and 3, class 1 and 2 from class 3, and class 3 from class 4. However,
it is not possible for a linear classifier to correctly separate class 2 and 4 from class 3.
In this sense, the output code in (b) is a bad code because the classifier corresponding to
the second column seeks to perform the latter infeasible separation (i.e. the classifier has
positive weight associated with class 2 and 4, treating their data as positive examples, and
has next weight associated with class 3, treating its data as negative examples). On the
other hand, the output code in (c) functions well for the data in (a). For example, the linear
classifiers in (d) can be combined with the code in (c) to successfully classify the data, as
shown in (e). Note that the two codes in (b) and (c) are the same except for the swapping
of the first and the last rows. Therefore, the design of an output code matrix should not be
independent of the data, and some guidance on the relationships between different classes
of the data is needed. For speech, this is where knowledge such as broad classes can be
helpful.
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In such a situation, the examples of si are counted as negative training examples of the

classifier cj . However, when designing the output code for a context-dependent acoustic

model, it is more convenient to constrain all entries to be non-negative for several reasons.

First, the number of states is very large, and it is not obvious how to choose a small set of

competing states for a particular state. Second, the ML training of GMMs only requires

positive examples. Third, effective negative training examples can be considered in the

parameter update via discriminative training procedures. To normalize the score of each

state, we also require that each row of M sums to 1.

To avoid data sparsity, each basic classifier cj should have enough training examples. If

a state si does not have enough training examples, it should be grouped with other states to

train each of its associated classifiers. However, the grouping of states should not be done

arbitrarily; states grouped together should be similar with respect to certain perspective of

speech, to avoid the situation shown in Figure 3-2(b). To ensure that there are no identical

rows in the output code matrix, if both si and sk are associated with a classifier cj , there

should be another classifier cl that is associated with only one of si or sk. In this way,

each state will have a unique set of associated classifiers1, and thus avoid the quantization

effect. If si has enough training examples, a basic classifier can be trained directly for the

occurrences of si. Note that even if si has enough data of its own, it may be beneficial

to still include some other classifiers that are associated with si and other states, for the

following reasons. First, the data of si may be helpful to learn a classifier for other states.

Second, additional classifiers create a certain amount of redundancy, and redundancy can

potentially help error correction based on communication theory [103], and might provide

better generalization to novel test data.

We can summarize the design considerations of an output code framework for context-

dependent acoustic modeling as follows.

• Mij ≥ 0 and
∑

jMij = 1.

1In theory, if two states have same set of associated classifiers but different combination weights, the two
states can still be distinguishable. However, it only provides a weaker form of distinction, and the degree
of distinction depends on how different the weights are. If the weights are to be learned automatically via
some objective function, ensuring the weights of the states are different enough would make the optimization
more complex. Ensuring that each state is associated with a unique set of classifiers is an easier and a more
effective way of avoiding the quantization effect.
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• M is sparse, but with a certain degree of redundancy to help error correction.

• No rows of M are identical to prevent the quantization effect.

• Each classifier cj has enough training examples to avoid data sparsity.

• The training data for each classifier should be similar with respect to certain aspect

of speech, to avoid the situation shown in Figure 3-2.

To achieve the above design considerations, one important question to answer is how

to appropriately group each context-dependent unit with different sets of other units under

different perspectives of speech such that the set of classifiers associated with the unit is

unique among other units. One way of doing so is to group the context-dependent units

with respect to different parts of local contexts. For example, the triphone “d-iy+n” (as

in “dean”) can be grouped with other triphones that have the center phone unit “iy” and

the right context “n”, such as the triphone “t-iy+n” (as in “teen”), to build a classifier that

targets “iy” with right context “n”. Similarly, another classifier that targets “iy” with left

context “d” can also be constructed. Note that while each of the two classifiers is associated

with multiple triphones, the triphone “d-iy+n” is the only triphone that is associated with

both classifiers.

The notion of broad classes [57, 105] is also helpful in terms of constructing the clas-

sifiers. While each basic phonetic unit used in a language has its unique sets of properties,

a broad class captures a perspective of speech, such as pronunciation manner or place of

articulation, that is invariant among a subset of phonetic units. In general, the invariance

captured by a broad class is relatively easier to model with higher accuracy [57], even

in noisy conditions [105]. Broad classes can be used to group the contexts under differ-

ent perspectives of speech. Take the triphone “d-iy+n” for example. Its center unit can

belong to “Front Vowel”, “High Vowel”, or more broadly “Vowel”; its left context can be-

long to “Stop Consonant”, “Alveolar”, or “Voiced Consonant”; its right context can belong

“Nasal Consonant” or “Alveolar” or “Sonorant”. Also, appropriately combining perspec-

tives from different broad classes can help disambiguate confusions. For example, in En-

glish, if we can be sure that the left context belongs to both “Stop Consonant” (based on
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pronunciation manner) and “Alveolar” (based on place of articulation), then the potential

choice of the left context is reduced to either “d” or “t”. Utilizing broad classes can provide

a robust and guided way to group the context-dependent units when designing the output

code.

In addition to ensuring each row of the output code distinct, maintaining the non-zero

entries in the output code matrix sparse and compact is also desirable. This can be done

by constructing a systematic, hierarchical structure of classifiers as described in the next

section. Once the classifiers are built, the next step is to assign the combination weights of

the classifiers. If the classifiers form a symmetric structure, an effective heuristic weight

assignment can be applied, as shown in the next section. The combination weights can also

be learned through discriminative training criteria, as shown in Section 3.2.3.

3.2 Multi-level Acoustic Model

Based on the above considerations, we propose a multi-level acoustic modeling framework.

Under this multi-level framework, each context-dependent state is associated with a unique

set of GMMs that target multiple levels of contextual resolution, and the log-likelihoods

of the GMMs are linearly combined for scoring during decoding. The following sections

introduce details of the proposed multi-level framework. We first use the commonly-used

triphone-based model as an example to illustrate the multi-level idea, and then show how

the framework can be expanded (or reduced) to model contexts of longer (or shorter) length.

3.2.1 Multi-Level Notations

The proposed multi-level framework involves grouping data and training of GMMs at mul-

tiple levels of contextual resolution. In this section, we define some common multi-level

notations used throughout this thesis for convenience and reference. While the grouping of

data and the training of classifiers happens at the HMM state-level, we use a phone-level

notation for the sake of clarity. Extending the notation to the state-level is straightforward

by using state-level alignment during the training.

79



• “pl-pc+pr”: The label denotes a triphone that has left context (previous phone label)

“pl”, current phone label “pc”, and right context (next phone label) “pr”. For each

triphone, we build multiple sets of classifiers targeting different levels of contextual

resolution.

• 〈pl, pc, pr〉: The label of a classifier that directly models the occurrences of the tri-

phone “pl-pc+pr”. The label of a classifier is always enclosed by angle brackets.

• “*”: This symbol is used when the classifier ignores certain contexts. For example,

〈pl, pc, ∗〉 denotes the label of a classifier that models the occurrences of “pc” with

left context “pl” but with right context ignored.

• B(·): This function is used to reduce a phoneme into a broad class. In general we

can associate each phonetic unit with one or more broad classes. For example, the

phoneme “n” in the word “noise” can belong to the broad class of “Nasal Consonant”.

Under the broad class notation, 〈B(pl), pc, ∗〉 represents the label of a classifier that

models the occurrence of “pc” with left context belonging to the broad class “B(pl)”.

• Tij(·): Each triphone is associated with multiple classifiers with different levels of

contextual resolution. The function Tij(·) is used to denote the label of the jth clas-

sifier at the ith contextual resolution level. A smaller value of i refers to a finer

contextual resolution. For example, T11(“pl-pc+pr”) = 〈pl, pc, pr〉, the label of the

classifier targeting the finest level of contextual resolution.

3.2.2 Model Formulation

Basic Classifiers

Figure 3-3 shows the basic classifiers associated with the triphone “pl-pc+pr” in the pro-

posed framework. The classifier at the top level has the finest contextual resolution, but

the fewest number of training examples. On the other hand, the classifiers at the bottom

level have coarser contextual resolution, but the highest number of training examples. Ex-

cept for the top level classifier, the other classifiers are also associated with other triphones.
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Figure 3-3: Basic classifiers for triphone “pl-pc+pr”.

Although each classifier has multiple associated triphones, in the proposed design each tri-

phone has a unique set of basic classifiers (a more concrete example will be shown later).

For each triphone, if an upper level classifier does not have enough training example, only

the lower level ones will be used for scoring, and thus avoiding the data sparsity problem. In

general, reducing the contextual resolution to Level 3 illustrated in Figure 3-3 is sufficient

to obtain enough training examples for the triphone states appeared in the large-vocabulary

recognition experiments reported in the thesis. If data sparsity still occurs at Level 3, the

contextual resolution can be further reduced, and classifiers such as 〈∗, pc, ∗〉 or 〈pl, ∗, ∗〉

can be used for scoring.

Scoring

For each classifier shown in Figure 3-3, a GMM can be trained for scoring. Given an

acoustic feature vector x, the log-likelihoods of x with respect to the basic classifiers of a

triphone s are linearly combined to compute the acoustic score,

aλ(x, s) =
3∑
i=1

Ji∑
j=1

wsijlλ(x, Tij(s)), (3.1)

where Ji is the number of classifiers at level i, and the combination weight wsij satisfies the

normalization constraint
∑s

i=1

∑Ji
j=1w

s
ij = 1. For the actual values of the weights, we can

use the default assignments based on the number of training examples as shown in Figure
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3-4. Instead of using the default assignments, the combination weights can also be learned

automatically, which will be discussed in later part of the chapter.

Properties

Under the proposed multi-level framework, each triphone is guaranteed to have a unique

set of basic classifiers. This is because for any two different triphones s and s′, they must

differ at least in one of the following ways: left context, center phone, or right context. If

they differ at the left context, the classifier T31(s) in Figure 3-3 is different from T31(s′).

Similarly, T34(s) 6= T34(s′) for a different right context, and T32(s) 6= T32(s′), T33(s) 6=

T33(s′) for different center phone label. Since based on the default weight assignment in

Figure 3-4, the weights for the classifiers at the bottom level are always non-zero, any two

rows differ in at least one entry in the output code matrix. Figure 3-5 shows the sub-matrix

of the output code matrix M where the entries of the two triphones “t-iy+n” (as in the word

“teen”) and “d-iy+n” (as in the word “dean”) as a concrete example.

Also, if a triphone has enough training examples, all the classifiers in Figure 3-3 are

used for scoring. Doing so creates some redundancy, and can potentially help error correc-

tion. On the other hand, if not enough data is available, only the lower level classifiers that

have enough data are used for scoring. In this way, the data sparsity problem is avoided.

Remarks

While the design in Figure 3-3 is chosen for conducting experiments, the multi-level idea is

not limited to the design. For example, classifiers such as 〈pl,pc,B(pr)〉 and 〈B(pl),pc,pr〉

can potentially be added to the scoring framework. There can be other ways of constructing

classifiers as well. For example, the classifiers can be selected by a set of specifically

designed decision trees such that the following property holds: For each lead node of a

tree, and for each pair of the context-dependent units grouped in the node, there exists

a leaf node in another tree that contains just one of the units. The basic principle is to

make each context dependent unit be associated with a unique set of classifiers that have a

reasonable number of training examples. Nevertheless, the design in Figure 3-3 represents

a simple and effective realization of the multi-level idea.
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(c) Data sparsity at left part of Level 2 (d) Data sparsity at Level 2

Figure 3-4: Default assignment of combination weights. The intuition of the weight assign-
ment is as follows. The set of classifiers at each of the three levels can uniquely specify the
triphone “pl-pc+pr”; therefore, the total weight assigned to each level is 1/3 by default. By
symmetry, the total weight assigned to each level is equally distributed to the correspond-
ing classifiers, resulting in the weights shown in (a). If the top level classifier does not have
enough data due to data sparsity, its weight is equally distributed to the other two levels, as
shown in (b). If the left classifier at level 2 still does not have enough data, its weight is
equally distributed to the left two classifiers at the bottom level, as shown in (c). Note that
the two classifiers at the bottom level represent reductions of the classifier 〈pl,pc,*〉 with
respect to one part of the contexts, and thus “inherit” the weight from 〈pl,pc,*〉. Finally, if
all the upper level classifiers do not have enough data, each of the bottom level classifiers
gets a 1/4 weight, as shown in (d). The weights can also be automatically learned as shown
in Section 3.2.3.
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<t,iy,n> <t,iy,*> <t,HV,*> <d,HV,*>

``t iy+n’’ 1/3 1/6 1/12 0y

``d iy+n’’ 0 0 0 1/4

Figure 3-5: Part of the output code matrix M where the rows for “t-iy+n” and “d-iy+n”
differ. “HV” refers to the broad-class “High Vowel”. Note that the two classifiers “〈d,iy,n〉”
and “〈d,iy,*〉” do not have enough training examples, so do not show up in the output code
matrix. The classifier “〈d,HV,*〉” inherits the weights from the two missing classifiers as
illustrated in Figure 3-4(c).

3.2.3 Parameter Learning

Initializing GMMs

For each classifier, we can collect the acoustic observations that align with the classifier

label in the references, and run the EM algorithm described in Section 2.1.5 on the collected

observations to initialize the GMM parameters under the ML criterion. Unlike the decision

tree clustering method where each acoustic feature is assigned to a single leaf node, in

the proposed multi-level framework, each acoustic observation can contribute to multiple

classifiers for training. For example, the acoustic feature vectors aligned with the phone

“iy” in the word “teen” can be used to train 〈t,iy,*〉, 〈t,HV,*〉,〈*,HV,n〉,. . ., etc. In this way,

the same data can be utilized with different perspectives, which can potentially benefit the

overall model.

The Forward-Backward procedure described in the latter part of Section 2.1.5 can also

be applied to further update the parameters. To derive the update equations, for each classi-

fier c, letw(c, s) be the combination weight of c used for scoring the context-dependent unit

s. Take a classifier in Figure 3-5 for example, the weight w(〈t,iy,n〉,“t-iy+n”) = 1/6. For

each s, the posterior probability of s at time t, γts, can be computed using Equation (2.38).

For the mth Gaussian mixture component of c, its posterior probability at time t, rctm, can

also be computed using Equation (2.25). With these two sets of posterior probabilities, we

can compute the partial count of the mth component of c over a training utterance by

ϑcm =
T∑
t

rctm
∑

s:w(c,s)>0

w(c, s)γts. (3.2)
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The intuition behind Equation (3.2) is as follows. Based on the Forward-Backward al-

gorithm, and the EM theory described in Appendix B, the posterior probability γts is the

partial derivative of the ML training objective with respect to the acoustic score aλ(xt, s).

Since aλ(xt, s) is a linear function of the GMM log-likelihood lλ(xt, c), using the chain rule,

s can contribute w(c, s)γts (if w(c, s) > 0) to the partial derivative of the ML training cri-

terion with respect to lλ(xt, c). By summing all the contributions from all s associated with

c, we can have the last term in Equation (3.2) as the partial count of c at time t. After the

partial count of c is computed, we can distribute the count to mixture components through

the mixture posteriors as shown in Equation (3.2).

Similarly, the first and second order statistics of the mixture component can be com-

puted by

Ocm(X) =
T∑
t

xtr
c
tm

∑
s:w(c,s)>0

w(c, s)γts. (3.3)

Ocm(X2) =
T∑
t

xtr
c
tm

∑
s:w(c,s)>0

w(c, s)γts. (3.4)

After the three sets of statistics in Equation (3.2-3.4) are computed, we can use the update

formula in Equation (2.42-2.44) to update the GMM parameters. To smooth the model, we

can also interpolate the statistics from the Forward-Backward procedure with that from the

initial model parameter before applying the update formula.

Discriminative Training of GMMs

To integrate the proposed multi-level acoustic modeling framework with discriminative

training methods, we have to be able to compute the discriminative objective function under

the proposed framework and be able to update the multi-level model parameters to optimize

the objective function. The first part involves implementing the multi-level framework in

an existing ASR system, which will be discussed later in the chapter. In this section, we

focus on the second part; that is, how to update the multi-level model parameters according

to the discriminative objective function. As described in Section 2.3, there are two main

update methods for discriminative training: the Gradient-based method and the EBW-based

method. We will show how to update the multi-level model parameters under each kind of
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update method.

For the gradient based method, we have to be able to compute the gradient of the dis-

criminative training objective function with respect to multi-level model parameters. As in

the discriminative training procedure for a conventional clustering-based acoustic model,

we can first take partial derivatives of the objective function with respect to each acoustic

score as described in Section 2.3:

∂L
∂λ

=
N∑
n=1

∑
x∈Xn

∑
s

∂L
∂aλ(x, s)

∂aλ(x, s)

∂λ
, (3.5)

where N is the number of training utterance, Xn is the sequence acoustic feature vectors

corresponding to the nth training utterance. Because the acoustic score in the multi-level

framework is a linear combination of the log-likelihoods of GMMs, we can compute the

last term in Equation (3.5) by

∂aλ(x, s)

∂λ
=

3∑
i=1

Ji∑
j=1

wsij
lλ(x, Tij(s))

∂λ
, (3.6)

where the last term is the partial derivative of the log-likelihood of a GMM with respect

to its parameters, which has a closed-form solution. Therefore, the computation of the

gradient of the multi-level model is similar to that of the conventional acoustic model except

for the extra step of distributing the gradient contributions back to each GMM according to

the combination weights, as described in Equation (3.6). After the gradient is computed,

a Quasi-Newton method such as the Quickprop algorithm [85] can be used to update the

parameters. Details of the Quickprop algorithm can be found in Appendix G.

For the EBW based method, as described in Section 2.3, the key is to compute the

numerator statistics for the reference and the denominator statistics for the competing hy-

potheses. As for the discriminative training of conventional acoustic models, the posterior

probability γnumts in the numerator lattice and the posterior probability γdents in the denomi-

nator lattice can be computed using the Forward-Backward algorithm. After the posterior

probabilities are computed, we can distribute the partial counts represented by the posterior

probabilities to the GMMs based on the combination weights as shown in Equation (3.2-
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3.4), and obtain the numerator statistics {ϑnumcm ,Onumcm (X),Onumcm (X2)} and the denomina-

tor statistics {ϑdencm ,Odencm (X),Odencm (X2)} for each GMM c, and each mixture component

m. Once the statistics are computed, the update formula in Equations (2.59), (2.60), and

(2.63) can be used to update the means, variances, and mixture weights respectively.

Learning Weights

Instead of using the default weight assignment described in Figure 3-4, we can also seek to

learn the combination weights automatically from data. If we fix the GMM parameters, we

can represent the discriminative training objective function as a function of the combination

weights. More specifically, let W = {wsij} be the set of default combination weights, and

let W = {wsij} be the set of weights to be learned. We can use a constrained optimization

to update the weights W as follows:

minimizeWL(W) (3.7)

subject to∑
i,j

wsij = 1 ∀s,

wsij ≥ 0 ∀s, i, j,

wsij = 0 ∀wsij = 0,

where the term L(W) is the loss function of discriminative training represented as a func-

tion of the weights. In terms of the constraints, the first two sets of constraints ensure that

the acoustic score is a convex combination of GMM log-likelhooods. The third set of con-

straints ensures that no classifier with an insufficient number of training examples will be

used for scoring and thus prevents the data sparsity effect.

Because the gradient of the loss function with respect to the weights is relatively easy to

compute, and because the constraints of Equation (3.7) form a polyhedra in the parameter

space, we can use the gradient projection method described in [12] to update the weights.

Figure 3-6 illustrates how the gradient projection method works. At each iteration of the

gradient projection method, the parameters are updated to new values using the gradient-
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Figure 3-6: Illustration of the gradient projection method. Each red arrow represents an
unconstrained gradient-based update, and each blue dashed line represents the projection
back to the polyhedra.

based update as if there are no active constraints at the current point. Note that such an

unconstrained update might potentially violate one or more constraints, and thus the result-

ing point might not be feasible. To find a feasible point, we can project the newly updated

point back to the polyhedra, where the projection of a point p′ with respect to the polyhedra

is the point p in the polyhedra that is closest to the point p′. Because for any pair of states,

s and s′, there is no constraint that ties wsij and ws′i′j′ , the projection can be done separately

for each s. Since there is only one sum to 1 constraint for each s, and since the second and

the third sets of constraints are easy to check, the projection can be done fairly efficiently.

(Basically, moving the free variables along the norm of the violated constraint, until hitting

the polyhedra.)

To utilize the gradient projection method, we have to compute the partial derivative of

the objective function in Equation (3.7) with respect to each weight wsij . Since the GMM

parameters are fixed during the optimization of the weights, the acoustic score aλ(x, s) is a

linear function of the weight wsij . Therefore, as for the discriminative training of GMMs,

we can first take a partial derivative of the loss function with respect to the acoustic score,

and then distribute the contribution to the weight as follows:

∂L
∂wsij

=
N∑
n=1

∑
x∈Xn

∂L
∂aλ(x, s)

lλ(x, Tij(s)), (3.8)

where the GMM log-likelihood lλ(x, Tij(s)) is fixed as a constant during the optimization
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of the weights.

One final remark is that in the optimization of Equation (3.7), each context-dependent

unit s is associated with a separate set of weights wsij that can be changed during the op-

timization. However, because many units may have only a small number of examples in

the data, to increase the generalization ability of the weight learning, we can tie weights of

different context-dependent units during the optimization. One way of doing the grouping

is via the broad phonetic classes, and each triphone “pl-pc+pr” can be reduced to a broad

class triple “B(pl)-B(pc)+B(pr)”. For example, the triphone “d-iy+n” in the word “dean”

can be reduced to “SC-HV+N”, where “SC” denotes the broad class of Stop Consonant,

“HV” denotes High Vowel, and “N” denotes Nasal. The weights of s and s′ can be tied if

they both belong to the same broad class triple, and the default weights wsij = ws
′
ij ∀i, j.

Note that the tying of weights does not create a quantization effect because each s still has

a unique set of GMM classifiers. Let b denote the label of a weight group after the tying,

the gradient with respect to the tied weight wbij can be computed by

∂L
∂wbij

=
N∑
n=1

∑
x∈Xn

∑
s:ρ(s)=b

∂L
∂aλ(x, s)

lλ(x, Tij(s)), (3.9)

where ρ(s) is the mapping function from the context-dependent unit s to a weight group

according to the tying. In terms of the projection, we can project the weights separately for

each weight group b, similarly as in the original problem.

3.2.4 Potential Extensions

In the previous sections, we introduced the basic modeling framework of the multi-level

model. In this section we discuss several potential extensions of the basic multi-level

framework.

Multiple Broad Classes Extension

In Figure 3-3, a set of broad classes are used to reduce the contextual resolution and con-

struct the classifiers in the bottom level. However, a phoneme can belong to different kinds
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Figure 3-7: Extended classifiers for triphone “pl-pc+pr”. B(·) and B′(·) represent the
broad class assignment based on two different aspects of acoustic-phonetic knowledge. For
example, B(“d”) can be “Stop Consonant” (“SC”) and B′(“d”) can be “Alveolar” (“AL”).

of broad classes under different perspectives. For example, the phoneme “d” can belong

to the broad class “Stop Consonant” based on production manner, but it can also belong

to the broad class “Alveolar” based on place of articulation. Jointly considering different

aspects of acoustic-phonetic knowledge can help disambiguate the phonemes, and can po-

tentially help improve the model. The proposed multi-level framework can be extended

by incorporating multiple sets of broad classes assignments in the bottom level as shown

in Figure 3-7. In terms of the default weight assignment, since there are more classifiers

at the bottom level in the multiple broad-classes extension, it makes more sense to assign

more weight to the bottom level. For the classifier configuration in Figure 3-7, one rea-

sonable way to assign the weights is to scale the weights in Figure 3-4 by 3
4

and make

{w3j = w3j′ , ∀1 ≤ j ≤ 4, j′ = j + 4}. As discussed in Section 3.2.2, there can be other

ways of considering multiple sets of broad classes, but the design in Figure 3-7 shows an

effective realization.

Modeling Different Length of Contexts

While the previous sections focus on the multi-level framework for triphone based system,

the proposed multi-level framework can be modified to model contexts of different length.
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Figure 3-8: Basic classifiers and combination weights for diphone based system.

For example, a two level framework can be used to model diphones as illustrated in Figure

3-8. The framework can also be extended to model longer contexts. For example, the

acoustic score of a quintphone “pll-pl-pc+pr+prr” can be decomposed by

aλ(x, “pll-pl-pc+pr+prr”) = υ0lλ(x, 〈pll, pl, pc, pr, prr〉)

+ υla
′
λ(x, “pll-pl-pc”) + υra

′
λ(x, “pc+pr+prr”), (3.10)

where the scores of the two shifted triphone a′λ(x, “pll-pl-pc”) and a′λ(x, “pc+pr+prr”) can

be computed using the triphone based multi-level framework, and the weights combination

weights satisfy the normaliztion constraint υ0 + υl + υr = 1. If the quinphone has enough

examples, υ0 can be greater than 0; otherwise, it is set to 0 to avoid data sparsity.

3.3 Implementation Issues

3.3.1 Decoding

In this section, we discuss how to implement the multi-level acoustic model in the decoding

framework of an existing large-vocabulary ASR system. While the actual implementation

details may be complicated and might vary depending on the existing system, here we seek

to present several implementation principles that can generalize across different existing

systems. In order to do so, we first discuss some common properties of conventional large-

vocabulary ASR decoding frameworks.
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Conventional Decoding Frameworks

In the decoding frameworks of conventional large-vocabulary ASR systems, not all states

are evaluated by the search module at any given point of time. The state space of a large-

vocabulary ASR system can be large, and searching through all states at all times can be

costly in terms of both running time and memory space. For computational efficiency, an

active frontier that consists of a subset of states is kept at each point of time, and only

the next states from the active frontier are evaluated during decoding. Typically, certain

pruning criteria, such as the score difference from the current best score or the total number

of active states, are commonly used to maintain the active frontier to be a reasonable size.

Since only a subset of states are evaluated at each point of time, not all acoustic scores are

needed during decoding, and the corresponding GMM log-likelihoods can be computed as

needed.

Computing the log-likelihood of a GMM is a relatively costly operation compared with

other operations needed during decoding. Computing the log-likelihood of a GMM re-

quires a sequence of steps: computing the difference between the acoustic observation

and the mean for each mixture component, multiplying the difference by an inverse vari-

ance, computing inner products, and taking the log-sum of the inner products. Compared

with other operations needed in the Viterbi decoding algorithm (as described in Algorithm

2.1), which are addition, indexing, and tracking the maximum value, computing the log-

likelihood of a GMM is typically the most computationally intensive operation in com-

monly available computational architectures.

The log-likelihood of a GMM might be accessed multiple times. Because of cluster-

ing, multiple context-dependent states can be associated with the same GMM for scoring.

In addition, commonly-used post processing procedures, such as searching for N-Best hy-

potheses and computing posterior probabilities using the Forward-Backward algorithm,

may also need to access the GMM log-likelihoods at different points of times. Since com-

puting GMM log-likelihoods is costly, it is usually beneficial to store the computed log-

likelihoods for future access.

Because of the above facts, although the detailed implementations may differ from
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system to system, it is still reasonable to assume that there is a lazy evaluation procedure

for GMMs in the system. More specifically, when the log-likelihood of a GMM classifier

c is needed at time point t during decoding, the decoding module calls the lazy evaluation

procedure with the index c as one of its inputs. The lazy evaluation procedure then checks

if the log-likelihood of c has been computed. If yes, the procedure accesses the memory

location that stores the log-likelihood and returns the value; if not, the procedure accesses

the acoustic observation xt, computes the log-likelihood lλ(xt, c), stores the value at its

designated memory location, and returns back the value. In the following sections, we

assume the lazy evaluation procedure is built in to the existing system, and can be utilized

when implementing the multi-level acoustic modeling framework. For convenience, we

use LAZY EVAL to denote the lazy evaluation procedure for computing GMM likelihood.

Multi-Level Implementation

There are several practical considerations when implementing the multi-level framework.

For example, the implementation should not require too much computational overhead.

Usage wise, it is preferred that the system is implemented in a way that is able to perform

decoding under both the conventional framework and the multi-level framework. Coding

wise, the system should reuse existing software when possible, and avoid extra memory

management or drastic software changes.

Computationally, the cost of computing the acoustic score aλ(xt, s) under the multi-level

framework consists of two parts: the cost of computing the log-likelihood lλ(xt, c) for each

GMM c associated with the context-dependent state s, and the cost of computing a linear

combination of the log-likelihoods. Since the LAZY EVAL procedure is built-in, reusing

the procedure for the log-likelihood computation can keep the implementation succinct.

Also, the values of log-likelihoods can be stored, and can be used for future access, with

all memory management issues being taken care of. One remaining question is whether

we should also store the value of the acoustic score for future access. Storing the acoustic

score can save the need for performing the linear combination in future access. However,

because each context-dependent state s has a different score and the total number of states

is large, managing the space to store the acoustic scores is not trivial and might not be as
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fast as expected2. Since the linear combination only involves additions and multiplications

of a few numbers, recomputing the linear combination each time the acoustic score is ac-

cessed might only require a slightly more computational overhead. However, it can keep

the overall implementation succinct and more memory efficient, compared with the one

where the acoustic scores are stored.

To realize this idea, we can create a new procedure MULTI LAZY EVAL that accepts

the same set of arguments as LAZY EVAL and works as follows. MULTI LAZY EVAL

first checks if the system is running under the conventional mode, or under the multi-level

mode. If it is in the conventional mode, it passes the arguments to LAZY EVAL and re-

turns the log-likelihood it computes. If it is in the multi-level mode, MULTI LAZY EVAL

treats the integer argument that originally represents the index of the GMM classifier

for LAZY EVAL as the index of the context-dependent state s. The procedure then calls

LAZY EVAL with the index of each GMM classifier that is associated with s, obtains the

log-likelihoods, computes the linear combination, and then returns the value. Note that by

setting the conventional mode as default, even if we replace every calling of LAZY EVAL

with MULTI LAZY EVAL, the modified decoder can still behave exactly the same as the

original decoder, which is preferred in terms of usage.

With the MULTI LAZY EVAL procedure in mind, the main steps of the proposed multi-

level implementation can be summarized as follows. First, modify the decoder module such

that it can load in the tables that specify indices of GMMs, and combination weights for the

linear combinations, and make MULTI LAZY EVAL accessible to the tables. Second, for

each location in the original source code where LAZY EVAL is called, replace it with the

new procedure MULTI LAZY EVAL. In general, the locations where changes are needed

are the forward procedure of Viterbi algorithm, the re-scoring procedure for higher-order

language model, searching for N-Best paths, and the Forward-Backward procedure for

computing lattices and posteriors. Third, depending on systems and coding styles, some-

times in the back-tracing step, or in some post-processing procedures (where the GMM

2Because of the large number of states, creating a static array for the acoustic scores at each time point
can require a large amount of memory (∼105 states times ∼103 observations per utterance). While there are
several dynamic data structures, such as vector, or binary search tree, they often have trade-off between the
time cost to insert an element and the time cost to retrieve an element. Initialization and reclamation of the
data structure also takes time, and has to be done for every utterance.
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log-likelihoods are supposedly computed), the GMM log-likelihoods are not accessed via

LAZY EVAL but by directly referencing the memory locations. These cases should be re-

placed by a call to MULTI LAZY EVAL, or some sub-routine that accesses the memory

locations of log-likelihoods and computes the linear combination. Finally, under the con-

ventional framework, there is a mapping table that maps the context-dependent state s to

its associated GMM classifier c. Because the MULTI LAZY EVAL has taken care of the

linear combination, such mapping table is no longer needed, and can be replaced with an

identity mapping under the multi-level framework. Note that the state to GMM mapping

table should be part of the input to the recognizer (not in the source code), and may be in

a different location, or in a different form, depending on the system implementation. For

example, in the FST-based recognizer we used to conduct the experiments, the table is em-

bedded in the input labels of the C ◦ P ◦ L ◦ G FST. While here we only provide the basic

idea of implementing the multi-level framework, the actual implementation details would

be more complex and strongly depend on the existing system; they probably would be a

good software engineering exercise!

Debugging Tips

Because the decoding framework of a large-vocabulary ASR system has to incorporate

many practical engineering issues (e.g. pruning, re-scoring, memory management...) and

has to be able to generate various kinds of recognition outputs (e.g. N-best hypotheses,

lattices, phone alignments, state posterior probabilities...), the source code for the decoder

is often large and complex. As a result, it would be non-trivial to check if all the places that

need to be changed have been changed. To help debug the multi-level implementation, we

can conduct a sanity check as follows.

After the first pass of modification is done, we can randomly permute the order of the

GMMs stored in the acoustic model file, and at the same time, construct a matching ta-

ble that can restore the random permutation. If the implementation was correct, when we

switch the decoder to the multi-level mode and let the decoder accept the randomly per-

muted GMMs as an acoustic model, the matching table as the table for linear combination,

and a combination weight vector W = 1, the decoder should generate identical results as
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in the conventional mode, regardless of the input/output specifications. If the code passes

the random permutation test, with high probability, the implementation is in good shape.

Note that there are many kinds of outputs, and the modified decoder has to pass the random

permutation for each kind of them. When doing the test, we suggest to begin testing with a

short utterance (and probably with forced alignment) before testing on a larger set. In this

way, the initial tests can run faster and can also identify the problems more efficiently. Bon

débogage!

3.3.2 Discriminative Training

As described in Section 2.3.3, refining the acoustic model parameters with a discrimina-

tive training criterion requires several iterations of the following steps: First, to recognize

the training utterances in both the forced-alignment and the recognition mode to generate

recognition outputs, such as alignments, N-best hypotheses, lattices, and state posteriors.

Then, process the recognition outputs to accumulate gradient (for gradient-based update)

or sufficient statistics (for EBW-based update). Finally, use the gradient or sufficient statis-

tics to update model parameters. If the multi-level decoding framework described in Sec-

tion 3.3.1 is implemented correctly, the recognition outputs generated under the multi-level

mode should be in correct format and ready to be used. In this section, we discuss some

implementation and debugging tips for the accumulator that processes the recognition out-

puts and accumulates gradient, or sufficient statistics, to be used for the parameter update

of the multi-level acoustic model.

Although the actual format will differ depending on the implementation, in general,

the function of the accumulator can be summarized as follows. First, for each state s

appearing in the recognition outputs at time t, compute a scaling factor αts that reflects the

importance of s at time t based on the discriminative training objective function3. Second,

compute the posterior probability rstm for each mixture component for the GMM associated

3The value of αts depends both on the posterior probabilities and the type of discriminative objective
function, and can be either positive or negative. For example, under the Maximum Mututal Information
(MMI) criterion, αts = γnumts − γdents , the difference between the posterior probability of state s at time t
in the numerator (forced-alignment) lattice and that in the denominator (recognition) lattice. For Minimum
Classification Error (MCE) training, αts also depends on the smoothed sentence error, as described by the
terms before the partial derivative of the acoustic score in Equation (2.69).
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with s. Third, for a gradient-based update, add the partial derivatives with respect to the

mean and variance of m, as described in Appendix A, to the gradient, and add αtsr
s
tm

to the dimension of the gradient with respect to the mixture weight of m; for an EBW-

based update, add αtsrstm to the count statistics of the mth mixture of s, αtsrstmxt to the

first order statistics, and αtsrstmxtx
T
t to the second order statistics. Since under the multi-

level framework, each s is associated with multiple GMMs, to modify the accumulator for

the multi-level framework, we have to change the second and third part of the procedure:

Modify the second part such that it can compute rctm for each GMM c associated with s.

Modify the third part such that it is scaled by αtsrctmw(c, s), where w(c, s) is the linear

combination weight of c when computing the score for s. Note that depending on the

implementation of the original accumulator, the two sets of modifications might be tied

together in a subroutine.

One debugging technique to check if the modified accumulator correctly applies the

weights when accumulating the gradient or sufficient statistics is as follows. First, generate

recognition outputs of an utterance with a conventional acoustic model, and compute the

gradient or sufficient statistics using the original accumulator. Second, randomly permute

the GMMs in the acoustic model, and record the mapping P (·) that can restore the original

order. Third, create a two-level framework such that the acoustic score aλ(x, s) is computed

by w1lλ(x, P (s)) + w2lλ(x, P (s)), where w1 and w2 are two non-zero random weights that

sum to one. Finally, run the modified accumulator under the two-level framework with the

permuted acoustic model, and check the output with that of the original accumulator. If

the modified accumulator functions correctly, the two outputs should be the same except

for some rounding errors. If the modified accumulator passes the single utterance test, test

it again on multiple utterances (maybe ∼ 100 utterances), before running it on the entire

training set.

For a large-vocabulary speech recognition task, there can be a large number of training

utterances, and using a single accumulator to accumulate the gradient, or sufficient statis-

tics over all training utterances would take a very long time. One practical approach is to

divide the training utterances into R sets, and run R accumulators in parallel on different

machines. Then, the outputs of the R accumulators can be added up by a merging proce-
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dure. If R is also large, we can run
√
R merging procedures in parallel where each one of

them takes care of the outputs of
√
R accumulators. The outputs of the

√
R merging pro-

cedures can be added up by a final merging procedure. In this way, the time requirements

for accumulating the gradient or sufficient statistics can be largely reduced.

3.4 Chapter Summary

In this chapter, we first used output codes as an illustration to show how the quantization

effect occurs as a trade-off to deal with data sparsity in the conventional clustering-based

context-dependent acoustic model, and discussed criteria that could avoid both the data

sparsity and the quantization effect. Based on the criteria, we proposed a multi-level acous-

tic modeling framework, where each context-dependent unit is associated with a unique set

of GMM classifiers that target multiple levels of contextual resolution. Then, we showed

how to learn the model parameters of the multi-level framework under both maximum-

likelihood and discriminative criteria, and discussed some possible extensions of the multi-

level framework. Finally, we introduced some implementation and debugging guidelines.

In the following chapters, we will conduct several experiments to evaluate the performance

of the multi-level acoustic model compared with the conventional clustering-based acoustic

model.
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Chapter 4

Phonetic Recognition Experiment

4.1 Motivation

In Chapter 3, we proposed a multi-level acoustic modeling framework that addresses both

the data sparsity problem and the quantization effect. Since the multi-level model ensures

that different context-dependent phonetic units always have different acoustic scores, it

should be able to provide better phonetic discrimination, and hence should help reduce

phonetic confusions during recognition. In this chapter, we conduct a phonetic recognition

experiment on the TIMIT corpus [71, 132] to see whether the multi-level model has better

phonetic recognition accuracy than a conventional clustering-based acoustic model, with-

out lexicographic and word-level constraints. Note that the focus of the experiment is to see

if the multi-level framework can provide improvement, not to optimize the performance of

the model on the TIMIT corpus.

4.2 TIMIT Corpus

TIMIT [71, 132] is an acoustic-phonetic continuous speech corpus that was recorded in

Texas Instrument (TI), transcribed at the Massachusetts Institute of Technology (MIT), and

verified and prepared for CD-ROM production by National Institute of Standard Tech-

nology (NIST). The corpus contains 6, 300 phonetically-rich utterances spoken by 630

speakers, including 438 males and 192 females, from 8 major dialect regions of American
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English. For each utterance, the corpus includes waveform files with corresponding time-

aligned orthographic and phonetic transcriptions [71, 44]. There are 61 APRAbet symbols

used for transcription and their example occurrences are listed in Table 4.1. Because the

size of the TIMIT corpus is not too large (about 5.4 hours of audio overall), and because

it provides phonetically-rich data and expert transcribed time alignments of phonetic units

which are generally not available in other corpora, TIMIT is an excellent test-bed for initial

evaluations of new acoustic modeling techniques.

4.2.1 Data Sets

There are three types of sentences in the TIMIT corpus: dialect (SA), phonetically-compact

(SX), and phonetically-diverse (SI). The two dialect sentences were designed to reveal the

dialectical variations of speakers and were spoken by all 630 speakers. The 450 phonetically-

compact sentences were designed such that the sentences are both phonetically-comprehensive

and compact. The phonetically-diverse sentences were drawn from the Brown corpus [68]

to reveal contextual variations. The sentences were organized such that each speaker spoke

exactly 2 SA sentences, 5 SX sentences, and 3 SI sentences. The sentence type information

is summarized in Table 4.2.

Because the SA sentences were spoken by all the speakers, they are typically excluded

from the training and evaluation of acoustic models reported in the literature [77, 44]. The

standard training set selected by NIST consists of 462 speakers and 3, 696 utterances. The

utterances spoken by the other 168 speakers form a “complete” test set. Note that there

is no overlap between the texts spoken by the speakers in the training and the “complete”

test set. 400 utterances of 50 speakers in the “complete” test set are extracted to form a

development set for model development and parameter tuning. Utterances of the remaining

118 speakers are called the “full” test set. Among the utterances of the “full” test set, 192

utterances spoken by 24 speakers, 2 males and 1 female from each of the 8 dialect regions,

are selected as the “core” test set. Typically, the evaluation results reported in the literature

are based on the “core” test set rather than on the “full” test set. The data set information

that includes number of speakers, utterances, audio length, and number of phonetic tokens
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ARPAbet Example ARPAbet Example
aa bob ix debit
ae bat iy beet
ah but jh joke
ao bought k key
aw bout kcl k closure
ax about l lay

ax-h potato m mom
axr butter n noon
ay bite ng sing
b bee nx winner

bcl b closure ow boat
ch choke oy boy
d day p pea

dcl d closure pau pause
dh then pcl p closure
dx muddy q glottal stop
eh bet r ray
el bottle s sea

em bottom sh she
en button t tea

eng Washington tcl t closure
epi epenthetic silence th thin
er bird uh book
ey bait uw boot
f fin ux toot
g gay v van

gcl g closure w way
hh hay y yacht
hv ahead z zone
ih bit zh azure

h# utterance initial and final silence

Table 4.1: ARPAbet symbols for phones in TIMIT with examples from [44]. Letters in the
examples corresponding to the phones are underlined.
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Sentence #Speakers/ #Sentences/
Type #Sentences Sentence Total Speaker
Dialect (SA) 2 630 1260 2
Compact (SX) 450 7 3150 5
Diverse (SI) 1890 1 1890 3
Total 2342 - 6300 10

Table 4.2: Sentence type information of TIMIT [44].

Set #Speakers #Utterances #Hours #Tokens
Train 462 3696 3.14 142,910
Development 50 400 0.34 15,334
Core Test 24 192 0.16 7,333
“Full” Test 118 944 0.81 36,347

Table 4.3: Data set information of TIMIT.

is summarized in Table 4.3.

4.2.2 Conventional Training and Evaluation Setup

Training Setup

Although the TIMIT corpus has been designed in a phonetically-rich way, some phonetic

labels used by TIMIT still have limited amount of occurrences in the data. For example, the

label “eng”, syllabic “ng” as in the word “Washington”, has less than 20 examples in the

training set. Also, the distinct between certain pairs of labels, such as “ax” (“about”) and

“ax-h” (“potato”), are relatively subtle. Due to these reasons, in the experiments reported

in the literature [75, 77, 63, 90, 112, 30, 106], it was common that the 61 phonetic labels

were reduced to 48 classes when training the acoustic model. Table 4.4 illustrates the 61 to

48 mapping. In this work, we also adopted the 48-class mapping when training the acoustic

models in the experiments.

Evaluation Setup

Phone Error Rate (PER) is commonly used as the evaluation metric for quantifying model

performance on the TIMIT corpus. To compute PER, for each test utterance, the hypothe-
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1 iy 17 l 33 g
2 ih 18 el 34 p
3 eh 19 r 35 t
4 ae 20 y 36 k
5 ix 21 w 37 z
6 ax ax-h 22 er axr 38 zh
7 ah 23 m em 39 v
8 uw ux 24 n nx 40 f
9 uh 25 en 41 th
10 ao 26 ng eng 42 s
11 aa 27 ch 43 sh
12 ey 28 jh 44 hh hw
13 ay 29 dh 45 pcl tcl kcl q
14 oy 30 b 46 bcl dcl gcl
15 aw 31 d 47 epi
16 ow 32 dx 48 h# pau

Table 4.4: Mapping from 61 classes to 48 classes in [77].

sized phonetic string generated by the recognizer is aligned with a reference phonetic string

using dynamic programming [21], and the total numbers of Substitution (Sub) errors, In-

sertion (Ins) errors, and Deletion (Del) errors are computed based on the alignment. One

commonly-used software to align the hypotheses and references is the sclite toolkit [1]

developed by NIST. The per utterance errors are then summed up over all test utterances,

and the PER can be computed by dividing the total errors with the total number of phonetic

tokens in the test utterances:

PER =
#Sub Errors + #Ins Errors + #Del Errors

Total phonetic tokens in test utterances
. (4.1)

In the experiment results reported in the literature, the phonetic labels are further re-

duced to 39 classes when computing the PER. Table 4.5 illustrates the label mapping under

the 39-class setup. Since the 39-class mapping has been used in almost every work reported

in the literature since it was first utilized in [75, 76], we also adopted the mapping when

doing the evaluation for consistency with the literature.
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1 iy 20 n en nx
2 ih ix 21 ng eng
3 eh 22 v
4 ae 23 f
5 ax ah ax-h 24 dh
6 uw ux 25 th
7 uh 26 z
8 ao aa 27 s
9 ey 28 zh sh
10 ay 29 jh
11 oy 30 ch
12 aw 31 b
13 ow 32 p
14 er axr 33 d
15 l el 34 dx
16 r 35 t
17 w 36 g
18 y 37 k
19 m em 38 hh hv
39 bcl pcl dcl tcl gcl kcl q epi pau h#

Table 4.5: Mapping from 61 classes to 39 classes used for scoring, from [75].

4.3 Experiment

4.3.1 Acoustic Observations

To compute the acoustic observations (feature vectors) used in the experiment, a series of

signal processing procedures are applied as follows. Given a speech utterance, the mean

(DC component) of the waveform samples (with 16K Hz sampling rate) is first removed,

and the samples are passed to a pre-emphasis (high-pass) filter

s̃[n] = s[n]− 0.97s[n− 1], (4.2)

where n denotes sample index, s[n] denotes the sample sequence (with DC removed),

and s̃[n] denotes the output of pre-emphasis filter. Then, a Short Time Fourier Transform

(STFT) is performed every 5ms, using a 25.6ms Hamming window [95], and the first 14

Mel-Frequency Cepstrum Coefficients (MFCC) [23] are computed for each 5ms analysis
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Figure 4-1: The Mel-Frequency filter banks used to compute the MFCCs.

frame. Figure 4-1 shows the Mel-Frequency filter banks used to compute the MFCCs. Fig-

ure 4-2 illustrates the signal processing flow for computing the MFCCs. After the MFCCs

are computed, Cepstrum Mean Normalization [81] (with a 0.5s step) is applied as a basic

normalization procedure against noise and inter-speaker variations.

The acoustic observations are then extracted at a 10ms frame rate as follows. To in-

corporate temporal information embedded in the speech signal, the average values of the

(CMN normalized) MFCCs from 8 telescoping regions, ranging from 75ms before the time

point of the frame to 75ms after the time point of the frame, are concatenated together to

form a 112-dimensional (8 × 14) feature vector [85]. Detailed specifications of the tele-

scope regions are listed in Table 4.6. The 112-dimensional feature is then rotated and

reduced to 50 dimensions by a composition of Neighbourhood Components Analysis [39]

and Principal Component Analysis [60], as in [114].

4.3.2 HMM Topology

Triphone based context-dependent acoustic models were used for the phonetic recognition

experiments. Each triphone is represented by a 3-state, left-to-right, HMM. Because some
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bank, {cb}, to extract the first 14 MFCCs.

Region b-4 b-3 b-2 b-1 b+1 b+2 b+3 b+4
Start Time(ms) -75 -35 -15 -5 0 +5 +15 +35
End Time(ms) -35 -15 -5 -0 +5 +15 +35 +75

Table 4.6: Specifications of telescope regions for feature extraction. The minus sign “-”
refers to before the time point of the frame, while “+” sign refers to after the time point of
the frame.

phone labels, such as the release of stop consonant “b” and “d”, can have very short acoustic

realizations, skipping of states is also allowed in the topology. The HMM topology can be

represented as a Finite State Transducer (FST), and as shown in Figure 4-3.

4.3.3 Phone-Level Language Model

While phonetic recognition does not use lexicographic or word-level information, in pre-

vious experiments reported in the literature, bigram phone-level language models are typ-

ically used during decoding [77, 63, 44, 30, 106]. In the phonetic recognition experiment

reported in this chapter, a bigram phone-level language model was trained as follows. First,

the original 61 phone labels in the phonetic references from the training set were reduced
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x.1 x.2 x.3

To 1st state of yx.1 x.2 x.3 y.1

To 1st state of y
x.3 y.1

To 1st state of y
y.1

Figure 4-3: The HMM state topology used to model the triphones in the experiment (rep-
resented in an FST format after determinizing epsilon transitions). x and y represent two
consecutive triphones. x.1, x.2, x.3, and y.1 denote the model indices that are used to com-
pute the acoustic scores.

to 48 classes based on Table 4.4. Then, the reduced phonetic references were fed to the

ngram-count script of SRILM [116] (with -interpolate1 -addsmooth2 0.25)

to train the bigram phone-level model. The resulting bigram phone-level language model

had a perplexity of 14.6 on the dev set1. After the phone-level language model was trained,

it was then converted into an FST to constrain the search space during decoding.

4.3.4 Clustering-Based Acoustic Model

Decision Tree Clustering

Decision tree clustering, described in Section 2.2.5, was used to cluster the triphone states.

For each triphone state, its associated acoustic observations were collected based on the

expert transcribed phonetic time-alignments2, and the mean and the variance of the ob-

servations were computed for clustering usage. The triphone states were divided into

48 × 3 = 144 groups based on the center phone unit and the state index in the topology.

For each group, a decision tree was used to split the contexts. To grow the tree, a question

1This is the perplexity when the labels are reduced to 48 classes. If using the same language model
training procedure without the label reduction, the resulting perplexity on the dev set became 15.8, the same
as what was reported in [44].

2Supposed there were k frames, indexed by {0, 1, . . . , k − 1}, aligned to a triphone based on the expert
transcriptions. If k < 3, all three states of the triphone collected the k frames as examples. If k ≥ 3, the first
state got [0, bk3 c], the second state got [bk3 c, b

2k
3 c], and the third state got [b 2k

3 c, k− 1]. Note that the acoustic
feature vector corresponding to the boundary frame were assigned to both states. In this way, each state could
get slightly more data that might potentially help parameter initialization.
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from Table F.1 was selected to split a node into two. For a question to be selected, it must

satisfy the following two conditions: First, both of the two new nodes have at least MIN DP

examples. Second, it must provide the largest log-likelihood gain based on Equation (D.7).

The tree keeps growing until either the number of nodes has reached MAX NODES or the

normalized log-likelihood improvement3 of the best question was less than 0.001.

After the clustering was finished, a GMM was trained for each leaf node under the

Maximum-Likelihood (ML) criterion by running the Expectation-Maximization (EM) al-

gorithm on the data aligned with the node. The GMM was allowed to increase one mixture

component per 50 examples until MAX MIX components. Table 4.7 lists the PERs on the

Development (Dev) set under different settings. Based on the Dev set performance, the

model with MIN DP= 500, MAX NODES= 25, and MAX MIX= 30 was used as the initial

model for discriminative training. For convenience, we call the model ML-CL, meaning

Maximum-Likelihood (ML) trained Clustering (CL) based model. The PER of the ML-CL

model on the core test set was 29.0%.

Discriminative Training

Minimum Classification Error (MCE) [62, 85, 86] training was used as a discriminative

criterion to refine the GMM parameters. Because the PER of the ML-CL model on the

training data was low (< 10%), in order to enhance the parameter learning, the recog-

nition score of each competing hypothesis was boosted by a margin proportional to the

approximated phone-level string distance4. A simplified lattice based variant of the MCE

criterion5 was used for training. No phone-level language model was used during the train-

3log-likelihood improvement divided by the number of examples. Another commonly-used criterion is
the relative improvement of log-likelihood.

4For the triphone state st at time t in the competing hypothesis, check the corresponding state sreft in
the forced-alignment to see if the two states correspond to the same (center) phone. If not, add the acoustic
score for st by a margin ρ/P ref

t , where P ref
t is the length (in terms of the number of frames) of the phone

unit covering time point t in the forced alignment. The information used to compute the margin can be pre-
computed, and can be loaded in when doing decoding. To enable margin based decoding, modify the source
code of the decoding module similarly as in Section 3.3.1. In the experiment, ρ was set to 10.

5Since the number of competing hypotheses can be many in phonetic recognition, two simplifications are
made. First, set η = 1 and do not remove the reference string if it showed up in the recognition lattice.
By doing so, γcompn

ts in Equation (2.68) would be the same as the posterior probability γts computed by the
conventional Forward-Backward algorithm. Second, instead of counting the number of paths K in the lattice
to compute the average path score, just use the best path score when computing dn in Equation (2.65).
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MIN DP MAX NODES CL STATES MAX MIX TOTAL MIX PER
1,000 25 846 15 12.7K 28.0%
1,000 25 846 30 22.9K 27.6%
1,000 25 846 60 28.0K 27.3%
1,000 25 846 120 28.6K 27.2%

1,000 50 854 15 12.8K 28.1%
1,000 50 854 30 23.1K 27.3%
1,000 50 854 60 28.0K 27.3%
1,000 50 854 120 28.6K 27.6%

500 50 1,626 15 22.1K 27.6%
500 50 1,626 30 27.2K 26.9%
500 50 1,626 60 28.3K 27.0%
500 50 1,626 120 28.7K 27.3%

500 25 1,511 15 20.6K 27.3%
500 25 1,511 30 26.0K 26.8%
500 25 1,511 60 27.9K 27.2%
500 25 1,511 120 28.6K 27.0%

200 50 3,421 15 25.7K 27.6%
200 50 3,421 30 27.5K 27.8%
200 50 3,421 60 28.3K 27.5%
200 50 3,421 120 28.7K 27.6%

Table 4.7: PERs on the dev set based on different clustering criteria and maximum number
of mixture components. CL STATES denotes the total number of clustered states (total
number of leaf nodes). TOTAL MIX denotes the total number of mixture components sum-
ming over all clustered states.

ing. A Quasi-Newton-based Quickprop algorithm was used to update model parameters.

Details of the Quickprop algorithm are described in Appendix G, and settings for the MCE

training are listed in Appendix H. Figure 4-4 shows the PERs on the Dev set and the values

of the MCE objective functions on the training set across different iterations. Based on

the PER on the Dev set, the model at iteration 5 was picked. For convenience, we call the

model MCE-CL. The PER of the MCE-CL model on the core test set was 28.2%.

4.3.5 Multi-Level Acoustic Model

Model Initialization

The model structure in Figure 3-3 was used to construct the multi-level model. As in the

training for the clustering-based model, the expert transcribed phone alignments were used
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Figure 4-4: MCE training results of the clustering-based acoustic model on TIMIT. While
the training objective function monotonically decreased, the PER on the Dev set started
increasing at iteration 6.

to collect acoustic observations for each triphone state. For each triphone state with more

than 300 training examples, a 5-component GMM was trained using the EM algorithm,

resulting in about 500 classifiers at the top level. For the second level, a GMM was trained

if the corresponding node had more than 100 examples, resulting in about 4.7K classifiers.

The GMMs at the second level were allowed to add one mixture component per 50 training

examples until there were at most 10 components. For the bottom level, the broad classes

listed in Table 4.8 were used to construct classifiers. No cut-offs on the number of examples

were used for the bottom level, and the GMMs were allowed to add one mixture component

per 50 training examples until there were 20 components. There were in total 10.2K classi-

fiers used over all three levels, and 86.3K mixture components. The combination weights

were assigned according to the principles described in Figure 3-4. For convenience, we

call the model ML-Multi. The ML-Multi model had a PER of 26.2% on the Dev set, and

27.3% on the core test set.

Discriminative Training

The same setting of Minimum Classification Error (MCE) training used to train the clustering-

based model was also used to train the multi-level model. Figure 4-5 illustrates the PERs

of the multi-level acoustic model on the Dev Set cross different MCE iterations. According

110



Broad Class Phone Labels
Front Vowel iy ih ix eh ey ae aw
Back Vowel uw uh ow ao aa ay oy
Mid Vowel ah ax er
Semi Vowel w l y r el
Weak Fric v f th dh hh
Strong Firc z s sh zh jh ch
Voiced Stop b d g

Unvoiced Stop p t k
Nasal m n en ng dx

Silence <> cl vcl epi sil

Table 4.8: Broad classes used in the TIMIT experiment.
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Figure 4-5: MCE Training results for the multi-level acoustic model on TIMIT.

to the PER on the Dev set, the model at iteration 15 was selected. For convenience, we call

the model MCE-Multi. The PER of the MCE-Multi model on the core test set was 25.8%.

4.3.6 Comparisons

Table 4.9 summarizes the performances of the clustering-based acoustic model (CL) and

the multi-level acoustic model (Multi) on the Dev set and the core-test set of TIMIT. Com-

paring with the MCE-CL model, the MCE-Multi model has about 8% relative improvement

in PER on the core-test set. Based on the McNemar significance test [33], the improvement

was statistically significant (with p < 0.001). The result suggests that the multi-level struc-

ture can help improve phonetic prediction accuracy. Also, the relative improvement of
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Model Dev PER Core-Test PER
ML-CL 26.8% 29.0%

MCE-CL 26.4 % 28.2%
ML-Multi 26.2% 27.3%

MCE-Multi 24.3% 25.8%

Table 4.9: Comparison of the PERs of the clustering-based (CL) acoustic model and the
multi-level (Multi) acoustic model on TIMIT.

MCE-Multi over MCE-CL is larger than that of ML-Multi over ML-CL, suggesting that

the multi-level model can potentially benefit more from discriminative training than the

clustering-based model. This result is consistent with the hypothesis that by providing

different scores for different context-dependent states, the multi-level acoustic model can

have better discriminative power that can be learned via the discriminative training algo-

rithm. While the size of the multi-level model was larger, further increasing the size of the

clustering-based model did not further improve PER, as shown in Table 4.7.

Table 4.10 lists the performance of several discriminatively trained context-dependent

acoustic models on the core-test set reported in the literature6. Compared with the Max-

imum Mutual Information (MMI) model in [63] and the Phone-discriminating MCE (P-

MCE) model in [30], the MCE-Multi model yielded better performance. However, it did

not perform as well as the Boosted MMI (BMMI) model with discriminative feature-space

transform in [106]. Since the multi-level framework can be generalized to other types of

feature vectors, it would be interesting to see how the multi-level structure can further

improve the system with specially trained feature-space transform as in [106]. Neverthe-

less, the focus of the phonetic recognition experiment was to see whether the multi-level

model can improve phonetic prediction accuracy, rather than optimizing the performance

on TIMIT. Since the improvement shown in Table 4.9 has demonstrated the point, we can

move on to the next step; that is, to test whether the multi-level framework can be utilized

6The methods compared here were all speaker-independent models using a single type of acoustic feature
vector. Utilizing multiple types of acoustic observations during recognition has shown significant improve-
ment on PER as described in [44]. Speaker adaptation can also provide additional improvement as shown
in [106]. Since the focus here is to see if the multi-level framework can provide better performance than
clustering-based models given that other conditions are the same, we did not investigate using multiple types
of acoustic features. However, the multi-level framework can generalize to the system with multiple types of
acoustic observations. For speaker adaptation, see Chapter 6 for more details.
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Method Authors Year PER
MMI[63] Kapadia et al 1993 28.2%

P-MCE [30] Fu et al 2007 27.0%
fBMMI [106] Sainath et al 2009 22.7%

Table 4.10: Performances of several discriminatively trained context-dependent acoustic
model on the TIMIT core-test set.

by a large-vocabulary ASR system and provide better recognition performance.

4.4 Chapter Summary

In this chapter we conducted a phonetic recognition task to see that without lexicon and

word-level language model if the multi-level acoustic model could provide better phonetic

prediction accuracy than a conventional clustering-based acoustic model. The result was

positive since the multi-level model provided about 8% relative improvement in terms of

Phone Error Rate (PER). In the next chapter, we will deploy the multi-level framework to

a large-vocabulary ASR task to see if the multi-level framework can be well integrated into

existing decoding framework and provide better recognition accuracy.
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Chapter 5

Large-Vocabulary Speech Recognition

5.1 Motivation

In Chapter 3, we showed that the multi-level acoustic model addresses the data sparsity

problem for context-dependent acoustic modeling while preventing the quantization effect.

Such a property ensures that each context-dependent state can have a unique and robust

acoustic score for a given acoustic observation, and thus can potentially provide more dis-

criminating power to reduce confusions during decoding. While the phonetic recognition

experiments in Chapter 4 showed that the multi-level framework can provide better pho-

netic prediction accuracy, another important question is whether the multilevel framework

can be well integrated into a large-vocabulary ASR system, and provide performance im-

provement on a real world task. To test the performance of the multi-level model on a

large-vocabulary real world ASR task, in this chapter we conduct large-vocabulary lecture

transcription experiments on the MIT Lecture Corpus.

5.2 MIT Lecture Corpus

The MIT Lecture Corpus contains audio recordings and manual transcriptions for approx-

imately 300 hours of MIT lectures (number is still growing) from eight different courses,

and over 100 MITWorld seminars given on a variety of topics [96]. The audio data were

recorded with omni-directional microphones, and were generally recorded in a classroom

115



environment. The recordings were manually transcribed including disfluencies such as

filled pausess, and false starts. In addition to the spoken words, the following annotations

are also included in the transcriptions: occasional time markers at obvious pauses or sen-

tence boundaries, locations of speaker changes (labeled with speaker identities if known),

and punctuation, based on the transcriber’s subjective assessment of spoken utterances [37].

The lecture corpus is a difficult data set for ASR systems for the following reasons.

First, the recorded data consist of spontaneous speech. The lecture speech contains many

disfluencies such as filled pauses, false starts, and partial words. In addition, the sponta-

neous nature also results in less formal sentences, and poorly organized, or ungrammatical

sentences can be frequently observed. Second, the lectures contain many lecture-specific

words that are uncommon in daily life. The lecture-specific words can result in serious

Out-Of-Vocabulary (OOV) problems. As shown in [97], even using the 10K most frequent

conversational words1 as the vocabulary, the OOV rate is still around 10%. Third, the

speech data potentially suffer from reverberation, coughing, laughter, or background noise

such as students’ talking. The above reasons make it challenging to build a robust ASR

system for lectures.

5.2.1 Data Sets

In the experiments reported in this chapter, about 119 hours of lectures were selected as

the training data for the acoustic model. The training lectures include two lectures of linear

algebra (18.06), two lectures of introduction to computer programs (6.001), one lecture of

physics (8.224), two lectures of Anthropology, and 99 lectures from 4 years of MITWorld

lecture series on a variety of topics. Table 5.1 lists the sizes of the training lectures. In

addition to the word references, the phonetic time-alignments of the training lectures, which

were computed based on the forced-alignment algorithm described in [47], were also used

for acoustic model training.

Two held-out MITWorld lectures, Thomas Friedman’s “The World is Flat” lecture

(MIT-World-2005-TF) and Thomas Leighton’s lecture about a startup company called Aka-

mai (MIT-World-2004-TL), were used as a development (Dev) set. Table 5.2 lists the sizes
1Selected from SWITCHBOARD [38], a telephone conversation-based speech corpus.
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of the Dev lectures. Eight lectures from four subjects were selected as the test set for model

evaluation. The test set includes two lectures of differential equation (18.03), two lectures

of introduction to algorithms (6.046), two lectures of automatic speech recognition (6.345),

and two lectures of introduction to biology (7.012). Table 5.3 lists the sizes of the test lec-

tures. To evaluate the performance of the ASR system under a generic, speaker-independent

scenario, there were no speaker overlaps among all the three sets of data.

Class #Lectures #Hours
18.06-1999 2 1.45
6.001-1986 2 2.19
8.224-2003 1 0.94
MIT-World-2002 30 36.24
MIT-World-2003 51 54.60
MIT-World-2004 7 8.79
MIT-World-2005 11 12.39
St Marys-Anthropology 2 2.16
Total 106 118.76

Table 5.1: Sizes of lectures in the training set.

Class #Lectures #Hours
MIT-World-2005-TF 1 1.25
MIT-World-2004-TL 1 0.92
Total 2 2.17

Table 5.2: Sizes of lectures in the development set.

Class #Lectures #Hours
18.03-2004 2 1.66
6.046-2005 2 2.48
6.345-2001 2 2.54
7.012-2004 2 1.41
Total 8 8.11

Table 5.3: Sizes of lectures in the test set.
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5.3 Experiment

Two large-vocabulary ASR systems were used in the experiments: a diphone, landmark-

based system and a triphone, frame-based system. The diphone, landmark-based system

aims to decode quickly and would be suitable for applications that require a faster ASR re-

sponse. However, its recognition results might be less accurate. The triphone, frame-based

system decodes more accurately, but it runs much more slowly. Since the two systems

have different properties, evaluating both systems can provide a better indication as to how

well the multi-level acoustic modeling framework can be applied to different types of ASR

related applications.

5.3.1 Evaluation Metric

Word Error Rate (WER) was used as the evaluation metric for the system performance in

the automatic lecture transcription experiment. To compute the WER, for each utterance,

the reference word string and the best scoring hypothesis string from ASR are aligned

using dynamic programming to compute the number of Substituted (Sub), Inserted (Ins),

and Deleted (Del) words, and then the total number of errors are accumulated over all test

utterances and are normalized by the number of words in the references:

WER =
#Sub Words + #Ins Words + #Del Words

Total number of words the in references
. (5.1)

As in the phonetic recognition experiments of Chapter 4, the sclite toolkit [1] developed

by NIST was used to compute WERs.

5.3.2 Acoustic Observations

The acoustic observations (feature vectors) used by the two systems were extracted in the

same way except for the time locations where the features were extracted. For the diphone,

landmark-based system, the observations were extracted only at the acoustic landmarks

[34] that distribute non-uniformly over the utterance. For the triphone, frame-based sys-

tem, the observations were extracted uniformly at a 10ms frame rate, as in the phonetic
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recognition experiment of Chapter 4. At each time point to extract the acoustic observa-

tion, the same procedure described in Section 4.3.1 was used. Namely, the average values of

first 14 MFCCs from 8 telescoping regions were concatenated to a 112-dimensional vector,

and a composition of Neighbourhood Components Analysis [39] and Principal Component

Analysis [60] was used to reduce the dimension into 50. The projection matrix used for

dimension reduction was the same as in [114].

5.3.3 Phonetic Labels

The phonetic labels used by the triphone, frame-based system are listed in Table 5.4. Com-

pared with the 61 TIMIT labels listed in Table 4.1, the changes are as follows. “ax-h”,

“eng”, “hv”, “ix”, “hx”, “q”, and “ux” are removed. “h#” is replaced with “–”, and “pau”

with “ ”. “ah fp”, “ b”, “ c”, “ l”, and “ n” are added to model filled pause, background

sound, cough, laughter, and noise, respectively. There are 59(61 − 7 + 5 = 59) phonetic

labels in total used by the triphone, frame-based system. (60 kinds of contexts including

sentence boundary “<>”.)

For the diphone, landmark-based system, the phonetic labels are similar except that

more labels are used to model different types of background sounds, coughs, laughter, and

noises. For backgrounds, coughs, and laughter, each is modeled by 4 labels. For noise, 6

labels are used. As a result, there are in total 73 (54 + 1 + 4× 3 + 6 = 73) phonetic labels

used by the diphone-landmark system. (74 kinds of contexts including sentence boundary

“<>”.)

5.3.4 HMM Topologies

For the triphone, frame-based system the same 3-state topology illustrated in Figure 4-3

was used. For the diphone, landmark-based system, a 2-state topology illustrated in Figure

5-1 was used to model each diphone. The idea behind the 2-state topology is as follows.

Each landmark location computed by the algorithm in [34] represents a time point where

the spectral change of the acoustic signal is larger than a threshold. The spectral change

might correspond to a transition from one phone unit to another, or might correspond to an
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Label Example Label Example
aa bob ih bit
ae bat iy beet
ah but jh joke
ao bought k key
aw bout kcl k closure
ax about l lay
axr butter m mom
ay bite n noon
b bee ng sing

bcl b closure ow boat
ch choke oy boy
d day p pea

dcl d closure pcl p closure
dh then r ray
dx muddy s sea
eh bet sh she
el bottle t tea

em bottom tcl t closure
en button th thin
epi epenthetic silence uh book
er bird uw boot
ey bait v van
f fin w way
g gay y yacht

gcl g closure z zone
hh hay zh azure
– utterance initial and final silence

ah fp filled pause inter-world pause
b background sound c cough
l laughter n noise

Table 5.4: Phonetic labels used in the triphone, frame-based recognizer for lectures. Letters
in the examples corresponding to the phones are underlined. The labels above the double
horizontal lines are the same as those in TIMIT. The labels below the double horizontal
lines are used to represent silence, pause, and other sound effects.
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i(b)i(b)

t(a|b) i(b) t(b|c)
To the transition state of the diphone ``b!c’’.

t(b|c)
To the transition state of  the diphone ``b!c’’.

Figure 5-1: The 2-state topology used to model the diphones in the experiment. A diphone
“a-b” (phone “b” with left context “a”) is modeled by a transition state followed by an
internal state. t(a|b) denotes the model label that provides the score of an acoustic obser-
vation being a transition from phone “a” to phone “b”, while i(b) denotes the model label
that provides the score of an observation being an internal part of the phone “b”.

internal transition within a phone unit (such as diphthongs). The between phone transitions

are scored by a set of transition models, while the internal transitions are scored by internal

models. Since there is only one between phone transition for two consecutive phone units,

there is no looping at the transition state in the topology of Figure 5-1. While in principle

the internal models can also be context-dependent, making the internal models context-

independent can reduce the size of the search space, and significantly increase the decoding

speed.

5.3.5 Language Model and FSTs

The same topic-independent language model in [35] was used in the experiment. Three text

sources, the lecture transcriptions2, the SWITCHBOARD corpus [38], and the MICASE3

corpus, were used as the training data, and a vocabulary of size 37.4K was selected from

the texts. The ngram-count script of SRILM [116] (with -unk -prune 0.0000015)

was used to train a trigram language model. The trigram language model has a perplexity

of 202.7 on the two Dev lectures.

Finite State Transducers (FSTs) were used to modularize and combine the search con-

straints. The lexicon and pronunciation rules were converted into a Lexicon (L) FST4 and a

2Mainly the training lectures in Table 5.1, but some other lectures such as 8.01-1999 were also included.
3MIchigan Corpus of Academic Spoken English. http://quod.lib.umich.edu/m/micase/
4Some reduction rules were also applied during the construction of the L FST to convert casual usages of

words to formal usages, such as changing “gonna” to “going to”.

121



Pron-rule (P) FST [52], respectively. The bigram language model reduced from the trigram

language model was converted into a Language Model/Grammar (G) FST. Then, the P, L,

and G FSTs were composed and determinized to form a P ◦ L ◦ G FST. Depending on the

type of context-dependent acoustic model, different Context (C) FST was composed with

the P ◦ L ◦ G FST to form the search space during decoding, as described in Section 2.4.2.

The differences between the trigram and the bigram language models were also converted

into an FST to be used for a second pass re-scoring.

5.3.6 Clustering-Based Diphone Acoustic Models

As in [50], the 5, 549 diphone units5 used in the diphone-landmark system were reduced

to 1, 871 classes via clustering. For each of the 1, 871 classes, a GMM was trained under

the ML criterion by running the EM algorithm on the acoustic observations corresponding

to the class, based on the phonetic alignments generated in [47]. Each GMM was allowed

to add one mixture component per 50 examples until MAX MIX was reached. To create

models of different sizes, different values of MAX MIX, 30, 60, and 100, were used. For

convenience, we call the models ML-CL-Di30 (Maximum-Likelihood trained CLustering-

based Diphone model with MAX MIX= 30), ML-CL-Di60, and ML-CL-Di100.

For each of the three ML models, Minimum Classification Error (MCE) training was

used to refine the GMM parameters. As in other researches on discriminative training for

large-vocabulary ASR, such as [86], a unigram (rather than bigram or trigram) language

model was used for the MCE training to force the acoustic model to correct more errors

during training. To speed up the training process, only the best K = 20 hypotheses were

considered during the gradient computation. Since the WERs on training lectures were

already high, no margins were used to boost the scores of competing hypotheses. As in

the phonetic recognition experiments, the Quickprop algorithm (as described in Appendix

G) was used to update parameters. The operational constants used for MCE training are

listed in Table H.2. The WER on the Dev set was used as the selection criterion over the

MCE iterations. For convenience, we call the MCE trained models MCE-CL-Di60, MCE-

574 × 74 for transition models plus 73 for internal models. There is no internal model for sentence
boundary “<>”.
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Model #Mixtures Dev WER
ML-CL-Di30 31.9K 45.7%
ML-CL-Di60 49.5K 44.2%
ML-CL-Di100 65.3K 43.8%

MCE-CL-Di30 31.9K 41.2%
MCE-CL-Di60 49.5K 41.5%
MCE-CL-Di100 65.3K 41.5%

Table 5.5: WER of clustering-based diphone models on the Dev lectures.

Model 6.046 6.345 7.012 18.03 Test WER
ML-CL-Di30 42.7% 34.5% 33.6% 42.3% 38.2%

MCE-CL-Di30 37.6% 28.5% 28.9% 36.8% 32.8%

Table 5.6: WER of clustering-based diphone models on the Test lectures.

CL-Di60, and MCE-CL-Di100, respectively.

Table 5.5 lists the WERs of the clustering-based diphone models on the Dev lectures.

While the WERs of these ML models improved as the number of mixture components

increased, the MCE models did not show such trend. Investigating the loss functions of

the MCE models on both the training and Dev lectures, we found that the training loss

decreased as the number of mixture components increased, while the loss on the Dev set

increased, suggesting that some over-training might have occurred. Based on the WER

on the Dev set, the MCE-CL-Di30 model was selected. For convenience, we use ML-

CL-Di and MCE-CL-Di to refer the ML-CL-Di30 model and the MCE-CL-Di30 model,

respectively, in the following sections. Table 5.6 lists the WERs of the ML-CL-Di30 and

MCE-CL-Di30 models on the subsets of the Test lectures. As shown in the table, the MCE

training significantly improved the WER on each subset of the test lectures, showing the

effectiveness of the discriminative training.

5.3.7 Multi-level Diphone Acoustic Models

The model structure in Figure 3-8 was used to construct a basic multi-level diphone acoustic

model. Broad classes in Table 5.7 were used to construct bottom level classifiers. The same

phonetic alignments generated in [47] were used to collect training examples for the GMM
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Broad Class Phone Labels
Low Vowel aa ah ah fp ao aw ax ow uh uw w
High Vowel ae ay eh ey ih iy oy y

Retroflex er r axr
Lateral el l

Fric f v th dh s z sh zh ch jh hh
Closures bcl dcl gcl pcl tcl kcl epi

Stop b d g p t k
Nasal m em n en ng dx

Silence – <>

Noise
b1 b2 b3 b4 c1 c2 c3 c4 l1

l2 l3 l4 n1 n2 n3 n4 n5 n6

Table 5.7: Manner-based broad classes used to construct the basic multi-level diphone
acoustic model.

classifiers, and the EM algorithm was used to train the GMM parameters under the ML

criterion. Each GMM was allowed to add one mixture component per 50 training examples

until there were a maximum of 30 components. For convenience, we call the model ML-

B-Multi-Di (Maximum-Likelihood trained Basic Multi-level Diphone model).

As described in Section 3.2.4, multiple sets of broad classes can be used to construct

bottom level classifiers. Table 5.8 lists another set of broad classes based on place of articu-

lation that was used to construct an extended version of multi-level model. Each additional

GMM classifier from the additional broad classes was also allowed to add one mixture

components per 50 training examples until there were a maximum of 30 components. In

the extended model, the default combination weight for a top level classifier was set to

1/3, and the default weight for each bottom level classifier was set to 1/6. If the top level

classifier did not have enough training examples, its weight was equally distributed to the

bottom level classifiers. For convenience, we call the model ML-E-Multi-Di (Maximum-

Likelihood trained Extended Multi-level Diphone acoustic model).

MCE training was used to refine the GMM parameters of both the basic and extended

multi-level models. The same set of operational constants as in the MCE training of the

clustering-based diphone acoustic models were used. The WER on the Dev lectures was

used as the selection criterion over different MCE iterations. Table 5.9 lists the WERs on
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Broad Class Phone Labels
Labial m em b p bcl pcl f v

Alveolar n en d t dcl tcl s z th dh
Palatal sh zh jh ch
Velar ng k g kcl gcl
Front ae aw eh ey ih iy
Back aa ao ay ow oy uw uh
Mid ah ah fp ax axr er hh

Semi Vowel l el r w y
Silence – <>

Noise
b1 b2 b3 b4 c1 c2 c3 c4 l1

l2 l3 l4 n1 n2 n3 n4 n5 n6

Table 5.8: Place of articulation-based broad classes used for the extended multi-level di-
phone acoustic model.

Model #Mixtures Dev WER Test WER
ML-B-Multi-Di 58.7K 45.5% 37.8%
ML-E-Multi-Di 85.0K 45.7% 38.0%

MCE-B-Multi-Di 58.7K 40.0% 30.3%
MCE-E-Multi-Di 85.0K 39.2% 29.9%

Table 5.9: WERs of multi-level diphone acoustic models on Dev and Test lectures.

the Dev and Test lectures before and after the MCE training. Unlike the clustering-based

model, although the extended model has more parameters than the basic model, it still

provided better WERs after MCE training. Also, increasing the MAX MIX for the bottom

level classifiers in the basic multi-level model to 60 further reduced the WERs on both

the Dev and Test lectures to 39.3% and 30.1%, respectively, for the MCE trained models.

These facts suggest that the multi-level model might be less sensitive to over-training as the

number of parameters increases.

5.3.8 Clustering-Based Triphone Acoustic Models

As in Section 4.3.4, the acoustic observations corresponding to each triphone state were

collected based on the phonetic alignments from [47]. The question set in Table F.2 was

used to grow the decision trees. The same decision tree clustering procedure as in Section
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MIN DP MAX NODES CL STATES Dev WER
50 100 14.3K 39.4%
50 200 24.3K 40.2%
100 50 7.7K 39.8%
100 100 13.9K 39.6%
100 200 22.4K 40.6%
200 25 4.2K 40.2%
200 50 7.5K 39.4%
200 100 13.2K 39.5%
200 200 19.8K 40.2%

Table 5.10: WERs on the Dev lectures under different clustering settings.

4.3.4 was used. Several sets of clustering settings were tested. For each clustering setting,

a GMM was trained for each leaf node, and the GMM was allowed to add one mixture

component per 50 training examples until there were 60 components. The WER on the

Dev lectures was used as the selection criterion among different settings. Table 5.10 lists

the numbers of resulting clustered states and WERs on the Dev lectures under different

clustering settings. While the model with 7.5K clustered states had slightly better WER on

the Dev set than the model with 14.3K clustered states, its WER on the Test set was better

by 0.4% absolute. Based on the results in Table 5.10, the setting with 7.5K clustered states

was used for the following steps.

Different values of MAX MIX were used to obtain models of different size. As before,

each GMM was allowed to add one mixture component per 50 examples until MAX MIX

components were reached, and the GMMs were trained under ML criterion using the

EM algorithm based on the phonetic alignments. For each ML model under a particu-

lar MAX MIX, MCE training with operational constants in Table H.3 was applied to refine

the GMM parameters. Table 5.11 lists the WERs of the models on the Dev and Test lectures

before and after MCE training. As shown in the table, for smaller models, MCE training

provided larger improvement over the original ML models, but the Test WER did not nec-

essarily become better. (Since their ML starting point were worse.) Based on the results

in Table 5.11, MCE-CL-Tri60 was selected. For convenience, we call ML-CL-Tri60 and

MCE-CL-Tri60 by ML-CL-Tri and MCE-CL-Tri respectively in the following sections.
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Model #Mixtures Dev WER Test WER
ML-CL-Tri15 103K 41.6% 34.5%
ML-CL-Tri30 265K 40.1% 33.0%
ML-CL-Tri60 310K 39.4% 32.4%
ML-CL-Tri120 471K 39.0% 32.2%
ML-CL-Tri240 641K 39.0% 32.0%

MCE-CL-Tri15 103K 38.0% 31.2%
MCE-CL-Tri30 265K 38.0% 30.7%
MCE-CL-Tri60 310K 37.3% 30.6%
MCE-CL-Tri120 471K 37.5% 31.1%
MCE-CL-Tri240 641K 37.5% 31.4%

Table 5.11: WERs of clustering-based triphone acoustic models of different sizes. The
numbers in the subscripts refers to the value of MAX MIX.

5.3.9 Multi-level Triphone Acoustic Models

Similar to the diphone case, both a basic and an extended multi-level triphone acoustic

model were trained. The model structure in Figure 3-4 was used to build the ML-B-Multi-

Tri (Maximum-Likelihood trained Basic Multi-level Triphone) model. Count statistics

were used as the selection criteria for classifiers at the top level. Table 5.12 lists the num-

ber of triphone states that have training examples larger than several thresholds. Jointly

considering the number of states and the number of training examples, 800 was selected as

the cut-off, resulting in about 10.3K classifiers, and a 15-component GMM was trained for

each classifier using the EM algorithm. For the second level, 200 was chosen as the cut-off

threshold to cover over 90% of diphone contexts that appeared in the lexicon, resulting in

about 9.5K classifiers. For each GMM classifier at the second level, the GMM was allowed

to add one mixture component per 50 training examples until there were 30 components.

For the bottom level, the manner-based broad classes in Table 5.7 were used except that the

Noise class was merged into the Silence class (and the labels for noises and artifacts were

also simplified). Each classifier at the bottom level was allowed to add one mixture compo-

nent per 50 training examples until 60 components were reached. Adding up the classifiers

over the three levels, the resulting model had 25.2K classifiers and 646K Gaussian mixture

components.

For the ML-E-Multi-Tri model, classifiers from the place-of-articulation-based broad
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Example Counts Number of Triphone States
> 0 102K
> 100 37.1K
> 200 26.3K
> 400 17.2K
> 800 10.3K
> 1600 5.6K
> 3200 2.7K

Table 5.12: Counts statistics of triphone phone states in the training lectures.

Model #Mixtures Dev WER Test WER
ML-B-Multi-Tri 646K 39.6% 31.3%
ML-E-Multi-Tri 907K 39.7% 31.3%

MCE-B-Multi-Tri 646K 34.9% 27.4%
MCE-E-Multi-Tri 907K 34.9% 27.1%

Table 5.13: WERs of the multi-level triphone acoustic models on the Dev and Test lectures.

classes in Table 5.8 (with the Noise class merged into the Silence class) were added to the

bottom level. The resulting extended model had 30.8K classifiers and 907K components in

total. In terms of the assigning the combination weights, the principles described in Section

3.2.4 were used.

For both the ML-B-Multi-Tri and ML-E-Multi-Tri models, MCE training was used to

refine the GMM parameters. To speed up the training process, a larger initial learning rate

ε for the Quickprop algorithm was used6, where other operational constants were the same

as the training for the clustering-based triphone model. The WER on the Dev lectures was

used as the selection criterion among different MCE iterations. Table 5.13 lists the WERs

of the multi-level models on the Dev and Test lectures. As in the diphone scenario, the

multiple broad-class extension provided extra WER improvement on the Test lectures after

MCE training.

6Both of them started with ε = 2.5, but the ε for the basic model was set to 1.0 after iteration 7 because
the length of the gradient suddenly became much larger at that iteration. For the extended model, however,
the learning rate was kept the same all the way.
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Learning Combination Weights

Instead of using the default assignments, the combination weights could also be automat-

ically learned as described in the later part of Section 3.2.3. One question is whether the

learning of weights can further improve the system performance with MCE trained GMM

parameters. The following summarizes several attempts to further improve the MCE-B-

Multi-Tri and MCE-E-Multi-Tri models via adjusting the weights.

The first attempt was to directly run the constrained optimization in Equation (3.7) on

the training lectures. Although doing so could keep improving the MCE objective function,

the WER on the Dev lectures got worse. Looking at the resulting weights, we found that

a lot of weights of the top level classifiers were very close to 1. One possible reason for

this might be that the MCE training might have reduced the confusions of a significant

amount of triphone states that have top level classifiers, and made the model become more

confident on those top level classifiers. Since each top level classifier was associated to one

unique triphone state, setting a larger combination weight on a confident top level classifier

might potentially further reduce confusions on the training lectures. This self amplification

might potentially hurt the generalization ability of the model.

Based on the lesson from the first attempt, the second attempt was to run the weight

optimization on the Dev lectures. While doing so successfully reduced the WER on the Dev

set, it resulted in almost no changes on the WER of the Test lectures. One possible reason

for this might be that there were too many free parameters in the optimization. Because

each triphone state could have its own independent set of combination weights based on

Equation (3.7), there could be O(105) free parameters in the weight optimization. It might

be that the set of triphone states appearing in the Dev lectures might just weakly overlap

with those appearing in the Test lectures. Therefore, if the weights of all the triphone states

were allowed to move independently, what was learned from the Dev lectures might not be

transferable to the Test lectures.

As a result, the third attempt was to tie the weights according to broad class triples

during the optimization, as described in the last paragraph of Section 3.2.3. As shown in

Table 5.14, doing so reduced the WERs on both the Dev and Test lectures. Also, the weight
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Model Dev WER Test WER
MCE-B-Multi-Tri 34.9% 27.4%
wMCE-B-Multi-Tri 34.8% 27.3%

MCE-E-Multi-Tri 34.9% 27.1%
wMCE-E-Multi-Tri 34.7% 27.0%

Table 5.14: WERs of the multi-level triphone acoustic model before and after weight opti-
mization. The models with w as the prefix denote the ones with weight optimization.

optimization provided better WER improvement for the extended model on the Dev lectures

than for the basic model. This result was consistent with the fact that the extended model

has more free parameters and should perform better on the data set where the optimization

were conducted. One final remark is that while model with the weight optimization does

not seem to have a large improvement over the model with default weights, the weights can

be influential to WERs. For example, randomly assigning positive weights (but with the

weights of each state summed to one) can make the WERs of both ML and MCE trained

models get worse by 1 ∼ 2% absolute, compared with models using the default weight

assignment. This fact suggests that the default weight assignment might be close to a local

optimum.

5.3.10 Comparisons and Discussions

Figure 5-2 summarizes the WERs of the acoustic models on the Test lectures. As shown

in the figure, MCE training significantly improved the test WER cross all types of mod-

els. Among the MCE trained models, the multi-level (Multi) models outperformed the

clustering-based (CL) models on both the diphone and triphone-based systems. This result

shows that the multi-level framework can be integrated into different types of systems and

combine well with discriminative training methods. Among the MCE trained multi-level

models, the extended (E-Multi) models provided better WERs than the basic (B-Multi)

models. Based on the McNemar significant test [33], the improvements of MCE-Multi

over MCE-CL and the improvements of MCE-E-Multi over MCE-B-Multi were all statis-

tically significant (with p < 0.001). As a comparison, the MCE-CL-Tri model has similar

performance as the triphone model in [87] on the lecture data.
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Figure 5-2: WERs of the acoustic models on the Test lectures.

In terms of computation, under the same pruning threshold during decoding, the MCE-

B-Multi-Di model was about 10 ∼ 20% slower than the MCE-CL-Di model, while the

MCE-B-Multi-Tri was about two times slower than the MCE-CL-Tri model. One possible

cause of the difference between the diphone and triphone-based systems might be that the

acoustic models and the FSTs are much larger for the triphone-based system, resulting

in higher memory overhead. Different pruning thresholds were also used to evaluate the

models. If the pruning threshold was adjusted for the MCE-CL-Tri model such that it

took similar amount of decoding time as the MCE-Multi-B-Tri model under the default

pruning threshold, its WER on the test lectures improved about 0.2% absolute. On the

other hand, if the pruning threshold was adjusted for the MCE-Multi-B-Tri model such

that it took similar amount of decoding time as the MCE-CL-Tri model under the default

pruning threshold, its WER on the test set degraded about 1.0% absolute. While there

were trade-offs between accuracy and decoding speed, the improvements of the multi-level

models over the clustering-based models were still significant.

While the multi-level models provided improvements over clustering-based models un-

der both ML and MCE training criteria, the gains under MCE training were larger. One

possible explantation is as follows. During the MCE training of clustering-based models,

if there were two states s1 and s2 belonging to the same cluster but one showing up in the
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reference and the other showing up in one of the competing hypotheses, then the MCE

training could not correct this type of confusion. On the other hand, under the multi-level

framework, there would be at least one classifier associated with s1 and one classifier asso-

ciated with s2 that could be adjusted to correct this confusion. In this way, MCE training

can potentially correct more confusions for the multi-level models, resulting in larger per-

formance gains.

Also, as shown in Table 5.5 and 5.11, at some point, the MCE training became less

effective for the clustering-based models as the number of parameters became larger. In-

vestigating the MCE objective functions showed that the training objective functions kept

improving as the number of parameters increased. These facts suggest that some over-

training effects might have occurred. On the other hand, the multi-level model kept im-

proving while the number of parameters increased. Also, although there were many more

parameters in the extended multi-level models than the basic multi-level models, the MCE

training still provided some improvements. These facts suggests that the multi-level frame-

work is potentially less likely to suffer over-training as the number of parameters increases.

While the models used in the experiments of this chapter were all trained with the

119-hour training lectures listed in Table 5.1, it would also be interesting to compare how

the clustering-based and the multi-level models perform with different amounts of training

data. When the amount of training data is reduced, the data sparsity problem becomes

more severe, and it would be an interesting scenario to evaluate how effectively the model

addresses the data sparsity problem. Although not reported in this chapter, part of the ex-

perimental results reported in Chapter 6 suggest that the multi-level model provides better

performance improvement over the clustering-based model when the amount of training

data is more limited. This can potentially be an advantage when deploying an ASR system

for a language with more limited resources.

5.4 Chapter Summary

In this chapter, a large-vocabulary lecture transcription task on the MIT Lecture Corpus

was used to evaluate whether the multi-level framework could be integrated into existing
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Figure 5-3: Summary of the word error rate improvements of different combinations of
modeling techniques on the Test lectures.

ASR systems and provided better recognition accuracy over conventional clustering-based

acoustic model. Different modeling techniques were compared in the experiment: in terms

of training criteria, Maximum-Likelihood (ML) v.s. Minimum Classification Error (MCE);

in terms of length of context-dependency, Diphone v.s. Triphone; and in terms of ways of

addressing data sparsity, Clustering (CL) v.s. Multi-level (Multi). Figure 5-3 summarizes

the word error rate improvements of different combinations of modeling techniques on the

Test lectures. The experiment results confirmed that the multi-level framework can be inte-

grated into existing large-vocabulary ASR systems, and combines well with discriminative

training methods.
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Chapter 6

Adaptive Acoustic Modeling

6.1 Motivation

Although most ASR systems are pre-trained, it is usually desirable for them to be able to

adapt to incoming speech data since significant performance improvement are often achiev-

able [133, 134]. Therefore, when introducing a new modeling component to the system, it

is important to evaluate how the new component might affect the adaptability of the sys-

tem. In this chapter, a large-vocabulary speaker adaptation experiment is conducted to test

whether the multi-level acoustic model can adapt better than the conventional clustering-

based acoustic model. Several speaker adaptation algorithms and adaptation scenarios are

first reviewed, and then, the experimental results are reported.

6.2 Overview of Speaker Adaptation

6.2.1 Speaker Adaptation Algorithms

Speaker adaptation methods have been studied extensively for GMM-based ASR. One of

the simplest and most effective method is Maximum A Posteriori (MAP) adaptation that

updates GMM parameters of a Speaker Independent (SI) model to maximize the posterior

probability of the adaptation data with respect to the updated parameters [32]. Details of

MAP-based adaptation can be found in Appendix C.
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Instead of updating each Gaussian component individually as in the MAP adaptation al-

gorithm, the Maximum Likelihood Linear Regression (MLLR) algorithm groups Gaussian

components and estimates a linear transform of the SI GMM means to the corresponding

Speaker Dependent (SD) distribution in order to maximize the likelihood of the adaptation

data [79]. Eigenvoice [69] and reference speaker weighting [49] use multiple reference

speakers to represent a speaker vector that is a concatenation of Gaussian means. The

adapted speaker vector is determined using a Maximum-Likelihood (ML) criterion to de-

rive a linear combination of the reference speaker vectors. Although these methods are

all effective with limited adaptation data, MAP adaptation typically provides the largest

improvement in WER when there is a significant quantity of adaptation data [69].

While the aforementioned methods use ML-based criterion, discriminative methods

have also been investigated, and several types of discriminative objective functions have

been successfully used for speaker adaptation. For example, the statistics of Maximum

Mutual Information (MMI) training have been used to formulate a Conditional MLLR

(CMLLR) adaptation framework [43]. Minimum Phone Error (MPE) training has also

been shown to be effective in estimating the regression transformation matrix [122]. If

enough adaptation data are available, the entire set of GMM parameters can be adapted

via the discriminative MAP method [102]. In addition, training criteria such as Minimum

Classification Error (MCE) has also been shown to be effective for speaker adaptation [50].

6.2.2 Adaptation Scenarios

Depending on whether the reference transcriptions of the adaptation data are available, the

adaptation scenarios can be categorized into a supervised adaption or an unsupervised adap-

tation. Under a supervised adaptation scenario, both the speech data from the speaker and

the corresponding reference transcriptions are available. On the other hand, only the speech

data are available under an unsupervised adaption scenario. While supervised adaptation

provides much better performance improvement than unsupervised adaptation, investigat-

ing model performances under unsupervised scenario is also important. This is because

collecting the speech data is generally much easier than collecting both the speech data
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and the corresponding references. In the adaptation experiments reported in this chapter,

the performance of the clustering-based and multi-level models were evaluated under both

supervised and unsupervised adaptation scenarios.

Depending on whether the system considers previous adaptation data, and the initial

model, the adaptation scenarios can also be categorized into a batch adaptation scenario or

an online adaptation scenario. Under a batch adaptation scenario, the model is not updated

until a significant amount of adaptation data is available. When doing the update, the initial

model is used as the starting point of the adaptation, and all the previous adaptation data are

used during the update. On the other hand, under an online adaptation scenario, the model

is adjusted based on the currently available adaptation data, and the model keeps changing

as new adaptation data comes in. Typically, batch adaptation takes more time to update

the model, but it usually provides better and more stable performance improvement. In the

experiments reported in this chapter, only the model performance under batch adaptation

were investigated since batch adaptation provides a more stable measure on how well the

model adapt.

Finally, in many cases, there can be many potential speakers that will use the ASR

system. In such a multi-speaker scenario, the speakers and corresponding adaptation data

are typically clustered into several groups, and a speaker adaptive model is constructed

for each group. During recognition, either a speaker identification procedure can be used

to select which speaker adaptive model to use; or the systems can run in parallel, and

the best scoring one can be selected as the output. Since the focus of this research is to

compare the adaptation abilities between the clustering-based model and the multi-level

model, investigating model performance under a single speaker scenario is sufficient.

6.3 Supervised Adaptation Experiment

6.3.1 Setup

A series of lectures on introductory mechanical physics (8.01-1999) taught by a Dutch-

accented lecturer in the MIT Lecture Corpus were used for the speaker adaptation exper-
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Model SI-ML-CL SI-MCE-CL SI-MCE-Multi
WER 32.3% 31.7% 28.6%

Table 6.1: WER of Speaker-Independent (SI) models on the three evaluation lectures of
8.01-1999.

iment. The audio and transcripts of the first 30 lectures were used as potential adaptation

data, while the last 3 recorded lectures (L31, L32, and L34) were used as the evaluation

data. As in the experiments in Chapter 5, WER was used as the evaluation metric.

The same ASR configuration as described in Chapter 5 was used for the evaluation

except that the transcriptions of 8.01-1999 lectures were removed from the training text

of the language model. Other parts of the configuration, including acoustic observation

extraction, HMM topology, pronunciation rules, lexicon, and vocabulary, stayed the same.

More details about the impacts of the language model can be found in Section 6.3.3.

6.3.2 Acoustic Models

Speaker-Independent Acoustic Models

Several triphone-based acoustic models trained in the experiments of Chapter 5 were used

as Speaker-Independent (SI) models to compare the effect of adaptation. For the clustering-

based models, the ML-CL-Tri and MCE-CL-Tri (with MAX MIX=60) models in Chapter 5

were used. Since only the triphone models were compared in the adaptation experiments,

we call the models SI-ML-CL and SI-MCE-CL, respectively. For the multi-level model, the

MCE-B-Multi-Tri (without weight optimization) was used. Similarly, we call the model SI-

MCE-Multi for the rest of the chapter. The WERs of the SI models on the three evaluation

lectures are listed in Table 6.1.

Speaker-Adaptive Acoustic Models

To evaluate how the amount of adaptation data might affect model performance, the adapta-

tion lectures were arranged into four incremental groups: “L01 to L05”, “L01 to L10”, “L01

to L20”, and “L01 to L30”. To construct the MCE-based Speaker-Adaptive (SA) model,
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the SI-MCE-CL and SI-MCE-Multi models were used as initial models, and several itera-

tions of MCE training were conducted on the data of each incremental group, resulting in

SA-MCE-CL and SA-MCE-Multi models shown in Figure 6-1. As in the experiments in

Chapter 5, unigram language models1 were used during the MCE training. Similar settings

as in Table H.3 were used for the MCE training except that the STEP LIMIT was set to

1.0 and that the learning rate ε was set to 25.0, 15.0, 10.0, and 7.5 respectively for each in-

cremental group, respectively. Depending on the size of the data group, the MCE training

converged in around 5− 7 iterations.

As a baseline to compare with the MCE-based adaptation, the commonly used Maxi-

mum A Posteriori(MAP) based adaptation was also implemented. The SI-ML-CL model

was used as the initial model for the MAP adaptation, and the modified EM algorithm

described in Appendix C was used to update the model. The performance of the MAP

adaptation algorithm on different amounts of adaptation data correspond to the SA-MAP-

CL line plotted in Figure 6-1.

Speaker-Dependent Acoustic Model

Speaker-dependent acoustic models were also trained on the adaptation data as a compari-

son to the effectiveness of adaptation. For the clustering-based models, the same stopping

criteria described in Section 5.3.8 were used for growing the decision trees. Different

amounts of adaptation data resulted in different amounts of clustered states. For the GMM

of each clustered state, it was allowed to add one mixture component until 60 components

were reached. Both ML and MCE2 training were applied to learn the GMM parameters.

Table 6.2 lists the WERs of the speaker-dependent acoustic models with respect to different

amounts of adaptation (training) data. As shown in the table, when the number of training

lectures increased, the WERs of the speaker-dependent models on both the training and test

lectures also improved. While the MCE training significantly reduced the training WERs,

the reductions of the test WERs were not as much. This result might be due to the fact that

1The transcriptions of the adaptation lectures were included when constructing the unigram language
models.

2The operational constants for the MCE training were the same as what used to train the Speaker-Adaptive
(SA) MCE models except that the learning rate ε was set to 7.5 for all the four data groups.
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#Lectures #States #Mixtures
Training WER Test WER
ML MCE ML MCE

5 2.3K 23K 8.8% 4.8% 27.8% 27.9%
10 3.7K 43K 8.5% 4.9% 24.1% 24.0%
20 5.0K 78K 6.8% 4.4% 20.5% 20.0%
30 5.5K 107K 6.4% 4.1% 18.7% 18.1%

Table 6.2: WERs of speaker-dependent, clustering-based acoustic models.

#Lectures #Classifiers #Mixtures
Training WER Test WER
ML MCE ML MCE

5 7.2K 94K 6.3% 3.8% 24.7% 24.2%
10 8.7K 157K 7.2% 4.3% 21.5% 20.7%
20 10.8K 242K 7.2% 4.2% 19.1% 17.9%
30 12.2K 295K 7.7% 4.4% 17.8% 16.2%

Table 6.3: WERs of speaker-dependent, multi-level acoustic models.

the training errors were already low, and the models might have suffered certain degree of

over-training. For comparison, the WERs of the MCE trained speaker-dependent models

were plotted as the SD-MCE-CL line in Figure 6-1.

For the multi-level models, the basic structure in Figure 3-4 was used to construct the

classifiers. As in Section 5.3.9, each top level classifier had to have more than 800 ex-

amples, and 15 Gaussian mixture components were trained for each top level classifier.

Each second level classifier had to have more than 200 training examples and was allowed

to add one mixture component every 50 training examples until there were 30 compo-

nents. The manner-based broad classes used in Section 5.3.9 were also used to construct

the bottom level classifiers, and each classifier was allowed to add one mixture compo-

nent every 50 training examples until there were 60 components. The model parameters

were initialized under the ML criterion, and were refined using MCE training. The oper-

ational constants used for the MCE training were the same as what were used for training

the speaker-dependent, clustering-based models. Table 6.3 lists the sizes and WERs of

the speaker-dependent, multi-level acoustic models with different amounts of training lec-

tures. While the speaker-dependent, multi-level models had much larger sizes than the

speaker-dependent, clustering-based models, the multi-level models had larger improve-
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Figure 6-1: Supervised adaptation results.

ments after the MCE training. This fact suggests that the multi-level models are less likely

to suffer over-training as the number of parameters increases. For comparison, the WERs

of the MCE trained, speaker-dependent, multi-level acoustic models were plotted as the

SD-MCE-Multi line in Figure 6-1.

6.3.3 Comparisons and Discussions

Figure 6-1 summarizes the performance of different types of acoustic models. As shown

in Figure 6-1, both the MAP and MCE-based adaptation effectively reduced the WERs,

and the gains over SI models (the points with 0 adaptation lectures) kept increasing as

the amount of adaptation data increased. Also, the gains of the MCE adaptation were

consistently larger than that of the MAP adaptation, suggesting that discriminative-based

criteria can potentially provide better adaptation capability.

As shown by the “SA-MCE-Multi vs. SA-MCE-CL” line in Figure 6-2, the relative

improvement of the SI-MCE-Multi model over the SI-MCE-CL model was about 10% (the

point with 0 adaptation lectures). However, the relative improvements became 14 ∼ 15%

when the models started adapting on the data. This result suggests that the multi-level

model can potentially adapt better than the clustering-based model. One possible reason

that contributes to such improvement might be as follows. Consider two triphone units s1
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Figure 6-2: Relative improvements of multi-levels models over clustering-based models.

and s2 that were clustered together by the speaker-independent, clustering-based model.

The two units were clustered together because “on average” they were similar across the

speakers that appeared in the training data. However, for the particular speaker to whom

the model sought to adapt, the two units could be very different. Since the two units were

clustered together, the clustering-based model was not able to capture the difference. On

the other hand, under the multi-level framework, there would be at least one classifier that

could be modified to capture the difference.

Comparing the SA-MCE-CL and SD-MCE-CL models, the speaker-adaptive models

performed better than the speaker-dependent models when less adaptation data were avail-

able, but the relative performance of the two models switched when there were about 15

adaptation lectures. On the other hand, the SA-MCE-Multi model had at par performance

as the SD-MCE-Multi model when there were 20 adaptation lectures, and it was only

slightly worse than the SD-MCE-Multi model when all the 30 lectures were used. This

result also supports that the multi-level model has better adaptation capability than the

clustering-based model in the sense that under the multi-level framework, it requires more

data for the speaker-dependent model to provide competitive performance as the speaker-

adaptive model.

Comparing the speaker-dependent models, as shown by the “SD-MCE-Multi vs. SD-

MCE-CL” line in Figure 6-2, the speaker-dependent, multi-level model had larger relative
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improvement over the speaker-dependent, clustering-based model when there were fewer

training lectures. When fewer training data were available, the data sparsity problem could

become more severe. Having larger improvement when fewer data were available suggests

that the multi-level model can potentially handle the data sparsity problem more effectively,

and might be less likely to suffer over-training. This can be advantageous when deploying

an ASR system for a language that has relatively limited resources.

Although not shown, the effects of using different language models were also evalu-

ated. When including the transcriptions of all the 8.01-1999 lectures (including the three

evaluation lectures) to the training texts of the language model, the performances of the

models still followed the same trend as shown in Figure 6-1, but the WERs of the models

improved about 2% absolute. Another experiment included only the transcriptions from

the adaptation lectures to the training texts. Doing so could also consistently improved the

WERs, and the gain increased slightly as the amount of adaptation data increased. How-

ever, even at 30 adaptation lectures, the improvements were only around 0.5% absolute.

Therefore, the main impact was from including the transcriptions of the test lectures (the

last three in the lecture series). Nevertheless, the usages of different language models did

not affect the analysis described in the previous paragraphs.

6.4 Unsupervised Adaptation Experiment

To start the unsupervised adaptation, the audio data of the adaptation lectures were first

recognized by the MCE trained Speaker-Independent (SI) model with the trigram language

model. Then, the best scoring recognition hypothesis for each utterance was used as the

“reference”, and was used for the MCE based adaptation to generate a Unsupervised-

Adaptive (UA) model. The results of the unsupervised adaptation are plotted in Figure

6-3. As shown in the figure, although improvement of the UA-MCE-Multi model over the

UA-MCE-CL model was not as large in the supervised scenario, it still provided about 10%

relative improvement consistently over different amounts of adaptation data. This result is

positive in the sense that the improvement from the SI training stayed relatively constant in

the adaptation, and that the multi-level model was consistently better through the adaptation
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Figure 6-3: Unsupervised adaptation results.

process.

Several other ways of doing unsupervised adaptation were also investigated. For ex-

ample, after the adapted model was generated, it could be used to re-recognize the speech

again and generate a potentially more accurate “transcription” that could be used to adapt

the model parameters. However, such an iterative procedure did not provide better per-

formance on the test lectures, probably because some errors were accumulated during the

iterative process. Another attempt was to first recognize a subset of the adaptation data,

adapt on the subset, use the adapted model to recognize another subset, and so on so forth.

However, the incremental procedure produced some cumulative errors over different sub-

sets 3. Such effect of cumulative errors might be mitigated if a “reference-lattice” rather

than the best hypothesis was used for adaptation. While several details might need fur-

ther investigation, the current experimental result still shows that the multi-level model can

potentially adapt better against new speech data even in a unsupervised scenario.

3For example, on one of the subset of data, some silence part might be miss-recognized as a filler word,
and when the model adapted on the “reference”, it would try to generate a filler word on those miss-recognized
parts, resulting in generating more insertions of the filler words on the next subset of data.
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6.5 Chapter Summary

In this chapter, a large-vocabulary speaker adaptation experiment was conducted to com-

pare the adaptation capabilities of the conventional clustering-based acoustic model and the

multi-level acoustic model against new speech data. The experiment results showed that

the multi-level model had about 14 ∼ 15% relative improvement over the clustering- based

model under a supervised adaptation scenario, and had about 10% relative improvement

under an unsupervised adaptation scenario. These results support the hypothesis that the

multi-level model can adapt better against new data, which can potentially be beneficial

when deploying ASR systems.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

One key message delivered in this thesis is that “not everything has enough training data,

but different things can still be modeled differently by appropriately combining multiple

levels of perspectives.” The conventional context-dependent acoustic modeling framework

deals with the data sparsity problem by grouping context-dependent phonetic units under

a single perspective, typically guided by a heuristic decision tree. As a result, the conven-

tional framework is “treating things that are supposed to be different the same” in the sense

that the units grouped into the same cluster always have the same acoustic scores. This

quantization side effect can potentially limit the performance of the acoustic model, in that

certain types of confusions can become uncorrectable, and that the acoustic scores might

become less informative to the recognizer.

In this work, a multi-level acoustic modeling framework was proposed to address both

the data sparsity problem and the quantization effect. By appropriately combining clas-

sifiers that target at multiple levels of context specifications, each context-dependent unit

can have a unique score, and therefore effectively “models different things differently”

as it should be. Experiment results have shown that the multi-level framework can pro-

vide better phonetic prediction accuracy, significantly reduce recognition errors for large-

vocabulary ASR systems, and potentially adapt better to incremental data. In this sense,

we have shown that “modeling different units differently under data sparsity” is achievable
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for acoustic modeling of ASR systems, and doing so can provide a significant amount of

performance improvement. While there can be many potential areas of future research, we

point out several possible research directions as follows.

7.2 Future Work

Combining with Deep Belief Networks

In most existing ASR systems, including the work presented in this thesis, the acoustic

scores are computed by GMMs. While GMMs have been used for several decades, recently,

several alternatives [91, 22] have been proposed to replace the likelihoods of GMMs with

posterior probabilities generated by Deep Belief Networks (DBNs) during decoding. The

DBN-based framework has shown significant improvement over the GMM-based frame-

work both in a context-independent phonetic recognition task [91] and a context-dependent

large-vocabulary speech recognition task [22].

While providing significant improvements, the work in [22] still used clustering to

group context-dependent states, and the DBNs were trained to only distinguish different

clustered states. In other words, it still suffers the quantization effect, and the multi-level

idea proposed in this work can potentially be applied to provide further improvement. One

way to incorporate the multi-level idea is as follows. Note that each type of classifier in

Figure 3-3 implicitly provides a perspective that specifies how the context-dependent units

differ. For example, under the perspective of {<pl,pc,∗>}, the triphone “r-iy+l” (as in

“real”) is the same as “r-iy+d” (as in “read”) but is different from “d-iy+l” (as in “deal”).

Under each kind of perspective, a number of different groups can be formed, and a set of

DBNs can be trained to distinguish the groups that have enough training data. As a result,

multiple sets of DBNs can be trained under multiple types of angles, and the (log) poste-

rior probabilities of the DBNs can be appropriately combined to form the acoustic score

for each context-dependent unit. In this way, the quantization effect can be avoid, and the

performance of the DBN-based framework can potentially be further improved.
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ASR for Languages with Limited Resources

In the conventional acoustic modeling framework, expert knowledge is required to con-

struct separating questions through which the decision tree can grow. However, such kind

of language-specific expert knowledge might not be easily available when deploying an

ASR system for a language where knowledge sources are relatively scarce. On the other

hand, the proposed multi-level framework utilizes only the notion of broad classes to con-

struct classifiers which requires less expert knowledge, and can potentially generalize bet-

ter across different languages. Also, the broad classes can potentially be learned from data

[105], which can further reduce the required amount of expert knowledge. In addition,

because multi-level structures incorporate classifiers targeting both high and low levels of

context resolution, even when the total amounts of training data are relatively small, the

low level classifiers can still have a reasonable number of training examples. As a result,

the multi-level framework should still function reasonably well when fewer amounts of

training data are available. These facts suggest that the multi-level framework can be po-

tentially advantageous when deploying an ASR system for a language with relatively lim-

ited resources, in terms of both expert knowledge and quantity of training data. It would be

interesting to see how it actually works in the limited resources scenario.

Incremental Learning with Crowdsourcing

Recently, several fields of research have been starting to use crowdsourcing platforms such

as Amazon Mechanical Turk to utilize the power of a large number of non-experts for

data analysis and labeling, and there have been several successful experiments that utilize

crowdsourcing to transcribe speech data [88, 84, 74]. Although the non-experts might make

more errors than experts when transcribing the data, the crowds can generate much larger

amounts of data with lower cost. Also, it has been shown that by dividing the entire tran-

scription task into a sequence of easier sub-problems and appropriately utilizing ASR for

automatic quality control, the transcription errors can be significantly reduced [74]. Since

the multi-level framework can potentially generate better ASR results, and since the multi-

level framework might have better adaptation capability (as shown in Chapter 6), having the
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multi-level framework interacting with the crowdsourcing mechanism can be beneficial, in

the sense that it might provide better quality control and learn better. How to combine the

multi-level framework with crowdsourcing to construct an incremental learning framework

(potentially with feedback loops) would be also an interesting research direction.

Optimizing System Design

While the proposed multi-level framework provided significant improvements, there can

be many possible ways of design the classifiers, as discussed in Chapter 3. Investigating

classifier designs that can further improve the system performance would also be a possi-

ble future research direction. Also, combining the multi-level framework with quinphone

based acoustic model or iterative lexicon learning methods can also potentially further im-

prove the system, and would also be a possible direction to explore.
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Appendix A

Maximum-Likelihood Estimation for

Multivariate Gaussian Distribution

A D-dimensional random vector x belongs to a multivariate Gaussian distribution, if its

probability density function is of the form

N (x;µ,Σ) =
1

(2π)D/2|Σ|1/2
exp(

1

2
(x− µ)TΣ−1(x− µ)), (A.1)

where µ is a D-dimensional mean vector, (x − µ)T is the transpose of the column vector

(x−µ), Σ is a D by D symmetric positive-definite covariance matrix, and |Σ| is the deter-

minant of the covariance matrix. Given a set of K vectors {x1,x2, . . . ,xK} independently

drawn from a multivariate Gaussian distribution, the parameters of the distribution, mean µ

and covariance Σ, can be estimated under the ML criterion as follows. Since the K vectors

are drawn independently, the log-likelihood of seeing the vectors can be expressed by

K∑
k=1

log(N (xk;µ,Σ)) = −KD
2

log(2π)− K

2
log(|Σ|)−

K∑
k=1

1

2
(xk − µ)TΣ−1(xk − µ).

(A.2)

To find the µ that can maximize the log-likelihood, we can take the partial derivative

of Equation (A.1) with respect to µ and make it equal to zero. As a result, the equation to
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solve µ becomes
K∑
k=1

Σ−1(xk − µ) = 0, (A.3)

where the differentiation can be done using the formula in [2]. Solving Equation (A.3), we

can find the Maximum-Likelihood estimate of the mean

µ̂ =
1

K

K∑
k=1

xk. (A.4)

To find the ML estimate of the covariance matrix requires additional steps. First, using

the chain rule and the differential formula of the determinant from [2], we can get

∂

∂Σ
log(|Σ|) =

1

|Σ|
|Σ|(Σ−1)T = Σ−1. (A.5)

Second, using the identity of the trace operation, and the chain-rule for matrix calculus, we

can compute the following partial derivative by

∂

∂Σ
(xk − µ)TΣ−1(xk − µ) =

∂

∂Σ
tr((xk − µ)TΣ−1(xk − µ)), (A.6)

=
∂

∂Σ
tr(Σ−1(xk − µ)(xk − µ)T), (A.7)

=
∂Σ−1

∂Σ

∂

∂Σ−1 tr(Σ−1(xk − µ)(xk − µ)T), (A.8)

=
∂Σ−1

∂Σ
(xk − µ)(xk − µ)T, (A.9)

= −Σ−1Σ−1(xk − µ)(xk − µ)T, (A.10)

where the second equality utilizes the trace identity, the third equality utilizes the chain-rule

of the matrix calculus, the fourth equality utilizes the differential formula of the trace, and

the final equality utilizes the identity

∂ΣΣ−1

∂Σ
=
∂Σ

∂Σ
Σ−1 + Σ

∂Σ−1

∂Σ
= 0. (A.11)

Plugging in Equations (A.5) and (A.10) into the partial derivative of the log-likelihood with
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respect to Σ, the equation to solve the ML estimate of Σ becomes

−K
2

Σ−1 +
K∑
k=1

1

2
Σ−1Σ−1(xk − µ)(xk − µ)T = 0. (A.12)

Solving the above equation and plugging in the ML estimate for the mean, we can have the

ML estimate for the covariance matrix

Σ̂ =
1

K

K∑
k=1

(xk − µ̂)(xk − µ̂)T =
1

K

K∑
k=1

xkx
T
k − µ̂µ̂

T. (A.13)

Note that to ensure the ML estimate of the covariance matrix is positive-definite, the

number of the training vectors K should be greater than the dimension D. For practical

concerns, the covariance matrix might be assumed to be diagonal. In this case, each di-

mension can be treated independently, and parameters for each dimension can be estimated

separately by changing the vector notations in Equations (A.4) and (A.13) into scalars.
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Appendix B

Auxiliary Function for Optimization

The auxiliary function is a commonly-used tool when it is difficult to directly optimize an

objective function. Let F (λ) be the function to be optimized and let λ̄ denote the current

model parameters. An auxiliary function Q(λ, λ̄) is a function that is closely related to

F (λ), but is much easier to optimize, typically with a closed-form optimum. If updating

the parameters to the optimum of the auxiliary function also improves the original objective

function, then we can construct a new auxiliary function at the new operating point and do

the update again. If, at each iteration, we can guarantee improving the objective function,

then the iterative procedure can make the model converge to a stationary point, typically a

local optimum. Depending on how well an auxiliary function can guarantee improvement,

it can be either a strong-sense auxiliary function, or a weak-sense auxiliary function as

described in [99].

B.1 Strong-sense and Weak-sense Auxiliary Functions

Without loss of generality, we can assume that we are maximizing F (λ). A strong-sense

auxiliary function is one that satisfies the following property:

F (λ)− F (λ̄) ≥ Q(λ, λ̄)−Q(λ̄, λ̄) ∀λ. (B.1)
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On the other hand, a weak-sense auxiliary function satisfies

∂F (λ)

∂λ

∣∣∣
λ=

¯λ
=
∂Q(λ, λ̄)

∂λ

∣∣∣
λ=

¯λ
. (B.2)

Note that if Q(λ, λ̄) is a continuously differentiable strong-sense auxiliary function, it is

also a weak-sense auxiliary function. To show this, let fi be the value of ∂F (λ)

∂λ

∣∣∣
λ=

¯λ
at the

ith dimension, qi be that of ∂Q(λ,
¯λ)

∂λ

∣∣∣
λ=

¯λ
, and ei be the unit vector of the ith dimension. If

fi > qi, then there exists a small enough d > 0 such that F (
¯λ−dei)−F (

¯λ)
−d > Q(

¯λ−dei,
¯λ)−Q(

¯λ,
¯λ)

−d ,

which contradicts Inequality (B.1). Similarly, fi < qi can also cause a contradiction. There-

fore, fi has to be equal to qi for every i, resulting in Equation (B.2).

For a strong-sense auxiliary function, an improvement in the auxiliary function guar-

antees a larger or equivalent improvement in the objective function, and thus the objective

function is guaranteed to improve at each iteration. Also, from Equation (B.2), if the aux-

iliary function converges to a stationary point that ∂Q(λ,
¯λ)

∂λ

∣∣∣
λ=

¯λ
= 0, then the gradient of

F (λ) at λ̄ is also 0. So the iterative procedure will keep improving the objective function

until it converges to a stationary point, and to a local optimum for many problems.

On the other hand, a weak-sense auxiliary function does not have such a guarantee.

However, if the update of an iteration does not move the parameters too far, it can also

improve the objective function. Also, from Equation (B.2), if the auxiliary function con-

verges to a local optimum, then the objective function also converges. As described in [99],

a smoothing term can be added to a weak-sense auxiliary function at each iteration such

that the optimum of the auxiliary function can be closer to the starting point in order to

ensure the improvement.

B.2 Auxiliary Function for the EM Algorithm

In this section, we show that the auxiliary function used in the EM algorithm is a strong-

sense auxiliary function, and thus the procedure can guarantee to converge to a local op-

timum. At each iteration, let qS be the posterior probability qS =
p ¯λ

(X,S)∑
S′ p ¯λ

(X,S′) based on the
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current parameter vector λ̄, and the auxiliary function can be expressed by

Q(λ, λ̄) = ES|X;λ̄[log(pλ(X,S))] =
∑
S

qS log(pλ(X,S)). (B.3)

As a result, the difference F (λ̄)−Q(λ̄, λ̄) becomes

F (λ̄)−Q(λ̄, λ̄) = log(
∑
S

p ¯λ(X,S))−
∑
S

qS log(pλ(X,S)) (B.4)

= −
∑
S

qS log(qS). (B.5)

Similarly, let rS =
pλ(X,S)∑
S′ pλ(X,S′) , and the difference F (λ)−Q(λ, λ̄) can be expressed by

F (λ)−Q(λ, λ̄) = log(
∑
S

pλ(X,S))−
∑
S

qS log(pλ(X,S)) (B.6)

= −
∑
S

qS log(rS). (B.7)

Therefore, if we subtract Equation (B.5) from (B.7),

F (λ)−Q(λ, λ̄)− (F (λ̄)−Q(λ̄, λ̄)) = −
∑
S

qS log(
rS
qS

) (B.8)

= DKL(qS||rS), (B.9)

where DKL(qS||rS) is the K-L divergence [70] of the two distributions, and is greater than

or equal to zero. In this way, we have shown that Inequality (B.1) holds, and that the

auxiliary function used in the EM algorithm is a strong-sense auxiliary function.
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Appendix C

Maximum a Posteriori Adaptation for

Gaussian Mixture Model

In this appendix, we summarize the formulation of the Maximum A Posteriori (MAP)

based adaption for Gaussian Mixture Model (GMM), which was derived in [32]. The MAP

framework in [32] assumes that the prior distribution of the mixture weights {ω1, . . . , ωM}

follows the Dirichlet distribution [59]:

g(ω1, . . . , ωM ; ν1, . . . , νM) ∝
M∏
m=1

ωνm−1
m , (C.1)

where g(·) denotes the probability density function, and {ν1, . . . , νM} are hyper parameters

that can be thought as prior counts of the mixture components. Note that the normaliza-

tion constant is omitted in the above formula. Under the Dirichlet distribution above, the

expectation of ωm can be computed by

E[ωm] =
νm∑M

m′=1 νm′
, (C.2)

which is of exactly the same form as if doing Maximum-Likelihood (ML) estimation on

the mixture weights when seeing the mth mixture component νm times, respectively. This

is why we can call {ν1, . . . , νM} prior counts.

For the mean µm and covariance Σm of the mth mixture component, it is assumed that
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their prior distribution follows the normal-Wishart distribution [24]. Under this assumption,

the prior distribution of the inverse covariance matrix Σ−1
m follows the Wishart distribution

with a hyper parameter κm and a positive-definite symmetric matrix Cm, and the prior

distribution of the mean µm follows the normal (Gaussian) distribution with prior mean

um and covariance matrix Σm. As a result, the density of the prior distribution of µm and

Σm is of the following form:

h(µm,Σm; τm,um, κm,Cm) ∝ |Σ−1
m |

κm−D−1
2 exp(−1

2
tr(CmΣ−1

m ))

|Σm|−
1
2 exp(−τm

2
(µm − um)TΣ−1

m (µm − um)), (C.3)

where the first line corresponds to the Wishart distribution of the inverse covariance matrix

Σ−1
m , the second line corresponds to the normal distribution of the mean µm, D denotes the

dimension, and τm is a hyper parameter that determines how close is µm to its prior um.

Given a set of adaptation data {x1, . . .xT}, the MAP adaptation method seeks to find

the GMM parameters that can maximize the sum of the two terms: the log-likelihood of the

data and the log of the prior density. A similar EM algorithm as described in Section 2.1.5

can be used by adjusting the update formula as follows. As in the Maximum-Likelihood

(ML) estimation, given the current GMM parameters, the posterior probability of xt being

drawn from the mth mixture component, rtm, can be computed by Equation (2.25). For

the mixture weights, if we add the log of Equation (C.1) to the objective function, it is

equivalent to adding the count of the mth mixture component by νm − 1. As a result, the

update formula for the mixture weight becomes

ω̂m =
(νm − 1) +

∑T
t=1 rtm∑M

m′=1(νm − 1) + T
. (C.4)

For the update of meanµm, the difference between MAP adaptation and ML estimation

is the second line of Equation (C.3). Adding the log of the term into the objective function

is equivalent to adding τm training examples with value equals to um. As a result, the
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update formula for the mean becomes

µ̂m =
τmum +

∑T
t=1 rtmxt

τm +
∑T

t=1 rtm
. (C.5)

The update for the covariance matrix Σm is more complex. Taking the log of Equation

(C.3), the terms related to the determinant |Σm| sum to −κm−D
2

log(|Σm|). Similar to

Appendix A, the coefficient κm−D will be added to the denominator of the update formula

of Σm. So we can ignore the−1/2 in the exponents when deriving the update formula. The

term τm
2

(µm − um)T (µm − um) contributes to the numerator of the covariance update by

τm(µm − um)(µm − um)T . For the term −1
2

tr(CmΣ−1
m ), the trace identity in [2] can be

use to compute its partial derivative with Σm, and it contributes to the numerator of the

covariance update by CT
m. Since Cm is symmetric, the update formula of the covariance

matrix becomes

Σ̂m =
Cm + τm(µ̂m − um)(µ̂m − um)T +

∑T
t=1 rtm(xt − µ̂m)(xt − µ̂m)T

(κm −D) +
∑T

t=1 rtm
, (C.6)

where µ̂m is the updated mean from Equation (C.5).

In terms of setting the hyper parameters of the prior distribution, commonly used set-

tings are as follows. (νm − 1), τm, and (κm − D) are set to the count of the mth mixture

component in the original (non-adapted) model. um is set to the mean of the original model,

and Cm is set to the covariance matrix of the original model times the count of the mixture

component in the original model. While not covered in this appendix, a similar update

formula as Equation (C.4)-(C.6) can be derived for the Forward-Backward algorithm by

plugging in the posterior probability of the state at each time point.
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Appendix D

Splitting Nodes in Decision Tree

Clustering

In this appendix, we describe the commonly-used criterion of selecting the splitting ques-

tions for the decision tree clustering algorithm. The objective function used in decision

tree clustering to select the splitting question is the increase of the log-likelihood after the

splitting. The clustering algorithm assumes that the data within a node follows a Gaussian

distribution and computes the mean and covariance for each node using ML estimation.

Suppose a question splits a node into two: the first node contains K1 examples with

mean µ1 and covariance Σ1, and the second node contains K2 examples with mean µ2

and covariance Σ2. Let the original node have mean µ0 and covariance Σ0. Note that

because the distribution is Gaussian, the means and covariances of these three nodes have

the following relations.

µ0 =
K1µ1 +K2µ2

K1 +K2

. (D.1)

Σ0 =
K1Σ1 +K1µ1µ

T
1 +K2Σ2 +K2µ2µ

T
2

K1 +K2

− µ0µ
T
0 , (D.2)

where K1Σ1 + K1µ1µ
T
1 represent the second order statistics of the data in the first new

node, and K2Σ2 +K2µ2µ
T
2 is that for the data in the second new node.
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We can compute the log-likelihood of the first new node using the following identity

K1∑
k=1

(xk − µ1)TΣ−1
1 (xk − µ1) = tr(

K1∑
k=1

Σ−1
1 (xk − µ1)T(xk − µ1)) (D.3)

= tr(Σ−1
1

K1∑
k=1

(xk − µ1)T(xk − µ1)) (D.4)

= K1D, (D.5)

where D is the dimension of the vector. The first equality above holds because of the trace

identity [2], the second equality holds because of the linearity of matrix multiplication,

and the third equality holds because of the fact that Σ1 =
∑K1

k=1(xk−µ1)T(xk−µ1)

K1
under ML

estimation. Using the above identity and Equation (A.2), the log-likelihood of the first new

node can be computed by

−K1D

2
log(2π)− K1

2
log(|Σ1|)−

K1D

2
, (D.6)

where |Σ1| is the determinant of Σ1. As a result, we can compute the increase of log-

likelihood after the split by

K1 +K2

2
log(|Σ0|)−

K1

2
log(|Σ1|)−

K2

2
log(|Σ2|). (D.7)

In terms of implementation, for each node in the tree, the algorithm can use Equation

(D.7) to compute the log-likelihood increase with respect to each binary question and find

the best splitting question for the node. The best splitting question and the increase of log-

likelihood can be stored in a priority queue. At each step, the algorithm can pop up the best

node, split the node, and push the two new nodes back into priority queue. Typically the

algorithm keeps splitting nodes until the log-likelihood increase of the best node is smaller

than a threshold, or the number of nodes has reached pre-defined maximum. After the

splitting is finished, the cluster for each context-dependent unit (including the unseen ones)

can be found by walking down the tree based on each splitting question.
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Appendix E

Composition Issues and Dynamic

Expansion of FST

In this appendix, we discuss several practical issues when composing the FSTs for large-

vocabulary speech recognition tasks. More specifically, we discuss practical issues about

how to compose (integrate) different levels of search constraints, including HMM topol-

ogy constraints, represented by a M FST, contextual constraints from a context-dependent

acoustic model, represented by a C FST, and linguistic constraints, represented by a P ◦ L

◦ G FST. For convenience, we use L̃ to denote the P ◦ L ◦ G through out this appendix.

We first discuss an issue that might occur when composing the C FST with the L̃ FST.

Note that a state s in the composed C ◦ L̃ FST can be thought of as a composite of a state

c from the C FST and a state l from the L̃ FST. During composition, the procedure checks

that if c has an arc whose output symbol matches the input symbol of one of the arc of l. If

there is a match, saying that the arc ac of state c matches with the arc al from state l, the

procedure creates a new state s′ that is a composite of c′ and l′, where c′ is the destination

state of the arc ac and l′ is the destination state of the arc al. The composition procedure

also creates an arc from s to s′ with input symbol the same as that of ac, the output symbol

the same as that of al, and the weight equals to the product (⊗) of the weights of ac and al

based on the semiring. On the other hand, if there is no match (and if s is not a finial state),

there is no permissible path that pass through s, and therefore we call s a “dead-end” state.

The issue here is that if the composition of C and L̃ is not handle carefully, a large num-
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(a) “Theoretical” C FST for triphone. (b) Shifted C FST for triphone

Figure E-1: A simplified illustration of a Context (C) FST for triphpone. Each circle rep-
resent a state. The circle with the symbol “I” denotes the initial state. The labels in other
circles represent the memory of the left context and the current center phone unit of the
state, respectively. The “<>” symbol denotes the sentence boundary. Each arrow denotes
an FST arc, where the first symbol before “:” denotes the input symbol, and the one after
that denotes output symbol. If either the input or output symbol is not required, the “ε”
symbol is used. The label “a{<>,a,b}” denotes the FST label for the triphone with the left
context “<>”, the center phone unit “a”, and the right context “b”. During recognition, the
time points aligned with the triphone “a{<>,a,b}” should belong to the phoneme “a”, not
“b”, and in theory, the output of symbol of the arc should be “a”, as shown in (a). The time
point of when to output the phoneme label can also be shifted forward without affecting
the weight of each permissible path, as shown in (b).

ber of “dead-end” states can be generated during the composition, and might potentially

blow up the memory. For example, if we directly use the triphone-based C FST in Figure

E-1(a) to compose with L̃, the following situation might occur. Assuming that there is a

word w in L̃ whose pronunciation starts with “a” and followed by “b”. Both of the two arcs

“a{<>,a,b}:a” and “a{<>,a,c}:a” for the state “<>,a” in Figure E-1(a) matches the arc

from the initial state of L̃ to the first state of the word w. However, the arc “a{<>,a,c}:a”

results in a “dead-end” state. This is because the state “a,c” in Figure E-1(a) only generates

“c” as its output, but the first state of w expect “b” to proceed to the second state. Suppose

there are K basic phonetic unit, K − 1 “dead-end” states might be generated at each step,

and can blow up the memory. To resolve such issue, a shifted C FST as shown in Figure

Figure E-1(b) can be used. When using the shifted FST, the uncertainty about the right

context that results in the “dead-end” states is resolved, and the C ◦ L̃ can be successfully

composed. Note that while we use a triphone-based C FST for explanation, the issue can

also occur for a higher order context-dependent models.

Although the C ◦ L̃ can be successfully composed, its size is typically not small for a

triphone (or higher order) large-vocabulary system. Take triphone systems used the exper-
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Figure E-2: A simplified illustration of a C FST for a three-state triphone framework. The
numbers embedded in the input symbol represent the corresponding acoustic model index
for each state.

iments in Chapter 5 for example. The sizes of the FSTs are around 100 ∼ 200 Megabytes.

Given the size of the C ◦ L̃, if we directly compose the M FST with the C ◦ L̃ FST, it

can potentially further increase the size of the resulting FST by another order of magni-

tude, into the order of Gigabytes. This is because the composition is effectively replacing

each arc in the C ◦ L̃ FST with the HMM topology in the M FST, and describing a HMM

topology is much more complex (in terms of storage) than describing an FST arc. Hav-

ing a Gigabyte-sized FST for decoding can create a very heavy I/O and Memory loads on

currently available computation architectures.

To avoid using a huge-sized FST for decoding, the dynamic FST expansion imple-

mented by Dr. L. Hetherington was used to conduct the triphone-based recognition ex-

periments reported in this thesis. Under the dynamic expansion framework, the C FST is

modified as illustrated in Figure E-2 to record the acoustic model indices described in the

M FST. During decoding, each FST state is attached with an (one byte) integer to indicate

the current state index in the HMM topology, and therefore appropriate acoustic model can

be selected for scoring from the input symbol of the statically composed FST. Using the

dynamic expansion can keep the statically composed FST in moderate size, while the mem-

ory used during the running time can be controlled by appropriated pruning. As a result,

the dynamic expansion can be a practical solution for building ASR system with triphone

or higher order context-dependent acoustic model.
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Appendix F

Questions for Decision Tree Clustering

F.1 Phonetic Questions for TIMIT

LEFT: aa ah ao aw ax ow uh uw ae RIGHT: aa ah ao aw ax ow uh uw ae

ay eh ey ih ix iy oy w y ay eh ey ih ix iy oy w y

LEFT: aa ah ao aw ax ow uh uw w RIGHT: aa ah ao ax ay ow oy uh uw w

LEFT: aa ah ao ax uh RIGHT: aa ah ao ax ay ow oy uh

LEFT: aa ao RIGHT: aa ay

LEFT: ah ax uh RIGHT: ah ax

LEFT: aw ow uw w RIGHT: ao oy

LEFT: aw ow uw RIGHT: uw w

LEFT: aw ow RIGHT: ow uh

LEFT: ae ay eh ey ih ix iy oy y RIGHT: ae aw eh ey ih ix iy y

LEFT: ae eh ih ix RIGHT: ae aw eh ey

RIGHT: ae aw eh

LEFT: ae eh RIGHT: ae eh

LEFT: ay ey oy iy y

LEFT: ey iy y RIGHT: iy y

LEFT: ey iy

LEFT: ay oy
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LEFT: b d g p t k RIGHT: b d g p t k

LEFT: b p RIGHT: b p

LEFT: d t RIGHT: d t

LEFT: g k RIGHT: g k

LEFT: cl vcl epi RIGHT: cl vcl epi

LEFT: vcl RIGHT: vcl

LEFT: cl epi RIGHT: cl epi

LEFT: jh ch zh sh z s RIGHT: jh ch zh sh z s

LEFT: jh ch zh sh

LEFT: ch sh RIGHT: ch jh

LEFT: jh zh RIGHT: zh sh

LEFT: z s RIGHT: z s

LEFT: dh th v f dx hh RIGHT: dh th v f dx hh

LEFT: dh th v f RIGHT: dh th v f

LEFT: dh th RIGHT: dh th

LEFT: v f RIGHT: v f

LEFT: dx hh RIGHT: dx hh

LEFT: er r RIGHT: er r

LEFT: er RIGHT: er

LEFT: m n en ng RIGHT: m n en ng

LEFT: m RIGHT: m

LEFT: n en ng RIGHT: n en ng

LEFT: n en RIGHT: n en

LEFT: el l RIGHT: el l

LEFT: sil <> RIGHT: sil <>
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Table F.1: Phonetic questions used for decision tree clustering in the phonetic

recognition experiment on TIMIT. The 61 to 48 mapping in Table 4.4 is used.

The merging of labels are as follows. {“h#”, “pau”}→“sil”. {“pcl”, “tcl”,

“kcl”, “q”}→“cl”. {“bcl”,“dcl”,“gcl”}→“vcl”. {“er”, “axr”}→“er”. {“ng”,

“eng”}→“ng”. {“ax”, “ax-h”}→“ax”. {“uw”, “ux”}→“uw”. The label “<>”

denotes the sentence boundary.

F.2 Phonetic Questions for Lectures

LEFT: aa ah ah fp ao aw ax ow uh uw RIGHT: aa ah ah fp ao aw ax ow uh uw

ae ay eh ey ih iy oy w y ae ay eh ey ih iy oy w y

LEFT: aa ah ah fp ao aw ax ow uh uw w RIGHT: aa ah ah fp ao ax ay ow oy uh uw w

LEFT: aa ah ah fp ao ax uh RIGHT: aa ah ah fp ao ax ay ow oy uh

LEFT: aa ao RIGHT: aa ay

LEFT: ah ah fp ax uh RIGHT: ah ah fp ax

RIGHT: ah ax

LEFT: aw ow uw w RIGHT: ao oy

LEFT: aw ow uw RIGHT: uw w

LEFT: aw ow RIGHT: ow uh

LEFT: ae ay eh ey ih iy oy y RIGHT: ae aw eh ey ih iy y

LEFT: ae eh ih RIGHT: ae aw eh ey

RIGHT: ae aw eh

LEFT: ae eh RIGHT: ae eh

LEFT: ay ey oy iy y

LEFT: ey iy y RIGHT: iy y

LEFT: ey iy
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LEFT: ay oy

LEFT: b d g p t k RIGHT: b d g p t k

LEFT: b p RIGHT: b p

LEFT: d t RIGHT: d t

LEFT: g k RIGHT: g k

LEFT: pcl tcl kcl bcl dcl gcl epi RIGHT: pcl tcl kcl bcl dcl gcl epi

LEFT: bcl dcl gcl RIGHT: bcl dcl gcl

LEFT: pcl tcl kcl epi RIGHT: pcl tcl kcl epi

LEFT: tcl epi RIGHT: tcl epi

LEFT: jh ch zh sh z s RIGHT: jh ch zh sh z s

LEFT: jh ch zh sh

LEFT: ch sh RIGHT: ch jh

LEFT: jh zh RIGHT: zh sh

LEFT: z s RIGHT: z s

LEFT: dh th v f dx hh RIGHT: dh th v f dx hh

LEFT: dh th v f RIGHT: dh th v f

LEFT: dh th RIGHT: dh th

LEFT: v f RIGHT: v f

LEFT: dx hh RIGHT: dx hh

LEFT: er axr r RIGHT: er axr r

LEFT: er axr RIGHT: er axr

LEFT: m em n en ng RIGHT: m em n en ng

LEFT: m em RIGHT: m em

LEFT: n en ng RIGHT: n en ng

LEFT: n en RIGHT: n en

LEFT: el l RIGHT: el l

LEFT: – <> RIGHT: – <>
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LEFT: RIGHT:

LEFT: c l n b RIGHT: c l n b

LEFT: c l RIGHT: c l

LEFT: c RIGHT: c

LEFT: l RIGHT: l

LEFT: n b RIGHT: n b

LEFT: n RIGHT: n

LEFT: b RIGHT: b

Table F.2: Phonetic questions used for decision tree clustering in the large-

vocabulary ASR experiment.
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Appendix G

Quickprop Algorithm

This appendix illustrates the Quickprop algorithm used in [86] in more detail. Quickprop is

an approximated second-order optimization method based on the classic Newton’s method.

Newton’s method is an iterative optimization method. At each iteration, Newton’s method

builds a quadratic approximation M(λ) to the function of interested F (λ) using the first

three terms of the Taylor series expansion of the function F (λ) around the current point

λ(p). The update criterion of Newton’s method is to choose the parameter set λ(p+1) such

that the gradient of the approximation ∇M(λ(p+1)) equals 0. As a result, the solution of

λ(p+1) can be expressed by

λ(p+1) = λ(p) + s(p), (G.1)

where the step s(p) can be computed by

s(p) = −(∇2F (λ(p)))−1∇F (λ). (G.2)

In general, if the Hessian matrix ∇2F (λ) is positive definite, and the initial value λ(0) is

sufficiently close to the optimum, Newton’s method converges rapidly to a local minimum

of function F (λ) [86]. However, in general, there is no guarantee that the Hessian matrix

is positive definite. Also, representing the true Hessian matrix becomes impractical as the

dimension of λ becomes large.

To address the two issues above, Quickprop makes the following two major changes

with regards to the original Newton’s method:
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1. Use a diagonal approximation for the Hessian.

2. Use certain criterion to check the condition of the Hessian, adding a term proportional

to the gradient to the update step if the criterion does not hold.

The ith diagonal element of the Hessian matrix can be approximated by:

∂2F (λ(p))

∂λ2
i

≈ ∇F (λ(p))i −∇F (λ(p−1))i

∆λ
(p−1)
i

, (G.3)

where∇F (λ(p))i is the ith element of the gradient at λ(p), and ∆λ
(p−1)
i is the ith component

of the update step s(p−1). The approximation is accurate when the update step is small, but

in general, the approximation can provide helpful information to guide the optimization.

For each element in λ, the product [∇F (λ(p))i∇F (λ(p−1))i] is used as a measure to check

the condition of the Hessian: if the product is negative (different sign), the minimum is

considered likely to exist between λ(p)i and λ(p−1)i , and the update step of Newton’s method

is used; otherwise, a term proportional to the gradient is added to the update step, resulting

in

si = −[(∇2F (λ)i)
−1 + ε]∇F (λ)i, (G.4)

where ∇2F (λ)i is approximated by (G.3) and ε is a positive learning rate. Generally,

setting a proper value of ε is important. However, once it is set within a reasonable range,

the optimization results will be similar.

There are also several additional controls on the update step used by Quickprop to

enhance the numerical stableness of the algorithm. For example, the absolute value of

step size can not grow $ times larger than the previous step size; if the gradient and the

modified Newton step are of the same sign, a simple gradient step is used instead. Details

of Quickprop update can be seen in the pseudo code of Algorithm (G.1).
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Algorithm G.1 Quickprop Update [86]
##Quickprop Update for iteration p.
for i = 1 . . . L do

# Loop over each element in λ
∆F1 ⇐ ∇F (λ(p))i # get first derivative from current iteration.
∆F0 ⇐ ∇F (λ(p−1))i # get first derivative from previous iteration.
∆λ⇐ λ

(p)
i − λ

(p−1)
i # get last step size.

# Calculate approximate diagonal second derivative
∆2F ⇐ (∆F1 −∆F0)/∆λ

# Calculate modified Newton step
g1 ⇐ −ε∆F1

if (∆2F > 0) then
g2 ⇐ −∆F1/∆

2F
if (∆F1∆F0 > 0) then

# gradients point the same way
d⇐ g1 + g2

else
# gradients change sign
d⇐ g2

end if
else
d⇐ g1

end if

# Limit absolute step size
if (abs(d) > abs($ ∗∆λ)) or abs(d) >STEP LIMIT then
d⇐ sign(d) ∗min(STEP LIMIT, abs($ ∗∆λ))

end if

# If going uphill or update step is near zero, use simple gradient
if ((d ∗∆F1) > 0.0) or (abs(∆) < TINY) then
d⇐ sign(g1) ∗min(abs(g1),STEP LIMIT)

end if

# Update parameter
λ

(p+1)
i ⇐ λ

(p)
i + d

end for
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Appendix H

Settings of Experimental Constants

H.1 TIMIT Experiment

H.1.1 MCE Settings

Constant Value Description
η 1.0 Reflecting the relative importance of the best scoring hypothesis.
ζ 1.5/Fn Determining sharpness of the sigmoid function.
ρ 10.0 Margin value per unit distance in the phone alignment.
ε 25 Learning rate of the Quickprop algorithm.
$ 1.75 Growth factor of step size used in the Quickprop algorithm

STEP LIMIT 1.0 Step limit of the Quickprop algorithm.
vprune 10 Viterbi pruning threshold for path scores.

vprunenodes 3,000 Maximum number of nodes in the active frontier.

Table H.1: Constant settings for MCE training on TIMIT. Fn is the number of frames in
the nth utterance.

H.2 Lecture Experiment
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H.2.1 MCE Settings for Diphone Models

Constant Value Description
η 1.0 Reflecting the relative importance of the best scoring hypothesis.
ζ 10.0/Fn Determining sharpness of the sigmoid function.
ε 0.2 Learning rate of the Quickprop algorithm.
$ 1.75 Growth factor of step size used in the Quickprop algorithm

STEP LIMIT 10.0 Step limit of the Quickprop algorithm.
vprune 10 Viterbi pruning threshold for path scores.

vprunenodes 250 Maximum number of nodes in the active frontier.
K 20 Maximum number of competing hypotheses.

Table H.2: Constant settings for MCE training of diphone models on the lecture corpus.
Fn is the number of landmarks in the nth utterance.

H.2.2 MCE Settings for Triphone Models

Constant Value Description
η 1.0 Reflecting the relative importance of the best scoring hypothesis.
ζ 10.0/Fn Determining sharpness of the sigmoid function.

εCL 2.0
Learning rate of the Quickprop algorithm for
the training of clustering based models.

εMulti 2.5
Learning rate of the Quickprop algorithm for
the training of multi-level models.

$ 1.75 Growth factor of step size used in the Quickprop algorithm
STEP LIMIT 2.0 Step limit of the Quickprop algorithm.
vprune 10 Viterbi pruning threshold for path scores.

vprunef 1000
Viterbi pruning threshold for path scores in the
forced-alignment mode.

vprunenodes 3000 Maximum number of nodes in the active frontier.

vprunenodesf 3000
Maximum number of nodes in the active frontier in
the forced-alignment mode.

K 20 Maximum number of competing hypotheses.

Table H.3: Constant settings for MCE training of triphones models on the lecture corpus.
Fn is the number of frames in the nth utterance.
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Appendix I

Frequently Used Acronyms

Acronym Meaning
ASR Automatic Speech Recognition
EBW Extended Baum-Welch
EM Expectation-Maximization
FST Finite-State Transducer

GMM Gaussian Mixture Model
HMM Hidden Markov Model
MCE Minimum Classification Error
ML Maximum-Likelihood
PER Phone Error Rate
WER Word Error Rate

Table I.1: List of frequently used acronyms
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