
Automating Crowd-supervised Learning for Spoken Language Systems

Ian McGraw, Scott Cyphers, Panupong Pasupat, Jingjing Liu, Jim Glass

MIT Computer Science & Artificial Intelligence Laboratory, Cambridge, MA 02139, U.S.A.
{imcgraw, cyphers, ppasupat, jingl, glass}@csail.mit.edu

Abstract
Spoken language systems often rely on static speech recog-
nizers. When the underlying models are improved on-the-fly,
training is usually performed using unsupervised methods. In
this work, we explore an alternative approach that uses human
computation to provide crowd-supervised training of a deployed
system. Although the framework we describe is applicable to
any stochastic model for which the training data can be gener-
ated by non-experts, we demonstrate its utility on the lexicon
and language model of a speech recognizer in a cinema voice-
search domain. We show how an initially shaky system can
achieve over a 10% absolute improvement in word error rate
(WER) – entirely without expert intervention. We then analyze
how these gains were made.

1. Introduction
The speech research community has dreamt of organic spoken
language systems that grow and improve without the expert-aid
for many years [1]. The advent of crowdsourcing techniques for
speech-related tasks provides a new way to overcome obstacles
to this goal [2]. In addition to providing a new source of train-
ing data, micropayment-workforce platforms such as Amazon
Mechanical Turk (mTurk) now enable developers to test spoken
language systems cheaply with real users [3]. Moreover, we
can now write human-in-the-loop algorithms to improve spo-
ken language systems on-the-fly [4].

There are, however, a number of limitations which must be
dealt with to fully realize the potential of crowdsourcing. First,
any individual worker may provide noisy results. As the natural
language processing (NLP) community showed, however, com-
bining output from multiple workers can mitigate the effects of
noise [5]. The second, perhaps more serious, limitation is that
large-crowds are inevitably not experts in the domain at hand.
This necessitates the decomposition of any crowd-supervised
task into units which can be completed by non-experts.

In this work, we explore the use of human computation to
retrain our new Movie Browser spoken language system. The
system itself allows users to make speech queries to search the
the Internet Movie Database (IMDB). Our training framework,
however, is domain independent. With the help of TurKit [6], a
toolkit for manipulating tasks on mTurk, we link together tran-
scription, semantic tagging, and speech collection tasks in a
fully automatic fashion. Using this assembly line of human in-
telligence tasks (HITs), we perform retraining operations, such
as rebuilding the class-based language model that underpins the
recognizer’s search space.

The main focus of this work, however, is on the lexicon. As
new movies come out and new actors become popular, it is easy
to imagine that the lexical domain of the Movie Browser might
shift. Due to the inherent difficulty with the pronunciation (and,
consequently, recognition) of named entities, we may wish to

improve upon the state-of-the-art letter-to-sound (L2S) models
currently used to generate pronunciations of words where the
spelling is known [7]. We show that this task can be reformu-
lated for the mTurk crowd by collecting spoken examples and
learning new words using a pronunciation mixture model [8].

In the remainder of this paper, we describe the Movie
Browser system, and detail the manner in which we update
its lexicon and language model using a fully-automated crowd-
supervised framework. We perform experiments and show im-
provements of a metric based on movie search result relevance.
We also examine WER improvements, and in doing so, we con-
firm that the pronunciation mixture model is robust to the noisy
contributions of distributed workers in a continuous speech set-
ting.

2. Movie Browser
The Movie Browser system provides the test-bed for our train-
ing framework. The system is intended to handle natural spo-
ken queries such as "What are some James Bond movies star-
ring Sean Connery?" The Movie Browser makes use of con-
ditional random fields to parse the output of the speech recog-
nizer into the set of semantic categories used during searches.
The search index, handled by the Apache Lucene project, is
initialized to contain over 12,000 movie titles from the IMDB
database. More details about the text-based version of the
Movie Browser are described in [9].

This work concentrates on the recognizer we have con-
structed for this domain. Decoding is handled by SUM-
MIT [10], a landmark-based speech recognizer that models its
search space using a composition of weighted finite state trans-
ducers. We have configured the recognizer to make use of 112-
dimensional MFCC-based feature vectors, which are whitened
with PCA before reducing the dimensionality to 50. The acous-
tic models, which were trained on a corpus of telephone speech,
consist of diagonal gaussians trained with up to 75 mixture com-
ponents.

The language model (LM) of the recognizer uses a class
n-gram to robustly model carrier phrases. Thus, the query
above would appear to the LM as "What are some CHARACTER
movies starring ACTOR?" Separate FSTs are built and dynam-
ically inserted for each class. The ten manually chosen classes
are: Actor, Genre, Director, Year, Rating (e.g. pg13), Character,
Plot element, Title, Song, and Evaluation (e.g. "well rated").

To limit its size, our recognizer does not include the full
list of over 200,000 actors, directors, and movie titles in our
database . Instead, we initialize the classes with lists of popular
actors, directors, titles, etc, that were scraped from the web. The
lists contained almost 3,000 movie titles and over 1,000 popular
actors. They were, however, a few years old, and thus some-
what stale with respect to the domain. We hoped the recognizer
would learn missing lexical items on-the-fly via crowdsourcing.
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Figure 1: The system HIT (0) and three domain-independent HITs (1)-(3) that compose our crowd-supervised training architecture.

3. Learning the Lexicon
The pronunciation modeling techniques described in this sec-
tion presume that a spelling is known but that a pronunciation is
not or needs improvement. This assumption is reasonable in our
movie search domain because the search index contains a large,
but finite number of entries. Regardless of the domain, obtain-
ing crowdsourced transcriptions also reduces the challenge to
one of recovering a pronunciation given a spelling.

Our baseline L2S model is based on the work of Bisani and
Ney [7], wherein a language model is learned over grapheme-
to-phoneme units, called graphones. Though not inherently
graphone specific, we have shown that a pronunciation mixture
model (PMM) can expand upon the framework by providing a
principled method of integrating acoustic information into the
pronunciation generation process [8].

We provide an overview of the isolated word case and refer
the reader to [8] for the adjustments used in this work to han-
dle learning from continuous speech. The isolated word PMM
presumes that we have M utterances {ui, . . . ,uM} of a word
w, and that we have a model for the joint probability of this
word and a candidate pronunciation b. We parameterize the log
likelihood of the data as follows:

L(θ) =

M∑
i=1

log p(ui,w; θ) =

M∑
i=1

log
∑
b∈B

p(ui|w,b) · θw,b

The parameters, θ, are initialized to our graphone LM scores.
We then run Expectation Maximization (EM) according to the
following equations:

E-step: P (b|ui,w; θ) =
p(ui|b,w) · θw,b∑
p p(ui|p,w) · θw,p

M-step: θ∗w,b =
1

M

M∑
i=1

P (b|ui,w; θ)

Thus, one iteration of the PMM gives each utterance a probabil-
ity mass of 1

M
to distribute over the pronunciations under con-

sideration according to the posterior probability of each base-
form b, given the acoustics and the spelling. EM can be used to
iteratively optimize the log-likelihood of the data, but runs the
risk of over-fitting when M is small. For this work, we run one
iteration of EM using a 5-gram graphone LM over singular gra-
phones. We normalize the learned parameters by word and use
them in a stochastic lexicon. Pronunciations with probability
less than 0.1 are excluded.

4. Crowd-supervised Training Architecture
In this section, we introduce a library of crowdsourcing tasks
designed for processing spoken language data and describe how
we connect these tasks together in order to fully automate the
retraining of certain components of a spoken language system.
The larger vision of this work is to substantially reduce, if not
entirely eliminate, the need for the expert intervention and ad-
hoc boot-strapping techniques typically employed in spoken
language system development. To this end, we have been de-
veloping and fine-tuning a set of Human Intelligence Tasks de-
ployable to mTurk. Three of these HITs, transcription, segment
tagging, and prompted speech collection, are described here.

A transcription HIT has been shown to be a valuable tool
for obtaining orthographies of audio. Combining multiple noisy
transcriptions with techniques such as ROVER is known to sig-
nificantly improve transcription quality [11]. Our transcription
HIT, numbered (1) in Figure 1, deals with noisy data in a some-
what simpler manner. Each audio clip must be shown to two
workers, and the job of the second worker is to improve upon or
verify the transcript of the first worker. While perhaps not fully
addressing the problem of noise, this procedure is sufficient for
the training needs of this work and can be easily extended with
more iterations of improvement or approval.

Semantic labeling, whereby phrases in a sentence are
tagged with a category label, is another common NLP task for
which mTurk has proven useful [12]. Our semantic labeling
HIT, shown in (2) of Figure 1, uses a click-and-drag selection
mechanism to allow workers to semantically tag multiple words
with a label. In our case, the labels consist of the ten classes
found in our recognizer. Although it is not difficult to imag-
ine combining multiple outputs to reduce noise, for this HIT we
took a domain-dependent approach described later.

The final domain-independent HIT is the prompted audio
collection task depicted in Figure 1 (3). Here, a worker sim-
ply reads aloud the prompt on the page. While it is difficult to
control the properties of the speech collected, we have found
that forcing workers to listen to their own speech helps to ad-
dress microphone problems. Restricting the country to which a
HIT is deployed provides rough controls over accented-speech.
Furthermore, in this work, we collect eight examples of each
prompt for use in a pronunciation mixture model. Our hope is
that a few noisy examples will not cause too many problems.

With our library complete, we now describe a domain-
dependent HIT designed to collect data for the very system we



are training. Figure 1 depicts the Movie Browser system in a
HIT labeled (0). This particular instantiation of the HIT pro-
vides the worker with a scenario which they must attempt to
accomplish. Workers may be asked, for instance, to use the
Movie Browser to find movies with ACTOR: Keanu Reeves and
GENRE: Action. The search results are displayed along with
checkboxes, which the worker uses to mark the movies relevant
to the query. Upon submission, we collect the last utterance
spoken and the list of movies marked relevant.

With the system HIT in place, we have all the pieces neces-
sary to implement the crowd-supervised training of our system.
To be fully hands-free, however, we must be able to use the out-
put of one HIT as the input of the next. To do so, we rely on
TurKit [6]. This open-source project allows us to implement
simple JavaScript programs to manipulate HITs arbitrarily. The
following code conveys the ease with which we can take audio
collected from our system HIT and pass it along into a generic
transcription task:

var out = systemHIT.outputs();
var transcribeHIT = new TranscriptionHIT();
for (var i = 0; i < out.length; ++i) {

var id = transcribeHIT.add(out[i].audioUrl);
// id can be used later to check for results

}

We extend this code to collect data with HIT (0) and pass it
through HITs (1)-(3) according to the flow chart in Figure 1.

Noise control is relatively straightforward to implement us-
ing TurKit. The transcription HIT has a loop in the flowchart
which indicates that once the audio is transcribed by the first
worker, it is then passed through the HIT a second time to be
verified by a second worker before moving on to the semantic
labeling stage. When the labeling is finished, we compare the
transcript to the recognition results in search of semantically
important words that were misrecognized. Before we gener-
ate prompt HITs usingng these words, however, we employ a
domain-specific form of noise control. In particular, each term
is run through our movie search index to ensure its validity.
Once the transcribed and semantically tagged term is validated,
we begin to collect spoken examples of it.

TurKit relies heavily on the concept of memoization to ease
the scripting of human computation. Memoization refers to
the caching of the result of a function call based on its inputs.
For example, the transcribeHIT.add function in the code
snippet above is memoized internally. The first time it is called,
a HIT is created and the HIT’s id is returned. In subsequent
calls to the function with the same URL input, no new HIT is
created, but the same id is returned. To simplify the explana-
tion, we have omitted the details of how we batch multiple utter-
ances into the same transcription HIT, but a library for bundling
inputs makes batched tasks similarly straightforward. Finally,
we extend this approach to implement the series of HITs in the
flowchart of Figure 1 and run the script iteratively. Each itera-
tion sends a wave of updates across all of the active HITs.

To close the loop in the crowd-supervised training process,
our system must be able to retrain and dynamically load new
models on-the-fly. Given the spoken examples, we employ a
pronunciation mixture model to learn new words and refine ex-
isting pronunciations in our lexicon. With the transcripts and se-
mantic labels, we can train a class-based language model. Two
additional obvious candidates for retraining not explored in this
work are the acoustic model and the conditional random fields
used for semantic interpretation.
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Figure 2: We show a windowed percentage indicating the frac-
tion of the last 200 utterances that contain a relevant result in
the top five movies returned. WER is computed on a sepa-
rate dataset of 1001 utterances at various stages in the crowd-
supervised learning process.

5. Experimental Results
To experiment with our crowd-supervised training framework,
we decided to limit our domain to a set of scenarios. Rather than
choosing our own scenarios, however, we ran a quick mTurk-
task for scenario collection. This task consisted of a simple
HTML form, for which a worker was asked to fill out two or
three of the ten classes with reasonable values, e.g. DIREC-
TOR: Darren Aronofsky, RATING: R. These constraints then
make up the set of scenarios used in our experiments. We col-
lected 373 scenarios and filtered them through the movie search
index to ensure their presence in our database. Forty scenarios
were used for development to test our training framework, and
127 scenarios were used in the experiments described below.

We kicked off a small-scale crowd-supervised training ex-
periment on a weekday evening and completed it roughly five-
and-a-half hours later. All HITs were restricted to the US, and
the prices of each HIT were set to optimize throughput rather
than cost. Still, each utterance was collected, transcribed, and
semantically labeled for less than a quarter. Over the course of
deployment, 22 distinct workers contributed a total of 714 indi-
vidual voice search queries to Movie Browser using the system
HIT. Each worker was only allowed to complete a given sce-
nario once. As workers completed the system HIT, their data
progressed through the crowd-supervised training framework;
about 45 minutes into the HIT, on-the-fly recognizer updates
began to occur. Figure 2 shows that the on-the-fly training pro-
cedure has an appreciable effect on movie relevance, a metric
computed from the worker’s checkbox selections. We use a
large window of 200 utterances to smooth out variation between
users, and compute a moving average representing the fraction
of the time that a relevant movie is in the top five search re-
sults. Since it is clear that the system improves, we now turn
our attention to ascertaining how the gains are made.

To analyze the dynamics of the recognition, we took snap-
shots of the recognizer after each pass through the retraining
phase. Rather than test on the same data, we decided to collect
and transcribe a separate dataset with the same scenarios using
only HITs (0) and (1) from Figure 1. We made no effort to pre-
vent workers who performed the first HIT from working on the
second, and indeed 11 workers of the 38 that performed this HIT
had done at least one assignment during the crowd-supervised
training. Also, for this collection, workers were allowed to per-
form each scenario twice. The test set collection task was left



Category A G D R C T P all
Spoken 666 486 275 263 193 99 96 1986
Learned 74 19 27 6 27 17 16 177
Missing 27 1 10 3 20 6 10 67
Acc. Before 77.0 79.8 77.4 77.5 35.7 51 42 70.2
Acc. L2S 94.1 80.0 93.0 81.4 81.3 77 90 86.5
Acc. After 96.6† 79.8 92.0 82.5 87.6∗ 76 84 87.5∗

† PMM/L2S differences statistically significant with p < 0.001
∗ PMM/L2S differences statistically significant with p < 0.05

Table 1: Accuracies broken down by categories (abbreviated by
their first letter.) Note that some categories overlap slightly, e.g.
actors can be directors. Categories that were not learned or with
fewer then 10 spoken examples are omitted.

running overnight, and by morning, we had collected and tran-
scribed 1,179 utterances. Unlike the training phase, which was
completely hands-free, some workers who contributed unintel-
ligible audio were rejected. Using the final test set of 1,001
utterances, we compute a WER for each recognizer snapshot
and plot it over time in Figure 2. Over the course of the crowd-
supervised training, the WER of the test set drops from 32.3%
down to 20.8%. The high error rates reflect both the difficulty
of the domain and the noisy nature of crowd-sourced data.

There is an initial delay before the improvements become
noticeable since it takes time for the data to propagate down
through the semantic labeling HIT. After the semantic label-
ing HIT, the class-based language model retraining can begin.
We determine the utility of retraining the language model via
a post-processing step. We remove the crowd-supervised tran-
scriptions from the LM training data while keeping the learned
lexical items intact and recompute a WER on the test set. This
causes the WER to bounce back up to 25.3%. Most of the gains,
then, are due to the improvements to the lexicon.

Closing the lexical gap between the mTurk collected sce-
narios and the initial recognizer lexicon is the largest source of
gains. Sam Worthington, for example, the star of Avatar, was
not on the original outdated list of actors. When an utterance
containing this name was transcribed and labeled, the name was
inevitably determined to be a misrecognition. As such, it was
first validated against the search index, and then added to the
list of prompts to be collected. In the meantime, the L2S model
was used to generate a pronunciation. Table 1 shows the num-
ber of terms learned and missing from each category, as well as
the number of times they were spoken in the test set.

Since only 177 distinct words were learned, we examine the
recognition accuracies of these words directly to get a picture of
how the L2S and PMM affect recognition. Table 1 breaks ac-
curacies down by category. We first compute the accuracies of
each category before any training took place. They are rela-
tively low due to the missing lexical items. The final row in the
table shows the results of applying the entire crowd-supervised
word-learning process.

The effects of the PMM can be inferred by first removing
the pronunciations learned from spoken examples and replac-
ing them with their L2S counterparts. As shown in Table 1,
where the differences between the PMM and L2S are statisti-
cally significant under McNemar’s test, the PMM consistently
improves over the L2S approach. In particular, recognition of
actors names was significantly improved despite having a high
L2S baseline of 94.1%. For example, the last name of Cary
Elwes, of Princess Bride fame, was given the pronunciation
eh l w eh s by the L2S. The PMM’s top pronunciation was
more accurate: eh l w ey z. We were surprised that the
workers knew the pronunciation of this name, but listening to

their speech confirmed that they did. Even if they had not, learn-
ing mispronounciations can also be beneficial.

6. Conclusions and Future Work
This work has described an automatic crowd-supervised train-
ing framework and demonstrated its utility with respect to up-
dating a recognizer’s lexicon and language model in the Movie
Browser system. While cinema’s ever-shifting lexical domain
highlights the need for systems that can grow and change to ac-
commodate previously unknown words, we believe the frame-
work itself may be generally useful to replace the manual con-
figuration and bootstrapping that accompanies building a new
spoken language system. Most of the tools used in the paper are
open-source, enabling other researchers to test similar systems.

In addition to increasing the scale of our current training
effort, we hope to explore a number of extensions to this work.
First, the semantic labels can be used to retrain the conditional
random field to learn semantics on-the-fly. Second, we would
like to examine whether acoustic model adaptation might be
performed based on mTurk-collected audio. Finally, we would
like to integrate more sophisticated active learning techniques to
let the system intelligently decide how to collect its own train-
ing data. Perhaps with these additions, we would come even
closer to a truly organic spoken language system.
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