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Abstract

Zero-resource speech processing involves the automatic analysis of a collection of
speech data in a completely unsupervised fashion without the benefit of any transcrip-
tions or annotations of the data. In this thesis, we describe a zero-resource framework
that automatically discovers important words, phrases and topical themes present in
an audio corpus. This system employs a segmental dynamic time warping (S-DTW)
algorithm for acoustic pattern discovery in conjunction with a probabilistic model
which treats the topic and pseudo-word identity of each discovered pattern as hidden
variables. By applying an Expectation-Maximization (EM) algorithm, our method
estimates the latent probability distributions over the pseudo-words and topics asso-
ciated with the discovered patterns. Using this information, we produce informative
acoustic summaries of the dominant topical themes of the audio document collection.
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Chapter 1

Introduction

1.1 The Zero Resource Setting

Current state-of-the-art speech recognition (ASR) systems typically rely on statis-

tical models that require both a large amount of language specific knowledge and

a sizable collection of transcribed data. These resources are required for training

statistical models that map acoustic observations to phonetic units, creating pronun-

ciation dictionaries mapping phonetic units to words, and estimating language models

to provide constraints on the possible sequences of words. But of the 7,000 human

languages spoken across the globe, only 50 to 100 can actually support the massive

infrastructure of annotated data and expert knowledge required to train state-of-the

art speech recognition systems. Recently in the speech community, there has been

a push towards developing increasingly unsupervised, data-driven systems which are

less reliant on linguistic expertise. In [7], Glass places these paradigms along a spec-

trum (Figure 1-1) of speech processing scenarios. At one end lies the familiar ASR

framework in which near-complete supervision is the norm, and opposing it is the

so-called “sensor-based” or “zero resource” learning problem: spoken audio data is

available in a specific language, but transcriptions, annotations and prior knowledge

for this language are all unavailable. In this scenario completely unsupervised learn-

ing techniques are required to learn the properties of the language and build models

that describe the spoken audio.
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ity [11]. These constraints are in sharp contrast with hu-
man speech processing requirements where learning is an
inherent ability [12, 13]. All humans process vast quanti-
ties of unannotated speech and manage to learn phonetic
inventories, word boundaries, etc., and can use these abil-
ities to acquire new words [14, 15, 16]. Why can’t ASR
technology have similar capabilities?

In the following section, three alternative scenarios
for speech recognition learning are described that require
fewer annotated resources and human expertise. An un-
supervised speech recognition challenge is then presented
that requires learning phonetic inventories, and word pro-
nunciations from non-parallel speech and text sources.

2. UNSUPERVISED SPEECH PROCESSING

As illustrated in Figure 2, there is a range of scenarios for
processing speech that can be characterized by decreasing
amounts of human expertise and supervised intervention,
and a corresponding increase in unsupervised learning and
technical difficulty.

Technical Difficulty (more learning) 

H
u
m

a
n
 E
x
p
e
rt
is
e

 

Sensor-based 

Speech, Vision… 

Decipher-based 

Speech, Text 

Data-based 

Parallel Speech/Text  

Expert-based 

Dictionary, Phonemes 

Parallel Speech/Text  

Fig. 2. Potential ASR learning scenarios.

2.1. Expert-based Speech Processing

At one end of the spectrum is the conventional “expert-
based” approach that uses a pronunciation dictionary as
the cornerstone to anchor the mapping between sound se-
quences and word sequences, and exploits annotated train-
ing data with parallel speech and text to learn model pa-
rameters. This point represents most ASR research that
has been conducted since the late 1980s [17], when sub-
word hidden Markov models (HMMs) became the domi-
nant ASR paradigm [18].

2.2. Data-based Speech Processing

If the pronunciation dictionary and linguistic units are not
provided by an expert, then the issue of learning the dictio-
nary and associated inventory of units automatically must
be addressed. For languages that have straightforward
letter-to-sound mappings, a grapheme-based approach has
been shown to be effective [19]. For languages where
this is not the case, however, the challenge posed by this
“data-based” scenario is whether pronunciations can be

learned automatically from annotated data, and whether
a data-driven set of units can outperform a set of more
conventional linguistically specified units. Note that it
is somewhat ironic that, although all other parameters of
most ASR systems are learned from data, the conventional
pronunciation dictionary is still specified by experts. It is
not unreasonable to expect that, ultimately, automatically
learned units could out-perform manually specified units.

As an example of research headed in this direction, we
have been exploring the use of a pronunciation mixture
model, that can learn pronunciations for an entire lexicon
from an initial letter-to-sound (L2S) model and annotated
speech data [20]. If such a capability can be developed
without an initial L2S model - perhaps by iteratively learn-
ing sub-word units and their associated n-gram statistics,
then reasonable ASR capability should be achievable for
languages where annotated data is available.

The data-based scenario has several variations that in-
clude combinations of annotated and unannotated data, as
well as approaches that explore a combination of anno-
tated data from different languages in order to more easily
learn the ASR parameters of a new language [21]. There
are many real-world scenarios where a limited amount of
annotated data may be available along with much larger
inventories of unannotated data and there has been active
research in this area [22], as well as in active learning [23].
Another area of research related to this scenario is one
whereby low-cost human knowledge can be incorporated
into the learning process. For example, there has been
much recent activity on using crowdsourcing techniques
for collecting and annotating speech data [24, 25].

2.3. Decipher-based Speech Processing

A major break from conventional ASR training would be
achieved by techniques that are able to learn from unan-
notated speech combined with non-parallel text data. Al-
though the text data may be available to learn vocabular-
ies and language models, the determination of what words
occur where will need to be inferred from the data.

In the ASR community, there has been recent activity
on learning from unannotated speech - a scenario some-
times referred to as the zero resource scenario. Researchers
have shown, for example, that it is possible to identify
word-like patterns in the speech signal by looking for re-
occurring sound sequences [26, 27, 28, 29, 30, 31]. This
work is related in spirit to work on ‘motif’ discovery in the
data mining community [32]. Automatically discovered
speech patterns have been used for a variety of applica-
tions, including spoken query retrieval [33], topic segmen-
tation [34], topic classification [35, 36], and unit learn-
ing [37]. There has also been research directed towards
automatically finding an appropriate set of sub-word units
from speech data alone, sometimes referred to as self-
organizing units (SOUs) [38, 39].

A logical next step in these latter endeavors is to make
the connection with non-parallel text data, in order to learn
a pronunciation dictionary automatically. Theoretically at
least, knowledge of the lexicon should provide constraint

2

Figure 1-1: Potential ASR learning scenarios as described by [7] We use the terms
“sensor-based” and “zero-resource” interchangeably.

In essence, the ultimate goal of zero-resource modeling is to develop completely

unsupervised techniques that can learn the elements of a language’s speech hierarchy

solely from untranscribed audio data. This includes the set of acoustic phonetic units,

the sub-word structures such as syllables and morphs, the lexical dictionaries of words

and their pronunciations, as well as higher level information about the syntactic and

semantic elements of the language. This is an extremely lofty goal, but recent research

has begun to investigate solutions to sub-problems at various levels of the hierarchy.

One area of research focuses on the automatic discovery of repeated acoustic pat-

terns in a spoken audio collection. The patterns that are found typically correspond

to commonly repeated words or phrases observed in the data. Initial work in this

area used a segmental dynamic time warping (S-DTW) algorithm search for repeated

acoustic patterns in academic lectures [27]. Improvements to this approach were

obtained when raw acoustic features were replaced with model-based posteriorgram

features derived from a Gaussian mixture model [35]. Recent techniques for dramat-

ically reducing the computational costs of the basic search have made this acoustic

pattern discovery approach feasible on large corpora [18, 19, 20, 34].

Another approach is to first learn acoustic-phonetic models from the audio data.

These phonetic units are then used to represent the data before performing any higher

level pattern discovery. Approaches of this type include a self-organizing unit (SOU)

recognition system which learns an inventory of phone-like acoustic units in an un-

14



supervised fashion [31], a successive state splitting hidden Markov model framework

for discovering sub-word acoustic units [33], and a Bayesian nonparametric acoustic

segmentation framework for unsupervised acoustic model discovery [25]. Clustered

patterns from a spoken term discovery system have also been used to help unsuper-

vised learning of acoustic models [16, 17].

Independent of the speech technology work being pursued in this area, researchers

in linguistics and cognitive science have been interested in the process of language

acquisition and have been developing techniques that attempt to learn words by

segmenting a collection of phoneme strings. Bayesian approaches have proven to be

especially successful for this task [8, 21].

The successful application of the aforementioned algorithms opens the doors for

higher level semantic analysis. In [11], n-gram counts of unsupervised acoustic units

were used to learn a latent topic model over spoken audio documents. In [4], vector

space document modeling techniques were applied to the clustered patterns found by a

spoken term discovery algorithm. In [5, 38], similar spoken term discovery algorithms

were used to produce acoustic summaries of spoken audio data.

1.2 Problem Statement: Spoken Corpus Summa-

rization

In this thesis, we consider the following problem: suppose we would like to understand

the major topical themes within a collection of speech audio documents, without

having to listen to each one. If text transcripts or ASR output for each document

were available, topic models from Probabilistic Latent Semantic Analysis (PLSA) [14]

or Latent Dirichlet Allocation (LDA) [2] could be used to generate a text summary of

the corpus as in [10]. In the zero resource setting, these techniques cannot be directly

applied. We instead present a method that is similar in spirit, but aims to summarize

the topical themes of the corpus by extracting meaningful audio snippets.

For the purpose of generating this kind of summary, we want to associate regions

15
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Figure 1-2: Diagram of our unsupervised spoken audio corpus analysis system

of the audio signal with latent topics, analogous to what is done with words in models

such as PLSA and LDA. We propose a system (visualized in Figure 1-2) which:

1. Searches the audio corpus for repeated acoustic patterns, often corresponding

to repetitions of the same word or phrase.

2. Uses a probabilistic latent variable model to associate these acoustic patterns

with latent topics and pseudo-words.

3. Summarizes the topical themes of the corpus by using the model to extract

topically meaningful acoustic patterns.

1.3 Thesis Outline

The body of this thesis is organized as follows: In Chapter 2, we present an overview

of recent developments in unsupervised acoustic modeling and discuss how the meth-

ods apply to our problem at hand. Chapter 3 contains the background information

16



regarding the unsupervised pattern discovery stage of our system, as well as a descrip-

tion of our implementation. Chapter 4 presents the main contributions of this thesis,

a set of methods for characterizing and summarizing the topical themes of a large

collection of speech audio. Chapter 5 concludes by discussing possible extensions of

the methods we present.
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Chapter 2

Unsupervised Acoustic Modeling

2.1 Motivation for Unsupervised Acoustic Models

Mel-Frequency Cepstral Coefficients (MFCCs) are one of the most widely used fea-

ture representations used in automatic speech recognition (ASR) systems. Computed

by taking the discrete cosine transform of the log magnitudes of a set of filter bank

outputs, when applied to a short time segment of speech (usually a 25 millisecond win-

dow shifted every 10 milliseconds) they provide a compact estimate of the resonances

of the human vocal tract at that instant in time. Additionally, their dimensions are

approximately de-correlated by the discrete cosine transform, allowing them to be

effectively modeled by diagonal covariance Gaussians commonly used in speech rec-

ognizers. Because the shape of the vocal tract varies across speakers, the MFCCs

extracted from two different individuals speaking the same words may be very dif-

ferent. To combat this, supervised systems typically employ mixtures of Gaussians

along with massive amounts of training data in conjunction with speaker normal-

ization and adaptation techniques such as vocal tract length normalization [1] and

maximum likelihood linear regression [26]. Because unsupervised speech processing

systems do not have the benefit of training labels, speaker variation becomes a major

hurdle. A body of recent work in the zero resource speech processing community has

focused on developing speaker independent features and acoustic models specifically

for the problem setting in which no labelled data is available [6, 17, 25, 23, 31, 33, 36].
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2.2 Phonetic and Gaussian Posteriorgrams

In this thesis, our overarching goal is to characterize the topical content of an audio

corpus in an unsupervised fashion. Our approach relies upon first discovering re-

peated acoustic patterns from the speech of many different people, and so we require

representation of the audio signal that is at least somewhat speaker independent.

One avenue of research aimed at tackling this speaker independence issue has inves-

tigated the use of posteriorgram features and their effectiveness as a more speaker-

independent speech representation. In [12], a supervised query-by-example keyword

spotting system was developed which utilized posteriorgram features. Because word

recognition lattice-based keyword spotting becomes problematic when faced with out

of vocabulary search terms, the authors instead aimed to capture the phonetic spelling

information of a query term and utilize a dynamic time warping algorithm to match

phonetically similar sequences in the corpus of data to be searched. They did this by

representing all of the speech data not in terms of acoustic feature vectors such as

MFCCs, but rather by computing a posterior probability distribution over phonetic

units for every frame of speech audio. Given a set of generative acoustic models θ

which model a set of N discrete, phone-like units u1, u2, . . . , uN , an acoustic feature

vector ~x can be transformed into a posteriorgram vector ~p in the following way:

~p = [P (u1|~x, θ), P (u2|~x, θ), . . . , P (uN |~x, θ)]T (2.1)

Using this representation, a dynamic time warping algorithm was applied to align

the query term’s posteriorgram representation with subsequences of the data to be

searched. In [36], the authors presented a similar query-by-example keyword spot-

ting system, but in a completely unsupervised framework. Rather than using pho-

netic posteriorgram features, the authors demonstrated that Gaussian posteriorgram

acoustic features provided increased keyword spotting accuracy across speakers when

compared to raw MFCCs. Gaussian posteriorgrams represent each speech frame as

a posterior probability distribution across components in a Gaussian Mixture Model

(GMM). Given a D dimensional GMM G with N Gaussian components c1, c2, . . . , cN

20



where the ith component is specified by its weight wi, mean µi, and covariance matrix

Σi, a feature vector ~x can be represented by its Gaussian posteriorgram vector ~g:

~g = [P (c1|~x,G), P (c2|~x,G), . . . , P (cN |~x,G)]T (2.2)

where P (ci|~x,G) represents the posterior probability of the ith component given ~x:

P (ci|~x,G) =
wiN (~x;µi,Σi)

N∑
j=1

wjN (~x;µj,Σj)

(2.3)

2.3 Lattice Derived Posteriorgrams

Posteriorgrams over phone-like units can also be estimated from the recognition out-

puts of speech recognition systems. In this case, a recognition lattice is used to

represent a set of possible word or phone sequences for a speech utterance. This

first requires computing a posterior lattice, which specifies the posterior probability

of traversing any given arc in the lattice. Given a lattice where transition arc weights

are taken to be likelihood scores, it is straightforward to compute the posterior lattice

using the Forward-Backward algorithm. Let I be the set of nodes in the lattice and

let si,j be the weight of the arc starting at node i and ending at node j. The forward

variable for node i is computed as

αi =
∏
k∈I

αksk,i, (2.4)

and the backward variable is computed as

βi =
∏
k∈I

βksi,k. (2.5)

Assuming the lattice starts at node 0 and ends at node N , the base cases for the

recursion relations above are

α0 = 1, (2.6)

21



βN = 1. (2.7)

Finally, the posterior probability of traversing the arc from node i to node j is equal

to

γi,j =
αisi,jβj
β0

(2.8)

From a posterior lattice, the posterior probability of a word or phone-like unit u

occurring at time t can be computed simply by summing the posterior probability of

all arcs with label u which cross time t. To compute a posteriorgram vector series for

an utterance, we can query the posterior lattice for the probabilities of all units at

every 10ms interval.

2.4 Self-Organizing Unit Posteriorgrams

For the experiments in this thesis, we utilize posteriorgram features derived from the

recognition lattices provided by the self-organizing unit (SOU) system developed at

BBN [31]. The SOU system is very similar to a conventional phone-based HMM

speech recognizer, except that acoustic unit labels are learned during training in

an unsupervised fashion. The system is initialized by segmenting an audio signal at

regions of abrupt spectral change, and then clustering each resulting acoustic segment.

The cluster labels become acoustic unit labels, and an HMM for each label is trained.

Bigram and trigram language models are also trained over the label sequences, and

the resulting acoustic and language models are used to re-recognize all of the training

data, producing a new set of segment labels. The process continues, iteratively re-

training the acoustic and language models before re-recognizing the training data,

and so on.

A subtle albeit very important item to note is the fact that the SOU system

contains a silence model. In our experiments, we explicitly ignore the silence unit

during the pattern discovery step.
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2.5 Other Related Work in Unsupervised Acoustic

Model Discovery

Many other approaches towards learning acoustic models in an unsupervised fashion

have been explored in the literature. Several techniques investigated by Jansen et

al have used the unsupervised pattern discovery architecture introduced by [27] to

impose top-down constraints on acoustic sub word unit models in a fashion similar

to the way that pronunciation lexicons and word level transcriptions are used in the

forced alignment step of training a recognizer. In [17], the authors took clusters of

acoustic intervals returned from a pattern discovery search and trained an HMM for

each cluster. Then, the states across all HMMs learned were clustered to form acoustic

sub word unit models. In [16], the authors took a different approach by first training

a bottom-up GMM over a collection of speech feature vectors in a manner similar

to the one used by [36]. They next utilized a S-DTW pattern discovery algorithm

to align similar words and phrases found in the data. In the last step, the S-DTW

alignments were used to cluster the components of the GMM by examining when

frames assigned to different Gaussians were aligned to one another by the S-DTW

search. The resulting acoustic models formed by clusters of Gaussian components

showed significantly increased speaker independence when compared to raw features

or the GMM alone.

Recently, Lee and Glass formulated a completely unsupervised Bayesian nonpara-

metric framework for acoustic sub word unit discovery. A key difficulty in many

proposed sub word unit discovery algorithms is that of model selection, and most

techniques require the number of learned units to be set manually. In [25], the au-

thors attempted to address this in a formal framework by placing prior distributions

over their model parameters and then inferring a set of HMMs to represent the sub

word units. The authors demonstrated a strong mapping of the learned units to En-

glish phones, and showed good results when using the learned units for a keyword

spotting task.

A completely different approach was taken by Varadarajan et al in [33] based

23



upon a successive state splitting algorithm for HMMs. Starting with a collection of

speech from one speaker and a single state GMM-HMM model, at each iteration the

algorithm considers splitting each HMM state into two new states by computing the

gain in data likelihood by splitting. If this gain is above a threshold, the state is

split. The algorithm continues splitting the HMM states in this fashion. Although

the algorithm was only evaluated on the speech of a single speaker in a single session,

the authors demonstrated a strong mapping between the inferred HMM state labels

on the test set and the underlying phonetic labels.
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Chapter 3

Unsupervised Pattern Discovery

3.1 Dynamic Time Warping

Dynamic Time Warping (DTW) is a well-known algorithm for finding an optimal

alignment between two time series, and throughout the 1970s and 1980s was a very

popular method of performing speech recognition. One reason for this is the fact that

DTW-based recognizers are very easy to build; at the very minimum, all that is neces-

sary is a single spoken example of each word that could be recognized. On simple tasks

like digit recognition, DTW can be incredibly effective, especially if the training and

test data are spoken by the same speaker. Moreover, DTW makes very few modeling

assumptions, and the comparison between a test utterance and the training utterances

can be done directly on the feature level. Although there are continued efforts towards

implementing large vocabulary continuous speech recognition (LVCSR) systems us-

ing DTW [30], statistical frameworks such as Hidden Markov Models (HMMs) have

emerged as the dominant approach, thanks in large part to the widely used toolkit

HTK [32]. Recently, however, there has been renewed interest in DTW, especially for

unsupervised applications in which there exists little or no training data that can be

used to fit statistical models [4, 5, 12, 17, 18, 19, 27, 35, 36, 37, 38].

Let X = x1, x2, . . . , xM and Y = y1, y2, . . . , yN be two vector-valued time series.

An alignment path A = φ1, φ2, . . . , φT defines a set of frame pairs that matches frames

in X with frames in Y . Each φi = (ai, bi) represents a pairing between frame xai and

25



frame ybi . Typically, the following constraints are imposed on A:

1. The alignment path begins at the start of each sequence; that is, φ1 = (1, 1)

2. The alignment path terminates at the end of each sequence; that is, φT =

(M,N)

3. The alignment path is monotone and may not move backwards in time; that is,

i < j =⇒ ai ≤ aj and bi ≤ bj.

4. The alignment path is continuous. That is, the warp path may not advance

more than one frame at a time in either X or Y . The path is allowed, however,

to advance by one frame in both X and Y simultaneously.

Let Dist(x, y) denote the distortion between frames x and y. In practice Dist(x, y)

may be any measure of the dissimilarity of x and y, such as Euclidean distance, cosine

distance, etc. The total distortion D accumulated along an alignment path A can

then be written as:

D(A) =
T∑
i=1

Dist(xai , ybi). (3.1)

Let Â be the optimal path aligning X and Y which minimizes D. Also let C be

a matrix with element Ci,j equal to the total distortion of the optimal path from

(x1, y1) to (xi, yj). Clearly, D(Â) = CM,N . We can efficiently solve for Â in O(MN)

time using a dynamic programming algorithm that takes advantage of the following

insight:

Ci,j = Dist(xi, yj) +min(Ci−1,j−1, Ci−1,j, Ci,j−1) (3.2)

Using the above equation, we can construct C column by column, with the additional

constraints C0,0 = 0, C0,j = ∞, Ci,0 = ∞. By simultaneously constructing a back-

pointer table B where Bi,j holds a reference to the second-to-last frame pair φ along

the optimal path from (x1, y1) to (xi, yj), we can easily recover Â via lookup.
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3.2 Segmental Dynamic TimeWarping and Acous-

tic Pattern Discovery

Dynamic time warping in its basic form provides an efficient mechanism for compari-

son between two time series, but it can also be modified to reveal similar subsequences

within the time series. A technique for doing this known as segmental dynamic time

warping (S-DTW) was introduced in [27]. The authors applied S-DTW to search a

single, long audio waveform for repeating acoustic subsequences, which often corre-

sponded to repeated instances of the same word or short phrase.

S-DTW at its core involves the application of several additional constraints to

the vanilla DTW algorithm. The first of these constraints allows the warping path to

start and end in the middle of the sequences to be aligned. The second is the addition

of a band-width restriction, which prevents the warp path from straying too far away

from the diagonal. The band-width restriction for a width R can be expressed as:

|(ak − a1)− (bk − b1)| ≤ R, 1 ≤ k ≤ T. (3.3)

By beginning the restricted search at various starting frames within each of the two

sequences, all possible subsequence alignments can be considered. The two cases

defining these possible start coordinates are given by:

φ1 = ((2R + 1)j + 1, 1), 0 ≤ j ≤
⌊
M − 1

2R + 1

⌋
(3.4)

φ1 = (1, (2R + 1)j + 1), 1 ≤ j ≤
⌊
N − 1

2R + 1

⌋
(3.5)

In [27], the key application of S-DTW explored by the authors was unsupervised

acoustic pattern discovery. Given a collection of speech audio, the S-DTW algorithm

was employed to find locally optimal alignments between audio segments without the

benefit of transcriptions or any acoustic models. These alignments often corresponded

to repetitions of the same word or short phrase. An example taken from [27] is shown

in Figure 3-1 and shows the alignment paths for all starting coordinates between an
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“He too was diagnosed with paranoid schizophrenia” 

“w
ere w

illing to put N
ash’s schizophrenia on record” 

Figure 3-1: A S-DTW alignment between two utterances containing the word
“schizophrenia,” where distances are based upon spectral features, borrowed from
[27]. Each thin black path corresponds to an alignment associated with different
start and end coordinates. The thick black part of each path is the LCMA subse-
quence of the path. After filtering out high distortion LCMA subsequence alignments,
only the alignment highlighted in red remains, which aligns the two instances of the
word “schizophrenia” while ignoring the rest of both utterances.
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utterance of “He too was diagnosed with paranoid schizophrenia” and an utterance of

“were willing to put Nash’s schizophrenia on record”. One of the warping paths con-

tains a low-distortion region aligning the two instances of the word “schizophrenia”,

highlighted in red. To find this subsequence of the local alignment path, the au-

thors employed a length-constrained minimum average (LCMA) subsequence search

for each alignment path. This search only retains a contiguous, low-distortion chunk

of each alignment path. The result is a collection of alignment path fragments where

each fragment aligns an audio interval [t
(a)
1 , t

(a)
2 ] to another audio interval [t

(b)
1 , t

(b)
2 ]

with a distortion score d, computed by summing the pairwise frame distortions along

the alignment fragment. After filtering out alignment fragments with a high distor-

tion, the remaining alignment fragments tend to correspond to repeated instances of

the same or similar words.

3.3 Our Implementation

While the authors in [27] and [35] demonstrated the effectiveness of the S-DTW pat-

tern discovery algorithm on audio recordings whose length was on the order of several

hours, the biggest hurdle to applying S-DTW to increasingly larger speech corpora

is the O(N2) complexity of the search. To help alleviate this computational cost,

Jansen et al have proposed two approximations to the standard S-DTW algorithm

which provide dramatic speed gains [18, 19]. The experiments detailed in this thesis

use a pattern discovery implementation similar to the one described in [18]. In that

work, the authors introduce a two-pass approximation to the full S-DTW search.

From a high level, this strategy treats the distance matrix as a 2-D image and applies

image filtering techniques to perform a coarse search for approximately diagonal lines.

The line segments themselves can be treated as alignment path segments, much the

same as when the full S-DTW algorithm is used. The second pass of the algorithm

refines the line segments by applying a restricted S-DTW search only to the regions

occupied by the discovered diagonal lines.

We will describe the pattern discovery search procedure we use in detail here. Let
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P = ~p1, ~p2, . . . , ~pM and Q = ~q1, ~q2, . . . , ~qN be the posteriorgram representations of

two speech utterances, where each ~pi and ~qi are G dimensional vectors representing

categorical probability distributions over a discrete set of speech units. That is, the

jth element of ~pi represents the posterior probability that speech frame i of utter-

ance P was generated by speech unit j. The first step is to construct a matrix S

where si,j represents some measure of similarity between ~pi and ~qj. Any vector space

metric or measure may be used, such as Euclidean distance, cosine similarity, dot

product similarity, or KL divergence. Because the posteriorgram vectors represent

probability distributions, the dot product similarity has an interesting interpretation;

~pi ·~qj represents the probability that the ith frame of utterance P and the jth frame of

utterance Q were independently generated by the same, single speech unit. Because

it is also simple and fast to compute, especially for sparse posteriorgram vectors, we

use the dot product similarity in our experiments. Because each ~pi and ~qj represent

probability distributions, each element is guaranteed to be nonnegative, and their L1

norms will always be 1. Therefore, 0 ≤ si,j ≤ 1.

One significant advantage that posteriorgram representations offer compared to

spectral representations is sparsity. Figure 3-2 shows the spectrogram representation

of three instances of the utterance “vocal tract” being spoken, while Figure 3-3 dis-

plays the posteriorgram representation of the same three utterances. The fact that

most dimensions of the posteriorgram vectors are close to zero means that we can

employ a sparse vector-vector product algorithm for the computation of the similarity

matrix after flooring elements of the posteriorgram vectors very close to 0. Figure

3-4 displays four similarity matrices computed using a sparse vector-vector product

algorithm after applying a minimum similarity threshold to the posteriorgrams. By

zeroing out elements of the posteriorgram vectors with a probability less than 0.01,

the number of multiply-adds required to compute the similarity matrix is cut by a

factor of 17.6 with almost no difference in the resulting matrix. By using a threshold

of 0.3, the number of multiply-adds is cut by a factor of more than 44, albeit with

some visible degradation in the quality of the similarity matrix.

The next step of the search is to quantize the similarity matrix to binary in order
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Figure 3-2: Three-way match between three spoken instances of the phrase “vocal
tract” shown in their spectrogram representation. Each pair of horizontal sharing
the same color (purple, red, and blue) highlights where the pairwise match intervals
overlap the speech in time.
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Figure 3-3: Three-way match between the same three spoken instances of the phrase
“vocal tract” displayed in Figure 3-2, this time shown in their GMM posteriorgram
representation. Lighter color represents higher posteriorgram vector probability with
black denoting 0.
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Figure 3-4: Effect of the posteriorgram quantization threshold for values of 0, 0.01,
0.05, and 0.3. Posteriorgram elements with value below the threshold are set to 0,
and sparse vector-vector products are used to compute elements of the dotplot. The
average number of multiply-adds (MADDs) needed to compute each element of the
dotplot for each setting of the threshold are shown. Setting a quantization threshold
of 0.3 reduces the number of multiply-adds necessary by a factor of more than 44
while resulting in very little degradation in dotplot fidelity.
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Figure 3-5: Effect of the similarity matrix quantization threshold for values of 0, 0.1,
0.25, and 0.5. Elements of the dotplot matrix with value below the threshold are set
to 0, and elements above the threshold are set to 1. Raising the threshold results in
more sparseness.
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to accommodate the median smoothing filter. We do this by setting each si,j to 0 if

si,j < τ for some fixed τ , and 1 otherwise. The effect of various settings of τ on the

similarity matrix is shown in Figure 3-5. Even when using relatively small values of

τ , the resulting matrix is still quite sparse, so we often use a small threshold in prac-

tice. After quantizing the matrix, we apply a nonlinear image filter targeted towards

extract diagonal structure. This takes the form of a diagonal median smoothing fil-

ter parameterized by µ, the median threshold, and L, the filter lookahead. Given a

matrix A of size M by N , applying the filter to A results in a new matrix B of size

M by N computed in the following way:

bi,j =


1 : 1

2L+1

L∑
k=−L

ai+k,j+k ≥ µ

0 : 1
2L+1

L∑
k=−L

ai+k,j+k < µ

(3.6)

where ai+k,j+k is assumed to be zero when i + k or j + k exceed the bounds of the

matrix (i.e. are less than 1, or when either i + k > M or j + k > N). Figure 3-6

illustrates the quantization and filtering steps applied to a raw similarity matrix.

Although the diagonal median smoothing filter effectively filters out non-diagonal

structure in the similarity matrix, the warp paths we are searching for often do not

conform exactly to the 45 degree diagonal assumption made by the filter. This can

result in broken or fragmented lines, so we smear the median filtered matrix by

convolving it with a constant image patch. Once the image has been smeared, we

apply a 1 dimensional Hough transform with θ fixed at 45 degrees. This amounts to

simply calculating the sum of every diagonal of the smeared matrix. A simple peak

picking algorithm applied to the Hough transform locates the diagonals along which

the smeared matrix is searched for contiguous nonzero regions. Each contiguous region

found in this fashion results in a diagonal line segment representing the approximate

location and orientation of a low-distortion path in the similarity matrix. Figure 3-7

illustrates the smeared matrix along with its Hough transform, in addition to a found

diagonal line segment overlaid on the original similarity matrix.

The final step in the search is to warp the diagonal line segments so that they

35



Raw Similarity Matrix Quantized Similarity Matrix Filtered Matrix

Figure 3-6: Steps 1 through 3 of the pattern search procedure. The raw similarity
matrix is first computed by computing the inner product of the posteriorgram vectors
belonging to each pair of frames. The matrix is then subject to a binary quantization
in the second step. The third step applies a nonlinear diagonal median smoothing
filter to reveal diagonal line structure.

36



Smeared Filtered Matrix

0 100 200 300
0

200

400

600

800

1000

1200
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Raw Similarity Matrix with Diagonal Lines

Figure 3-7: Steps 4 through 6 of the pattern search procedure. The nonzero values
of the filtered matrix from step 3 are smeared via convolution with an image patch
matrix. A 1-D Hough transform is then applied by simply summing every diagonal
of the smeared matrix. A simple peak picking algorithm defines the diagonal rays
along which the smeared matrix is searched for line segments.
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more closely follow the high similarity regions of the raw similarity matrix. We utilize

a slightly modified version of S-DTW for this step by introducing the additional

constraint that the warp path must pass through the midpoint of its corresponding

line segment. Given a line segment with midpoint (mx,my), we perform two separate

S-DTW warps. The first warp’s start coordinate is taken to be (sx, sy) where sx =

max(mx − k, 1), sy = max(my − k, 1), and k = min(mx,my). The end coordinate of

the warp is fixed to be (mx,my), and the minimum cost path is computed. In this

step we define the distortion between frames ~pi and ~qj as 1−si,j. Rather than keeping

the entire alignment path, we are only interested in the low-distortion alignment local

to (mx,my); therefore, to determine the fragment of the S-DTW path to retain we

walk backward along the path from (mx,my) and accumulate distortion along the

way until it exceeds a distortion budget B. The second S-DTW warp is constrained

to begin at (mx,my) and end at (ex, ey) where ex = mx + l, ey = my + l, and

l = min(M − mx, N − my). Again, we walk outwards along the alignment path

starting from (mx,my) until the accumulated distortion exceeds B. Merging the two

warp path fragments at (mx,my) results in the final alignment. The result of applying

the S-DTW refinement to the line segment displayed in Figure 3-7 is shown in Figure

3-8.

3.4 Chapter Summary

In this chapter, we have described the basics of dynamic time warping, a dynamic pro-

gramming algorithm commonly used to find optimal alignments between time series.

We have also described the segmental dynamic time warping algorithm introduced

by [27], which can be used to discover acoustic repetitions in an audio stream which

commonly correspond to repetitions of the same underlying word or phrase. We have

laid out in detail our implementation of the pattern discovery algorithm used in this

thesis, which is based upon the 2-pass approximation algorithm introduced in [18],

and also takes advantage of the posteriorgram feature representation introduced in

[12] and [36].
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Figure 3-8: The warp path refined from the diagonal line segment shown in Figure
3-7, with the time aligned transcriptions of both utterances shown along the vertical
and horizontal axes. Notice how the warp path clings to the low distortion regions
of the dotplot as compared to its parent line segment, providing a more accurate
estimate of the match distortion.
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Chapter 4

Modeling of Latent Topics and

Words

4.1 Background on Document Modeling

The notion of a document is central to many applications of natural language pro-

cessing such as search, information retrieval, and automatic summarization. Text

documents may take many forms, including news articles, webpages, email messages,

and transcriptions of spoken conversations, to name a few. A document may also

refer to recorded speech, such as a radio news broadcast, an academic lecture, or a

telephone conversation. Many efforts in text mining and information retrieval utilize

statistical learning algorithms which model data at the document level, so it is natural

to consider how documents may be mapped to feature vectors suitable for learning

and inference. In this section, we provide a brief overview of document modeling

techniques largely drawn from [9].

The ubiquitous method of extracting feature vectors from text documents is by

using a so-called bag-of-words. The bag-of-words approach implicitly ignores context

information and assumes that the order in which words appear is irrelevant. Formally,

let vocabulary V be a set of NV unique and ordered words,

V = {w1, . . . , wNV
}, (4.1)
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and let D be a collection of ND documents,

D = {d1, . . . , dND
} (4.2)

For any w ∈ V and any d ∈ D, the term-frequency of w in d is denoted by tf(w, d)

and is equal to the number of times word w appears in document d. Let the NV

dimensional vector ~xd be the feature vector representing document d. We construct

a bag-of-words or term-frequency vector, ~xd, for document d as follows:

~xd =
[
xw1 , . . . , xwNV

]T
(4.3)

xw = tf (w, d) (4.4)

This method of mapping documents to vectors is sometimes known as direct modeling,

as individual word occurrences are directly represented in the feature space. Direct

modeling of documents is simple, yet effective, and has proven its worth in tasks

such as email spam filtering [29]. In addition to finding use as feature vectors in

many popular machine learning algorithms, bag-of-words vectors allow documents to

be compared to one another using standard vector space measures. A very popular

similarity measure for doing so is the cosine similarity. The cosine similarity between

vectors ~x and ~y is defined as

SimCS(~x, ~y) =
~x · ~y

||~x||2||~y||2
(4.5)

Direct modeling of documents is not without its problems. Function words such

as articles, prepositions, and conjunctions tend to be far more frequent than con-

tent words like nouns, verbs, and adjectives. Bag-of-words vectors are hence often

dominated by counts of words bearing little lexical meaning. In practice, one way

of alleviating this problem is by using handcrafted stop-lists which explicitly specify

a list of words to be ignored. Other methods attempt to give more weight to some

words compared to others. An example of this is inverse document frequency (idf)
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weighting [22]. This can be expressed as:

λw = idf (w) = log

(
ND

ND∩w

)
(4.6)

where ND∩w is the number of documents in D containing the word w. Incorporating

these weights modifies Eq. 4.7 to become:

xw = λwtf (w, d) (4.7)

Intuitively, when word w frequently appears in many documents, it is more likely

to be a function word. In this case, ND∩w is large relative to ND, causing λw to be

small. When ND∩w is small relative to ND, λw grows larger, reflecting the fact that

w only appears in a small subset of the documents in the collection and is likely to

be content-carrying or topic-specific.

A more challenging issue to overcome is the fact that the size of most vocabularies

are very large, often on the order of tens of thousands of words. It is desirable then to

have a reduced dimensionality representation of bag-of-words vectors. Latent topic

modeling of documents is one way of doing this, and has been a very active area of

research in the natural language processing community in recent years. One popular

latent topic model is Probabilistic Latent Semantic Analysis (PLSA) [14]. PLSA

is a generative probabilistic model which assumes that the term-frequency vector

associated with each document is randomly generated from a mixture of unigram

language models. Each language model is associated with a latent topic variable z

from a set, Z = {z1, . . . , zNZ
}, of NZ latent topics. The probability of generating word

w from topic z is given by P (w|z). Furthermore, it is assumed that each document

possesses a probability distribution over the latent topics, where P (z|d) acts as the

mixture weight for topic z in document d. The probability of observing word w in

document d can be expressed in terms of these distributions as follows:

P (w|d) =
∑
z∈Z

P (w|z)P (z|d) (4.8)
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Let C = {c1, . . . , cNV
} represent document d, where cw = tf(w, d); that is, C contains

the counts of each word appearing in d. Given d, the probability of observing all of

the words appearing in the document is:

P (C|d) =
∏
w∈V

(∑
z∈Z

P (w|z)P (z|d)

)cw

(4.9)

In order to fit a PLSA model to a document collection, maximum likelihood

training is typically done using an Expectation-Maximization (E-M) algorithm. The

expectation (E) step first computes the posterior probability distribution for each

latent topic variable conditioned on the data and previous estimate of the model

parameters:

P (z|w, d) =
P (w|z)P (z|d)∑

z′∈Z P (w|z′)P (z′|d)
(4.10)

In the maximization (M) step, the model parameters are re-estimated based upon the

data and the posterior distribution of each latent variable:

P (w|z) =

∑
d∈D tf(w, d)P (z|d, w)∑

w′∈V
∑

d∈D tf(w′, d)P (z|d, w′)
(4.11)

P (z|d) =

∑
w∈W tf(w, d)P (z|d, w)∑

z′∈Z
∑

w∈W tf(w, d)P (z′|d, w)
(4.12)

4.2 Modeling Spoken Audio Documents

Not all documents are text. News broadcasts, telephone calls, lectures, movies, tele-

vision programs, and YouTube videos are all sources of large amounts of recorded

speech audio. The advent of the internet combined with the inexpensive and massive

data storage available today make good indexing and retrieval algorithms for audio

documents all the more necessary.

The simplest and most straightforward way of handling collections of spoken audio

documents is by making use of tools already available - namely, automatic speech
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recognition and vector space document modeling techniques. Efforts into this arena

have produced very good results on Fisher English data by first estimating word

counts using the output lattices from a speech recognizer and then applying a PLSA

topic model to the resulting bag-of-words vectors [10]. In the absence of a full speech

recognizer, estimated counts of triphone sequences may be used in place of words [11].

When no recognition capability is available, unsupervised methods present an

opportunity to map spoken audio documents to discrete symbol sets that may be

used for indexing. Segmental dynamic time warping-based acoustic pattern discovery,

described in Chapter 3, is a technique growing in popularity for analyzing streams

of spoken audio in a completely unsupervised fashion. Its ability to align regions

of the audio stream bearing high acoustic similarity to one another can be coaxed

into providing a discrete representation of audio documents suitable for the kinds of

document modeling techniques presented in Section 4.1.

The research most similar to that contained in this thesis was conduced by Dredze

et al in [4]. In that work, the spoken term discovery system outlined in [18] was used

to find a set of acoustic matches within an audio document collection. These match

intervals were then clustered according to their DTW similarity, and within-document

cluster counts were used to form bags-of-words vectors. Experimental results showed

competitive performance in both document clustering and document classification

tasks. It is important to note, however, that the pattern discovery algorithm used

by the authors employed a supervised multi-layer perceptron trained on 250 hours of

transcribed data to compute frame-level phonetic posteriorgram vectors. The work

presented in this thesis differs in two significant ways. Firstly, our system is com-

pletely unsupervised from the ground up. Second, we utilize a probabilistic latent

variable model to perform a soft clustering of acoustic match intervals into pseudo-

word categories, and the resulting pseudo-word categories into latent topic categories.
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4.3 Linked Audio Document Representation

In the absence of any transcriptions or ASR technology, one way to construct a dis-

crete representation of a collection of spoken audio documents is with the aid of an

acoustic pattern discovery system. In this section, we describe a method of repre-

senting the audio documents within such a collection in terms of a graph structure

which reflects pairwise matches between intervals of audio. Assume that a spoken

term discovery system (such as the one described in Chapter 3) has been applied to a

spoken document collection and returned a set of matches, M . Each element of M is

a triple consisting of a distortion score and two matched regions of audio, (t
(a)
1 , t

(a)
2 ),

and (t
(b)
1 , t

(b)
2 ). Because we use the dot product between posteriorgram vectors to

compute frame distortions, each frame pair’s distortion score can range between 0

and 1. The distortion score of a match is computed by summing the distortion score

of each frame pair across the path aligning (t
(a)
1 , t

(a)
2 ) and (t

(b)
1 , t

(b)
2 ), then dividing by

the length of the alignment path. Since the match distortion score is length nor-

malized and always ranges between 0 and 1, we can conveniently use it to filter out

high-distortion matches which may be untrustworthy; in our experiments, all matches

with a distortion score above 0.5 are discarded. Additionally, matches that are ex-

tremely short in length tend to reflect alignments between similar sub-word units and

may not be indicative of a match between two similar words or phrases. To remove

these spurious matches, we filter out any match with an average length of less than

0.5 seconds.

Next, we require a means of collapsing overlapping regions into a single interval

so as to resolve when multiple matches include the same region of audio. We use a

method of doing this similar to the one used in [4] that collapses overlapping regions

to the same interval whenever their fractional overlap exceeds a threshold set to 0.75.

The result is a collection of intervals, where each interval consists of one or more

match regions which overlap in time. For each interval i, we choose the start time,

t
(i)
1 , and end time, t

(i)
2 by averaging the start and end times of all regions collapsed to

i. Each interval i is assigned a set of links derived from all match regions that overlap
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D The set of all spoken documents
d ∈ D A single spoken document
I The set of all audio intervals returned by the spoken term discovery

algorithm
i ∈ I A single interval of audio
Id The subset I containing only the intervals which appear in docu-

ment d
Li The set of links to the audio intervals which match interval i ac-

cording to the spoken term discovery algorithm
l ∈ Li An individual link from interval i. Can be thought of as a pointer

to some other interval in I which matched interval i.
Ld The set of links to the audio intervals which match all of the inter-

vals contained in document d

v(d) Bag-of-links vector representing document d
Z The set of all latent topic variables

z ∈ Z An individual latent topic variable
W The set of all pseudo-word variables

w ∈ W An individual pseudo-word variable

Table 4.1: A compilation and description of all variables used in our latent models.

it. We assign i a link set, Li = {li,1, li,2, . . . , li,|Li|}, where each l ∈ Li takes on as its

value the index of some other interval j such that there exists a match in M linking a

region of audio overlapping i with a region of audio overlapping j. For each interval,

this yields a triple i = (t
(i)
1 , t

(i)
2 , Li). After this process, we are left with a set of |I|

intervals, I = {i1, i2, . . . , i|I|}, with the subset of intervals appearing in document d

denoted by Id. A visual representation of a linked spoken audio document collection

is shown in Figure 4-1. In the upcoming descriptions of our models, many variables

are employed, and so for notational convenience we provide a summary in Table 4.1.

4.4 PLSA on Bags-of-Links

4.4.1 The PLSA-BoL Model

At a high level, our goal is to characterize the document collection D in terms of

a set of latent topics Z, in the same spirit as algorithms such as PLSA applied to
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Document 

Link 

Interval 

Figure 4-1: An example of a linked audio document corpus. Gray boxes represent
documents, and the black rectangles inside them represent the audio intervals they
contain. The lines between audio intervals reflect matches discovered by the pattern
discovery step.

text documents. We draw inspiration from these text-based document models, but

what differentiates our data from text is the fact that we do not know the word-

level transcription underlying each interval of audio discovered by the spoken term

discovery algorithm. In this section, we present two latent variable models which aim

to capture the topical themes of a spoken audio document collection in the absence

of any lexical knowledge.

Assume that a pattern discovery algorithm has been applied to a corpus of audio

documents, D, providing a set of of intervals, I, as well as a set of target links, Li,

for each i ∈ I. Clearly, we cannot construct a bag-of-words vector for each document

since the words in each document are not actually known. An alternative strategy

is to iterate over all of the intervals within each document and accumulate their link

targets as if they were word counts. From there, each document could be represented

as a bag-of-links, and standard vector space document modeling approaches may be

used.

This model treats each document as a bag-of-links vector v(d), where the jth ele-
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Figure 4-2: Bag-of-links representation of an audio document. Interval 1 is contained
inside the document and links to interval 0, so the bag-of-links vector representing
the document reflects a count of 1 in its 0th element.

ment of v(d) is equal to the total number of times any interval contained in d matched

the jth interval. That is,

v
(d)
j =

∑
i∈Id

1Li
(j) (4.13)

where 1Li
(j) = 1 if interval i matched the jth interval and 0 otherwise. This idea for

a corpus consisting of 10 match intervals is illustrated in Figure 4-2.

We seek to model the probability of observing a link to interval l from document

d using a set of latent topic variables Z:

P (l|d) =
∑
z∈Z

P (l|z)P (z|d). (4.14)

The graphical model in plate notation is shown in Figure 4-3, and is in fact equivalent

in structure to PLSA. Note that this model assumes that each link originating from

d was generated by a different latent topic variable, even if several of these links

originate from the same interval of audio within d.

The model parameters, P (z|d) and P (l|z) are estimated using the standard EM

update equations for PLSA, enumerated in Eqs. 4.10, 4.11, 4.12, substituting links in

place of words. We also apply TF-IDF based stop listing to the bag-of-links vectors,

throwing away any interval which was linked to by more than 20% of the documents,
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Figure 4-3: The PLSA-BoL model in plate notation

or less than 4 other intervals. This is to eliminate spurious matches, as well as

potential stop words, filled pauses, etc. Hierarchical agglomerative clustering of the

documents into |Z| clusters is used in the initialization of P (l|z). For this clustering

step, the similarity measure used between documents is the cosine similarity between

bag-of-links vectors. The initialization is performed by treating each document cluster

as an initial topic z, and then finding the maximum likelihood estimate of P (l|z) by

only considering the documents clustered into the initial topic z. A pseudo-count of

0.1 for each l is used to smooth the initial P (l|z) distributions before beginning the

E-M updates. In these experiments, we assume |Z| = 6, the number of true topics,

in an effort to re-learn the true topic labels with the latent model.

4.4.2 Summarizing the PLSA-BoL Model

Given a PLSA-BoL model trained on a document collection, we can produce a sum-

mary of the topical content of the collection by extracting short audio snippets of

speech exemplifying each latent topic. A human user could then listen to these sets

of audio snippets and quickly get a gist of what topics are discussed in the collection.

When working with text documents, topic modeling researchers often try to make

keyword lists or word clouds reflecting the most significant words in each latent topic

learned by a model. To form a summary of a single latent topic z, a common practice

is to simply rank all words in the vocabulary according to their posterior probability

given the topic, P (w|z). The top N words with the highest posterior probability are

then used to form a summary of latent topic z. As an alternative to choosing the words

which maximize the posterior probability given a topic, we could instead extract the

words which maximize the weighted point wise mutual information (WPMI) between
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words and topics. The WPMI measure between random variables x and z is defined

as:

WPMI(x, z) = P (x, z)λ log

(
P (x, z)

P (x)P (z)

)
(4.15)

Intuitively, the log( ) factor is large when x and z are more likely to appear

together than independently, and the P (x, z) factor weights this by the overall joint

probability of x and z. In practice, these factors may weighted more or less against

one another by raising them to a power. An example topical summary produced for

a collection of text documents from the Fisher corpus by [13] is shown in Table 4.2.

In our experiments, to form a summary of latent topic z using the PLSA-BoL model,

we rank all of the audio intervals in I according to WPMI(i, z) and extract the top

10 intervals.

4.4.3 PLSA-BoL Experiments

For our summarization experiments, we use a collection of 60 telephone calls from the

English Phase 1 portion of the Fisher Corpus [3]. Each call consists of a 10-minute

long telephone conversation between two speakers. At the start of each conversation

the participants were prompted to discuss a particular topic. The set of calls we use

spans 6 of these topic prompts, with 10 calls per prompt. To give a few examples, the

prompts for the “Anonymous Benefactor” and “Minimum Wage” topics are shown

below:

“If an unknown benefactor offered each of you a million dollars - with

the only stipulation being that you could never speak to your best friend

again - would you take the million dollars?”

Do each of you feel the minimum wage increase - to $5:15 an hour - is

sufficient?

SOU posteriorgram representations (described in Chapter 2) for all utterances in all

60 calls were produced by a 45-unit SOU system trained on an independent 60-hour
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set of Fisher English data. S-DTW audio segment link detection was applied to the

posteriorgram representation of all utterance pairs in the 60 call set. A total of 10,041

link pairs between 3,165 unique audio intervals were discovered and used to train the

model, which was set to learn a set of 6 latent topics.

Table 4.3 shows the summaries of the topics learned by the PLSA-BoL model

on the 60 call Fisher dataset. The mapping of the latent topics to the true topics,

P (t|z), is shown for the closest true topic along with the underlying text transcripts

of the intervals extracted to form each latent topical summary. There is a significant

overlap between the true topic labels and the latent topics learned, and the extracted

intervals are semantically informative with respect to their latent topic. However,

many of the intervals forming each topic summary are repeated instances of the same

word or phrase. In the next section, we consider a model which has the capability

to associate individual match intervals with pseudo-word categories in an effort to

alleviate this issue.

Summaries of PLSA Topics Matching Fisher Topic
dog, cats, pet, animals, fish, bird, feed, puppy,
cute, cage

Pets (0.90)

minimum wage, pay, jobs, five fifteen an hour,
paid, making, tips

Minimum Wage (0.864)

sports, football, basketball, baseball, game, team,
watching, hockey

Sports on TV (0.849)

airport security, plane, fly, september eleventh,
flight, airplane, flown

Airport Security (0.523),
September 11th (0.351)

Table 4.2: Example latent topic summaries generated using PLSA on text transcripts
in [13].
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Topic Text transcripts of extracted intervals Mapping to true topics (%)
1 minimum wage, minimum wage, minimum

wage, minimum wage, . . .
Minimum Wage (99.7)

2 think computers, computers, of computers,
computer, computer, computers, . . .

Computers in Education
(99.9)

3 exactly, um, country, exactly, countries, um,
countries, exactly, exactly

Illness (37.3), Corporate
Conduct (32.2)

4 holidays, holiday, holiday is, holidays, the holi-
days, holidays, holiday, . . .

Holidays (83.1)

5 money, situations, situations, the more money
you, friend, educational, four years, situation,
situations, make money

Anonymous Benefactor
(55.3)

6 weather friends, friends, friends, friends,
friends, some friends, friends, kind of friends,
to happen, major you know

Corporate Conduct (55.2),
Anonymous Benefactor
(45.3)

Table 4.3: Latent topic summaries generated using PLSA-BoL.

4.5 The Latent Lexical and Topic Model

4.5.1 Model Overview and Training

While the PLSA-BoL model has the capability to associate links to particular intervals

of audio with latent topics, it is not able to infer which intervals of audio may be

instances of the same spoken word or phrase. In this section, we introduce a more

sophisticated doubly-stochastic model which aims to jointly cluster match intervals

into pseudo-word categories, and cluster pseudo-word categories into latent topics in

a probabilistic fashion. The model assumes that each match interval has a latent

word identity w ∈ W , where W is a fixed-size vocabulary of pseudo-words to be

learned. The graphical model in plate notation is shown in Figure 4-4, reflecting the

generative story assumed for each link set Li belonging to interval i in document d.

For each i in Id,

1. Draw a latent topic z from P (z|d).

2. Draw a latent pseudo-word w from P (w|z).

3. Draw a set of |Li| links to other intervals i.i.d. from P (l|w).
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Figure 4-4: The Latent Lexical and Topic Model in plate notation

What differentiates the LLTM from the PLSA-BoL model is the addition of a

new set of multinomial distributions, P (l|w). Intuitively, we expect audio intervals

containing the same underlying word w to have a tendency to match one another

in the S-DTW search. Therefore, P (l|w) should be relatively large for each of these

intervals l, and small for intervals not belonging to w. The probability of observing

a link set Li given a document can be expressed mathematically as

P (Li|d) =
∑
w∈W

∑
z∈Z

P (w|z)P (z|d)
∏
l∈Li

P (l|w). (4.16)

Letting d(i) denote the document containing interval i, the data likelihood can be

written as:

L =
∏
i∈I

∑
w∈W

∑
z∈Z

P (w|z)P (z|d(i))
∏
l∈Li

P (l|w). (4.17)

To find a local maximum of the data likelihood surface, we employ an Expectation-

Maximization algorithm. In the E-step, we estimate the joint posterior probability

distribution of the pseudo-word variable w and latent topic variable z for interval i

appearing in document d. Using Bayes’ Rule, we can write this posterior as:

P (w, z|d, Li) =
P (w|z)P (z|d)

∏
l∈Li

P (l|w)∑
z′∈Z

∑
w′∈W P (w′|z′)P (z′|d)

∏
l∈Li

P (l|w′)
(4.18)

In the M-step, we use the last estimate of this posterior probability to update the

model parameters according to the equations

P (l|w) =

∑
d∈D

∑
i∈Id 1Li

(l)
∑

z∈Z P (w, z|d, Li)∑
l′∈I
∑

d∈D
∑

i∈Id 1Li
(l′)
∑

z∈Z P (w, z|d, Li)
(4.19)
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P (w|z) =

∑
d∈D

∑
i∈Id P (w, z|d, Li)∑

w′∈W
∑

d∈D
∑

i∈Id P (w′, z|d, Li)
(4.20)

P (z|d) =

∑
i∈Id

∑
w∈W P (w, z|d, Li)∑

z′∈Z
∑

i∈Id

∑
w∈W P (w, z′|d, Li)

(4.21)

Agglomerative clustering of the documents is again used to determine the initial

assignment of the topic variable associated with each interval. The P (l|w) and P (w|z)

distributions are initialized by pseudo-word category assignments produced by the

InfoMap graph clustering algorithm [28] applied to the graph formed by treating the

intervals as nodes and their links as edges, although any standard graph clustering

algorithm could be used in this step. We take each cluster of intervals and assign it

to an initial pseudo-word category w, then find maximum-likelihood initial estimates

of P (l|w) and P (w|z) using uniform pseudo-count smoothing added to each element

in the support of each distribution.

4.5.2 Summarizing the Topics using the LLTM

The LLTM can be summarized using techniques similar to those used to summarize

the PLSA-BoL model, with a few modifications to accommodate the additional latent

pseudo-word variables utilized by the model. To summarize a latent topic z using the

LLTM, we first rank the pseudo-word categories according to WPMI(w, z) with λ =

0.5 to choose a representative set of 10 pseudo-words for each latent topic. The choice

of λ here was chosen based upon manually examining the summaries produced for

various settings of the parameter, but does not seem to have an extremely significant

impact on the quality of the summaries produced. We must then extract the interval

of audio most representative of each pseudo-word. To do this, we heuristically rank

the intervals according to P (i|w)P (w|d, Li). Here, P (w|d, Li) represents the posterior

probability that interval i belongs to pseudo-word category w, while P (i|w) indicates

how likely any interval belonging to pseudo-word category w is to generate a link to

interval i.
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Figure 4-5: Convergence of the LLTM during training.

4.5.3 Experiments and Analysis

In our experiments with the LLTM, we utilized the same 60 call Fisher dataset used

to evaluate the PLSA-BoL model, with exactly the same match patterns discovered

via S-DTW. Table 4.4 shows the summaries of the learned topics in addition to the

mapping of the latent topics to the Fisher topic labels. When training the LLTM

model detailed in Table 4.4, we set the number of latent topics equal to the number

of true topics, and the number of pseudo-words was set to 581 by the initial clustering

provided by InfoMap [28].The final three experimental parameters were the pseudo-

count smoothing parameters used when computing initial estimates of the P (z|d),

P (w|z), and P (l|w) distributions; these settings were 0.2, 0.02, and 0.01, respectively.

The convergence of the data log likelihood is displayed in Figure 4-5.

The LLTM can be used to visually examine the collection of Fisher calls. Figure

4-7 displays a dendrogram of the Fisher conversations where pairwise distances are

computed via the cosine distance between their latent topic posterior distributions.

Figure 4-6 displays the collection of calls color coded by their dominant latent topic,
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along with the text transcriptions of extracted audio summaries of each latent topic.

As can be seen in Tables 4.4, 4.5, and 4.6, the LLTM does largely alleviate

the problem of redundant interval selection which was common with the PLSA-BoL

model. Many more topically informative words appear in the summaries, although

there are still some intervals containing non-informative stop words. Because our sys-

tem is completely unsupervised top-to-bottom, it does not have the benefit of expert

stop lists. Finding a suitable stop word solution is a potential area of improvement

for the model.

Topic Text transcripts of extracted intervals Mapping to true topics (%)
1 don’t think, weather friends, no I, situations,

the lottery, very you know, and,
Anonymous Benefactor (45.0),

benefactor, don’t even know who, and, econ-
omy, to happen, now um, money, so

Corporate Conduct (27.3)

2 minimum wage, you, yeah I, money, out
you’d be, you know, minimum wage jobs, you
know people, the, economy, in New York, an
hour, five dollars, he has, people working

Minimum Wage (86.1)

3 think computers, if she uses, education,
more and, computers, you ah, technical ah,
know the computerized, it’s just, informa-
tion, something that’s, on there, well that
that’s, different things, school

Computers in Education (99.7)

4 sicker, C.E.O., stock market, exactly, with-
out the, country, every sick, this guy, in uh

Illness (47.7),

in, of cold, like if you, that um, greedy,
Zealand you, stomach

Corporate Conduct (43.5)

5 I really like, holidays, own holiday, holiday,
equality, favorite holiday, considerate, and,
the key, recognized, you, new car, keys, like,
you like

Holidays (78.8)

6 is actually, I’m twenty, friend, <partial>,
I’ve seen it done, every day, maybe ah, that
and all, how, uh, best friend, that’s true, in-
creased, children, lazier and

Anonymous Benefactor (72.9)

Table 4.4: Latent topic summaries generated using LLTM.
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WPMI Pseudo-word exemplar
1.2588 think computers
0.7408 if she uses
0.2518 education
0.2260 more and
0.2260 computers
0.2193 you ah
0.2134 technical ah
0.1958 know the computerized
0.1630 (noise)it’s just
0.1599 information
0.1599 something that’s
0.1599 on there
0.1598 well that that’s
0.1516 different things
0.1401 school

Table 4.5: The top audio intervals associated with the top 15 pseudo-words for the
latent topic capturing “education”, shown with their WPMI scores

Exemplar Score Exemplar Score Exemplar Score
think computers 0.019 education 0.073 school 0.184

computers 0.017 education 0.060 schools 0.184
computers 0.016 education 0.060 school 0.147
computer 0.016 education 0.054 school and 0.147
computer 0.015 educational 0.054 school 0.147
computers 0.015 education 0.048 school so 0.110
computers 0.015 indication 0.048 school 0.073
computer 0.015 the educational 0.042 least getting 6e-09

of computer 0.015 education 0.042 know i know 6e-09
a computer 0.015 education 0.036 encyclopedia 6e-09

Table 4.6: The text transcripts of the top 10 audio intervals associated with the first,
third, and fifteenth pseudo-word categories for the “education” topic summary shown
in Table 4.5. The intervals are scored according to P (i|w)P (w|d, Li).
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minimum wage,  you,  the 
economy, money, you know, 
actually, yeah I, right, minimum 
wage jobs, it’ll be interesting, 
you know people, economy 

sicker, c.e.o., stock market, 
exactly, without the, 
country, every sick,  
this guy, in uh in, that um, 
greedy, enron 

think computers, something 
that’s, more and, computers, 
education, you ah, technical ah, 
know the computerized, ah and, 
conditioning, and, information 

I really like, holidays, own 
holiday, holiday, equality, 
favorite holiday, you like, 
considerate, and, the key, 
keys, this 

people who, weather 
friends, situations, no 
I, the lottery, and, don’t 
even know who, 
benefactor, economy, 
very you know, now 
um, to happen 

uh-huh, friend, ‘em twenty, know, 
maybe ah, I’ve seen it done, that 
and all, uh, best friend, every 
day, increased, lazier and 

Computers in Education 
(85.5%) 

Anonymous Benefactor 
(76.4%) 

Anonymous 
Benefactor 

(51.8%) 

Holidays (76.9%) 

Minimum Wage (76.4%) 
Corporate Conduct 

(46.9%) Illness (42.7%) 

Figure 4-6: A graph displaying the 60 Fisher conversations clustered and color coded
by their dominant latent topic. The mapping of each latent topic to its closest true
topic is shown in addition to the text transcriptions of a set of extracted short audio
snippets summarizing each latent topic.

To more rigorously compare the LLTM with the PLSA-BoL model, as well as to a

reasonable baseline, we evaluate the mapping between the learned latent topics and

the true topics using the normalized mutual information (NMI) measure:

NMI(z, t) =
2 ∗ I(z; t)

H(z) +H(t)
(4.22)

Here I(·; ·) denotes mutual information and H(·) denotes entropy. NMI is an infor-

mation theoretic measure similar to the F-score measure used in detection problems.
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Figure 4-7: Dendrogram formed using the latent topic posterior distributions for the
60 Fisher call collection. Pairwise distances are computed via the cosine similarity be-
tween the latent topic distributions of the calls, and the true topic labels are displayed
along the bottom.
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Rand. HAC PLSA-BoL LLTM PLSA-Text
NMI 0.168 0.529 0.529 0.592 0.895

Table 4.7: NMI scores for the various models

Its value ranges between 0 and 1, with 1 representing a perfect mapping between

the true topics and the latent topics. Table 4.7 shows the NMI scores for a uniform

random assignment of documents to latent topics, the hard agglomerative clustering

(HAC) used to initialize all models, both latent models, and a phrase-based PLSA

model applied to text transcripts of the data [13]. While the PLSA-BoL model does

not beat the hard-clustering baseline, the LLTM significantly outperforms them both,

closing 17.2% of the performance gap between the baseline and the text-based system.

4.6 Chapter Summary

This chapter began by providing a brief overview of vector space text document

modeling techniques. We then motivated our next steps by describing a scenario

in which we wish to apply latent document models to spoken audio documents, but

have no access to a speech recognizer or labeled data. A method of collapsing acoustic

patterns discovered by a segmental dynamic time warping-like algorithm into pseudo-

terms which may be treated like word occurrences was introduced. We then described

a latent model similar to PLSA which operates on document vectors representing the

degree of similarity between the acoustic patterns located in a document to all of the

acoustic patterns contained within a dataset. Experimental results confirm that this

model is able to relate instances of semantically similar acoustic patterns into topical

categories, but is unable to relate instances of lexically similar patterns to one another.

We introduced a novel doubly-stochastic topic model which takes into account the

latent lexical identity of each discovered acoustic pattern, and present the E-M update

equations for the model; methods for summarizing the topics learned by such a model

are also described. Experimental results on a corpus of 60 topically-labeled telephone

calls from the Fisher corpus are presented, demonstrating the ability of the model
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to jointly infer latent lexical identities for each acoustic pattern interval, as well as

latent topics covering the set of latent lexical identities.
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Chapter 5

Conclusion

5.1 Summary of Contributions

In Chapter 1, we have described and motivated the so-called “zero-resource” learning

problem in speech research and detailed previous work in this field. We presented

the subproblem of unsupervised spoken audio corpus analysis, as well as a novel

framework for tackling the problem. In Chapter 2, we presented an overview of

some recent research efforts in the realm of unsupervised acoustic modeling and mo-

tivated its importance to our application. In Chapter 3, we described background

work on segmental dynamic time warping based pattern discovery as well as more

recent improvements to the algorithms. We then gave a detailed explanation of the

implementation that was used in our experiments.

The main contributions of this thesis are predominantly detailed in Chapter 4.

Namely, we explore several ways of characterizing the latent topical content of a col-

lection of speech audio in a completely unsupervised fashion. We apply the standard

PLSA model to a novel representation of spoken audio documents, and then formulate

a novel probabilistic topic model which explicitly models the underlying, unknown

lexical identity of each speech audio interval discovered by a S-DTW-like algorithm.

We demonstrate the model’s utility by applying it to a 10-hour collection of Fisher

English telephone calls and showing that the learned topics (and hence the implied

clustering of the documents) highly overlap the true topic labels. Furthermore, we
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demonstrate the ability of the model to produce highly informative yet very concise

summaries of the latent topics, enabling a human listener to get the gist of the topical

themes of the hours-long collection in less than a minute.

5.2 Future Directions

We have presented a system capable of taking as its input nothing more than a col-

lection of unlabeled, untranscribed spoken audio documents in a possibly unknown

language and producing topically informative audio summaries of the entire collec-

tion. It does this by discovering acoustic repetitions throughout the data, inferring

an underlying word category to each repetition, as well as inferring a latent topic

distribution associated with each underlying word category and each document as a

whole. We suggest here several key ways in which the methodology may be improved.

5.2.1 Improvements in Speed and Scalability

Possibly the most important question that future work may tackle is that of scalability.

Even taking into account the algorithmic optimizations we utilize for the pattern

discovery step, the computational complexity still remains O(n2). Jansen and Van

Durme suggest an approximation algorithm based upon locality sensitive hashing

which computes an approximation of the distance matrix in O(n logn) time, which

would facilitate the application of our methodology to larger datasets.

Another method of improving the speed and scalability of the proposed system

lies within the considerable processing power of massively parallel graphics processing

units (GPUs). Zhang and Glass demonstrated that a S-DTW-based keyword spotting

algorithm could be efficiently implemented on a GPU, resulting in a 55x speedup when

compared to a CPU implementation. The implementation of a similar algorithm

capable of an exhaustive S-DTW search would likely see similar gains. In addition to

improving the speed at which acoustic patterns may be discovered, the E-M updates

for the LLTM may also benefit from being parallelized on a GPU.
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5.2.2 Improvements in Representation of Acoustics

Because the focus of our work was on modeling the underlying lexical and topical iden-

tities of a collection of short speech intervals, we did not do an exhaustive comparison

of different feature representations of the acoustics. However, some investigation into

this arena has revealed that different acoustic representations do in fact have a large

influence over the capability of a DTW-based pattern discovery algorithm to uncover

high precision matches [15]. In the extreme case, perfect precision and recall of a

pattern discovery algorithm would be nearly identical to achieving perfectly accurate

speech recognition. Therefore, any downstream processing of the discovered patterns,

such as the models described in this paper, would greatly benefit from higher quality

matching.

5.2.3 Improvements in Topic and Word Modeling

One challenging issue facing unsupervised lexical modeling is the stop word problem.

Although the topical summaries produced by our models contain mostly informative

audio snippets, they are often peppered with instances of uninformative function

words, filled pauses, disfluent speech, and so on. Although we do employ a TF-IDF

based stop listing procedure in an attempt to remove these words, it is clear that there

is room for improvement. Supervised text-based systems often employ expert stop

word lists whose sole purpose is to filter out this sort of “junk,” and it is reasonable

to consider whether unsupervised measures may be developed to serve this purpose.

Refined probabilistic graphical models which rely on fewer parameters would be

faster to train while simultaneously requiring less data. It is also conceivable that

phoneme-like-unit segmentation within each discovered pattern, such as that intro-

duced by [24], could be used to infer a set of pronunciations for each discovered pattern

and remove the need to model every possible pairwise link between the match inter-

vals. The latent topic and word levels of the model could also be integrated into the

Bayesian acoustic unit discovery framework presented by [25].
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5.2.4 New Application Areas

Although we have made the assumption that our method is language agnostic, we have

thus far only applied it to English spoken audio. In order to validate this assumption,

it is necessary to evaluate our methods on non-English data. It may be particularly

interesting to choose a resource impoverished language for which ASR technology is

nonexistent.

5.3 Parting Thoughts

Automatic speech recognition technology continues to improve and is now becom-

ing so widespread that most of us carry ASR-capable smartphones everywhere we

go. However, it is important to remember that of the approximately 7,000 human

languages spoken across the world, only an estimated 50 to 100 possess a sufficient

amount of labelled data to train a recognizer; it doesn’t seem fair to simply ignore

those languages and their speakers. Furthermore, by focusing our efforts on develop-

ing a unified, generalizable framework to teach computers to recognize and understand

human language on their own, it is likely that researchers will reach a deeper under-

standing of how humans learn. While building speech systems less reliant on expert

knowledge is by no means an easy task, it opens up new avenues of research filled

with exciting new problems waiting to be solved.
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