
Unsupervised Speech Processing with Applications

to Query-by-Example Spoken Term Detection

by

Yaodong Zhang

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2013

c© Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

Jan 10, 2013

Certified by. .
James R. Glass

Senior Research Scientist
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Theses

2

Unsupervised Speech Processing with Applications to

Query-by-Example Spoken Term Detection

by

Yaodong Zhang

Submitted to the Department of Electrical Engineering and Computer Science
on Jan 10, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis is motivated by the challenge of searching and extracting useful infor-
mation from speech data in a completely unsupervised setting. In many real world
speech processing problems, obtaining annotated data is not cost and time effective.
We therefore ask how much can we learn from speech data without any transcrip-
tion. To address this question, in this thesis, we chose the query-by-example spoken
term detection as a specific scenario to demonstrate that this task can be done in the
unsupervised setting without any annotations.

To build the unsupervised spoken term detection framework, we contributed
three main techniques to form a complete working flow. First, we present two
posteriorgram-based speech representations which enable speaker-independent, and
noisy spoken term matching. The feasibility and effectiveness of both posterior-
gram features are demonstrated through a set of spoken term detection experiments
on different datasets. Second, we show two lower-bounding based methods for Dy-
namic Time Warping (DTW) based pattern matching algorithms. Both algorithms
greatly outperform the conventional DTW in a single-threaded computing environ-
ment. Third, we describe the parallel implementation of the lower-bounded DTW
search algorithm. Experimental results indicate that the total running time of the
entire spoken detection system grows linearly with corpus size. We also present
the training of large Deep Belief Networks (DBNs) on Graphical Processing Units
(GPUs). The phonetic classification experiment on the TIMIT corpus showed a
speed-up of 36x for pre-training and 45x for back-propagation for a two-layer DBN
trained on the GPU platform compared to the CPU platform.

Thesis Supervisor: James R. Glass
Title: Senior Research Scientist

3

4

Acknowledgments

I would like to thank my advisor Jim Glass for his guidance, encouragement and

support over the years. He is always smiling and always saying yes to let me try all

my random ideas. I am also thankful to my thesis committee members Victor Zue

and Tommi Jaakkola. They provided insightful suggestions to broaden and improve

the research in this thesis.

I am grateful to the colleagues in the SLS group. This work would have not been

possible without the support of them: Stephanie, Scott, Marcia, Ian, Jingjing, T.J.,

Najim, Ekapol, Jackie, Ann, Stephen, William, David, Tuka, Carrie, Xue, Yu, Xiao,

Daniel, Hung-an, Yushi, Kiarash, Nate, Paul, Tara, Mitch, Ken, etc.

Finally, I would like to thank my family and friends for their constant love and

support.

5

6

Contents

1 Introduction 17

1.1 Vision . 19

1.2 Main Contributions . 22

1.3 Chapter Summary . 23

2 Background 25

2.1 MFCC Representation . 25

2.2 Gaussian Mixture Models . 29

2.3 Dynamic Time Warping . 30

2.3.1 Segmental Dynamic Time Warping 33

2.4 Speech Corpora . 35

2.4.1 TIMIT . 35

2.4.2 NTIMIT . 36

2.4.3 MIT Lecture . 36

2.4.4 Babel Cantonese . 37

2.5 Summary . 37

3 Unsupervised Gaussian Posteriorgram 39

3.1 Posteriorgram Representation . 39

3.2 Gaussian Posteriorgram Generation 41

3.3 Analysis of Gaussian Posteriorgram 43

3.4 Search on Posteriorgram . 47

3.5 Spoken Term Discovery Using Gaussian Posteriorgrams 48

7

3.5.1 Spoken Term Discovery . 48

3.5.2 TIMIT Experiment . 50

3.5.3 MIT Lecture Experiment . 53

3.6 Spoken Term Detection Using Gaussian Posteriorgrams 57

3.6.1 TIMIT Experiment . 59

3.6.2 MIT Lecture Experiment . 60

3.7 Summary . 63

4 Resource Configurable DBN Posteriorgram 65

4.1 Introduction . 66

4.2 Related Work . 67

4.3 Deep Belief Networks . 70

4.3.1 DBN Definition . 70

4.3.2 DBN Inference . 71

4.3.3 DBN Training in Practice . 77

4.4 DBN Posteriorgrams . 78

4.4.1 Semi-supervised DBN Phonetic Posteriorgram 78

4.4.2 Unsupervised DBN Refined Gaussian Posteriorgram 79

4.4.3 Evaluation . 80

4.5 Denoising DBN Posteriorgrams . 88

4.5.1 System Design . 88

4.5.2 Evaluation . 90

4.6 Summary . 92

5 Fast Search Algorithms for Matching Posteriorgrams 93

5.1 Introduction . 94

5.2 Related Work . 95

5.2.1 Lower-bound Estimate Based Methods 96

5.2.2 Distance Matrix Approximation Based Methods 98

5.3 DTW on Posteriorgrams . 99

5.4 Lower-Bounded DTW on Posteriorgrams 100

8

5.4.1 Lower-bound Definition . 100

5.4.2 Lower-bound Proof . 101

5.4.3 Nontrivialness Check for Exact Lower-bound 103

5.5 Piecewise Aggregate Approximation for DTW on Posteriorgrams . . . 103

5.5.1 PAA Definition . 104

5.5.2 PAA Lower-bound Proof . 106

5.5.3 Nontrivialness Check for PAA Lower-bound 107

5.6 KNN Search with Lower-Bound Estimate 108

5.7 Experiments and Results . 109

5.7.1 The Exact Lower-Bound Results 110

5.7.2 PAA Lower-Bound Results . 113

5.8 Summary . 116

6 GPU Accelerated Spoken Term Detection 117

6.1 Introduction . 118

6.2 Related Work . 119

6.3 GPU Accelerated Lower-Bounded DTW Search 121

6.3.1 Spoken Term Detection using KNN-DTW 121

6.3.2 System Design . 122

6.3.3 Evaluation . 126

6.4 GPU Accelerated Deep Learning . 130

6.4.1 Pre-training . 130

6.4.2 Back-propagation . 131

6.4.3 Evaluation . 132

6.5 Summary . 135

7 Conclusions and Future Work 137

7.1 Summary and Contributions . 137

7.2 Future Work . 139

7.2.1 Posteriorgram Generation . 139

7.2.2 Letter-to-Posteriorgram HMM 141

9

7.2.3 Posteriorgram Evaluation . 141

7.2.4 Lower-Bounding for Spoken Term Discovery 143

7.2.5 Hierarchical Parallel Implementation 144

A Phonetic Distribution of Gaussian Components 145

A.1 Vowels . 145

A.2 Semi-vowels and Retroflex . 151

A.3 Nasals . 154

A.4 Fricatives . 155

A.5 Affricates . 158

A.6 Stops and Stop Closures . 159

A.7 Silence . 160

Bibliography 163

10

List of Figures

1-1 Different ASR learning scenarios . 19

1-2 Query-by-Example Spoken Term Detection 21

2-1 Waveform representation and the corresponding spectrogram represen-

tation of a speech segment . 26

2-2 Triangular filters placed according to Mel frequency scale 28

2-3 A GMM with five Gaussian components with equal weights 29

2-4 Two sinusoid signals with random Gaussian noise 32

2-5 The optimal alignment of the two sinusoid signals after performing DTW 33

2-6 An illustration of S-DTW between two utterances with R = 2 35

3-1 A spectrogram (top) and Gaussian posteriorgram (bottom) of a TIMIT

utterance . 42

3-2 Gaussian Component 13 . 44

3-3 Gaussian Component 41 . 45

3-4 Gaussian Component 14 . 46

3-5 Converting all matched fragment pairs to a graph 49

3-6 Cost matrix comparison for a male and female speech segment of the

word “organizations” . 52

3-7 Effect of changing clustering stopping factor α on # clusters found and

cluster purity on four MIT lectures 56

3-8 System work flow for spoken term detection using Gaussian posterior-

grams . 58

11

4-1 A Restricted Boltzmann Machine and a Deep Belief Network 72

4-2 System work flow for generating posteriorgrams using DBN 78

4-3 Average EER against different training ratios for semi-supervised DBN

posteriorgram based QE-STD on the TIMIT corpus 83

4-4 DET curve comparison of Gaussian and DBN posteriorgram based

QE-STD on the TIMIT corpus . 86

4-5 System work flow for training a denoising DBN 90

5-1 Example of a 1-dimensional upper-bound envelope sequence (red) com-

pared to the original posteriorgram (blue) for r = 8 101

5-2 Example of a one-dimensional PAA sequence 105

5-3 An illustration of KNN search with lower-bound estimate 110

5-4 Average DTW ratio against KNN size for different global path constraints111

5-5 Tightness ratio against different query lengths 112

5-6 Actual inner product calculation against different number of frames

per block . 114

5-7 Average inner product calculation save ratio against differentK nearest

neighbors . 115

6-1 System flowchart of the parallel implementation of the lower-bound

calculation and the KNN-DTW search. 123

6-2 Parallel frame-wise inner-product calculation 124

6-3 Parallel DTW . 126

6-4 Comparison of computation time for parallel DTW 127

6-5 Decomposition of computation time vs. corpus size 129

6-6 Time consumed for the full pre-training on the TIMIT phonetic clas-

sification task with different DBN layer configurations 133

6-7 Time consumed for the full back-propagation on the TIMIT phonetic

classification task with different DBN layer configurations 134

7-1 Query-by-typing keyword search using LP-HMM 142

12

A-1 Vowels 1 . 146

A-2 Vowels 2 . 147

A-3 Vowels 3 . 148

A-4 Vowels 4 . 149

A-5 Vowels 5 . 150

A-6 Vowels 6 . 151

A-7 Semi-vowels . 152

A-8 Retroflex . 153

A-9 Nasals . 154

A-10 Fricatives 1 . 155

A-11 Fricatives 2 . 156

A-12 Fricatives 3 . 157

A-13 Affricates . 158

A-14 Stops and Stop Closures . 159

A-15 Silence 1 . 160

A-16 Silence 2 . 161

A-17 Silence 3 . 162

13

14

List of Tables

3.1 Comparison of spoken term discovery performance using MFCCs and

Gaussian posteriorgrams on the TIMIT corpus 50

3.2 Top 5 clusters on TIMIT found by Gaussian posteriorgram based spo-

ken term discovery . 53

3.3 Academic lectures used for spoken term discovery 54

3.4 Performance comparison of spoken term discovery in terms of # clus-

ters found, average purity, and top 20 TFIDF hit rate 54

3.5 TIMIT 10 spoken term list with number of occurrences in training and

test set . 60

3.6 MIT Lecture 30 spoken term list with number of occurrences in the

training and test set . 60

3.7 MIT Lecture spoken term experiment results when given different num-

bers of spoken term examples for the 30-word list 61

3.8 Individual spoken term detection result ranked by EER on the MIT

Lecture dataset for the 30-word list 61

3.9 MIT Lecture 60 spoken term list . 62

3.10 MIT Lecture spoken term experiment results when given different num-

bers of spoken term examples for the 60-word list 62

3.11 Individual spoken term detection result ranked by EER on the MIT

Lecture dataset for the 60-word list 63

4.1 Average ERR and MTWV for different DBN layer configurations for

supervised DBN posteriorgram based QE-STD on the TIMIT corpus 82

15

4.2 Comparison of Gaussian and DBN posteriorgram based QE-STD on

the TIMIT corpus . 85

4.3 Babel Cantonese 30 spoken term list 85

4.4 Comparison of Gaussian and DBN posteriorgram based QE-STD on

the Babel Cantonese corpus . 87

4.5 Comparison of Gaussian and DBN posteriorgram based QE-STD on

the NTIMIT and TIMIT corpus . 91

16

Chapter 1

Introduction

Conventional automatic speech recognition (ASR) can be viewed as a nonlinear

transformation from the speech signal to words [101]. Over the past forty years, the

core ASR architecture has developed into a cogent Bayesian probabilistic framework.

Given the acoustic observation sequence, X = x1, · · · , xn, the goal of ASR is to

determine the best word sequence, Ŵ = w1, · · · , wm which maximizes the posterior

probability P (W |X) as

Ŵ = argmax
W

P (W |X) = argmax
W

P (W)P (X|W)

P (X)
(1.1)

The speech signal X is fixed throughout the calculation so that P (X) is usually

considered to be a constant and can be ignored [54]. As a result, modern ASR

research faces challenges mainly from the language model term P (W), as well as the

acoustic model term P (X|W). In order to train complex statistical acoustic and

language models, conventional ASR approaches typically require large quantities of

language-specific speech and the corresponding annotation. Unfortunately, for real

world problems, the speech data annotation is not always easy to obtain. There

are nearly 7,000 human languages spoken around the world [137], while only 50-

100 languages have enough linguistic resources to support ASR development [91].

Therefore, there is a need to explore ASR training methods which require significantly

less supervision than conventional methods.

17

In recent years, along with the fast growth of speech data production, less su-

pervised speech processing has attracted increasing interest in the speech research

community [96, 97, 98, 88, 147, 59, 119]. If no human expertise exists at all, speech

processing algorithms can be designed to operate directly on the speech signal with

no language specific assumptions. In this scenario, the intent is not to build con-

nections between the speech signal and the corresponding linguistic units like phones

or words. With only the speech signal available, to extract valuable information, a

logical framework is to simulate the human learning process. An important ability

in human language learning is to learn by matching re-occurring examples [85, 122].

Information can be then inferred from the repeated examples. To apply a similar

mechanism to speech signals, there are two major challenges to solve. Since the

speech signal varies greatly due to different speakers or speaking environments, in or-

der to operate directly on the signal level, the first challenge is to find robust speech

feature representation methods. The feature representation needs to be carefully de-

signed to not only capture rich phonetic information in the signal but also maintain

a certain level of speaker independence and noise robustness.

The second challenge is to determine a good matching mechanism on the feature

representation. Since matching will operate directly at the feature level, instead of

discrete symbols, such as phones or words, matching accuracy needs to be addressed,

as well as the matching speed. Note that, if most speech data is unlabeled but

there a small amount of labelled data available, speech processing algorithms can be

designed to make use of all speech data and try to leverage any available supervised

information into the process as much as possible. Moreover, it should not be difficult

to incorporate any labelled data into the original system to continuously improve the

performance in the future.

In this chapter, we will describe four speech processing scenarios, requiring various

degrees of human supervision. We then present our vision of the current development

of unsupervised speech processing techniques. Then, we present a summary of the

proposed solutions to the two challenges of representation and matching in the unsu-

pervised speech learning. The main contributions of this thesis and a brief chapter

18

Figure 1-1: Different ASR learning scenarios. By increasing the human expertise
(supervision), the technical difficulty becomes smaller for most modern statistical
learning frameworks. However, less human expertise generally would cause an increase
in the learning difficulty which needs to be carefully addressed and explored. The
figure is adapted from [39]. This thesis primarily addresses the speech-only scenario.

summary will be also presented.

1.1 Vision

Although the conventional ASR framework has achieved tremendous success in

different applications, there are alternative ways of processing speech data in different

learning scenarios [39]. Shown in Figure 1-1, there are four different ASR learning

scenarios classified by the different degrees of human supervision. By increasing

the human expertise (supervision), the technical difficulty becomes smaller for most

modern statistical learning frameworks. However, less human expertise generally

19

would cause an increase in the learning difficulty which needs to be carefully addressed

and explored. In the following paragraphs, we will describe all four scenarios and point

out what scenario this thesis is going to focus on.

The first scenario consists of problems where detailed linguistic resources including

parallel speech/text transcription and phoneme-based dictionary are available. Most

modern speech systems fall into this scenario and decent speech recognizers can be

trained by using the well-known sub-word hidden Markov models (HMMs) [76, 6].

In the second scenario, dictionaries and linguistic units are not provided except for

the parallel speech/text transcription. The learning problem becomes harder because

the phoneme inventory needs to be automatically learned and the corresponding

dictionary needs to be automatically generated. There has been some research aiming

to learn acoustically meaningful linguistic units from the parallel speech/test data,

such as the Grapheme-based letter-to-sound (L2S) learning [65], Grapheme based

speech recognition [30, 69] and the pronunciation mixture models (PMMs) [5].

If only independent speech and text data are available, it is difficult to determine

what words exist where in the speech data. In this scenario, it is impossible to

build connections between the speech signals and the corresponding linguistic units.

However, a few speech processing tasks have been explored and shown to be feasible

such as discovering self-organizing units (SOUs) [119], sub-word units [134, 58], etc.

In the scenario where only speech signals are available, speech processing becomes

an extreme learning case for machines, often referred to as the zero resource learn-

ing scenario for speech [37]. In recent years, this scenario has begun to draw more

attention in the speech research community. Prior research showed that a variety

of speech tasks can be done by looking at the speech signal alone, such as discover-

ing word-like patterns [98, 120], query-by-example spoken term detection [38], topic

segmentation [78, 79, 31] and phoneme unit learning [73], etc.

The latter, speech only scenario is particularly interesting to us for the following

reasons:

1. Along with the fast growth of Internet applications and hand-held smart de-

vices, the speed of speech data generation has greatly increased. For instance,

20

Figure 1-2: Query-by-Example Spoken Term Detection (QE-STD). A user/tester
makes spoken queries and the QE-STD system locates occurrences of the spoken
queries in test recordings.

hundreds of hours of news broadcasts in many languages have been recorded

and stored almost every media provider. Most companies record customer ser-

vice calls for future training use. Voice-based applications such as Google Voice

Search [43] and Youtube [144] receive a large amount of speech data in every

second. However, since none of those speech data has any form of transcrip-

tion, it becomes difficult to leverage these data into the conventional highly

supervised ASR training paradigm.

2. Transcribing speech data is a long and expensive process [54]. According to

a variety of research reports, it is common to take four hours to produce the

orthographic transcription of only one hour of speech data without time align-

ment [92]. In some acoustic modeling scenarios, in order to produce a time

aligned phonetic transcription, it would take a professional linguistic expert a

hundred hours to transcribe one hour of speech data [92]. Total cost is esti-

mated based on $200 per hour for word level transcription and $2000 per hour

for phonetic level transcription.

Therefore, in this thesis, we focus on techniques where only speech data are avail-

able, and perform an unsupervised query-by-example spoken term detection (QE-

21

STD) task as a means of evaluation. Spoken term detection (STD) has been an

interesting research topic over many years. Figure 1-2 illustrates the concept of the

QE-STD task, where a user/tester makes spoken queries and the QE-STD system lo-

cates occurrences of the spoken queries in test recordings. Conventional STD systems

have developed into two directions. One direction is based on post-processing ASR

output, focusing on detecting spoken terms at the recognition text level. The other

direction is based on directly modeling speech and spoken terms, detecting spoken

terms on the speech segment level without running ASR on every word. Although

several systems [109, 140, 124, 62, 21] have demonstrated the effectiveness of both

methods, both require a large amount of supervised training. For instance, the post-

processing based approach requires an ASR engine trained using supervised speech

data, while the model based approach needs enough examples of each spoken term,

which can be comparable to the data requirements for a standard speech recognizer.

In this thesis, we focus on investigating techniques to perform spoken term detec-

tion directly on the speech signal level without using any supervision. Two robust

speech feature representations and the corresponding fast matching algorithms will

be proposed. We demonstrate that the proposed feature representations can reduce

the speaker dependency problem, while maintaining a good level of similarity among

spoken term appearances. The fast matching algorithms outperform conventional

matching algorithm by a factor of four orders of magnitude.

1.2 Main Contributions

The main contributions of this thesis can be summarized as follows:

Representation. Two different robust feature representations are proposed for

the QE-STD task. One is a Gaussian posteriorgram based features which are speaker

independent and can be generated in completely unsupervised conditions. The other

is a Deep Belief Network (DBN) posteriorgram based features which can be used

to refine the Gaussian posteriorgram features in the unsupervised setting or directly

generate posteriorgram features in semi-supervised or supervised settings. The fea-

22

sibility and effectiveness of both posteriorgram features are demonstrated through a

set of spoken term detection experiments on different datasets.

Matching. Three lower-bounding based fast matching algorithms are proposed

for locating spoken terms on posteriorgram features. Two algorithms can be used in

single-threaded computing environments, while the third algorithm is designed to run

in multi-threaded computing environments. All three algorithms greatly outperform

the conventional Segmental Dynamic Time Warping (S-DTW) algorithm for the QE-

STD task.

1.3 Chapter Summary

The remainder of this thesis is organized as follows:

Chapter 2 provides background knowledge and some pre-existing techniques used

in this thesis.

Chapter 3 gives an overview of the proposed Gaussian posteriorgram based QE-

STD framework. Using Gaussian posteriorgram features, a new unsupervised spoken

term discovery system is presented to show that Gaussian posteriorgrams are able to

efficiently address the speaker dependency issue in tasks other than QE-STD.

Chapter 4 introduces the new Deep Belief Network (DBN) posteriorgram based

QE-STD framework. Given different levels of speech annotation, three DBN posteri-

orgram configurations are described. The evaluation results on TIMIT and the Babel

corpus are reported and discussed. Furthermore, denoising DBN posteriorgrams are

presented to show some promising results for QE-STD on noisy speech data.

Chapter 5 presents two fast matching algorithms on posteriorgram features. Both

algorithms utilize a lower-bounding idea but operate on different approximation levels.

Experiments and comparisons are reported and discussed.

Chapter 6 further explores a fast matching algorithm in a multi-threaded com-

puting environment – Graphical Processing Unit (GPU) computing. A fully parallel

lower-bounding based matching algorithm is described. Experimental results on a

huge artificially created speech corpus are presented and discussed. In addition, effi-

23

cient GPU based DBN training algorithms are described and speed comparisons are

presented.

Chapter 7 concludes this thesis and provides discussion of some potential improve-

ment of the proposed QE-STD framework.

24

Chapter 2

Background

This chapter provides background about the techniques used in the following

chapters. The conventional speech feature representation – Mel-scale cepstral coef-

ficients (MFCCs) and the most commonly used acoustic model Gaussian Mixture

Model (GMM) will be described. The Segmental Dynamic Time Warping (S-DTW)

algorithm will be reviewed since it will be used in experiments as a matching method

on the speech representations. Finally, we present several speech corpora that are

used in the experiments performed in this thesis.

2.1 MFCC Representation

When speech is recorded by a microphone, the signal is first digitized and rep-

resented by discrete amplitudes as a function of time given a fixed sampling rate.

Most modern speech recording devices have a default sampling rate of at least 16kHz

for human speech, while the standard telephone speech coding method only supports

8kHz in order to save transmission bandwidth.

From the statistical learning point of view, with a high sampling rate of 16kHz

or 8kHz, it is difficult to process speech directly from the waveform. Therefore,

there has been a number of signal processing methods focusing on converting the

speech waveform to a short-time spectral representation. A spectral representation

has inherent advantages such as having lower dimensionality, yet preserving relevant

25

Figure 2-1: Waveform representation and the corresponding spectrogram representa-
tion of a speech segment.

phonetic information [54]. Mel-frequency cepstral coefficients (MFCCs) are one of the

widely used spectral representations for ASR and have become a standard front-end

module for feature extraction in most modern ASR systems.

In order to compute MFCCs for a recorded speech signal x[t], the following stan-

dard steps are applied.

1. Waveform normalization and pre-emphasis filtering. A common pre-processing

approach is to apply mean and magnitude normalization, followed by a pre-

emphasis filter:

xn[t] =
x[t]−mean(x[t])

max |x[t]|
(2.1)

xp[t] = xn[t]− 0.97xn[t− 1] (2.2)

2. Calculation of short-time Fourier transform (STFT). A short-time Fourier trans-

26

form (STFT) is performed on the waveform with a window size of 25ms, and

an analysis shift of 10ms. The most commonly used window is the Hamming

window [93]. After the STFT, the speech can be represented in the spectro-

gram form, shown in Figure 2-1. In the following chapters, each analysis is often

referred as a speech frame.

XSTFT[t, k] =
∞∑

m=−∞

xp[t]w[t−m]e−j2πmk/N (2.3)

where w is the Hamming window, N is the number of points for the discrete

Fourier transform (DFT) and XSTFT[t, k] is the k-th spectral component at

time t.

3. Calculation of Mel-frequency spectral coefficients (MFSCs). The Mel-frequency

filter is designed based on an approximation of the frequency response of inner

ear [85]. The Mel-filter frequency response is shown in Figure 2-2. On each

speech frame after the STFT, a Mel-frequency filter is used to reduce the spec-

tral resolution, and convert all frequency components to be placed according to

the Mel-scale.

XMFSC[t, i] =

∑∞
k=−∞Mi(k)|XSTFT[t, k]|

2

|Mi|
(2.4)

where i denotes the i-th Mel-frequency filter and |Mi| represents the energy

normalizer of the i-th filter.

4. Calculation of discrete cosine transform (DCT). The DCT is then applied to

the logarithm of the MFCSs to further reduce the dimensionality of the spec-

tral vector. Typically only the first 12 DCT coefficients are kept. Prior research

has shown that adding more DCT components does not help increase the qual-

ity of the MFCCs for ASR, although more MFCCs are often used for speaker

identification tasks [107, 106, 67].

XMFCC[t, i] =

∑M−1
k=0 10 log10

(
XMFSC[t, i]

)
cos
(
2π
M
ki
)

M
(2.5)

27

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

G
ai

n

Figure 2-2: Triangular filters placed according to Mel frequency scale. A Mel-
frequency filter is used to reduce spectral resolution, and convert all frequency com-
ponents to be placed according to the Mel-scale.

where M represents the number of Mel-frequency filters and XMFCC[t, i] de-

notes the i-th MFCC component at time t.

After the above four steps, the calculation of MFCCs given a speech signal is

complete. In practice, when using MFCCs in the acoustic modeling, long-term

MFCCs features are often considered, such as delta (∆) MFCCs and delta-delta

(∆∆) MFCCs [54]. The ∆ MFCCs are the first derivatives of the original MFCCs

and the ∆∆ MFCCs are the second derivatives of the original MFCCs. A common

configuration of the modern ASR feature extraction module is to use the original

MFCCs stacked with the ∆ and ∆∆ features. The original MFCCs are represented

by the first 12 components of the DCT output plus the total energy (+∆ Energy

28

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y

µ=0,Σ=0.2

µ=1,Σ=1.0

µ=0,Σ=0.7

µ=−2,Σ=0.5

µ=2,Σ=0.25

Figure 2-3: A GMM with five Gaussian components with equal weights.

+∆∆ Energy), which results in a 13+13+13=39 dimensional feature vector for each

speech frame.

2.2 Gaussian Mixture Models

The Gaussian Mixture Model (GMM) is a widely used technique for modeling

speech features such as MFCCs [101]. A standard GMMwithK Gaussian components

can be written as

P (x) =
K∑
i=1

wiN(x;µi,Σi),
K∑
i=1

wi = 1 (2.6)

where x is the speech observation (e.g., the 39-dimensional MFCCs), wi represents

the scaling factor and sums to one, N is a multivariate Gaussian distribution with

29

mean µ and variance Σ. Figure 2-3 shows a GMM with five components with equal

weights. Considering one Gaussian distribution, given the observation vector x, the

log-probability can be written as

log(N(x;µ,Σ)) = − log(2π)D

2
− log(|Σ|)

2
− (x− µ)>Σ−1(x− µ)

2
(2.7)

where D is the dimensionality of the observation vector and |Σ| denotes the deter-

minant of the covariance matrix. Given a speech corpus X = x1, x2, · · · , xN , the

log-probability of the entire speech corpus is

N∑
i=1

log(N(xi;µ,Σ)) (2.8)

2.3 Dynamic Time Warping

Dynamic Time Warping (DTW) is a well-known dynamic programming technique

for finding the best alignment between two time series patterns [54]. DTW became

popular in the speech research community from the late 1970’s to mid 1980’s, and was

used for both isolated and connected-word recognition with spectrally-based represen-

tations such as Linear Prediction Coding (LPC) [101]. DTW allowed for minor local

time variations between two speech patterns which made it a simple and efficient

search mechanism. Over time, DTW-based techniques were supplanted by hidden

Markov models (HMMs) which were a superior mathematical framework for incor-

porating statistical modeling techniques. However, DTW-based search has remained

attractive and has been used by researchers incorporating neural network outputs for

ASR [74, 48], and more recently for scenarios where there is little, if any, training

data to model new words [27, 139, 98].

One attractive property of DTW is that it makes no assumptions about underly-

ing linguistic units. Thus, it is amenable to situations where there is essentially no

annotated data to train a conventional ASR engine. In this thesis, we are interested

in developing speech processing methods that can operate in such unsupervised con-

ditions. For the QE-STD task, we have an example speech query pattern and we wish

30

to find the top K nearest-neighbor (KNN) matches in some corpus of speech utter-

ances. DTW is a natural search mechanism for this application, though depending

on the size of the corpus, there can be a significant amount of computation involved

in the alignment process.

Formally, given two time series P and Q with length n and m

P = p1, p2, · · · , pn (2.9)

Q = q1, q2, · · · , qm (2.10)

The DTW can be used to construct an optimal alignment Â between P and Q as

Âφ = φ1, φ2, · · · , φK (2.11)

where K is the warping length and each φi is a warping pair φi = (φa, φb) which

aligns pa with qb according to the pre-defined distance metric D(pa, qb). Note that

both pa and qb can be multi-dimensional as long as the distance function D can be

properly defined. It is clear that the warping begins with φ1 = (p1, q1) and ends with

φK(pn, qm) and the length K is bounded by max(n,m) ≤ K ≤ n+m. The DTW can

find the optimal warping path Â given the following objective function

DTW(P,Q) = Â = min
A

KA∑
i=1

D(Φ(A)i) (2.12)

where Φ denotes the set of all possible warping paths and Φ(A)i represents the i-

th warping pair of the warping path A. Figure 2-4 shows two sinusoid signals with

random Gaussian noise. If we perform DTW on those two signals and find an optimal

alignment in terms of Euclidean distance, the alignment is shown in red in the middle

sub-figure of Figure 2-5. Lighter pixels denote smaller Euclidean distance, while

darker pixels denote larger distance.

One important property of the DTW alignment is that the warping process must

be monotonically increasing and every pi and qj must appear in the optimal alignment

31

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Samples

A
m

pl
itu

de

Original disaligned waves

Figure 2-4: Two sinusoid signals with random Gaussian noise. DTW is used to find
an optimal alignment between those two signals in terms of Euclidean distance.

Â at least once. This property leads to an efficient dynamic programming algorithm

that computes the optimal warping path Â in O(nm). Specifically, the algorithm

starts from solving a minimum subsequence of P and Q and grows the minimum

subsequence iteration by iteration until the full optimal warping path is found. For

the above time series P and Q, the core idea of computing DTW can be illustrated

by a cost matrix C of size n by m. Each element Ci,j represents the minimum total

warping path cost/distance from (p1, q1) to (pi, qj) and it can be calculated as

Ci,j = D(pi, qj) + min


Ci−1,j

Ci,j−1

Ci−1,j−1

(2.13)

Given the initial values C0,0 = 0, C0,j = ∞, Ci,0 = ∞, it is clear that starting from

32

DTW Alignment
D

istance

0

8

16

24

32

40

48

57

10 20 30 40 50 60

0.5

1

1.5

Samples

A
m

p

Figure 2-5: The optimal alignment of the two sinusoid signals after performing DTW
with Euclidean distance as the local distance metric. The red line represents the
optimal alignment. Lighter pixels denote smaller Euclidean distance, while the darker
pixels denote lager Euclidean distance.

C1,1, C can be constructed row by row and the total cost/distance of the optimal

warping path is Cn,m.

2.3.1 Segmental Dynamic Time Warping

Segmental Dynamic Time Warping (S-DTW) is a segmental variant of the origi-

nal DTW algorithm that finds optimal alignments among subsequences of two time

series [98]. The S-DTW is a two-staged algorithm. In the first stage, the S-DTW

finds local alignments among subsequences of the input two time series. In the second

stage, a path refinement approach is used to eliminate lower distortion regions in the

local alignments found in the first stage.

S-DTW defines two constraints on the DTW search. The first one is the commonly

used adjustment window condition [112]. In our case, formally, suppose we use the

same above two time series A and B, the warping pair w(·) defined on a n×m timing

difference matrix is given as wi = (ik, jk) where ik and jk denote the k-th coordinate

of the warping path. Due to the assumption that the duration fluctuation is usually

33

small in speech [112], the adjustment window condition requires that |ik − jk| ≤ R.

This constraint prevents the warping process from going too far ahead or behind in

either A or B.

The second constraint is the step length of the start coordinates of the DTW

search. It is clear that if we fix the start coordinate of a warping path, the adjustment

window condition restricts not only the shape but also the ending coordinate of the

warping path. For example, if i1 = 1 and j1 = 1, the ending coordinate will be

iend = n and jend ∈ (1 + n − R, 1 + n + R). As a result, by applying different start

coordinates of the warping process, the difference matrix can be naturally divided

into several continuous diagonal regions with width 2R + 1, shown in the Figure 2-

6. In order to avoid the redundant computation of the warping function as well as

taking into account warping paths across segmentation boundaries, an overlapped

sliding window strategy is usually used for the start coordinates (s1 and s2 in the

figure). Specifically, with the adjustment window size R, every time we move R steps

forward for a new DTW search. Since the width of each segmentation is 2R+ 1, the

overlapping rate is 50%.

By moving the start coordinate along the i and j axis, a total of
⌊
m−1
R

⌋
+
⌊
n−1
R

⌋
warping paths can be obtained, each of which represents a warping between two

subsequences in the input time series.

The warping path refinement is done in two steps. In the first step, a length L

constrained minimum average subsequence finding algorithm [77] is used to extract

consecutive warping fragments with low distortion scores. In the second step, the

extracted fragments are extended by including neighboring frames below a certain

distortion threshold α. Specifically, neighboring frames are included if their distortion

scores are within 1 + α percent of the average distortion of the original fragment.

In this thesis, for the QE-STD task, we use a modified single-sided S-DTW algo-

rithm which finds optimal alignments of a full time series against all subsequences in

another time series. For the spoken term discovery task, the full S-DTW algorithm

is used.

34

Figure 2-6: An illustration of S-DTW between two utterances with R = 2. The
blue and red regions outline possible DTW warping spaces for two different starting
times. In order to avoid the redundant computation of the warping function as well
as taking into account warping paths across segmentation boundaries, an overlapped
sliding window strategy is usually used for the start coordinates (s1 and s2 in the
figure).

2.4 Speech Corpora

Four speech corpora are used in the experiments in this thesis. A brief overview

of each speech corpus will be described in the following sections.

2.4.1 TIMIT

The TIMIT corpus consists of read speech recorded in quiet environments. It

is designed for acoustic-phonetic studies and for the development and evaluation of

ASR systems. The TIMIT corpus contains broadband recordings of 630 speakers

of 8 major dialects of American English. Each speaker reads 10 phonetically rich

sentences, include 2 “sa” sentences representing dialectal differences, 5 “sx” sentences

covering phoneme pairs and 3 “si” sentences that are phonetically diverse. The TIMIT

35

transcriptions have been hand verified, including time-aligned orthographic, phonetic

and word transcriptions. The TIMIT corpus is well-known for its balanced phoneme

inventory and dialectal coverage [71].

The TIMIT corpus is divided into three sets. The training set contains 3,696

utterances from 462 speakers. The development set consists of 400 utterances from

50 speakers. The test set includes 944 utterances from 118 speakers. A commonly

used core test set for ASR evaluations is a subset of the full test set, containing 192

utterances from 24 speakers. The results in this thesis are reported on the full test

set.

2.4.2 NTIMIT

NTIMIT is a noisy version of the TIMIT corpus. It was collected by transmitting

all 6,300 original TIMIT recordings through a telephone handset and over various

channels in the NYNEX telephone network and re-digitizing them [57]. The record-

ings were transmitted through ten Local Access and Transport Areas, half of which re-

quired the use of long-distance carriers. The re-recorded waveforms were time-aligned

with the original TIMIT waveforms so that the TIMIT time-aligned transcriptions

can be used with the NTIMIT corpus as well. The training/development/test set

division is the same as the original TIMIT corpus. This corpus is used for evaluating

spoken term detection in noisy conditions in this thesis.

2.4.3 MIT Lecture

The MIT Lecture corpus consists of more than 300 hours of speech data recorded

from eight different subjects and over 80 general seminars [41]. In most cases, the data

is recorded in a classroom environment using a lapel microphone. The recordings were

manually transcribed including tags for disfluencies. The vocabulary size is 27,431

words. A standard training set contains 57,351 utterances and a test set is comprised

of 7,375 utterances.

The MIT Lecture corpus is generally recognized as a difficult dataset for ASR

36

evaluations for three reasons. First, the data is comprised of spontaneous speech as

well as many disfluencies such as filled pauses, laughter, false starts and partial words.

Second, since the data was recorded in a classroom environment, there are many non-

speech artifacts that occur such as background noise and students’ random talking.

Third, some lecture specific words are uncommon and can result in significant out-of-

vocabulary problems. This corpus is used in both spoken term detection and spoken

term discovery experiments in this thesis.

2.4.4 Babel Cantonese

The Babel Cantonese corpus contains a training set of 50 hours of telephone speech

and a test set of 200 minutes of telephone speech. The speech data was produced by

presenting a topic to native Cantonese speakers and asking them to make a 10-minute

long telephone call about the topic. The telephone calls were recorded by different

telephone carriers, which results in very different channel noise levels for each call.

This corpus is used to demonstrate the language independent feature of the proposed

spoken term detection system in this thesis.

2.5 Summary

In this chapter, we described some well-established speech processing techniques

that will be utilized in this thesis. We first discussed how to calculate the MFCC

features for speech. Next, we presented a common acoustic modeling framework using

GMMs on MFCC features. The well-known DTW and its variant S-DTW algorithms

were reviewed. In the end, we described four datasets that will be used in the following

experiments.

37

38

Chapter 3

Unsupervised Gaussian

Posteriorgram

In this chapter, we present an overview of the unsupervised Gaussian posterior-

gram framework. The Gaussian posteriorgram framework was our first attempt to

represent speech in the posteriorgram form without using any supervised annota-

tion. The core idea is to train a Gaussian mixture model (GMM) without using any

supervised annotation, and represent each speech frame by calculating a posterior

distribution over all Gaussian components. A modified DTW matching algorithm

can be used to evaluate the similarity between two speech segments represented by

Gaussian posteriorgrams in terms of an inner-product distance. The entire process is

completely unsupervised and does not depend on speakers. After the success of using

Gaussian posteriorgrams on a spoken term discovery task [147], a query-by-example

spoken term detection task was then performed [146], which further demonstrate the

effectiveness of using the Gaussian posteriorgram as a robust unsupervised feature

representation of speech.

3.1 Posteriorgram Representation

The posteriorgram representation for speech data was inspired by the widely used

posterior features in template-based speech recognition systems [48, 32, 3, 4]. For

39

example, in the Tandem [48, 32] speech recognition system, a neural network is dis-

criminatively trained to estimate posterior probability distributions across a phone

set. The posterior probability for each frame on each phone class is then used as the

feature input for a conventional Gaussian mixture model with hidden Markov model

(GMM-HMM) based speech recognition system. The motivation behind using poste-

rior features instead of spectral features is that by passing through a discriminatively

trained classifier, speaker dependent, unevenly correlated and distributed spectral fea-

tures are converted into a simpler; and speaker-independent statistical form while still

retaining phonetic information. The subsequent modeling process can focus more on

capturing the phonetic differences rather than directly dealing with the speech spec-

trum. Previous results showed that a large improvement in terms of word recognition

error rate could be obtained [48, 32].

The most recent work by Hazen et al. [46] showed a spoken term detection sys-

tem using phonetic posteriorgram templates. A phonetic posteriorgram is defined by

a probability vector representing the posterior probabilities of a set of pre-defined

phonetic classes for a speech frame. By using an independently trained phonetic rec-

ognizer, each input speech frame can be converted to its corresponding posteriorgram

representation. Given a spoken sample of a term, the frames belonging to the term

are converted to a series of phonetic posteriorgrams by phonetic recognition. Then,

Dynamic Time Warping (DTW) is used to calculate the distortion scores between

the spoken term posteriorgrams and the posteriorgrams of the test utterances. The

detection result is given by ranking the distortion scores.

To generate a phonetic posteriorgram, a phonetic classifier for a specific language is

needed. In the unsupervised setting, there is no annotated phonetic information that

can be used to train a phonetic classifier. Therefore, instead of using a supervised

classifier, our approach is to directly model the speech using a GMM without any

supervision. In this case, each Gaussian component approximates a phone-like class.

By calculating a posterior probability for each frame on each Gaussian component,

we can obtain a posterior feature representation called a Gaussian posteriorgram.

While the discriminations of a Gaussian posteriorgram do not directly compare

40

to phonetic classes, the temporal variation in the posteriorgram captures the impor-

tant phonetic information in the speech signal, providing some generalization to a

purely acoustic segmentation. With a Gaussian posteriorgram representation, some

speech tasks could be performed without any annotation information. For example,

in a query-by-example spoken term detection system, the input query which is rep-

resented by a series of Gaussian posteriorgrams can then be searched in the working

data set which is also in the Gaussian posteriorgram representation [146]. In a spoken

term discovery system, given a speech recording, if we want to extract frequently used

words/short phrases, a Gaussian posteriorgram can be used to represent the entire

recording, and a pattern matching algorithm can be applied to find similar segments

of posteriorgrams [147]. In this chapter, we will demonstrate how the Gaussian pos-

teriorgram can be used as a robust, speaker independent representation of unlabeled

speech data.

3.2 Gaussian Posteriorgram Generation

If a speech utterance S contains n frames S = (~f1, ~f2, · · · , ~fn), then the Gaus-

sian posteriorgram for this utterance is defined by GP(S) = (~q1, ~q2, · · · , ~qn). The

dimensionality of each ~qi is determined by the number of Gaussian components in the

GMM, and each ~qi can be obtained by

~qi = {P (C1|~fi), P (C2|~fi), · · · , P (Cm|~fi)} (3.1)

where the j-th dimension in ~qi represents the posterior probability of the speech

frame ~fi on the j-th Gaussian component Cj. m is the total number of Gaussian

components.

The GMM is trained on all speech frames without any transcription. In this work,

each raw speech frame is represented by the first 13 Mel-frequency cepstrum coeffi-

cients (MFCCs). After pre-selecting the number of desired Gaussian components,

the K-means algorithm is used to determine an initial set of mean vectors. Then,

Expectation-maximization (EM) based GMM training is performed.

41

Figure 3-1: A spectrogram (top) and Gaussian posteriorgram (bottom) of a TIMIT
utterance. To generate posteriorgrams, a 50-component GMM was trained on 13-
MFCC features on the standard TIMIT training set. In the bottom figure, the y axis
denotes the Gaussian component indices. Each pixel (x, y) represents the posterior
probability of Gaussian component y for speech frame x. Blue pixels denote lower
probabilities while red pixels indicate higher probabilities. It can be seen from the
bottom figure that Gaussian posteriorgrams are able to represent phonetically similar
speech frames. For example, the frames from 3.25s to 3.48s have the most posterior
probability mass on the 33rd GMM component, while the frames from 1.30s to 1.37s
have the most posterior probability mass on 17th GMM component and some mass
on the 43rd component.

42

Figure 3-1 shows an example of the Gaussian posteriorgram representation for a

TIMIT utterance. The top figure is the spectrogram representation. In the bottom

figure, the y axis denotes the Gaussian component indices. Each pixel (x, y) repre-

sents the posterior probability of Gaussian component y for speech frame x. Blue

pixels denote lower probabilities while red pixels indicate higher probabilities. It can

be seen from the bottom figure that Gaussian posteriorgrams are able to represent

phonetically similar speech frames. For example, the frames from 3.25s to 3.48s have

the most posterior probability mass on the 33rd GMM component, while the frames

from 1.30s to 1.37s have the most posterior probability mass on 17th GMM compo-

nent and some mass on the 43rd component. By looking at the spectrogram, we could

derive that the 33rd GMM component probably corresponds to back vowels, while the

17th and 43rd GMM components probably correspond to fricatives.

3.3 Analysis of Gaussian Posteriorgram

In Gaussian posteriorgram generation, we assume that through unsupervised

GMM training, each Gaussian component can be viewed as a self-organizing pho-

netic class. To validate this assumption, a phonetic histogram analysis is applied

to visualize the underlying acoustically meaningful information represented by each

Gaussian component. Specifically, after unsupervised GMM training, each speech

frame is artificially labeled by the index of the most probable Gaussian component.

Since the TIMIT dataset provides a time-aligned phonetic transcription, for each

Gaussian component, we can calculate the normalized percentage of how many times

one Gaussian component represents a particular phone. By drawing a bar for every

TIMIT phone for one Gaussian component, we can have a histogram of the underlying

phonetic distribution of that Gaussian component.

Figure 3-2 shows the phonetic distribution of frames assigned to Gaussian com-

ponent 13. Each bar in the figure represents the percentage of time that this cluster

represents a phone class in TIMIT. Note that the size of the TIMIT phone inventory

is 61. The top sub-figure is the histogram of the training set, while the bottom sub-

43

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ch jh

s

sh

t

z

train

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ch jh

s

sh

t

z

test

Figure 3-2: This figure illustrates the phonetic distribution of frames assigned to
Gaussian component 13. Each bar in the figure represents the percentage of times
that this cluster represents a phone. The top sub-figure is on the training set, while
the bottom sub-figure is on the test set. It is clear that this cluster mainly represents
fricatives and affricates.

figure is the histogram of the test set. It is clear that this cluster mainly represents

fricatives and the release of affricates.

Figure 3-3 illustrates the phonetic distribution of frames assigned to Gaussian

component 41. Since most bars are labeled as vowels or semi-vowels, this cluster

mainly represents vowels and semi-vowels. Note that most vowels are front-vowels.

Figure 3-4 illustrates the phonetic distribution of frames assigned to Gaussian

component 14. This cluster mainly represents retroflexed sound such as /r/, /er/ and

/axr/.

It can seen from these three figures that although the GMM is trained without

44

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

aa

ae

ah

aw
ax axr

ay

eh

er

ey

ih

ix

iy

n ow

r
ux

train

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

aa

ae

ah

ax axr

ay

eh

er

ey

ih

ix

iy

n ow

r
ux

test

Figure 3-3: This figure illustrates the phonetic distribution of frames assigned to
Gaussian component 41. Each bar in the figure represents the percentage of times
that this cluster represent a phone. The top sub-figure is on the training set, while
the bottom sub-figure is on the test set. Since most bars are labeled as vowels or
semi-vowels, it is clear that this cluster mainly represents vowels and semi-vowels.

45

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

aa ao

axr

eh

er

ix

r

train

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

aa ao

axr

eh

er

ix

r

test

Figure 3-4: This figure illustrates the phonetic distribution of frames assigned to
Gaussian component 14. Each bar in the figure represents the percentage of times
that this cluster represent a phone. The top sub-figure is on the training set, while the
bottom sub-figure is on the test set. This cluster mainly represents retrofled sound.

46

any supervised information, each Gaussian component models a relatively small set of

phones sharing similar acoustic characteristics. In addition, the phonetic histograms

are consistent on both training and test sets, which indicates that learned unsuper-

vised knowledge generalizes well to unseen data. Therefore, this analysis provides

qualitative explanation of why an unsupervised Gaussian posteriorgram is a reason-

able representation of speech. More figures can be found in Appendix A.

3.4 Search on Posteriorgram

To compare the similarity between posteriorgrams, Dynamic TimeWarping (DTW)

is introduced to calculate pairwise warping distances. Consider the two posterior-

gram sequences for a speech segment, Q = {~q1, . . . , ~qM}, and a speech segment,

S = {~s1, . . . , ~sN}, where ~qi and ~sj are D-dimensional posterior probability vec-

tors. The local distance between ~qi and ~sj can be defined by their inner product

as d(~qi, ~sj) = − log(~qi · ~sj). Since both ~qi and ~sj are probability vectors, the inner

product gives the probability of these two vectors drawing from the same underlying

distribution [46]. Other distance measures can be also used to compute the local dis-

tance between two posteriorgram vectors, while in this thesis, we focused on the inner

product distance. Given a particular point-to-point alignment warp, φ = (φq, φs), of

length Kφ between Q and S, the associated alignment score, Aφ(Q,S), is based on

the sum of local distances

Aφ(Q,S) =

Kφ∑
k=1

d(~qφq(k), ~sφs(k))

where 1 ≤ φq(k) ≤ M and 1 ≤ φs(k) ≤ N . The overall best alignment score,

DTW(Q,S) = minφ Aφ(Q,S).

If all possible warping paths, φ, are considered between Q and S, then there are

O(MN) inner-product distances that will need to be computed. In order to eliminate

unreasonable warping paths, a global path constraint is usually used to keep the

warping paths between Q and S from being too far out of alignment [101]. This can

47

be accomplished, for example, by ensuring that |φq(k)− φs(k)| ≤ r so that the warp

will keep local distances within r frames of each other along the entire alignment.

3.5 Spoken Term Discovery Using Gaussian Pos-

teriorgrams

To further validate the effectiveness of a Gaussian posteriorgram as a robust fea-

ture representation of speech, we conduct a spoken term discovery task using Gaus-

sian posteriorgrams. Although the original unsupervised acoustic pattern discovery

work was effective in finding re-occurring instances of spoken words, it used whitened

MFCCs as the acoustic representation to perform pattern matching [96]. This rep-

resentation was effective for the task of academic lecture data, since the majority of

the lecture was recorded from a single talker. However, the natural question to ask is

how we can generalize this procedure to handle multiple talkers. In this section, we

will replace the MFCC-based representation with the Gaussian posteriorgram repre-

sentation of the speech signal and perform similar experiments on the multi-speaker

TIMIT corpus and the single-speaker MIT Lecture corpus. The results from both

show that Gaussian posteriorgrams outperform the previous whitened MFCC-based

metho in spoken term discovery.

3.5.1 Spoken Term Discovery

Given a speech recording, if all speech frames are represented by Gaussian pos-

teriorgrams, we can run Segmental Dynamic Time Warping (S-DTW) for the speech

recording against itself to find re-occurring speech patterns such as frequently used

words or short phrases. As mentioned in Chapter 2, S-DTW is a variant of the basic

DTW algorithm. It computes multiple partial alignments between two utterances

instead of a single end-to-end alignment. Specifically, after generating the Gaussian

posteriorgrams for all speech utterances, S-DTW is performed on every utterance pair

to find candidate co-occurring subsequences in the two utterances.

48

Figure 3-5: Converting all matched fragment pairs to a graph. Each numbered node
corresponds to a temporal local maximum in fragment similarity in a particular ut-
terance (e.g., 1-5). Each matching fragment is represented by a connection between
two nodes in the graph (e.g., 1-4, 2-4, 3-5).

After collecting refined warping fragments for every pair of speech utterances, we

try to cluster similar fragments. Since each warping fragment provides an alignment

between two segments, if one of the two segments is a common speech pattern (i.e.,

a frequently used word), it should appear in multiple utterance pair fragments.

The basic idea is to cast this problem into a graph clustering framework, illus-

trated in Figure 3-5. Consider one pair of utterances in which S-DTW determines

three matching fragments (illustrated in different colors and line styles). Each frag-

ment corresponds to two segments in the two speech utterances, one per utterance.

Since in general there could be many matching fragments with different start and

end times covering every utterance, a simplification can be made to find local max-

ima of matching similarity in each utterance and to use these local maxima as the

basis of nodes in the corresponding graph [98]. As a result, each node in the graph

can represent one or more matching fragments in an utterance. Edges in the graph

then correspond to fragments occurring between utterance pairs, and each associated

weight corresponds to a normalized matching score. After the conversion, a graph

clustering algorithm proposed by Newman [90] is used to discover groups of nodes

(segments) in terms of graph distance. The role of the clustering algorithm is to

decide which edges to group together, and which edges to eliminate. This latter point

is especially important since it is possible to have partial overlapping matches ending

49

Table 3.1: Comparison of spoken term discovery performance using MFCCs and Gaus-
sian posteriorgrams on the TIMIT corpus. MFCC represents the speaker dependent
framework with default settings in [98]. GP stands for the Gaussian posteriorgram
based method. Each cluster is given a purity score which represents the percent
agreement of the underlying word label of each node in a cluster with the majority
vote (e.g., a cluster with 2 nodes out of 4 with the same label would have a purity
of 50%). We also calculated the number of speakers covered by the clusters and the
gender ratio (Female/Male).

Method # Clusters Avg. Purity # Speakers F/M
MFCC 11 9.1% 457 0.42
GP 264 79.3% 408 0.43

at the same node that are unrelated to each other. The clustering output is a list of

disjoint groups of nodes which represent the underlying speech fragments.

3.5.2 TIMIT Experiment

The TIMIT experiment was performed on a pool of 580 speakers (we combined

the standard 462 speaker training set, and the larger 118 speaker test set). We

excluded the dialect “sa” utterances since they were spoken by all speakers, and

used the remaining 5 “sx” and 3 “si” utterances per speaker. A single GMM with

50 components was created from all the data using 13 dimensional MFCC feature

vectors that were computed every 10ms. Since TIMIT consists of read speech in a

quiet environment, the non-speech removal process was not applied.

The clustering result is shown in Table 3.1. The row labeled “MFCC” represents

the speaker dependent framework with default settings used in [98]. “GP” stands

for the Gaussian posteriorgram based method. Each cluster is given a purity score

which represents the percent agreement of the underlying word label of each node

in a cluster with the majority vote (e.g., a cluster with 2 nodes out of 4 with the

same label would have a purity of 50%). From the table it is clear that the TIMIT

task is very difficult for the original MFCC-based method due to the small number of

utterances spoken by every talker, and the large number of talkers in the pool. The

results did not change significantly when the clustering parameters were modified.

Both the number of clusters that were automatically found, and the purity of these

50

clusters increased substantially with the posteriorgram-based representation. Within

each cluster, on average nearly 80% of the nodes agree with the majority word identity

of the cluster.

Since one of the properties we wished to explore was speaker variation, we also

calculated the number of speakers covered by the clusters. The clusters determined

using the Gaussian posteriorgram representation covered over 70% of the 580 speak-

ers. Although the clusters obtained by the MFCC representation incorporated more

speakers, the corresponding low purity score indicated that the clusters were fairly

random. The gender ratio (Female/Male) of the entire corpus is 174/406=0.43, so

it appeared that there was no obvious gender bias for the Gaussian posteriorgram

method.

Table 3.2 shows the top 5 clusters ranked by increasing average distortion score.

The transcription column represents the word identity of the cluster. These top 5

clusters all have a purity score of 100% and they are all from different speakers. Note

that since we ranked the clusters by distortion, the cluster sizes are small, even though

we observed that several clusters had the same underlying word identity. Since the

goal of this work was to demonstrate that the Gaussian posteriorgram representation

can solve the multi-speaker case which our earlier work could not handle, we leave the

improvement of the clustering algorithm as future work. Another interesting point is

that the top 5 clusters are identical for different parameter settings, which indicates

that the phrases/words in each cluster are acoustically similar using the Gaussian

posteriorgram representation. Since each “sx” sentence in TIMIT was said by seven

talkers, we believe this contributed to the multi-word clusters that were observed,

although the “si” data made up approximately 40% of the cluster data, which is the

same proportion that it had in the overall corpus.

To better understand why using the Gaussian posteriorgram representation re-

duces the speaker variation issue, we calculated the alignment cost matrices of two

speech segments of the word “organizations”, produced by a male and a female talker,

respectively, using the S-DTW search, illustrated in Figure 3-6. The top and bot-

tom sub-figures correspond to the cost matrix generated by MFCC and the Gaussian

51

Frames (fmju0)

F
ra

m
es

 (
m

ct
h0

) Cost Matrix

10 20 30 40 50 60 70

20

40

60

80

Frames (fmju0)

F
ra

m
es

 (
m

ct
h0

) Cost Matrix

10 20 30 40 50 60 70

20

40

60

80

Figure 3-6: Cost matrix comparison for a male and female speech segment of the
word “organizations”. The top and bottom sub-figures correspond to the cost matrix
generated by MFCC and the Gaussian posteriorgram representation, respectively.
The cost values were normalized into a grey scale for the purposes of the figure. The
lighter the pixel is, the more similar the corresponding two frames are. The red line in
each sub-figure corresponds to the best-scoring alignment path. On the MFCC-based
representation, the cost values around the warping path show no strong difference
from the values away from the warping path, especially at the end of the warping
path. On the Gaussian posteriorgram representation, there is a better delineation
between the low-cost alignment path and the region around the warping path.

52

Table 3.2: Top 5 clusters on TIMIT found by Gaussian posteriorgram based spoken
term discovery. The transcription column represents the word identity of the cluster.
These top 5 clusters all have a purity score of 100% and they are all from different
speakers.

ID Cluster Size Avg. Distortion Transcription
1 2 0.87 shredded cheese
2 2 0.94 stylish shoes
3 3 1.02 each stag
4 3 1.06 the lack of heat
5 2 1.18 iris

posteriorgram representation, respectively. The cost values were normalized into a

grey scale for the purposes of the figure. The lighter the pixel is, the more similar

the corresponding two frames are. The red line in each sub-figure corresponds to the

best-scoring alignment path. From the figures, it appears that on the MFCC-based

representation, the cost values around the warping path show no strong difference

from the values away from the warping path, especially at the end of the warping

path. However, on the Gaussian posteriorgram representation, there is a better de-

lineation between the low-cost alignment path and the region around the warping

path. This observation suggests that the Gaussian posteriorgram representation is

better at modeling phonetic similarities across talkers, and is thus better able to make

distinctions between phones.

3.5.3 MIT Lecture Experiment

To further investigate the effect of using the Gaussian posteriorgram representa-

tion for unsupervised spoken term discovery, in this section, we present some results

that directly compare the MFCC and Gaussian posteriorgram representations in a

single speaker environment. Through a set of systematic experiments, we demon-

strate that even in the single speaker case, spoken term discovery using the Gaussian

posteriorgram representation still performs better than the whitened MFCC repre-

sentation. As shown in Table 3.3, six lectures spoken by different talkers were used

for these experiments. To generate Gaussian posteriorgrams, a single GMM with 50

53

components was created for each lecture using 13 dimensional MFCC feature vec-

tors that were computed every 10ms. Prior to unsupervised GMM training, a speech

detection module was used to remove non-speech from each lecture. Using our dis-

tributed computing environment with 200 CPUs, on average it took ten minutes to

process one hour of speech data.

Table 3.3: Academic lectures used for spoken term discovery.

Lecture Topic Duration
Economics 1 hr 15 mins
Speech Processing 1 hr 25 mins
Clustering 1 hr 18 mins
Speaker Adaptation 1 hr 14 mins
Physics 51 mins
Linear Algebra 47 mins

We compared our proposed Gaussian posteriorgram method with the original

MFCC method in terms of number of clusters, average purity and term-frequency

inverse-document-frequency (TFIDF) hits [102]. The results are shown in Table 3.4.

In this table, GP denotes the Gaussian posteriorgram method. The TFIDF hit was

calculated by observing how many words in the top 20 TFIDF word list also corre-

sponded to discovered word clusters. The IDF score was computed from the 2,000

most common words in the Brown corpus [36].

Table 3.4: Performance comparison of spoken term discovery in terms of # clusters
found, average purity, and top 20 TFIDF hit rate. MFCC stands for the whitened
MFCC based method in [98]. GP stands for the Gaussian posteriorgram based
method. The TFIDF hit was calculated by observing how many words in the top
20 TFIDF word list also corresponded to discovered word clusters. The IDF score
was computed from the 2,000 most common words in the Brown corpus [36].

Lecture # Clusters Avg. Purity(%) TFIDF Hit(20)
MFCC PG MFCC PG MFCC PG

Economics 63 65 79.6 88.0 11 14
Speech Processing 92 72 86.1 90.2 15 19
Clustering 87 68 93.2 93.4 16 17
Speaker Adaptation 63 66 91.9 92.0 13 19
Physics 51 58 89.5 91.2 17 18
Linear Algebra 41 25 94.0 95.2 17 16

54

From the results in Table 3.4, we can see that the Gaussian posteriorgram repre-

sentation produces better clusters in terms of the average purity score and the number

of TFIDF hits. The purity gain is larger on lectures that attained low purity scores

using the MFCC method. We listened to the audio files and found these lectures

contain more noise than other lectures, which may indicate that the Gaussian poste-

riorgram method is more robust to noisy acoustic condition than the MFCC method.

On lectures with good MFCC purity scores, the Gaussian posteriorgram method often

still produces a small improvement.

In terms of the TFIDF hit rate, the Gaussian posteriorgram representation can

discover 85% percent of the top 20 TFIDF words while the MFCC method can find

75% percent [95]. We believe discovering more important words might lead to a better

understanding of the content of an audio file. The only exception was the Algebra

lecture where the Gaussian posteriorgram method found only 25 clusters. However,

these 25 clusters still covered 16 words in the TFIDF list, which might also indicate

that the Gaussian posteriorgram method tends to produce high quality clusters.

It is difficult to find a good evaluation criterion for the quality of posteriorgrams.

In the current spoken term discovery work, we implicitly evaluate the quality of pos-

teriorgrams by measuring the purity of the clusters found. However, the purity metric

is not a direct measure of how well Gaussian posteriorgrams represent speech data

in terms of speaker independence, noise robustness or other parameters as a result of

post-processing. Figure 3-7 illustrates spoken term discovery results on four lectures

with different clustering parameters. Although the S-DTW is performed on the same

posteriorgrams, it is clear that cluster purity scores as well as the total number of

found clusters are quite different. Therefore, one future challenge is to develop a

general evaluation criterion which can directly assess the quality of generated poste-

riorgrams in a non task-specific setting, and preferably evaluate the quality in terms

of speaker/language independence and noise robustness.

55

0.7 0.75 0.8 0.85 0.9 0.95 1

30

40

50

60

70

80

90

100

110

120

C

lu
st

er
s

α
0.7 0.75 0.8 0.85 0.9 0.95 1

0.7

0.75

0.8

0.85

0.9

0.95

1

P
ur

ity

Purity (PG)

Purity (MFCC)

Clusters (PG)

Clusters (MFCC)

Lecture: Economics

0.7 0.75 0.8 0.85 0.9 0.95 1

30

40

50

60

70

80

90

100

110

120

C

lu
st

er
s

α
0.7 0.75 0.8 0.85 0.9 0.95 1

0.7

0.75

0.8

0.85

0.9

0.95

1

P
ur

ity

Purity (PG)
Purity (MFCC)
Clusters (PG)
Clusters (MFCC)

Lecture: Speech Processing

0.7 0.75 0.8 0.85 0.9 0.95 1

30

40

50

60

70

80

90

100

110

120

C

lu
st

er
s

α
0.7 0.75 0.8 0.85 0.9 0.95 1

0.7

0.75

0.8

0.85

0.9

0.95

1

P
ur

ity

Purity (PG)

Purity (MFCC)

Clusters (PG)

Clusters (MFCC)

Lecture: Clustering

0.7 0.75 0.8 0.85 0.9 0.95 1

30

40

50

60

70

80

90

100

110

120

C

lu
st

er
s

α
0.7 0.75 0.8 0.85 0.9 0.95 1

0.7

0.75

0.8

0.85

0.9

0.95

1

P
ur

ity

Purity (PG)

Purity (MFCC)

Clusters (PG)

Clusters (MFCC)

Lecture: Speaker Adaptation

Figure 3-7: Effect of changing clustering stopping factor α on # clusters found and
cluster purity on four MIT lectures. It is clear that different clustering parameters
generate clusters with different purity scores as well as different number of found
clusters although the S-DTW is performed on the same posteriorgrams.

56

3.6 Spoken Term Detection Using Gaussian Pos-

teriorgrams

As mentioned in the previous section, the spoken term discovery task involves

some post-processing steps, such as pruning and clustering, which make it difficult

to evaluate the quality of Gaussian posteriorgrams. Therefore, in this section, we

explore a slightly different task known as spoken term detection, which finds re-

occurring speech patterns given one example of the pattern. We hope that, without

requiring too many post-processing techniques, spoken term detection can help better

evaluate the performance of Gaussian posteriorgrams.

Specifically, given a spoken term query and a test corpus, if all speech frames

are represented by Gaussian posteriorgrams, we can run S-DTW for the spoken term

query against each test utterance to find possible locations containing the input spo-

ken term [146]. The system work flow is demonstrated in Figure 3-8. Note that

the extra speech data box in the figure represents that since the training of GMM

is unsupervised, more unlabeled speech data could be used to train the GMM and

improve the quality of Gaussian posteriorgrams. After collecting all warping paths

with their corresponding distortion scores for each test utterance, we simply choose

the warping region with the minimum distortion score as the candidate region of the

spoken term occurrence for that utterance. However, if multiple spoken term samples

are provided and each sample provides a candidate region with a distortion score, we

need a scoring strategy to calculate a final score for each test utterance that takes

into account the contribution of all spoken term samples.

In contrast to the direct merging method used in [46], we considered the reliability

of each warping region on the test utterance. Given multiple spoken term samples

and a test utterance, a reliable warping region on the test utterance is the region

where most of the minimum distortion warping paths of the spoken term samples

are aligned. In this way a region with a smaller number of alignments to spoken

term samples is considered to be less reliable than a region with a larger number of

alignments. Therefore, for each test utterance, we only take into account the warping

57

Figure 3-8: System work flow for spoken term detection using Gaussian posterior-
grams. Note that the extra speech data box in the top represents that since the
training of GMM is unsupervised, more unlabeled speech data could be used to train
the GMM and improve the quality of the Gaussian posteriorgrams generated.

paths pointing to a region with alignments to multiple spoken samples.

An efficient binary range tree is used to count the number of overlapped alignment

regions on a test utterance. After counting, we consider all regions with only one

spoken term sample alignment to be unreliable, and thus the corresponding distortion

scores are discarded. We are then left with regions having two or more spoken term

samples aligned. We then apply the same score fusion method proposed by Hazen et

al. [46]. Formally, if we have k ≥ 2 spoken term samples si aligned to a region rj, the

final distortion score for this region is:

S(rj) = − 1

α
log

1

k

k∑
i=1

exp(−αS(si)) (3.2)

where varying α between 0 and 1 changes the averaging function from a geometric

mean to an arithmetic mean. Note that since one test utterance may have several

regions having more than two spoken term alignments, we choose the one with the

smallest average distortion score. An extreme case is that some utterances may have

no warping regions with more than one spoken term alignment (i.e., all regions are

unreliable). In this case we simply set the distortion score to a very big value. After

merging the scores, every test utterance should have a distortion score for the given

58

spoken term. We rank all the test utterances by their distortion scores and output

the ranked list as the spoken term detection result.

We evaluated this idea on two different corpora. We initially used the TIMIT

corpus for developing and testing the ideas we have described in the previous section.

Once we were satisfied with the basic framework, we performed more thorough large

vocabulary spoken term detection experiments on the MIT Lecture corpus [41]. The

evaluation metrics that we report follow those suggested by [46]: 1) P@10 : the

average precision for the top 10 hits; 2) P@N : the average precision of the top N hits,

where N is equal to the number of occurrences of each spoken term in the test data;

3) EER : the average equal error rate at which the false acceptance rate is equal to

the false rejection rate. Note that we define a putative hit to be correct if the system

proposes a spoken term that occurs somewhere in an utterance transcript.

3.6.1 TIMIT Experiment

The TIMIT experiment was conducted on the standard 462 speaker training set

of 3,696 utterances and the common 118 speaker test set of 944 utterances. The total

size of the vocabulary was 5,851 words. Each utterance was segmented into a series

of 25 ms frames with a 10 ms window shift (i.e., centi-second analysis); each frame

was represented by 13 MFCCs. Since the TIMIT data consists of read speech in quiet

environments, speech detection was unnecessary. All MFCC frames in the training set

were used to train a GMM with 50 components. We then used the GMM to decode

both training and test frames to produce a Gaussian posteriorgram representation.

For testing, we randomly generated a 10-term set and made sure that they contained

a variety of numbers of syllables. Table 3.5 shows the 10 spoken terms and their

number of occurrences in both training and test sets (# training : # test). The best

EER obtained is 16.4%.

59

Table 3.5: TIMIT 10 spoken term list with number of occurrences in training and
test set (# training : # test).

age(3:8) warm(10:5) year(11:5) money(19:9)
artists(7:6) problem(22:13) children(18:10) surface(3:8)
development(9:8) organizations(7:6)

Table 3.6: MIT Lecture 30 spoken term list with number of occurrences in the training
and test set (# training : # test).

zero (247:77) space (663:32) solutions (33:29)
examples (137:29) performance (72:34) matter (353:34)
molecule (28:35) pretty (403:34) results (121:35)
minus (103:78) computer (397:43) value (217:76))
situation (151:10) therefore (149:46) important (832:47)
parameters (21:50) negative (50:50) equation (98:61)
distance (58:56) algorithm (35:36) direction (214:37)
maximum (20:32) responsible (92:10) always (500:37)
likelihood (13:31) mathematical (37:15) never (495:21)
membrane (19:27) problems (270:23) course (847:76)

3.6.2 MIT Lecture Experiment

For the MIT Lecture experiments we used a standard training set containing

57,351 utterances and a test set with 7,375 utterances [41]. The vocabulary size of

both the training and the test set is 27,431 words. Since the data were recorded

in a classroom environment, there are many non-speech artifacts that occur such as

background noise, filled pauses, laughter, etc. These non-speech data could cause

serious problems in the unsupervised learning stage of our system. Therefore, prior

to GMM training, we ran a speech detection module [40] to filter out non-speech

segments. GMM learning was performed on frames within speech segments. Note

that the speech detection module was trained independently from the Lecture data

and did not require any transcription of the Lecture data. 30 spoken terms were

randomly selected; all of them occur more than 10 times in both the training and test

sets. All spoken terms occur less than 80 times in the test set to avoid using spoken

terms that are too common in the data. Table 3.6 shows all the spoken terms and

the number of their occurrences in the training and test sets.

60

Table 3.7: MIT Lecture spoken term experiment results when given different numbers
of spoken term examples for the 30-word list. We fixed the smoothing factor α to
be 0.0001, the S-DTW window size to 6 and the score weighting factor to 0.5. The
evaluation metrics that we report follow those suggested by [46]: 1) P@10 : the
average precision for the top 10 hits; 2) P@N : the average precision of the top N hits,
where N is equal to the number of occurrences of each spoken term in the test data;
3) EER : the average equal error rate at which the false acceptance rate is equal to
the false rejection rate.

Examples P@10 P@N EER
1 27.0% 17.3% 27.0%
5 61.3% 33.0% 16.8%
10 68.3% 39.3% 15.8%

Table 3.8: Individual spoken term detection result ranked by EER on the MIT Lecture
dataset for the 30-word list (%).

responsible (0.2) direction (10.3) matter (22.8)
situation (0.5) parameters (10.5) always (23.0)
molecule (4.9) algorithm (11.3) therefore (23.9)
mathematical (6.7) course (11.4) membrane (24.0)
maximum (7.5) space (13.8) equation (24.9)
solutions (8.1) problems (17.8) computer (25.3)
important (8.5) negative (18.0) minus (25.7)
performance (8.8) value (19.4) examples (27.0)
distance (9.0) likelihood (19.4) pretty (29.1)
results (9.3) zero (22.7) never (29.5)

Table 3.7 shows the spoken term detection performance when different numbers

of spoken term samples are given. As a result of the TIMIT experiments, we fixed

the smoothing factor α to be 0.0001, the S-DTW window size to 6 and the score

weighting factor to 0.5. All three evaluation metrics improve dramatically from the

case in which only one spoken term sample is given to the case in which five samples

are given. Beyond five examples of a spoken term, the trend of the performance

improvement slows. We believe the reason for this behavior is that the improvement

from one sample to five samples is mainly caused by our voting based score merging

strategy. When going from five samples to ten samples, we gain additional perfor-

mance improvement, but there are always some difficult spoken term occurrences in

the test data. Table 3.8 gives the list of 30 spoken terms ranked by EER in the

61

Table 3.9: MIT Lecture 60 spoken term list. All 60 spoken terms occur more than 10
times in the training set and less than 80 times in the test set.

iteration probability molecule distortion semester
matrix information several derivative properties
analysis distance factor frequency performance
solutions important elections results notations
increase proteins parameters metric space
specific differential whatever second criterion
thousand theorem similar functions negative
merge together often general usually
students particular reference matter computer
energy equation minutes therefore obviously
examples lecture amount pretty oxygen
lactose smaller omega probably phones

Table 3.10: MIT Lecture spoken term experiment results when given different num-
bers of spoken term examples for the 60-word list. The result showed similar char-
acteristics with the results reported on the 30-word set. Given more spoken term
examples, the system produced better detection results in terms of P@10, P@N and
EER.

Examples P@10 P@N EER
1 24.2% 14.7% 25.8%
5 36.3% 24.3% 18.2%
10 41.8% 27.6% 16.3%

10-example experiment. We observe that the words with more syllables tend to have

better performance than ones with only two or three syllables.

In a separate experiment, another set of 60 spoken terms were randomly selected;

similar to the 30-word set, all 60 spoken terms occur more than 10 times in the

training set and less than 80 times in the test set. Table 3.9 shows the list of 60

spoken terms selected. Table 3.10 shows the spoken term detection performance

when different numbers of spoken term examples are given. Table 3.11 gives the list

of 60 spoken terms ranked by EER in the 10-example experiment. This result shows

similar characteristics with the results reported on the 30-word set: words with more

syllables tend to have better performance than ones with only two or three syllables.

62

Table 3.11: Individual spoken term detection result ranked by EER on the MIT
Lecture dataset for the 60-word list (%). The result showed similar characteristics
with the results reported on the 30-word set: words with more syllables tend to have
better performance than ones with only two or three syllables.

iteration(3.0) probability(3.7) molecule(3.7) distortion(4.6) semester(4.8)
matrix(5.9) information(5.9) several(6.3) derivative(6.3) properties(6.7)
analysis(7.4) distance(7.5) factor(7.9) frequency(8.0) performance(8.1)
solutions(8.1) important(8.5) elections(9.0) results(9.3) notations(9.3)
increase(10.0) proteins(10.3) parameters(10.5) metric(10.9) space(11.8)
specific(13.0) differential(13.6) whatever(14.9) second(16.3) criterion(16.5)
thousand(17.4) theorem(17.6) similar(18.2) functions(18.2) negative(18.4)
merge(18.6) together(19.0) often(19.2) general(19.2) usually(20.5)
students(20.6) particular(21.6) reference(22.5) matter(22.9) computer(24.1)
energy(24.2) equation(24.7) minutes(26.1) therefore(26.1) obviously(26.3)
examples(26.6) lecture(26.3) amount(27.9) pretty(28.5) oxygen(28.6)
lactose(28.9) smaller(29.0) omega(29.3) probably(30.3) phones(35.1)

3.7 Summary

In this chapter, we presented the unsupervised Gaussian posteriorgram framework,

which includes the generation of a Gaussian posteriorgram and its associated DTW-

based search algorithm. A Gaussian mixture model is trained without using any

supervised annotation, and represents each speech frame by calculating its posterior

distribution over all Gaussian components. A modified DTW matching algorithm

can be used to evaluate the similarity between two speech segments represented by

Gaussian posteriorgrams in terms of an inner-product distance. The entire process is

completely unsupervised and does not depend on speakers or languages.

We also presented two applications using Gaussian posteriorgrams. The results

demonstrate the viability of using Gaussian posteriorgrams for both query-by-example

based spoken term detection and speech pattern discovery in a multi-speaker envi-

ronment.

63

64

Chapter 4

Resource Configurable DBN

Posteriorgram

In the previous chapter, we presented the query-by-example spoken term detec-

tion (QE-STD) system based on Gaussian posteriorgrams. Although the Gaussian

posteriorgram framework showed promising results in both unsupervised spoken term

detection and spoken term discovery tasks, there are remaining problems requiring

further investigation, such as how to achieve more robustness in representing speech,

and how to fit in different training conditions. In this chapter, we describe a QE-STD

framework based on posteriorgrams generated from Deep Belief Networks (DBNs).

Through experiments, we show that the DBN-based posteriorgrams produce better

spoken term detection performance, and are able to be adapted in unsupervised,

semi-supervised and supervised training conditions. At the end of this chapter, we

apply the DBN posteriorgrams to noisy speech data. A noise robust QE-STD sys-

tem based on cross-entropy denoising DBN posteriorgrams is presented. Experiments

show that the denoising DBN posteriorgrams on noisy speech can achieve almost the

same spoken term detection performance on clean speech.

65

4.1 Introduction

In the previous chapter, we demonstrated an ability to perform spoken term detec-

tion without using a speech recognizer. By converting both queries and documents

to a posterior probability-based representation called a Gaussian posteriorgram, a

Segmental Dynamic Time Warping (S-DTW) algorithm [148] can be used to locate

matches in speech documents. The Gaussian posteriorgram is a series of probability

vectors computed on frame-based speech features such as MFCCs. Specifically, for

each speech frame, a posteriorgram vector is generated by calculating the posterior

probability of the MFCCs being generated by each component in a Gaussian mixture

model (GMM). The GMM is trained on all MFCCs without requiring any labels.

There are two main drawbacks when using a GMM to generate posteriorgrams.

First, it is clear that the quality of the posteriorgram representation is crucial to

the spoken term detection performance. The current unsupervised GMM learning

can only represent limited phonetic information about speech. It is well-known that

speech has a hierarchical phonetic structure in terms of manner and place of articu-

lation [101]. Thus, an explicit hierarchical modeling approach might lead to a better

posteriorgram generation. Second, it is difficult for GMMs to incorporate partially

annotated data to generate better posteriorgrams. In the previous chapter, we as-

sumed that the data are unannotated, and spoken term detection was performed in a

completely unsupervised setting. However, if a small portion of annotated data were

available, it ideally would be easily incorporated to help produce better posterior-

grams.

To address these two main drawbacks, in this chapter, we propose a new class

of posteriorgrams generated from Deep Belief Networks (DBNs). Compared with

GMM-based posteriorgram generation, the DBN-based posteriorgrams have two ad-

vantages. First, the DBN explicitly models hierarchical structure using multiple lay-

ers of stochastic binary units. Second, DBN training can be performed in a semi-

supervised setting [113]. Specifically, on the forward layer training stage, the DBN

does not require any supervised information, and can use both labeled and unlabeled

66

data [114, 115]. On the backward fine-tuning stage, any amount of labeled data can

be nicely embedded to improve modeling accuracy. In evaluation, we conduct several

spoken term detection experiments. On the TIMIT dataset, in the semi-supervised

setting, results show that 30% of labeled data are enough to obtain spoken term detec-

tion performance that is comparable to the case in which all labeled data are used. In

the unsupervised setting, compared with the original Gaussian posteriorgram, using

a GMM-seeded DBN posteriorgrams can improve the spoken term detection perfor-

mance by 10% relative, in terms of the equal error rate (EER) [150]. On a Babel

multi-lingual dataset, DBN posteriorgrams show similar performance gains compared

to GMM posteriorgrams, which further demonstrates the DBN posteriorgram based

QE-STD system is a language independent approach.

In the final section of this chapter, we apply the DBN posteriorgrams to noisy

speech conditions. By refining noisy DBN posteriorgrams with the corresponding

clean DBN posteriorgrams through back-propagation, on the noisy NTIMIT dataset,

we are able to achieve almost the same spoken term detection performance as on the

clean data.

4.2 Related Work

The use of artificial neural networks (ANNs) for modelling speech data has a long

history. A variety of approaches have been explored since the late 1980s. We will

review the two main architectures of using ANNs in speech acoustic modelling.

In late 1980s, several hybrid ANN-HMM speech recognition systems were devel-

oped [130]. The core idea among these approaches was to use ANNs to model the

HMM’s state emission distributions. The HMM output state posteriors are essentially

the ANNs output distribution [47, 141]. Since these hybrid ANN-HMM systems can

be trained efficiently using the Viterbi algorithm [13], and ANNs are inherently good

at capturing nonlinear relationships in speech data, on several small but popular

speech evaluation tasks, these systems showed promising results compared to the

classic continuous density GMM-HMM structure [87, 12, 108].

67

A subsequent approach used the ANN output posterior distribution as an obser-

vation in the continuous density HMM acoustic modelling framework – the TANDEM

approach [48]. The most successful TANDEM approach combined features from fixed

window spectral analysis (such as MFCCs or PLPs [54]) with the posteriors from

long-window articulatory feature detectors modelled by ANNs [48]. This TANDEM

method addressed the issues brought by the conventional speech feature extraction

method where only short-term spectral features are used, that ignore long-term sig-

nal analysis [151]. The TANDEM approaches have shown good speech recognition

performance on languages with long-term acoustic characteristics such as tonal lan-

guages [131, 132, 135].

These earlier attempts of using ANNs in speech acoustic modeling have important

limitations. Due to computer hardware constraints in the 1990s, ANNs used for

acoustic modeling usually had only one or two hidden layers [105]. Researchers now

believe that these structures were not deep enough to capture high-order nonlinear

activities in speech [25]. Moreover, most early work only used context-independent

phone labels for the ANN’s output layer in order to reduce the time/memory cost for

computing the output state posterior probability [13, 87]. Most importantly, by only

using back-propagation to train the entire network discriminatively, the performance

of ANNs highly depends on the initialization conditions [22]. A variety of different

ANN initialization methods have been proposed in the literature, but none of them

seem to generalize well across different datasets. Improper initialization often leads

to overfitting after supervised back-propagation. Therefore, in many ANN-based

systems, consistently obtaining a good ANN becomes a real challenge compared to

the traditional GMM-HMM approach, which can be trained fairly well from a flat

start using the Baum-Welch method [131].

Over the past two years, due to advances in ANN learning techniques, as well as the

increase of processing capabilities of modern computer hardware, ANN-based acoustic

modeling approaches have been revisited, and have achieved much success on a variety

of speech tasks [84, 26, 19, 50]. The modern ANN-based approaches address the two

main drawbacks of the previous ANN methods. First, the current ANN approaches

68

often use much deeper structures, such as five or six layers of hidden units, and a

large output softmax layer (e.g. thousands of tri-phone states as output classes). This

deep hidden structure can accommodate the rich nonlinear relationship in the speech

data, while the large output softmax layer is well-matched to the modern tri-phone

based context-dependent HMM architecture. Second, instead of initializing hidden

weights with little guidance, the recent ANN-based approaches adopt a generative pre-

training process [113]. The generative pre-training not only requires no supervised

information, but can also put all hidden weights into a proper range which can be

used to avoid local optima in the supervised back-propagation based fine-tuning.

In addition to the success of using deep ANN-HMMs for speech recognition, many

researchers have reported different ways of using deep ANNs for speech related tasks.

One class of methods is to use deep ANNs to generate features for speech systems

similar to the TANDEM approach. The most successful approach is to use a deep

ANN with a narrow bottleneck middle layer and to use the activations of the bot-

tleneck hidden units as feature vectors [86, 121]. Recently, Sainath et al. explored

using a deep bottleneck autoencoder to produce features for GMM-HMM and good

recognition results were obtained [111]. Moreover, Vinyals et al. investigated the

effectiveness of deep ANNs for detecting articulatory features. The detected articu-

latory events were combined with MFCC features for robust ASR tasks [136]. Lee

et al. introduced the convolutional deep ANNs for audio classification tasks. The

convolutional ANNs were designed to capture long-term temporal information and

achieved good classification results [75]. Mikolov et al. explored using deep recurrent

ANNs to train large scale language models [82]. Their recent results demonstrated

that the deep ANN based language models are among the most successful techniques

for statistical language modeling in both ASR and machine translation [81].

Although our DBN posteriorgram framework is similar to the idea of using ANNs

output posteriors as feature vectors, it differs from the previous work in two key

aspects. First, the DBN is used to directly model the speech data and generate

posteriorgrams. Second, a generative pre-training stage is used to initialize all hidden

weights in the DBN without using any labeled information. In the following sections,

69

a brief introduction of the DBN will be presented.

4.3 Deep Belief Networks

There are several papers with detailed description of Deep Belief Networks (DBNs).

We briefly review some basic concepts in the following sections. More detailed de-

scriptions can be found in [51, 50, 114, 113, 7].

4.3.1 DBN Definition

A DBN is an M -layer network of symmetrically coupled, stochastic binary units

where M is usually greater than two [113, 114]. It contains a set of visible units v ∈

{0, 1}D and a sequence of layers of hidden units h1 ∈ {0, 1}L1 , h2 ∈ {0, 1}L2 ,...,hL ∈

{0, 1}LM , where D represents the input data dimension and Li denotes the number

of hidden units in each hidden layer. There are undirected connections only between

hidden units in adjacent layers, as well as between the visible units and the hidden

units in the first hidden layer. There are no within layer connections.

Consider learning a DBN with three hidden layers (i.e. M = 3), the energy of the

joint configuration {v,h1,h2,h3} is defined as:

E(v,h1,h2,h3; θ) = −vTW1h1 − hT
1W2h2 − hT

2W3h3 (4.1)

where θ = {W1,W2,W3} are the model parameters, representing visible-to-hidden

and hidden-to-hidden symmetric interaction terms. We omit bias terms for clarity of

presentation. The probability of an input vector v is given by

P (v; θ) =
1

Z(θ)
∑

h1,h2,h3

exp(−E(v,h1,h2,h3; θ)) (4.2)

where Z(θ) is the normalization term defined as

Z(θ) =
∑
v

∑
h1,h2,h3

exp(−E(v,h1,h2,h3; θ)) (4.3)

70

On the top of the hidden layers, there is a softmax layer to convert the output of

hidden units to class probabilities. For this 3-layer DBN, the conditional probability

for the class cj in the softmax layer can be written as

P (C = cj|v3) =

[
exp(vT

3 Ws + bs)
]
j∑

i∈N [exp(vT
3 Ws + bs)]i

(4.4)

where v3 is the output from the third hidden layer, Ws and bs are the weighting ma-

trix and bias for the softmax layer, the sub-script in [· · ·]i denotes the i-th component

of that vector and N represents the total number of classes.

4.3.2 DBN Inference

Exact maximum likelihood learning in this model is intractable, but efficient ap-

proximate learning of DBNs can be carried out by using a mean-field inference to-

gether with an Markov chain Monte Carlo (MCMC) based stochastic approximation

procedure [113, 7]. Furthermore, the entire model can be efficiently pre-trained one

layer at a time using a stack of modified Restricted Boltzmann machines (RBMs) [51].

Restricted Boltzmann Machines

An RBM is an undirected graphical model consisting of a layer of stochastic hidden

binary variables and a layer of stochastic visible binary/real-valued variables shown

in Figure 4-1. Within each RBM, connections only exist between hidden and visible

variables while no hidden-hidden and visible-visible connections exist. In an energy-

based representation, an RBM with binary visible variables can be written in the

following form

E(v,h) = −aTv − bTh− vTWh (4.5)

where a is the visible bias, b is the hidden bias andW is the visible-hidden weights [51].

When modeling a real-valued speech feature input such as MFCCs and PLPs, we use

Gaussian-Bernoulli RBMs which are able to handle real-valued visible input [50]. The

formal energy form is

71

Figure 4-1: Left: A Restricted Boltzmann Machine (RBM). Right: A Deep Belief
Network (DBN) with 3 hidden layers where each layer is an RBM. Within each RBM,
connections only exist between hidden and visible variables while no hidden-hidden
and visible-visible connections exist.

E(v,h) =
∑
i∈v

(vi − ai)
2

2σ2
i

− bTh−
∑

i∈v,j∈h

vi
σi

hjwij (4.6)

where vi denotes the i-th component of v, hj denotes the j-th component of h, wij

denotes one element in the weight matrix W and σi is the stand deviation of the

visible unit vi. Since there is no connection within the hidden and visible layer, the

conditional probability P (h|v) can be factored given the visible units as follows.

P (h|v) =
∏
i

P (hi|v) (4.7)

Since hi is binary, the per unit conditional probability can be written as

P (hj = 1|v) = sigmoid

(
bj +

∑
i∈v

vi
σi

wij

)
(4.8)

Using the same factorization trick, P (v|h) can be decomposed as

72

P (vi = 1|h) = N

ai + σi

∑
j∈h

hjwij, σ
2
i

 (4.9)

where N(·) is a Gaussian distribution. It is clear that if the input data is normalized

to have unit variance, the energy form becomes

E(v,h) =
1

2
(v − a)T (v − a)− bTh− vTWh (4.10)

and the corresponding conditional probabilities become:

P (hj = 1|v) = sigmoid

(
bj +

∑
i∈v

viwij

)
(4.11)

P (vi = 1|h) = N

ai +
∑
j∈h

hjwij, 1

 (4.12)

The conditional probabilities for Bernoulli-Bernoulli RBMs are slightly different:

P (hj = 1|v) = sigmoid

(
bj +

∑
i∈v

viwij

)
(4.13)

P (vi = 1|h) = sigmoid

ai +
∑
j∈h

hjwij

 (4.14)

To construct a DBN accepting real-valued input features, Gaussian-Bernoulli

RBM is used for the first hidden layers and the following layers are Bernoulli-Bernoulli

RBMs.

Generative Pre-training of RBMs

To learn an RBM, maximum likelihood training is not feasible due to the large

computational cost on computing the gradient over the log-probability of the entire

data. However, Hinton et al. have proposed an efficient approximation learning

algorithm called one-step contrastive divergence (CD-1) [51]. The CD-1 method is

similar to a stochastic sampling process which repeatedly calculates the difference

73

between the input data and the data reconstructed from the RBM. The reconstruction

difference approximates the true gradient and is used to update the weights. Formally,

the CD-1 update rules for a Gaussian-Bernoulli RBM are

∆Wij = E

[
vi
σ2
i

hj

]
data

− E

[
vi
σ2
i

hj

]
1-reconstruction

(4.15)

∆ai = E

[
vi
σ2
i

]
data

− E

[
vi
σ2
i

]
1-reconstruction

(4.16)

∆bj = E [hj]data − E [hj]1-reconstruction (4.17)

where E[·]data is the expected frequency with which the visible unit vi and the

hidden unit hj are both “on” together. The “on” status of both visible and hidden

units are determined by Eq. 4.8 and Eq. 4.9 directly from the training data. The

second E[·]1-reconstruction is the expected frequency with which the visible unit

vi and the hidden unit hj are both “on”. The difference is that the status of the

visible unit vi is determined by the one-step reconstructed data from the current

model parameters [113]. Similar to the pre-training stage, if the input data is pre-

normalized to have unit variance, we have σi = 1 for easy calculation. Stochastic

gradient descent (SGD) is used to update the parameters [7]. Previous research

suggests that momentum based SGD can be used to smooth the weight update [110].

Formally, the momentum based update rule can be written as

W t+1
ij = mW t

ij −
α

B
∆Wij (4.18)

at+1
i = mati −

β

B
∆ai (4.19)

bt+1
j = mbtj −

γ

B
∆bj (4.20)

where t is the step variable, α, β, γ are learning rates for W, a,b, m denotes the

74

momentum and B is the batch size of the SGD.

After learning one RBM, the status of the learned hidden units given the training

data can be used as feature vectors for the second RBM layer. The CD-1 method can

be used to learn the second RBM in the same fashion. Then, the status of the hidden

units of the second RBM can be used as the feature vectors for the third RBM, etc.

In sum, the CD-1 method can be repeated to learn the subsequent RBMs given the

status of the hidden units in the previous layer. By applying this greedy learning

framework, multiple RBMs can be stacked together and pre-trained. An important

property of pre-training is that parameter learning does not require any supervised

information. Hierarchical structural information can be automatically extracted as

an unsupervised density model to maximize the approximated data likelihood.

Back-propagation

If any amount of labelling information is given, a standard back-propagation al-

gorithm [110, 51] for a multi-layer neural network can be applied to fine-tune the

DBN model discriminatively [113]. The back-propagation can be implemented in an

online update scheme, hence any future additional labels could be used in online fine-

tuning. The goal of back-propagation fine-tuning is to maximize the log-probability

of the entire dataset based on the cross-entropy criterion as follows:

F =
U∑
i=1

logP (c|vi) (4.21)

where U is the total number of training cases, vi is the i-th training example, and c

is the corresponding class label for vi. Suppose we have a DBN with M hidden layers

and a softmax layer with N units. By taking partial derivatives, the gradients for the

weights are

∂F

∂Wl

=
U∑
i=1

vi
l [Zl(i)El(i)]

T (4.22)

and the gradients for the bias are

75

∂F

∂bl

=
U∑
i=1

[Zl(i)El(i)]
T (4.23)

where Z is the transfer function and E is the error function. For the softmax layer,

the transfer function Zs can be written as

Zs(i) = 1 (4.24)

where 1 is a unit vector. The error function Es can be written as

Es(i) = δc,i −
[exp(Wsv

i
M + bs)]c∑

j∈N [exp(Wsvi
M + bs)]j

(4.25)

where vi
M is the output of last hidden layer (the input of the softmax layer) and δc,i

is the Kronecker function

δc,i =

 1 if c = i

0 otherwise
(4.26)

For the l-th hidden layer (l ∈ [1..M]), the transfer function Zl can be written as

Zl(i) = (Wlv
i
l + bl) · (1−Wlv

i
l + bl) (4.27)

which is known as the element-wise derivative of the i-th input. vi
l represent the

output of the l-th hidden layer for the i-th input. The error function El can be

written as

El(i) = WlZl(i)El+1(i) (4.28)

where El+1 is the errors back-propagated from the following hidden layer. Similar to

the pre-training, a momentum based SGD approach is used to update W and b in

the fine-tuning [49, 50].

(Wl,bl)
t+1 = m (Wl,bl)

t +
α

B
· ∂F

∂ (Wl,bl)
(4.29)

76

where t is the step variable, α is the learning rate, m is the momentum, and B is the

batch size.

4.3.3 DBN Training in Practice

There are several papers about how to train a good DBN in practice [72, 49, 8].

We will summarize some techniques we used in our DBN training toolkit.

• Weight Initialization. For small tasks such as the TIMIT recognition task,

visible-hidden weights are initialized to values drawn from a Gaussian distri-

bution with zero mean and 0.01 standard deviation. For large datasets, we

followed the method proposed in [8] in which each hidden unit is initialized to

values drawn from a uniform distribution with range [0, 1/
√
FanIn + FanOut].

FanIn and FanOut denotes the number of incoming and outgoing connections

of a hidden unit.

• Mini-batches. Since the SGD algorithm is used for both pre-training and back-

propagation, mini-batches are used throughout the training process. The mini-

batch size is set from 256 to 1024 according to the results in [19]. During the

training, mini-batches are generated on the fly by randomly permutating all

training samples after each iteration.

• Pre-training. Gaussian-Bernoulli RBMs often need more iterations and smaller

learning rates than Bernoulli-Bernoulli RBMs [83]. A weight decay for visible-

hidden weights is used to reduce the number of hidden units with very large

weights [49].

• Back-propagation. We found that the momentum based update is a very im-

portant factor for efficient back-propagation. The momentum is set to 0.5 for

the first few iterations and changed to 0.9 for the remaining iterations. A good

way of preventing overfitting is to monitor the cross-entropy on a held-out set.

At the end of each iteration, if the cross-entropy on the held-out set increases,

77

Figure 4-2: System work flow for generating posteriorgrams using DBN in both semi-
supervised and unsupervised configurations.

the weights are set to their original values before the iteration and the learning

rate is halved [83].

4.4 DBN Posteriorgrams

In this section, we present two DBN posteriorgrams which can be used in the semi-

supervised and unsupervised training conditions respectively. Figure 4-2 illustrates

a summary of generating posteriorgrams using DBN in both semi-supervised and

unsupervised configurations. Details will be presented in the following sub-sections.

4.4.1 Semi-supervised DBN Phonetic Posteriorgram

Like the supervised phonetic posteriorgrams [46, 68] discussed in Section 3.1, a

supervised or semi-supervised DBN posteriorgram is a probability vector representing

78

the posterior probabilities of a set of labeled phonetic units for a speech frame. For-

mally, if we denotes N speech frames as ~x1, . . . , ~xN and their corresponding phonetic

labels ph1, . . . , phN , a posterior probability, pji = P (phj|~xi; θ), can then be calculated

for any speech frame, ~xi, for each phonetic label phj, given DBN model parameters θ

and using a softmax activation function. If there are V phonetic labels, a speech frame

~xi can then be represented by a V -dimensional probability vector, ~pi = {p1i , . . . , pVi },

where
∑

j p
j
i = 1 ∀i.

Compared with the Gaussian posteriorgrams which can be generated by a GMM

trained without any supervised information, DBN posteriorgrams require some an-

notated data for training. In the semi-supervised training procedure we use in this

work, we first train the DBN model using all data without labels (i.e., unsupervised),

followed by the fine-tuning step that requires some amount of labeled data.

4.4.2 Unsupervised DBN Refined Gaussian Posteriorgram

In machine learning, a weak classifier can be used to initialize a strong classi-

fier to accelerate the training process. For example, in conventional Expectation-

Maximization (EM) training of a GMM, K-means clustering is often used to initialize

the target GMM. Inspired by this idea, we investigate a fully unsupervised DBN pos-

teriorgram by training a DBN from labels generated from an unsupervised GMM.

Given a set of N speech frames with an MFCC representation, ~x1, . . . , ~xN , a D-

mixture GMM G is trained on all frames without using any labels. For each frame

~xi, we provide a labeler function L as

L(~xi) = argmax
j

P (gj|~xi) (4.30)

where gj is the j-th Gaussian component in G. In other words, each speech frame

is labeled by the index of the Gaussian component which maximizes the posterior

probability given ~xi. Then a DBN is trained on those “artificial” labels. This DBN

posteriorgram generation is similar to the semi-supervised case except that the human

produced phonetic label phj for each frame is replaced by the GMM produced “arti-

79

ficial” label j. Through this two-stage training process, we leverage the DBN’s rich

model structure to produce better posteriorgrams than a GMM, while still keeping

the entire training framework compatible with the unsupervised setting.

4.4.3 Evaluation

We performed four different evaluations of the DBN based posteriorgram repre-

sentation. In the first evaluation, we investigated how different layer configurations

of the DBN would affect the quality of the generated posteriorgram as well as the

spoken term detection performance. The DBN for this experiment was trained in

a fully supervised setting. In the second evaluation, we examined how spoken term

detection performance is affected when using partially labeled data for DBN training.

In the third evaluation, we compared the spoken detection performance of the fully

unsupervised DBN posteriorgram with our previous Gaussian posteriorgram baseline.

In the fourth evaluation, we compare the Gaussian posteriorgram base QE-STD with

the DBN posteriorgram based QE-STD on the Babel Cantonese dataset.

TIMIT Supervised Results

The spoken term detection task performed on the TIMIT corpus used the same

setting as in Section 3.6.1. The spoken term list was the same as the previous experi-

ment. Performance was measured by the average equal error rate (EER): the average

rate at which the false acceptance rate is equal to the false rejection rate. Besides the

EER, we also used the Maximum Term-Weighted Value (MTWV) measure provided

by NIST from the 2006 STD contest [34]. MTWV is a biased average between miss

detection rate and false alarm rate [100]. For each spoken term query, an individual

MTWV score is computed first and the final MTWV score is averaged over all spoken

term queries. Formally, the MTWV can be written as

MTWV =
1

Q

∑
q

max
θ

(1− (Pmiss(q, θ) + βPfa(q, θ))) (4.31)

where Pmiss(q, θ) and Pfa(q, θ) are the miss detection and false alarm rate given the

80

operating point θ for query q, β = 1000 is the prior knowledge factor used to bias the

average and Q is the total number of spoken term queries. The miss detection and

false alarm rate for the query q are defined as follows:

Pmiss(q, θ) = 1− Ncorr(q)

Ntrue(q)
(4.32)

Pfa(q, θ) =
Nfa(q)

T −Ntrue(q)
(4.33)

where for the query q, Ncorr(q) is the number of correct detections, Nfa(q) is the

number of incorrect detections, Ntrue(q) is the number of true occurrences and T is

the total amount of speech (in seconds) in the test test.

In the supervised experiments, we used all labeled training data (3,696 utterances)

in order to maximize the DBN posteriorgram performance while changing different

DBN layer configurations. For DBN training, each training utterance was segmented

into a series of 25ms windowed frames with a 10ms shift (i.e., centisecond analysis).

Each frame was represented by 39 dimensional MFCC stacked with the neighboring

10 frames (5 on each side). In total, the feature dimension for each frame is 429 (39

x 11). All 61 phonetic labels were used for training. After training, each frame in the

training and test set was decoded by the DBN, producing a posteriorgram vector of

61 dimensions. Spoken term detection was done by comparing the keyword example

posteriorgrams with the test set posteriorgrams using the DTW method described in

Section 3.4.

Table 4.1 presents the results for different DBN configurations and their resulting

average EER and MTWV. In the first column, 500 indicates a DBN that has one

hidden layer with 500 hidden units, while 500x500 denotes a DBN with two hidden

layers each of which has 500 hidden units. All DBN configurations have a softmax

output layer with 61 units. In initialization, the visible-hidden weights in each DBN

were randomly drawn from a Gaussian distribution with zero mean and 0.01 standard

deviation. The visible and hidden bias weights were set to zero. To cope with real

valued input for the stacked MFCC input, the first hidden layer in all DBNs is set

81

Table 4.1: Average ERR for different DBN layer configurations for supervised DBN
posteriorgram based QE-STD on the TIMIT corpus. In the first column, 500 indicates
a DBN that has one hidden layer with 500 hidden units, while 500x500 denotes a DBN
with two hidden layers each of which has 500 hidden units. All DBN configurations
have a softmax output layer with 61 units.

DBNs Avg. EER(%) MTWV
500 10.6 0.557

300x300 10.3 0.553
500x500 9.8 0.543
1000x1000 10.4 0.556

500x500x500 10.1 0.546

to a Gaussian-Bernoulli RBM and the remaining hidden layers are set to Bernoulli-

Bernoulli RBMs. The forward layer training in each configuration was set to stop

at the 100th iteration with a learning rate of 0.004 and a batch size of 256. The

fine-tuning using back-propagation was set to stop at the 50th iteration using the line

search stochastic gradient decent method with a batch size of 256.

The results indicate that spoken term detection performance was not overly sensi-

tive to DBNs with different layer settings. For both EER and MTWV, the difference

among five configurations is less than 1%. This implies that we need not be overly

concerned about the DBN layer configurations in subsequent experiments.

Semi-supervised Results

In the second experiment, we used a two-layer DBN with 500 hidden units for

each layer and a softmax output layer with 61 units. The DBN initialization and

learning parameters were the same as the supervised experiments. We first trained

our model on all 3,696 unlabeled utterances, followed by the fine-tuning stage that

only used partially labeled data. Figure 4-3 demonstrates the results. On the x-axis,

a training ratio of 0.1 indicates that only 10% of the labeled data were used in the

fine-tuning stage, while a training ratio of 1.0 means all labeled data were used. It

can be observed that the average EER curve drops dramatically from 0.01 to 0.2 and

becomes steady between 0.3 to 0.8. This is an interesting result because in scenarios

where fully labeled data are not cost effective to obtain, 20% to 30% of labeled data

82

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
9.5

10

10.5

11

11.5

12

12.5

13

13.5

Training Ratio

A
vg

. E
E

R

Figure 4-3: Average EER against different training ratios for semi-supervised DBN
posteriorgram based QE-STD on the TIMIT corpus. On the x-axis, a training ratio
of 0.1 indicates that only 10% of the labeled data were used in the fine-tuning stage,
while a training ratio of 1.0 means all labeled data were used. It can be observed
that the average EER curve drops dramatically from 0.01 to 0.2 and becomes steady
between 0.3 to 0.8.

are enough to produce a system that is only slightly worse than the system trained on

all labeled data. Moreover, since the back-propagation algorithm has to go through

each data point for each iteration in the fine-tuning step, using a smaller portion of

labeled data also saves a significant amount of training time.

TIMIT Unsupervised Results

In the unsupervised training experiment, a 500x500 DBN was trained by using

labels generated from a GMM with 61 Gaussian mixtures. Specifically, a GMM was

first trained on frame-based MFCCs without using any labels. To be consistent with

83

our prior work, only 13 MFCCs per frame were used to train the GMM. Once the

unsupervised GMM had been created, each frame was subsequently labeled by the

most likely GMM component (Eq. 4.30). A DBN was then trained on 429 MFCCs

per frame using the GMM-generated labels. We then compared the unsupervised

posteriorgram detection performance between the GMM and the DBN-based poste-

riorgrams, as shown in Table 4.2. As we have reported in Section 3.6.1, the Gaussian

posteriorgrams produced an average EER of 16.4% and an MTWV score of 0.229.

The unsupervised DBN-based posteriorgrams improved upon this result by over 10%

to achieve an average EER of 14.7% and an MTWV score of 0.281. We believe the

improvement is due to the DBN’s explicit hierarchical model structure that provides

a finer-grained posterior representation of potential phonetic units than those that

can be obtained by the Gaussian posteriorgram. Note that in an attempt to make a

comparison using the same larger feature set, we also trained an unsupervised GMM

using the 429 dimensional MFCC vectors that were used to train the DBN. In this

case, however, the average EER degraded to over 60%, which we attribute to a weaker

ability of the GMM to cope with higher dimensional spaces.

The third row in Table 4.2, highlights one final advantage of the DBN framework

in that it is able to incorporate partially labeled data. When we included only 1% of

labeled data, we see that the average EER is further reduced to 13.3% (as also shown

in the first data point in Figure 4-3). This reduction corresponds to another 9.5%

performance gain over the unsupervised case. The MTWV score shows a significant

improvement from 0.281 to 0.441. We think the reason is that by introducing super-

vised information, the false alarm rate can be significantly reduced so that the heavily

false alarm rate biased MTWV score improves. Figure 4-4 illustrates Table 4.2 and

also shows the average Detection Error Tradeoff (DET) curves for each row in Table

4.2. The false positive rate on the x axis is in log-scale. In the legend, GP stands for

Gaussian posteriorgrams. Numbers in parentheses are MTWV scores. We can see

that DET curves for semi-supervised and supervised configurations are clearly below

the DET curves for unsupervised configurations.

84

Table 4.2: Comparison of Gaussian and DBN posteriorgram based QE-STD on the
TIMIT corpus. The Gaussian posteriorgrams produced an average EER of 16.4% and
an MTWV score of 0.229. The unsupervised DBN-based posteriorgrams improved
upon this result by over 10% to achieve an average EER of 14.7% and an MTWV
score of 0.281. When including 1%, 30% and 100% of labeled data, the average EER
is further reduced to 13.3%, 10.5% and 9.5% respectively (as also shown in the first
data point in Figure 4-3). The MTWV scores show similar improvement from 0.441
to 0.543.

Posteriorgram Avg. EER (%) MTWV
Gaussian 16.4 0.229

Unsupervised DBN 14.7 0.281
DBN (1%) 13.3 0.441
DBN (30%) 10.5 0.526
DBN (100%) 9.8 0.543

Table 4.3: Babel Cantonese 30 spoken term list. The spoken term selection rule
makes sure that for each term there are at least 10 occurrences in the training set
and less than 100 occurrences in the test set, similar to the configuration we used in
the TIMIT experiment.

而家 果 好似 即系 真系 如果
觉得 但系 几多 跟住 果边 我地
打电话 可以 睇下 老公 自己 因为
屋企 之前 听日 时间 星期六 一直
咩野 之后 其实 结婚 电话 到时

Babel Cantonese Results

To demonstrate the language independent aspect of the proposed DBN posterior-

gram spoken term detection framework, we applied our system to a large vocabulary

Cantonese speech dataset. A set of 30 spoken terms was selected from the provided

keyword list and 10 examples of each term were extracted from the training set, shown

in Table 4.3. The spoken term selection criterion were that each term occurred at

least 10 times in the training set, and less than 100 times in the test set (similar to

the configuration we used in the TIMIT experiment). For each spoken term, the spo-

ken term detection task was to rank all test utterances according to the utterance’s

possibility of containing that term. As in the TIMIT experiment, performance was

measured by the EER and the MTWV score.

85

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

M
is

s
de

te
ct

io
n

ra
te

GP(0.229)
Unsupervised DBN(0.281)
DBN−1%(0.441)
DBN−30%(0.526)
DBN−full(0.543)

Figure 4-4: DET curve comparison of Gaussian and DBN posteriorgram based QE-
STD on the TIMIT corpus. The false positive rate on the x axis is in log-scale. In the
legend, GP stands for Gaussian posteriorgrams. Numbers in parentheses are MTWV
scores.

Table 4.4 shows the comparison of QE-STD using Gaussian and DBN posteri-

orgrams on the Babel Cantonese corpus. In the table, Gaussian-i denotes using i

example(s) for each term to perform spoken term detection on Gaussian posteri-

orgrams. To generate Gaussian posteriorgrams, a GMM with 50 components was

trained on all the training data. Compared to the TIMIT English dataset, a similar

EER decrease and MTWV increase can be seen if increasing the number of spoken

term examples used for detection. The Gaussian-10 configuration showed an EER of

21.4% which is higher than the EER of 16.4% on the TIMIT English dataset using the

same configuration. MTWV scores are low due to high false alarm rates. We think

the reason is that the Babel task is harder than the TIMIT task. The TIMIT dataset

is clean read speech recorded with 16kHz sampling rate, while the Babel dataset is

86

Table 4.4: Comparison of Gaussian and DBN posteriorgram based QE-STD on the
Babel Cantonese corpus. Gaussian-i denotes using i example(s) for each term to
perform spoken term detection on Gaussian posteriorgrams. Compared to the TIMIT
English dataset, a similar EER decrease and MTWV increase can be seen if increasing
the number of spoken term examples used for detection. MTWV scores are low due
to high false alarm rates.

Posteriorgram Avg. EER MTWV
Gaussian-1 33.8% 0.008
Gaussian-5 23.1% 0.089
Gaussian-10 21.4% 0.098

Unsupervised DBN 19.9% 0.099

spontaneous speech recorded through telephone and cell-phone lines with an 8kHz

sampling rate.

The DBN posteriorgrams in Table 4.4 were generated from an unsupervised DBN

with 5 hidden layers and a softmax layer with 50 units. Each hidden layer contains

2048 hidden units. The pre-training was done on the entire training set and the back-

propagation was done by using GMM generated labels. The DBN posteriorgrams

outperformed the Gaussian posteriorgrams when using 10 examples for each term.

However, the EER and MTWV gain here is smaller than the previous TIMIT exper-

iment. We think the reason is also due to the noisy conditions in the Babel corpus,

making it harder for DBN to generate high quality posteriorgrams.

To further demonstrate the performance of the proposed QE-STD system, we used

a 606 spoken term list provided by NIST to run a spoken term detection experiment

on the standard Babel Cantonese test set. An unsupervised DBN with 5 hidden layers

(2048 hidden units each) and a softmax layer with 50 units was trained to generate

posteriorgrams. All spoken term examples in the training set were used. The MTWV

score obtained was 0.206 compared to an MTWV score of 0.45 from a fully supervised

STD system.

87

4.5 Denoising DBN Posteriorgrams

As we have seen in the Babel Cantonese QE-STD experiment, when the speech

data is noisy, the gain from using DBN posteriorgrams become smaller compared

to the gain on clean speech. To overcome this problem, in this section, the DBN

posteriorgrams are extended to noisy speech conditions. By assuming that parallel

clean and noisy speech recordings are available for DBN training, we demonstrate that

denoising DBN posteriorgrams can significantly improve the QE-STD performance

on noisy speech data.

4.5.1 System Design

The classic back-propagation for fine-tuning a DBN is to use 0/1 as error indicators

for class labels shown in Eq. 4.25. The goal is to maximize the log-probability of the

entire dataset given the correct class labels. Considering all class labels for an input

feature vector, the objective function in Eq. 4.21 can be rewritten as

F =
U∑
i=1

N∑
j=1

δC(i),j logP (j|vi) (4.34)

where N is the total number of classes and δC(i),j is the Kronecker function as

δC(i),j =

 1 if C(i) = j

0 otherwise
(4.35)

The classic back-propagation algorithm based on the cross-entropy criterion only col-

lects log-probabilities when the prediction C(i) is the same as the label j. From

another point of view, δC(i),j can be considered as a probability distribution which

assigns probability 1 to the correct label for the i-th input and probability 0 else-

where. The back-propagation fine-tuning essentially pushes logP (j|vi) towards the

δ distribution by maximizing the total log-probability. If we change the δ from a 0/1

distribution to a continuous distribution γ, by running back-propagation, the DBN

model can be used to approximate the continuous distribution γ, where in our case,

88

the continuous distribution γ is a posteriorgram. Formally, the new objective function

can be written as

F =
U∑
i=1

N∑
j=1

γC(i),j logP (j|vi) (4.36)

where γ is a continuous distribution which assigns probabilities across N dimensions.

By using the new objective function in Eq. 4.36, the DBN can be trained on

noisy speech data but fine-tuned by clean posteriorgrams. The system work flow is

demonstrated in Figure 4-5. Specifically, with parallel clean and noisy speech data

available, a clean DBN can be pre-trained on the clean speech data and fine-tuned

by the GMM generated labels (unsupervised configuration). Then, the second DBN

is pre-trained on the noisy speech data. For each noisy speech utterance, the second

DBN is fine-tuned by the posteriorgrams generated from the first clean DBN on the

same parallel clean speech utterance, by using the new objective function in Eq.

4.36. Therefore, after the back-propagation fine-tuning, the second DBN takes noisy

speech as input and approximates the posteriorgrams generated by the clean DBN

on the corresponding clean speech. We hope that the rich nonlinear structure in

the DBN can be used to learn an efficient transfer function which removes noise in

speech while keeping enough phonetically discriminative information to generate good

posteriorgrams.

The limitation of the denoising DBN posteriorgram framework is that speech data

must be presented in both noisy and clean conditions. Oftentimes, a speech corpus

is recorded in only one condition, either noisy or clean. Given only a clean speech

corpus, this framework might still work since noise can be added into the clean speech

so that the parallel noisy and clean speech corpus can be created artificially. Given

only a noisy speech corpus, there are two possible directions to explore. One direction

is to use noise reduction algorithms to create the parallel corpus for DBN training.

Another possibility is to pre-train the denoising DBN with all noisy speech data but

only fine-tune it with available parallel corpora. In the latter case, the pre-training

stage can be viewed as an unsupervised noise-independent learning process, while

89

Figure 4-5: System work flow for training a denoising DBN. A clean DBN is trained
on the clean speech and is used to generate clean posteriorgrams. The DBN trained on
the noisy speech is fined-tuned with the clean posteriorgrams so that for future data,
the denoising DBN can accept noisy speech input and output denoised posteriorgrams.

the semi-supervised fine-tuning stage can be expected to learn how to remove unseen

noise by only using partial labeled information.

4.5.2 Evaluation

To evaluate the QE-STD performance, the NTIMIT speech corpus was used for

the experiment. The NTIMIT speech corpus is the noisy version of the original clean

TIMIT speech corpus. Specifically, for each clean TIMIT utterance, a noisy version

was recorded from broadcasting the clean utterance through a telephone line. As a

result, channel noise was added in each TIMIT utterance for the NTIMIT corpus.

Moreover, the recording sampling rate of NTIMIT was lowered to 8kHz due to the

telephone signal transmission. The training set and test set used were the same as

the original TIMIT dataset. To compare with the previous TIMIT experiment, the

same 10 spoken terms and the same 10 examples of each term were extracted from

90

Table 4.5: Comparison of Gaussian and DBN posteriorgram based QE-STD on the
NTIMIT and TIMIT corpus.

Posteriorgram Avg. EER MTWV
Gaussian 19.9% 0.006

Unsupervised DBN 18.2% 0.04
Denoising DBN 16.2% 0.232
Gaussian-TIMIT 16.4% 0.229

Unsupervised DBN-TIMIT 14.7% 0.281

the training set. As before, performance was measured by the average EER and the

MTWV score.

In order to build a baseline system, Gaussian posteriorgrams and unsupervised

DBN posteriorgrams were generated for the NTIMIT dataset. Specifically, to generate

Gaussian posteriorgrams, a GMM with 50 components was trained on all the training

data. The input feature was 13 MFCCs with 25ms window length and 10ms window

shift exactly as what we did for the TIMIT dataset. For the unsupervised DBN

posteriorgrams, to be consistent with the previous TIMIT experiment, a DBN with

two hidden layers and a softmax layer was pre-trained on 429 dimensional stacked

MFCC features (39 x 11). Each hidden layer consists of 512 hidden units and the

softmax layer has 50 units. The DBN was then fine-tuned using labels generated from

the 50-component GMM.

To generate denoising DBN posteriorgrams, we took the unsupervised DBN pos-

teriorgrams from the clean TIMIT data and used them to perform frame-wise back-

propagation on the DBN pre-trained on the noisy NTIMIT data. After the back-

propagation was done, unseen test utterances from the NTIMIT corpus were decoded

by the denoising DBN.

Table 4.5 shows the results on the NTIMIT dataset with different posteriorgrams.

Due to the channel noise and low sampling rate of the NTIMIT speech, the baseline

QE-STD based on Gaussian posteriorgrams and unsupervised DBN posteriorgrams

are both worse than the performance on the clean TIMIT corpus in terms of EER and

MTWV. As for the Babel Cantonese experiment, the EER gain for using unsupervised

DBN posteriorgrams is smaller on the noisy NTIMIT corpus than the TIMIT corpus

91

(NTIMIT: 19.9% → 18.2% vs. TIMIT: 16.4% → 14.7%). However, the MTWV

gain is significant from 0.006 to 0.04. By applying denoising DBN, the MTWV can

be further boosted to 0.232. It is interesting that the denoising DBN has a lower

EER 16.2% and a higher MTWV 0.232 on the noisy NTIMIT corpus with only 8kHz

sampling rate than the EER of 16.4% and the MTWV of 0.229 for the system using

Gaussian posteriorgrams on the clean TIMIT corpus with 16kHz sampling rate. The

EER of 14.7% and the MTWV of 0.281 for the unsupervised DBN on the TIMIT

corpus can be viewed as an upper bound for the denoising DBN on the NTIMIT

corpus since it was used to fine-tune the denoising DBN.

4.6 Summary

In this chapter, we presented a spoken term detection method based on posteri-

orgrams generated from Deep Belief Networks (DBNs). The proposed representation

can be easily adapted to work in both a semi-supervised and an unsupervised training

condition. Spoken term detection experiments on the TIMIT corpus showed a 10%

relative improvement compared to our previous Gaussian posteriorgram framework

in the unsupervised condition. In the semi-supervised setting, the detection perfor-

mance using the DBN posteriorgram can achieve a comparable performance to fully

supervised training when using only 30% of the labeled data. The experiments on

the Babel Cantonese corpus demonstrated the language independent nature of the

proposed framework.

At the end of this chapter, the DBN posteriorgram framework was extended to

noisy speech conditions. By refining the noisy DBN with the corresponding clean

DBN posteriorgrams through the back-propagation on continuously density proba-

bility functions, on the noisy NTIMIT dataset, we were able to achieve almost the

same spoken term detection performance as on the clean data.

92

Chapter 5

Fast Search Algorithms for

Matching Posteriorgrams

In this chapter, we present two fast search algorithms for matching posteriorgrams.

In Chapter 3 and Chapter 4, both the spoken term discovery and detection systems

described use the standard Dynamic Time Warping (DTW) algorithm on posterior-

gram vectors. Due to its intrinsic O(n2) complexity, DTW is too slow to handle big

speech datasets. For instance, spoken term detection experiments in previous chap-

ters were performed on a computer cluster with around 200 CPU cores, which might

not be a common computing setup. In order to reduce the computational cost, we

propose two lower-bounding based fast matching approaches to speed up the origi-

nal DTW algorithm on posteriorgrams. The first method is an exact lower-bound

based algorithm which does not sacrifice any matching accuracy. The second method

is a relaxed lower-bound based algorithm which is less tight compared to the exact

lower-bound, but provides additional speed-up. Experiments show that the proposed

algorithms are able to speed-up the original DTW by a factor of 320, which indicates

that for a fairly large speech corpus, the proposed spoken term detection system can

be reasonably deployed on a single desktop computer.

93

5.1 Introduction

One attractive property of DTW is that it makes no assumptions about the un-

derlying linguistic units. If we have an example speech query pattern, we can find the

top K nearest-neighbor (KNN) matches in some corpus of speech utterances. DTW

is a natural search mechanism for this application, however, depending on the size of

the corpus, there can be a significant amount of computation involved in the align-

ment process. For aligning two time-series consisting of M and N elements or frames,

DTW conservatively takes O(MN) time to compute a match. If one pattern sequence

is much longer than the other, M � N , (e.g., searching for a word in a long record-

ing), then any individual match will be O(M2), but we will need to initiate multiple

DTW searches (in the extreme, starting a new search at every frame in the N frame

sequence), which makes the overall computation closer to O(M2N). For very large

N , (e.g., N > 107) this can be a considerable burden. To solve this computational

problem, several lower-bound algorithms have been proposed for DTW search in large

databases by Keogh et al. [63, 104, 138]. The basic idea behind lower-bounded DTW

is similar in concept to the use of the future underestimate incorporated into an A∗

graph search. To start, N lower-bound DTW estimates are computed between the

query pattern, Q and every possible speech segment, S, in the corpus of utterances.

These lower-bound estimates are sorted into a queue. Then, the lowest lower-bound

estimate is incrementally popped off the queue and the actual DTW alignment score

is computed for that particular match. This step is repeated until the lowest estimate

remaining in the queue is greater than the Kth-best DTW score. The K-best search

can then be terminated.

In both Chapter 3 and Chapter 4, we have been using a speech representation

based on a sequence of posterior probability vectors – posteriorgrams, because of

their superior generalization across speakers compared to spectral-based representa-

tions [146, 147]. In using the posteriorgram representation, it has been found that

the inner product between posteriorgram vectors produces superior results on a va-

riety of DTW-based tasks reported by Asaei et al. in [147, 4]. Thus, if we are to

94

leverage the lower- bound concept for reducing the DTW computation, we need to

derive a lower-bound estimate method for inner product distances. In the first part

of this chapter, we describe a lower-bound estimate method that we have developed

for inner-product distances, and prove that it is admissible for KNN-based DTW

search. We then perform spoken term detection experiments and compare the result

to previously reported results from Chapter 3, and show that we can eliminate 89%

of the DTW calculations without affecting performance.

In the second part of this chapter, we propose another improved lower-bound es-

timate using piecewise aggregate approximation (PAA) [64]. PAA can be viewed as

a down-sampling approach which can make a short but representative abstraction

for a long time series. When comparing two time series, using their correspond-

ing PAA representation saves computation time in exchange for a slightly weaker

lower-bound estimate. In our reported spoken term detection experiments on the

TIMIT corpus, we consider the total calculation needed for both the lower-bound

estimate and DTW-KNN search. The results showed that the proposed PAA lower-

bound estimate reduced the computational requirements for DTW-KNN search by

28% compared with the tight lower-bound estimate [149].

5.2 Related Work

Over the years, using DTW to match two time series has attracted much interest.

Since DTW allows minor local misalignment, it has been widely used in computer

science, biology, and the finance industry [54]. However, to align two time series with

n and m lengths, the time complexity of DTW is O(nm), which is not suitable for

applications with a large number of data entries. Therefore, ever since DTW was

developed, the problem of how to reduce its computational cost has been addressed.

In general, previous work about how to speed-up DTW search for large databases can

be divided into two categories. The first category is a lower-bound estimate based

on DTW indexing methods. The second category is distance matrix approximation

methods. We will review these two categories in the following two sections.

95

5.2.1 Lower-bound Estimate Based Methods

The core idea of prior lower-bound based DTW search methods is to produce a

reliable lower-bound approximation of the true DTW distance in linear time. The

lower-bound approximation can be then used to build an index for subsequent search.

The first lower-bound estimate was proposed by Yi et al. in 1997 [143]. Yi’s lower-

bound estimate operated by comparing two one-dimensional time series by using the

Euclidean distance as the local distance metric. The basic concept of Yi’s lower-bound

is that points in one time series that are larger/smaller than the maximum/minimum

of the other time series must contribute at least the squared difference of their value,

and the maximum/minimum value to the final DTW distance [142]. The limitations

of Yi’s lower-bound estimate are 1) it is not an exact lower-bound of the true DTW

distance, which results in false dismissals in some cases; 2) the computational overhead

is large since it needs to scan the whole series to obtain the maximum/minimum value.

Kim et al. improved Yi’s results and proposed an exact lower-bound estimate

which does not allow false dismissals [66]. Kim’s lower-bound calculation is based on

four values from the two time series. The values are the first, the last, the maximum

and the minimum of two time series. Since Kim’s lower-bound estimate also requires

the maximum and minimum of two time series, it still has a fairly large computa-

tional overhead. Moreover, the definition of maximum and minimum values dose not

allow the lower-bound estimate to work on multi-dimensional time series. Subsequent

experiments also found that Kim’s lower-bound was very loose in some datasets [63].

Keogh et al. [16, 63] proposed another exact lower-bound estimate for DTW using

local warping constraints such as the Sakoe-Chiba band [112] or Itakura parallelo-

gram [56]. The local path warping constraint prevents the DTW path from going

into one direction too much. To compare two time series Q and C using DTW with

local path warping constraint r, Keogh’s lower-bound first calculates two envelopes

called the Upper envelope U and Lower envelope L respectively. Formally, the Upper

envelope U can be written as

96

U = (u1, · · · , un) = (max(q1−r, q1+r), · · · ,max(qi−r, qi+r), · · · ,max(qn−r, qn+r))

(5.1)

where n is the length of the time series Q, ui is the i-th entry in U , and qi is the i-th

element in Q. The Lower envelope L can be written as

L = (l1, · · · , ln) = (min(q1−r, q1+r), · · · ,min(qi−r, qi+r), · · · ,min(qn−r, qn+r)) (5.2)

If Q and C are one-dimensional time series and the local distance metric is Euclidean

distance, by using U and L, the lower-bound estimate for DTW on Q and C can be

written as

LB Keogh(Q,C) =

√√√√√√√√
n∑

i=1


(ci − Ui)

2 if ci > Ui

(ci − Li)
2 if ci < Li

0 otherwise

(5.3)

where Ui is the i-th entry of U and ci is the i-th entry in the time series C. The core

idea behind this lower-bound can be interpreted as all points not falling within two

envelopes contribute at least the squared difference of their values and the envelope

values to the final DTW distance. Keogh et al. proved that this lower-bound estimate

is an exact lower-bound, and guarantees no false dismissals [63].

The proposed lower-bound estimate in this chapter is close to Keogh’s lower-

bound idea but differs in three key aspects. First, the proposed lower-bound is able

to handle multi-dimensional time series. Second, the proposed lower-bound uses

an inner-product distance measure instead of the Euclidean distance. Third, the

proposed lower-bound only requires the construction of the Upper envelope, ignoring

the Lower envelope, while still maintaining no false dismissals.

97

5.2.2 Distance Matrix Approximation Based Methods

There has also been some research concentrating on fast approximation of the

DTW distance matrix by using a sparse representation of the data. Both approaches

essentially reduce the size of the DTW distance matrix so that DTW is able to run

much faster on those approximated distance matrices.

Keogh et al. proposed a piecewise linear approximation method which downsam-

ples the time series with linear prediction functions [64]. The reduced number of

points in the DTW distance matrix provides significant speed-up at the expense of

some false dismissals. Chan et al. proposed another data downsampling approach

using wavelet filters [17]. The core idea behind both approaches is to represent the

original data with fewer points by using predictive functions. Since both approaches

depend on prediction functions, it is clear that the prediction functions have to be

carefully chosen based on specific applications, resulting in flexibility issues when

changing domains.

More recently, Jansen et al. proposed a two stage distance matrix approximation

method for fast DTW matching [59, 60, 61]. The first stage is to use locality sensitive

hashing (LSH) to represent the original time series data. LSH can be viewed as a pro-

jection function which maps high dimensional data to low dimensional bit vectors [2].

After the mapping, the relative similarity between data points in the original space

can be approximated in the low-dimensional space by simple and very fast distance

metrics such as the Hamming distance. LSH inherently handles the high dimensional

time series, and the computational overhead is relatively low. After representing the

original data by using LSH, the DTW distance matrix is calculated based on LSH

vectors. In the second stage, instead of running DTW directly on the distance ma-

trix, an image-processing based approach is used to locate regions which are highly

likely to contain a match. The real DTW alignment is only then performed on those

regions, ignoring the remaining matrix, which results in a huge reduction in the total

computing time in large databases. Several spoken term detection and spoken term

discovery experiments based on this two stage method have showed promising results.

98

In sum, all inexact approximation based methods suffer from the same drawback

which is the introduction of false dismissals. Often the approximation thresholds

need to be carefully tuned to prevent too many false dismissals; these thresholds can

vary widely for different applications. Since our proposed lower-bound estimates still

require a certain amount of real DTW calculations to determine the final KNN list,

these approximation-based methods could be built upon our proposed lower-bound

estimate to improve the real DTW calculation in the following KNN search.

5.3 DTW on Posteriorgrams

The posteriorgram is a feature representation of speech frames generated from a

GMM or a DBN, as described in Section 3.2 and Section 4.4. To match posterior-

grams, consider the two posteriorgram sequences for a speech query,

Q = {~q1, . . . , ~qM}

and a speech segment,

S = {~s1, . . . , ~sN}

where ~qi and ~sj are D-dimensional posterior probability vectors. The local distance

between ~qi and ~sj can be defined by their inner product as

d(~qi, ~sj) = − log(~qi · ~sj)

Using the DTW algorithm, the overall best alignment between Q and S is

DTW(Q,S) = min
φ

Aφ(Q,S)

where φ is the warping function and A is the scoring function for each alignment

according to a specific warping function φ. Detailed description can be found in

Section 3.4.

99

5.4 Lower-Bounded DTW on Posteriorgrams

The idea of the lower-bounded DTW is that instead of calculating the exact DTW

distance, an underestimated distance can be first computed to obtain an approxima-

tion of the real distance. The following search mechanism can use the underestimated

distance and calculate the real distance when necessary.

5.4.1 Lower-bound Definition

Given two posteriorgram sequences, Q, and S, we can determine a lower-bound

of their actual DTW score by first deriving an upper-bound envelope sequence,

U = {~u1, · · · , ~uM}

where

~ui = {u1
i , · · · , uD

i }

and

uj
i = max(qji−r, · · · , q

j
i+r)

Note that the variable r is the same as is used for the DTW global path constraint, and

that, in general,
∑D

j=1 u
j
i ≥ 1. U can thus be viewed as a D-dimensional windowed

maximum envelope derived from Q. Figure 5-1 illustrates an example of U on one di-

mension of a posteriorgram. A lower-bound DTW score between two posteriorgrams,

Q and S, can then be defined as

L(Q,S) =
l∑

i=1

d(~ui, ~si) (5.4)

where l = min(M,N). Note that the computational complexity of computing L(Q,S)

is only O(l).

100

0 50 100 150 200 250 300 350
−140

−120

−100

−80

−60

−40

−20

0

20

Frame Index

Lo
g−

P
ro

ba
bi

lit
y

Original
U

Figure 5-1: Example of a 1-dimensional upper-bound envelope sequence (red) com-
pared to the original posteriorgram (blue) for r = 8.

5.4.2 Lower-bound Proof

To prove that L(Q,S) ≤ DTW(Q,S) for posteriorgram sequences Q and S, we

follow the strategies that are used by Keogh et al. and Rath et al. in [63, 104]. By

expanding both terms, we wish to show that

l∑
i=1

d(~ui, ~si) ≤
Kφ∑
k=1

d(~qφq(k), ~sφs(k))

where φ is the best warping path that produces DTW(Q,C). The right hand side

(RHS) can be further split into two parts

l∑
i=1

d(~ui, ~si) ≤
∑

k∈MA

d(~qφq(k), ~sφs(k)) +
∑

k∈UM

d(~qφq(k), ~sφs(k))

101

where MA denotes a matched set containing exactly l warping pairs, while UM corre-

sponds to an unmatched set that includes all remaining warping pairs. We construct

the matched set as follows. For the ith term on the left hand side (LHS), a warping

pair (φq(k), φs(k)) from the RHS is placed into MA if φs(k) = i. If there are multiple

warping pairs from the RHS with φs(k) = i, we select the pair with smallest φq(k)

(although it only matters that one is selected). Note that there are always enough

pairs to select into the matched set since l ≤ Kφ. By following this construction rule

we ensure that the size of the matched set is exactly l so that each term on the LHS

is matched exactly once by an element in the matched set. Based on the definition

of the inner-product distance, all terms on the RHS are positive. Thus, all terms in

UM can be eliminated if we can prove that the LHS is less than the terms in MA.

Consider an individual warping pair in MA, (φq(k), φs(k)), as it relates to the ith

term on the LHS, d(~ui, ~si). By expanding the distance function back into the negative

log inner-product, the inequality we need to prove becomes

l∑
i=1

− log(~ui · ~si) ≤
∑

i∈MA

− log(~qφq(i) · ~sφs(i))

Since both sides now have the same number of terms, the inequality holds if

each term on the LHS is less than or equal to the corresponding term on the RHS. By

eliminating the log and examining only the individual dot product terms, we therefore

need to show

~ui · ~si ≥ ~qφq(i) · ~sφs(i)

Note that because of the way the matched set was selected, φs(i) = i so that

~si = ~sφs(i). Since the DTW global path constraint r limits the warping pair so that

|φq(i) − φs(i)| ≤ r we can also say |φq(i) − i| ≤ r, or i − r ≤ φq(i) ≤ i + r. We can

therefore see from the definition of uj
i , that u

j
i ≥ qjφq(i)

so that our inequality holds:

L(Q,S) ≤ DTW(Q,S)

102

5.4.3 Nontrivialness Check for Exact Lower-bound

One special property of the posteriorgram is that the summation of posterior

probabilities from all dimensions should be one. Thus, the lower-bound could be

trivial if ~ui · ~si ≥ 1 because on the RHS ~qφq(i) · ~sφs(i) ≤ 1. However, if we let

umax = max(u1
i , . . . , u

D
i)

the LHS can be written as

~ui · ~si ≤ umax ·
D∑
j=1

sji = umax

since
∑D

j=1 s
j
i = 1. Since we also know that umax ≤ 1 we can see that the lower-bound

estimate is not the trivial case.

5.5 Piecewise Aggregate Approximation for DTW

on Posteriorgrams

The time consumed for the lower-bound estimate is O(M) for a spoken term query

with M frames. For a database with N entries however, calculating the lower-bound

estimate for a spoken term query and every candidate speech segment in the database

would take O(MN) time, which could still be a considerable burden when N is very

large (e.g., N > 107). To address this disadvantage and further improve the efficiency

of the search, we apply the concept of piecewise aggregate approximation (PAA) to

reduce the length of posteriorgrams into B blocks, and estimate a slightly weaker

lower-bound in exchange for a faster lower-bound calculation.

Prior research with PAA has also focused on using the Euclidean distance as

the similarity metric between one dimensional time series [63, 142]. If we therefore

hope to leverage the PAA concept for reducing lower-bound calculations, we need

to develop a new PAA lower-bound estimate for posteriorgrams. Therefore, in the

following sections, we describe a PAA lower-bound estimation approach, and prove

103

that it is admissible for DTW-KNN search. Through experiments, we show that using

a PAA representation of posteriorgrams might lead to a weaker lower-bound estimate

which would increase the necessary DTW calculations in the KNN search. However,

considering the total time cost, the PAA lower-bound estimate combined with the

DTW-KNN search improves the spoken term detection efficiency by 28%.

5.5.1 PAA Definition

Given two posteriorgrams Q and S, without loss of generality, we assume they

have the same length M = N . Define two approximation posteriorgrams

Û = {Û1, · · · , ÛB}

and

Ŝ = {Ŝ1, · · · , ŜB}

Ûi denotes the i
th block of the approximated upper-bound envelope U , and is defined

as

Ûi = {û1
i , · · · , ûD

i }

where each dimension

ûp
i = max

(
up

M
B
(i−1)+1

, · · · , up
M
B
i

)
(5.5)

Ŝi denotes the i
th block of the approximated S and can be defined as Ŝi = {ŝ1i , · · · , ŝDi }

where each dimension

ŝpi =
B

M

M
B
i∑

j=M
B
(i−1)+1

spj (5.6)

Note that if M is not divisible by B, M
B

is floored and the remaining frames form

an additional block. It is clear that the PAA block reduction process is similar to a

104

0 50 100 150 200 250 300 350
−140

−120

−100

−80

−60

−40

−20

0

20

Frame Index

Lo
g−

P
ro

ba
bi

lit
y

Original

U

PAA
U

Figure 5-2: Example of a one-dimensional PAA sequence (3 frames per block) (green),
an upper-bound envelope sequence (red) and an original posteriorgram (blue) for r =
5

down-sampling process. For a speech query, for each dimension, the maximum value

of the frames within a block is used to represent the block, while for a speech segment,

the average value of the frames within a block is used. Figure 5-2 demonstrates an

example of the approximated Q̂ and the upper-bound envelope U on one dimension

of a posteriorgram.

Using Û and Ŝ, the PAA lower-bound estimate for DTW on posteriorgrams can

be defined as

PAA(Q,S) =
B∑
i=1

M

B
· d(Ûi, Ŝi) (5.7)

where d(·) is the inner product function.

105

5.5.2 PAA Lower-bound Proof

To prove PAA(Q,S) ≤ L(Q,S), without loss of generality, we first assume that

B = 1 which indicates the entire posteriorgram sequence is considered as one block.

If under this assumption the inequality holds, it is clear that the same proof can be

applied to each block when B ≥ 1. (Note that if B = M then PAA(Q,S) = L(Q,S).)

Since B = 1, Eq. 5.7 can be simplified as

PAA(Q,S) = M ·

(
− log

D∑
p=1

ûp
1 · ŝ

p
1

)

According to the definition of the original lower-bound estimate in Eq. 5.4, the

inequality becomes

M ·

(
− log

D∑
p=1

ûp
1 · ŝ

p
1

)
≤ L(Q,S) =

M∑
i=1

− log
D∑
p=1

up
i · s

p
i

After absorbing the summation into the log and negating both sides, the inequality

becomes

log

(
D∑
p=1

ûp
1 · ŝ

p
1

)M

≥ log
M∏
i=1

D∑
p=1

up
i · s

p
i

which is equivalent to prove

(
D∑
p=1

ûp
1 · ŝ

p
1

)M

≥
M∏
i=1

D∑
p=1

up
i · s

p
i (5.8)

Note that since B = 1, according to the definition of the block reduction process in

Eq. 5.5 and Eq. 5.6, it is clear that

ûp
1 = max (up

1, u
p
2, · · · , u

p
M)

ŝp1 =
1

M

M∑
i=1

spi

106

Therefore, the left hand side of Eq. 5.8 can be written as

(
D∑
p=1

ûp
1 · ŝ

p
1

)M

=

(
1

M

D∑
p=1

M∑
i=1

ûp
1 · s

p
i

)M

≥

(
1

M

D∑
p=1

M∑
i=1

up
i · s

p
i

)M
(5.9)

where ûp
1 ≥ up

i , ∀i ∈ [1,M] based on Eq. 5.5. Interchanging the summation in Eq.

5.9, the inequality we need to prove becomes

(
1

M

M∑
i=1

D∑
p=1

up
i · s

p
i

)M

≥
M∏
i=1

D∑
p=1

up
i · s

p
i (5.10)

Let ai =
∑D

p=1 u
p
i · s

p
i , the inequality becomes

(
1

M

M∑
i=1

ai

)M

≥
M∏
i=1

ai

Since it is clear that ai ≥ 0, the arithmetic mean is always greater than or equal to the

geometric mean. Combining with the proof in Section 5.4.2, the following inequality

holds

PAA(Q,S) ≤ L(Q,S) ≤ DTW(Q,S) (5.11)

which indicates the PAA lower-bound estimate is admissible to DTW-KNN search.

5.5.3 Nontrivialness Check for PAA Lower-bound

Since the sum of posterior probabilities in a posteriorgram should be one, in order

to avoid trivialness we should prove that the approximated posteriorgram has the

property that

(
D∑
p=1

ûp
1 · ŝ

p
1

)M

≤ 1

107

From Eq. 5.9 and Eq. 5.10, it is clear that

D∑
p=1

ûp
1 · ŝ

p
1 =

1

M

M∑
i=1

D∑
p=1

ûp
1 · s

p
i

Let ûmax = max(û1
1, û

2
1, · · · , ûD

1). We have

1

M

M∑
i=1

D∑
p=1

ûp
1 · s

p
i ≤

ûmax

M
·

M∑
i=1

D∑
p=1

spi =
ûmax

M
·

M∑
i=1

·1

=
ûmax

M
·M · 1 = ûmax ≤ 1

where
∑D

p=1 s
p
i = 1 based on the posteriorgram definition.

5.6 KNN Search with Lower-Bound Estimate

In order to determine the K nearest neighbor (KNN) segmental matches to a

query, the default approach is to consider every possible match for all possible seg-

ments in each corpus utterance. By incorporating the lower-bound estimate described

previously, we can find the top KNN matches much more efficiently, as shown in the

pseudo-code in Algorithm 1.

The basic idea of the algorithm is to use the lower-bound DTW estimate to prune

out segments whose lower-bound DTW estimates are greater than the Kth best DTW

score. In Algorithm 1, the function ComputeLB calculates the lower-bound DTW

estimate between the spoken term query, Q, and every possible utterance segment,

S, using the upper envelope U . All utterance segments and their associated lower-

bound estimates are stored in a priority queue ranked by the lower-bound estimate.

During KNN search, the algorithm begins from the top (smallest estimate) of

the priority queue and calculates the actual DTW distance between the spoken term

query and the associated segment. After using the function FindC to locate the

utterance containing the current segment, the function UpdateC updates the best

DTW distance in that utterance. Then, the function UpdateRL updates the result

108

Algorithm 1: KNN Search with Lower-Bound

Data: Q,U and C
Result: RL containing k most possible utterances having the spoken term Q
begin

for each utterance c ∈ C do
for each segment s ∈ c do

lb = ComputeLB(U, s)
PQ.push([lb, s])

KthBest = MaxFloat
while PQ 6= ∅ AND (|RL| < k OR PQ.top.lb < KthBest) do

[lb, s] = PQ.top
v = DTW(Q, s)
c = FindC(s)
UpdateC(c, s, v)
if c ∈ RL then UpdateRL(RL)
else RL.add(c)
if |RL| ≤ k then KthBest = FindMax(RL)
else KthBest = FindKthMax(RL)
PQ.pop()

list if the best DTW score in the current utterance changes. If the result list does

not contain the current utterance, the current utterance is added into the result list.

Finally, if the size of the result list is less than or equal to K, the Kth best is set to the

maximum value of the associated DTW score of the utterances in RL. If the size of

the result list is greater than K, then the Kth best is set to the Kth maximum value

in RL. The search algorithm ends if K possible utterances are in the result list and

the lower-bound estimates of all remaining segments in the priority queue are greater

than the Kth best value. Figure 5-3 demonstrates the Algorithm 1. In the figure, the

left list represents the priority queue PQ that contains lower-bound estimates, while

the right list denotes the output result list RL.

5.7 Experiments and Results

Since we have shown that the lower-bound estimate results in a KNN-DTW search

that is admissible, we wish to measure how much computation can be saved with the

109

Figure 5-3: An illustration of KNN search with lower-bound estimate (presented in
Algorithm 1). The left list represents the priority queue PQ that contains lower-
bound estimates, while the right list denotes the output result list RL.

lower-bound estimate as well as the PAA lower-bound estimate. In order to do this,

we have chosen to duplicate the spoken term detection experiments that we have

performed on the TIMIT corpus using posteriorgram-based DTW search in Chapter

3. The same experiment configurations were used and the spoken term list was

fixed as in Section 3.6.1. Performance was still measured by the average equal error

rate (EER): the average rate at which the false acceptance rate is equal to the false

rejection rate.

5.7.1 The Exact Lower-Bound Results

Since the lower-bound estimate is admissible, the results obtained by the new

KNN method are the same as have been reported earlier where we achieved 16.4%

equal error rate (EER) as in Chapter 3. Of greater interest, however, is the amount

of computation we can eliminate with the lower-bound estimate.

Figure 5-4 summarizes the amount of computational savings which can be achieved

with the lower-bound estimate. The figure plots the average DTW ratio (scaled by

110

0 200 400 600 800 1000
0.001

0.003

0.01

0.03

0.1

0.31

1

K Nearest Neighbor

A
vg

. D
T

W
 R

at
io

r=1

r=3

r=5

r=7

r=9

Figure 5-4: Average DTW ratio against KNN size for different global path constraints,
r. The average DTW ratio is the ratio of the number of utterance segments that
require a DTW score to be computed divided by the total number of segments for a
particular spoken term search, averaged across all 10 spoken term queries. For r = 1,
an exact DTW computation is needed for only 0.11% of all possible segments when
K=10.

log base 10) against the size of K in the KNN search for several different DTW path

constraint settings (r = 1, 3, 5, 7, 9). The average DTW ratio is the ratio of the number

of utterance segments that require a DTW score to be computed divided by the total

number of segments for a particular spoken term search, averaged across all 10 spoken

term queries. For r = 1, for example, an exact DTW computation is needed for only

0.11% of all possible segments when K=10. In our prior experiments, we achieved a

minimum EER for r = 5 [146]. With the current framework we achieve the same EER

for K=200, and require only 11.2% of exact DTW scores to be computed compared

to our previous results. Finally, it is interesting to note that even when K=944

111

20 30 40 50 60 70 80 90
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Keyword Length (frames)

T
ig

ht
ne

ss
 R

at
io

r=1

r=3

r=5

r=7

r=9

Figure 5-5: Tightness ratio against different query lengths. The tightness ratio is
defined as the lower bound value divided by the actual DTW distance. 944 nearest
neighbors were computed for each spoken term in order to obtain the tightness ratio
for every segment. Five settings of the path constraint are also included.

(i.e., which finds all utterances in the test set), only 75% of the DTW calculations

are needed since the lower-bound estimate prunes away undesirable segments in each

utterance.

Figure 5-5 illustrates the tightness ratio against different spoken term lengths.

The tightness ratio is defined as the lower bound value divided by the actual DTW

distance. 944 nearest neighbors were computed for each spoken term in order to

obtain the tightness ratio for every segment. Five settings of the path constraint are

also included. Based on the figure, smaller path constraints lead to tighter estimation

of the actual DTW distance, indicating more pruning power. Another observation is

that in general, the tightness ratio decreases if the spoken term length increases. The

reason is probably because long warping paths (max(n,m) ≤ K ≤ n+m+ 1) might

112

bring more terms into the unmatched set, which increases the margin of the lower

bound estimation.

In terms of computation time, the results are quite dramatic. While our original

DTW experiments required approximately 2 minutes to search for matches for the 10

spoken terms on a 200 CPU compute cluster, the new DTW-KNN method takes ap-

proximately 2 minutes on a single CPU or about 12s/query. Since the test set corpus

corresponds to approximately 48 minutes of speech, this translates to approximately

14 seconds/query/corpus hour/CPU.

5.7.2 PAA Lower-Bound Results

Since the PAA lower-bound estimate is admissible (Eq. 5.11), the spoken term

detection accuracy is the same as the previously reported result which was 16.4%

equal error rate as in Chapter 3.

Figure 5-6 illustrates why the proposed PAA lower-bound estimate can speed up

the overall calculation compared to the original lower-bound method. The green

dotted curve (LB) represents the actual inner product calculations needed for lower-

bound estimate only. Each solid curve (DTW) represents the actual inner product

calculations needed for the DTW calculation with different r, where r is the global

path constraint in DTW. Each dashed curve (TOL) is the sum of the solid curve (in

the same color) and the green dotted curve, which indicates the total inner product

calculations needed. Note that, as mentioned earlier, when there is only one frame per

block, the PAA lower-bound estimate degrades to the original lower-bound estimate.

For example, when F = 1, r = 5, the original approach requires 1.12×108 inner prod-

uct calculations as well as 5.45× 107 calculations for the DTW. In this case, the time

consumed on the lower-bound estimate is more than the time consumed on the DTW

calculations. However, if we increase the number of frames per block, the number

of inner product calculations required for the lower-bound estimates decreases. At

the same time, since the lower-bound estimates become weaker, the number of inner

product calculations required for the DTW increases. Considering the total inner

product calculations, it can be seen that a large amount of inner product calculations

113

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18
x 10

7

F : Frames per Block

In

ne
r

P
ro

du
ct

 C
al

cu
la

tio
ns

LB

r=1 DTW

r=1 TOL

r=3 DTW

r=3 TOL

r=5 DTW

r=5 TOL

r=7 DTW

r=7 TOL

r=9 DTW

r=9 TOL

Figure 5-6: Actual inner product calculation against different number of frames per
block. The green dotted curve (LB) represents the actual inner product calculations
needed for lower-bound estimate only. Each solid curve (DTW) represents the actual
inner product calculations needed for the DTW calculation with different r. r is the
global path constraint in DTW. Each dashed curve (TOL) is the sum of the solid
curve (in the same color) and the green dotted curve, which indicates the total inner
product calculations needed.

can be saved compared with the original approach (F = 1). Since according to the

results in Section 3.6.1, the minimum EER was achieved when r = 5, the PAA lower-

bound estimate for this r value can save 28% of the inner product calculations when

F = 3 and K = 200.

Figure 5-7 compares the average inner product save ratio against different K near-

est neighborhoods when r = 5. The inner product save ratio is defined as the percent-

age of total inner product calculations saved comparing with the original lower-bound

estimate. As seen in the figure, for this task both small and large values of K achieve

greater overall computational savings compared to values of K between 100 and 450.

114

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

K Nearest Neighbors

In
ne

r
P

ro
du

ct
 S

av
e

R
at

io
(%

)

2 frames per block

3 frames per block

5 frames per block

7 frames per block

10 frames per block

Figure 5-7: Average inner product calculation save ratio against different K nearest
neighbors. The inner product save ratio is defined as the percentage of total inner
product calculations saved comparing with the original lower-bound estimate. For
this task both small and large values of K achieve greater overall computational
savings compared to values of K between 100 and 450.

We believe the reason for this behavior is because when K is small, searching K best

matches is a highly competitive process. A slightly weaker lower-bound estimate will

increase DTW calculations dramatically so that the inner product save ratio is dom-

inated by the inner product calculations needed on the DTW side. As a result, the

save ratio is inversely proportional to the number of frames per block because hav-

ing more frames in a block results in a greater underestimation of the lower-bound.

In contrast, for large K the KNN searches almost all speech segments. The inner

product save ratio largely depends on the number of inner product calculations in the

lower-bound estimate. Thus, the PAA lower-bound estimates with large block sizes

115

achieve greater overall savings.

In terms of computation time, the original lower-bound approach takes 120 seconds

on a single desktop CPU on average, while the PAA lower-bound method needs 87

seconds. Since the TIMIT test corpus contains 48 minutes of speech, each spoken term

search takes approximately 10 seconds/query/corpus hour/CPU, compared with 14

seconds/query/corpus hour/CPU achieved with the original lower-bound estimate.

5.8 Summary

In this chapter, we presented a lower-bound estimate and its corresponding fast

approximation for DTW-based methods that uses an inner-product distance metric

such as for a posteriorgram representation. Given a query posteriorgram and a test

posteriorgram, the lower-bound is obtained by calculating the inner-product distance

of the upper envelope of the query posteriorgram against the test posteriorgram. The

lower-bound underestimates the actual DTW score between the query and test pos-

teriorgrams, which provides an efficient pruning mechanism for KNN search. Based

on the experimental results in the spoken term detection task, the KNN-DTW search

can eliminate 89% of DTW calculations for a tight lower-bound estimate and achieve

another 28% speedup for a PAA approximated lower-bound estimate. Since both

lower-bound estimates guarantee no false dismissals, the system achieves the same

spoken term detection rate as the baseline system without pruning.

Finally, since the lower-bound calculation can be easily parallelized, we will show

how to use other computing architectures such as GPU computing to further speed-up

the entire algorithm in the next chapter.

116

Chapter 6

GPU Accelerated Spoken Term

Detection

In this chapter, we will present a fast spoken term detection system based on

Graphical Processing Units (GPUs). In the previous two chapters, we discussed

about how to generate posteriorgrams and how to speed-up spoken term search on

posteriorgrams. Although the lower-bound based approaches accelerate the spoken

term search by a factor of 300, there is still room for improvement. The lower-

bounding idea is on the algorithmic level, while on the computational hardware level,

we believe multi-threading dedicated platforms such as GPUs could bring more speed

improvement. In the first part of this chapter, we will describe a carefully designed

lower-bound estimate, and the K nearest neighbor DTW search algorithm on GPU

parallel computing architecture1. In the second part of this chapter, we will present

a parallel implementation of training Deep Belief Networks (DBNs), which could

accelerate the DBN training significantly2.

1Joint work with Kiarash Adl [145]
2Joint work with Nate Chodosh

117

6.1 Introduction

GPUs represent a category of specially designed graphical processors. The original

purpose of GPUs is to facilitate fast construction and manipulation of images intended

for output to a display, i.e. for video games. Since images can be decomposed into

blocks of pixels, and each block can be processed independently, GPUs are designed

to contain a highly parallel computing architecture. The result is more effective than

CPUs that are designed for general purpose computing. An additional advantage of

modern GPUs connected via a PCI Express interface is that they can access main

memory faster than the CPUs themselves [133].

Graphical Processing Units (GPU) have been increasingly used for general purpose

computing in the speech research community [14, 28, 133]. As a parallel computing

architecture, GPUs are especially designed for dealing with intensive, highly parallel

computations that are often encountered in speech tasks. Inspired by their success,

in this chapter we propose a fast unsupervised spoken term detection system based

on lower-bound K nearest neighbor (KNN) DTW search on GPUs. The lower-bound

estimate as well as the KNN-DTW search are carefully designed to utilize GPU’s par-

allel computing architecture. On the TIMIT corpus, a 55x speed-up of a spoken term

detection task is achieved when compared to our previous CPU implementation [148],

without affecting the detection performance. On a large, artificially created corpus,

experiments indicate that the total computation time of the spoken term detection

system is linear with corpus size. On average, searching a keyword on a single desktop

computer with modern GPUs requires 2.4 seconds/corpus hour [145].

In Chapter 3, we used Deep Belief Networks (DBNs) to generate posteriorgrams for

speech frames. Although DBN-based posteriorgrams have shown promising results on

the spoken term detection task compared to the Gaussian posteriorgrams, the training

of DBNs is much slower than the training of Gaussian Mixture Models (GMMs),

especially for large speech corpora. For instance, Dahl et al. reported that it took

100 hours to train a DBN on 24 hours of speech data. For a larger corpus with 2,000

hours, it would take 50 days to train a context-dependent DBN [25]. To address this

118

problem, in this section, we introduce GPU computing to the training of DBNs. The

phonetic classification experiment on the TIMIT corpus showed a speed-up of 36 for

the pre-training and 45 for the back-propagation for a two-layer DBN trained on the

GPU platform compared to the CPU platform.

6.2 Related Work

In order to facilitate the fast-growing application of GPUs to non-image processing

tasks, NVidia has released the Compute Unified Device Architecture (CUDA) as a

library providing APIs for using GPUs to perform general purpose computing [129].

When programming on GPUs with CUDA, CUDA defines a kernel as an abstraction of

instances that can be run in parallel. Within each kernel instance, multiple threads

can be issued to finish the task assigned to that instance. Therefore, CUDA can

be viewed as a two-layer parallel computing architecture. In each CUDA run, one

GPU core is assigned to run several kernel instances, and within each kernel instance,

multiple threads are running simultaneously [9]. In order to achieve maximum benefit,

it is important to take this architecture into consideration when adapting speech

processing algorithms to the GPU/CUDA framework.

For example, Chong et al. in [20] proposed a large vocabulary speech recognition

engine implemented on the CUDA/GPU framework with a significant speed-up ob-

served. Their idea was to parallelize the Viterbi search on a linear lexicon-based recog-

nition network. The linear lexicon-based network can be highly optimized for simple

language models but cannot easily incorporate advanced language models. Phillips et

al. proposed another parallel large vocabulary speech recognition system [99] based

on parallel weighted finite state transducers (WFSTs). They used WFSTs to incor-

porate advanced language models but still suffered from buffer-synchronization issues

which are not scalable with an increasing number of cores.

In speech acoustic modeling, Cardinal et al., Dixon et al. and Vanek et al. [14,

28, 133] have demonstrated how GPUs can be used to rapidly calculate acoustic

likelihoods for large mixture models. Given a speech frame, their idea was to use

119

each GPU core to calculate the likelihood of the frame on one Gaussian component

in the mixture model. A vectorized summation was then performed to obtain the

weighted total log-likelihood. This approach significantly improves the efficiency of

Gaussian likelihood calculation which would account for 60% of the total calculation

in a Gaussian mixture model based speech system.

In Dynamic Time Warping (DTW) based speech processing, Sart et al. provided

a DTW search algorithm for GPUs in [116], claiming that they could speed up the

run time by up to two orders of magnitude. Their main contribution was to use each

core to calculate one DTW alignment if multiple segments were given. Although the

speed-up is quite notable, their aggressive use of each core imposes significant core

synchronization overhead and is not well-suited to the recent design philosophy of the

CUDA/GPU framework. In contrast, our parallel DTW implementation breaks down

the entire algorithm into several parallel stages. Each stage is not very computation-

ally intensive but can be fully parallelized. Therefore, by avoiding a large amount of

core synchronization, a larger speed-up can be observed and the comparison results

will be reported in the following sections.

Scanzio et al. explored an implementation of a complete Artificial Neural Net-

work (ANN) training procedure for speech recognition [117]. Their main idea was

to parallelize all the matrix/vector related operations in both the feed-forward and

the back-propagation steps. Our parallel implementation of the Deep Belief Networks

(DBNs) is inspired mainly from their work but differs in two important aspects. First,

the design of our implementation considered the deep structure of the network. For

instance, our implementation is able to handle 10+ layers with thousands of hid-

den units per each layer. Second, we implemented a completely parallel pre-training

algorithm which is specifically designed for DBNs.

In addition to speech processing, the CUDA/GPU framework has been used in the

computer vision and signal processing research communities as well. In computer vi-

sion, several image feature extraction and compression algorithm are implemented on

GPUs and have obtained a speed-up of up to 280x over the CPU based algorithm [33].

In applications of video processing, the CUDA/GPU has been successfully used in

120

discrete Fourier transform on images [44], particle tracing, ray tracing [53], colli-

sion/object detection [94], etc. In signal processing, the FFT has been efficiently

implemented by several research groups by using CUDA [24]. A recent report showed

that the CUDA FFT implementation obtained a gain of 2.7x speed-up compared to a

highly optimized CPU implementation running on the fastest CPU at the time [80].

All of these results have motivated us the use of CUDA/GPU framework in speed-

ing up the spoken term detection system as well as the deep learning algorithms.

6.3 GPU Accelerated Lower-Bounded DTW Search

To avoid any notation problems, we first briefly review the spoken term detection

framework discussed in previous chapters.

6.3.1 Spoken Term Detection using KNN-DTW

Given a spoken term Q with N frames, let ~x1, . . . , ~xN represent MFCCs for each

speech frame. A D-mixture GMM G is trained on all N frames without using any

labels. Subsequently, for each speech frame, ~xi, a posterior probability, pji = P (gj|~xi),

can be calculated where gj denotes j-th Gaussian component in GMM G. Collect-

ing D posterior probabilities, each speech frame ~xi is then represented by a pos-

terior probability vector ~pi = {p1i , . . . , pDi } called a Gaussian posteriorgram. Af-

ter representing the spoken term and speech documents using Gaussian posterior-

grams, an efficient KNN-DTW is used to find the top K nearest neighbor docu-

ment matches. Specifically, if Q = {~q1, . . . , ~qM} denotes the spoken term posteri-

orgram and S = {~s1, . . . , ~sN} denotes a speech segment, an upper-bound envelope

sequence U is calculated on Q, where U = {~u1, · · · , ~uM}, ~ui = {u1
i , · · · , uD

i } and

up
i = max(qpi−r, · · · , q

p
i+r). U can be viewed as a sliding-maximum on Q with window

size r. Then, a lower-bound estimate of the DTW distance DTW(Q,S) is computed

by

L(Q,S) =
l∑

i=1

d(~ui, ~si) (6.1)

121

where l = min(M,N) and d(·) represents an inner product distance. If there are

C speech segments, C lower-bound estimates are calculated and ranked. The KNN

search starts from the segment with the smallest lower-bound estimate and performs

DTW alignment. In Section 5.4, we proved that L(Q,S) ≤ DTW (Q,S), guaranteeing

that the KNN search can stop when the current lower-bound estimate is greater than

the DTW distortion score of the Kth best match [148].

6.3.2 System Design

In this section, we describe the proposed parallel spoken term detection system.

The entire implementation consists of four CUDA kernels. The first two kernels

correspond to the implementation of a parallel lower-bound estimate, while the last

two kernels are used for parallel DTW calculations. Since we believe that the proposed

method can be implemented in parallel architectures [123] other than CUDA, our

focus will be on describing how to decompose the framework into parallel modules

rather than using too many CUDA specific terms (e.g. grid, block). Moreover, since

CUDA can run multiple kernel instances on one GPU core, in order to avoid confusion

and without loss of generality, in the following description, we assume that each kernel

instance runs on one GPU core. Figure 6-1 illustrates the parallel implementation.

Parallel Lower-bound Estimate

The parallel lower-bound estimate computation consists of two kernels. The first

kernel computes the frame-wise inner-product distance, while the second kernel sums

the inner-product distances. Specifically, suppose the upper bound envelope of the

spoken term Q is U with length l and one of the speech segments is Sj with length

l. By applying Eq. (6.1), the lower-bound estimate of Q and Sj is essentially the

summation of the frame-by-frame inner-product distance of U and Sj. The summation

calculation can be divided into two independent steps. In the first step, the inner-

product distance di for each frame pair ~ui and ~si is computed. The second step sums

over l distances to obtain the lower-bound estimate.

122

Figure 6-1: System flowchart of the parallel implementation of the lower-bound cal-
culation and KNN-DTW search. The entire implementation consists of four CUDA
kernels. The first two kernels correspond to the implementation of a parallel lower-
bound estimate, while the last two kernels are used for parallel DTW calculations.

In order to maximize GPU efficiency, two separate kernels are designed for each

step respectively. The first kernel takes two posteriorgram vectors as input, and

outputs the inner-product distance of these two vectors. Since each kernel can run

multiple threads simultaneously, the vector-wise inner-product calculation is further

decomposed into element-wise products. Since each posteriorgram is a D-dimensional

vector, the inner-product can be written as

d(~ui, ~si) =
D∑

k=1

uk
i · ski . (6.2)

123

Figure 6-2: Parallel frame-wise inner-product calculation. Each thread in the kernel
corresponds to one product, so that the D products can be computed simultaneously.
After the D threads finish computing, the summation of D products is parallelized
by using a parallel-sum-reduction method [9].

Therefore, as illustrated in Figure 6-2, each thread in the kernel corresponds to one

product, so that the D products can be computed simultaneously. After the D

threads finish computing, the summation of D products is parallelized by using a

parallel-sum-reduction method [9]. When the first kernel finishes computing, l inner-

product distances are stored in on-device memory. The second kernel then launches

to sum over l inner-products. This summation is also performed via the parallel-sum-

reduction technique.

Sorting and KNN Search

After the lower-bound estimates have been computed, each speech segment Sj is

associated with a lower-bound distance estimate LBj. Since the number of the target

speech segments can potentially be very large, a CUDA library called Thrust is used

to perform high-performance parallel sorting of these lower-bound estimates [52].

124

When sorting is complete, the KNN search starts from the speech segment with

the smallest lower-bound estimate and calculates the actual DTW distance. In the-

ory, in order to obtain K best matches, at least K DTW alignments need to be

performed [148]. Therefore, instead of going through the sorted speech segments one

by one in the CPU implementation and calculating one DTW alignment at a time,

K speech segments are considered and K DTW alignments are performed simulta-

neously in the GPU implementation. If the current best DTW matching score is less

than the lower-bound value of the (K + 1)th speech segment, the KNN search termi-

nates and outputs the best K matches. Otherwise, the next K/2 speech segments are

considered and K/2 new DTW alignments are computed. The search iterates until

the termination condition is met. In summary, the parallel KNN search strategy is to

aggressively run K DTW alignments in the first round of search, and subsequently

to perform K/2 DTW alignments to be more conservative and avoid wasting DTW

calculations.

Parallel DTW

In order to maximize the use of the parallel computing architecture, DTW calcu-

lations are divided into two steps, illustrated in Figure 6-3. In the first step, given

two posteriorgrams Q and Sj, an absolute distance matrix A(Q,Sj) (which uses the

inner-product as local distance metric) is computed. The second step performs the

DTW alignment on A and outputs the distortion score. A kernel is designed for each

respective step.

Specifically, if Q and Sj have the same length l, the size of the absolute distance

matrix A(Q,Sj) is l × l. Each instance of the first kernel computes a single element

in A. Note that because of the DTW beam width constraint, only valid elements are

computed. Since the inputs to the first kernel are two D-dimensional posteriorgram

vectors, in a manner similar to the first kernel in the parallel lower-bound estimate

step, each thread in each kernel instance computes a scalar product so thatD products

can be performed simultaneously. Since the DTW alignment is a 2-D sequential

dynamic search, it cannot be completely parallelized. Therefore, in the second kernel,

125

Figure 6-3: Parallel DTW. The first step performs multi-threaded distance matrix
calculation. The second step computes multiple DTW alignments simultaneously.

each thread in each kernel instance corresponds to the entire warping process given

an absolute distance matrix A.

In Sart et al. [116], the DTW GPU implementation was to use each thread in

each kernel instance to compute the absolute distance matrix A as well as the DTW

alignment. In order to compare the two approaches, we implemented both methods

and report the results of the comparison in the next section.

6.3.3 Evaluation

Spoken Term Detection Task

We chose to duplicate previously reported spoken term detection experiments that

we have performed on the TIMIT corpus using posteriorgram-based DTW search in

Chapter 3. The same experiment configurations were used and the spoken term list

was fixed as in Section 3.6.1. Performance was still measured by the average equal

error rate (EER): the average rate at which the false acceptance rate is equal to

the false rejection rate. All spoken term detection experiments were performed on a

computer equipped with an Intel R© Quad 6600 Processor (2.66 GHz, 4 cores), 8 GB

RAM and a NVidiaR© GTX 580 graphic card (512 GPU cores with 1.5 GB on-board

RAM). The graphic card cost 500 USD in June, 2011.

126

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

2000

4000

6000

8000

10000

12000

DTW

T
im

e
(m

s)

Sart et al.

Proposed

Figure 6-4: Comparison of the computation time for the two different parallel DTW
implementations. The x-axis shows the number of DTWs computed, the red curve
represents the time consumed for the method proposed by Sart et al. [116], while the
blue curve shows the method used in the current implementation.

Experimental Results

In order to validate the correctness of the GPU implementation of the spoken term

detection algorithms, we first compared the detection results with the corresponding

CPU implementation. In addition to the intermediate outputs from the four kernels

being the same, the overall detection EER remained the same as has been previously

reported in Section 3.6.1, with an EER equal to 16.4%.

Figure 6-4 shows a comparison of the computation time for the two different

aforementioned parallel DTW implementations. In the figure, the x-axis shows the

number of DTWs computed, the red curve represents the time consumed for the

method proposed by Sart et al. [116], while the blue curve shows the method used in

127

the current implementation. The figure indicates that both methods consumed similar

time when computing less than 5,000 DTWs. However, our method outperformed

the previous method by a factor of 2 in terms of the running time when more than

5,000 DTWs computations were required. We believe the reason for the greater

efficiency is due to the time saved in the absolute distance matrix calculation. In

the current version the entire matrix was decomposed into individual elements for

maximum parallelization, while the prior method computed the full matrix in each

thread without parallelization. As the number of DTW calculation increases, the

amount of computation time saved becomes more apparent.

Figure 6-5 shows the average computation time needed for searching one keyword

using the proposed spoken term detection system as a function of corpus size. Since

the original TIMIT test corpus only contains 48 minutes of speech, in order to measure

the computation time on a larger corpus, we replicated the TIMIT test corpus by

adding small amounts of random noise into each speech frame. The replicated TIMIT

test corpus contained 1,000 hours of speech. In the figure, the black curve represents

the total time consumed, the blue curve represents the time consumed by the lower-

bound estimate, the green curve represents the time used by sorting all lower-bound

values, and the red curve represents the time consumed by the KNN-DTW search.

The results indicate that the KNN-DTW search occupies nearly 80% of the total

running time, which we believe is due to the difficulty in parallelizing the DTW

algorithm. It is encouraging to observe that the total computation time grows linearly

with the corpus size. For 1,000 hours of speech, searching a keyword requires 40

minutes on a single desktop computer, which translates to 2.4 seconds/corpus hour.

Note that with multiple desktops and GPUs, the entire process could be further

parallelized with each GPU searching a subset of the overall corpus.

In terms of computation time for searching the TIMIT test corpus, the original

CPU-based approach took, on average, 120 seconds per keyword, while the GPU-

based approach takes, on average, only 2.2 seconds per keyword, which translates to

a speed-up factor of 55.

128

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

Corpus Size (hour)

T
im

e
(s

)

Lower−bound

Sorting

KNN−DTW

Total

Figure 6-5: The average computation time needed for searching one keyword using
the proposed spoken term detection system as a function of corpus size. Since the
original TIMIT test corpus only contains 48 minutes of speech, in order to measure the
computation time on a larger corpus, we replicated the TIMIT test corpus by adding
small amounts of random noise into each speech frame. The replicated TIMIT test
corpus contained 1,000 hours of speech. The black curve represents the total time
consumed, the blue curve represents the time consumed by the lower-bound estimate,
the green curve represents the time used by sorting all lower-bound values, and the
red curve represents the time consumed by the KNN-DTW search.

129

6.4 GPU Accelerated Deep Learning

Since most of the computation in DBN training involves matrix-matrix operations

which have a high degree of fine grain parallelism, the use of GPUs is particularly

suited for this task. In Chapter 4, we derived the detailed steps for performing the

pre-training and the back-propagation for a Restricted Boltzmann Machine (RBM)

which is the building block of a DBN. To better fit the GPU computing environment,

a matrix form of pre-training and back-propagation needs to be developed. Since the

stochastic gradient decent (SGD) update method is used both for the pre-training

and the back-propagation, we assume that a n by d data matrix D is the input of

our training algorithm, where n is the number of data samples in a batch and d is

the number of dimensions of each data vector.

6.4.1 Pre-training

For pre-training, we start from the forward pass of a single RBM with the input

D. The forward pass can be written as

Ppos = sigmoid

−
[
D 1

]
·

W
Bh

 (6.3)

where Ppos is the forward probability given the visible-hidden weight matrix W and

the hidden bias vector Bh. In order to convert the forward probability to a binary

activation of the hidden units, a random matrix R can be used as

Ha =
[
Ppos > R

]
(6.4)

where Ha represents the activation of the hidden units and R is a n by h matrix

randomly drawn from a uniform distribution with range [0, 1]. The hidden unit

activates H ij
a = 1 if P ij

pos > Rij. Then, the backward reconstruction can be written as

Dr = sigmoid

−
[
Ha 1

]
·

W>

Bv

 (6.5)

130

where Bv is the visible bias vector. The backward probability Pneg can be written as

Pneg = sigmoid

−
[
Dr 1

]
·

W
Bh

 (6.6)

With the original data D and the reconstructed data Dr, the reconstruction error is

defined by

REerror = CSUM
{
CSUM

[
(D −Dr)

2
]}

(6.7)

where CSUM returns a row vector of sums of each column and the square is an

element-wise operator. The corresponding derivatives are

∆W =

[
D> · Ppos −D>

r · Pneg

]
n

(6.8)

∆Bv =

[
CSUM(D)− CSUM(Dr)

]
n

(6.9)

∆Bh =

[
CSUM(Ppos)− CSUM(Pneg)

]
n

(6.10)

Note that here we omitted the weight decay on the visible-hidden weights for clarifi-

cation.

6.4.2 Back-propagation

The back-propagation method can be also written in the matrix form. We assume

the use the same data input D and operate a DBN with one hidden layer (RBM) and

one softmax layer. First, the forward probability can be calculated as

Ppos = sigmoid

−
[
D 1

]
·

W
Bh

 (6.11)

where W denotes the visible-hidden weights and Bh denotes the hidden bias vector

131

as the pre-training. The prediction matrix can be computed as

T = exp
(
Ppos ·Wsoftmax

)
(6.12)

where Wsoftmax represents the weights of the softmax layer. Then, we normalize the

prediction matrix T to make it act as a probability matrix Tn. Therefore, the error

signal for the softmax layer is

Esoftmax = Tn − L (6.13)

where Lij = 1 if the class label of the i-th data vector is j and Lij = 0 elsewhere. By

propagating the errors into the hidden layer, the error signal for the hidden layer is

E = (Esoftmax ·W>
softmax) ◦ Ppos ◦ (1− Ppos) (6.14)

where ◦ is the element-wise matrix product. Finally, with the error signals, the

derivatives are

∆Wsoftmax = P>
pos · Esoftmax (6.15)

∆W = D> · E (6.16)

The standard parallel matrix-matrix operations are based on CUBLAS [23] li-

brary provided by NVidia. Other operations such as element-wise operations are

implemented in the SLS-DBN toolkit.

6.4.3 Evaluation

To demonstrate the speed-up brought by using GPU for training DBNs, we per-

formed a phonetic classification task on the TIMIT corpus. The phonetic classifica-

tion task is to classify 48 phone classes by using 230k speech segments. The features

were produced by applying Neighborhood Component Analysis (NCA) [42] to the

132

512x512 1024x1024 2048x2048
0

2000

4000

6000

8000

10000

12000

14000

DBN Layer Configuration

S

ec
on

ds
Pre−training

GPU

CPU

Figure 6-6: Time consumed for the full pre-training on the TIMIT phonetic classifi-
cation task with different DBN layer configurations. The pre-training was set to stop
at the 50th iteration for each layer.

averaged MFCCs within each speech segments, resulting in a 61-dimensional feature

vector for each speech segment [18]. DBNs with two hidden layers with different

number of hidden units were trained on both CPU and GPU platforms. A softmax

layer with 48 output units was attached to the DBNs to perform the classification

task. The CPU DBN training toolkit was implemented by using the Intel Math Ker-

nel Library (MKL) to maximize the multi-threading performance. The GPU DBN

training toolkit was implemented by using the CUDA 4.2 release. The CPU platform

used was E3600 4-core Xeon with Hyper-threading [125] enabled. The GPU platform

was NVidia Tesla C2070 with 448 cores and 6GB onboard shared memory. The total

size of speech feature vectors is around 60 MB, which can be loaded onto the GPU

card at one time.

133

512x512 1024x1024 2048x2048
0

1

2

3

4

5

6

7
x 10

4

DBN Layer Configuration

S

ec
on

ds

Back−propagation

GPU

CPU

Figure 6-7: Time consumed for the full back-propagation on the TIMIT phonetic
classification task with different DBN layer configurations. The back-propagation
was set to stop at the 50th iteration.

Figure 6-6 shows the time consumed for the full pre-training with different DBN

layer settings. The pre-training was set to stop at the 50-th iteration for each layer.

The GPU implementation shows a significant speed-up compared to the CPU imple-

mentation. Moreover, with an increasing number of hidden units, the GPU imple-

mentation shows larger speed-up compared to the CPU implementation. With 2048

hidden units for each layer, the GPU implementation is able to speed-up the full

pre-training by a factor of 36.

Figure 6-7 illustrates the time consumed for the back-propagation with different

DBN layer settings. The back-propagation was set to stop at the 50-th iteration.

Compared to the pre-training, the GPU implementation is more effective in the back-

propagation stage. With 2048 hidden units, the GPU implementation is able to

134

achieve a speed-up of 45. Similar to the pre-training experiment, the GPU imple-

mentation tends to obtain more speed-ups when increasing the number of hidden

units.

Besides the TIMIT phonetic classification task, the DBN GPU implementation

was used for all DBN related experiments in this thesis. We observed that with deeper

layers and more hidden units, the GPU implementation could offer significant speed-

ups against the CPU implementation. Depending on different tasks, the speed-ups

could range from 20 to 60.

6.5 Summary

In the first part of this chapter, we described a GPU parallelized implementation of

an unsupervised spoken term detection system based on the lower-bound KNN-DTW

search. The original lower-bounded DTW algorithm was carefully re-designed to fit

the GPU’s parallel computing architecture. In a spoken term detection task using

the TIMIT corpus, a 55x speed-up was achieved compared to our previous CPU-

based implementation without affecting the detection performance. On artificially

replicated data, experimental results indicated that the total running time of the

entire spoken term detection system grows linearly with corpus size. On average,

searching a spoken term on a single desktop computer with modern GPUs requires

2.4 seconds/corpus hour.

In the second part of this chapter, we presented a GPU parallel implementation

for training deep belief networks (DBNs). By deriving update formulas in the matrix

form, the DBN pre-training and back-propagation can fully utilize the GPU’s parallel

programming architecture. The phonetic classification experiment on the TIMIT

corpus showed a speed-up of 36 for pre-training and 45 for back-propagation for a

two-layer DBN trained on the GPU platform compared to the CPU platform.

135

136

Chapter 7

Conclusions and Future Work

In this chapter, we summarize the main contributions of this thesis and discuss

future work.

7.1 Summary and Contributions

The work discussed in this thesis is motivated by the challenge of searching and

extracting useful information from speech data in a completely unsupervised setting.

The research is motivated by the fact that in many real world speech processing

problems, obtaining annotated data is not cost and time effective. We therefore ask

how much can we learn from speech data without any transcription. To address this

question, in this thesis, we chose the query-by-example spoken term detection as a

specific scenario to demonstrate that this task can be done in the unsupervised setting

without any annotations. To build the unsupervised spoken term detection frame-

work, we contributed three main techniques to form a complete working flow; 1)

two posteriorgram-based speech representations which enable speaker-independent,

and noisy spoken term matching, 2) two lower-bounding based methods for Dynamic

Time Warping (DTW) based pattern matching algorithms and 3) the parallel imple-

mentation of the lower-bounded DTW search algorithm, and training of large Deep

Belief Networks (DBNs) on Graphical Processing Units (GPUs).

In Chapter 3, we presented the spoken term detection system and spoken term

137

discovery system using unsupervised Gaussian posteriorgrams. The Gaussian poste-

riorgram generation method and the associated DTW based search algorithm were

described. The core idea is to train a Gaussian mixture model without using any

supervised annotation, and represent each speech frame by calculating a posterior

distribution over all Gaussian components. A modified DTW matching algorithm

can be used to evaluate the similarity between two speech segments represented by

Gaussian posteriorgrams in terms of an inner-product distance. The entire process

is completely unsupervised and does not depend on speakers or languages. The ex-

perimental results demonstrated the viability of using Gaussian posteriorgrams for

both query-by-example based spoken term detection and speech pattern discovery in

a multi-speaker environment.

In Chapter 4, we presented a spoken term detection method based on posterior-

grams generated from Deep Belief Networks (DBNs). The proposed representation

can be easily adapted to work in both semi-supervised and unsupervised training con-

ditions. Spoken term detection experiments on the TIMIT corpus showed a 10.3%

relative improvement compared to our previous Gaussian posteriorgram framework

in the unsupervised condition. In the semi-supervised setting, the detection perfor-

mance using the DBN posteriorgram can achieve a comparable performance to fully

supervised training when using only 30% of the labeled data.

In Chapter 5, we presented two lower-bound estimates and their corresponding fast

approximation for DTW-based methods that use an inner-product distance metric

such as for a posteriorgram representation. Given a spoken term posteriorgram and

a test posteriorgram, the lower-bound is obtained by calculating the inner-product

distance of the upper envelope of the spoken term posteriorgram against the test

posteriorgram. The lower-bound underestimates the actual DTW score between the

spoken term and test posteriorgrams, which provides an efficient pruning mechanism

for KNN search. Based on the experimental results in a spoken term detection task,

the KNN-DTW search can eliminate 89% of DTW calculations for the tight lower-

bound estimate, and achieve another 28% speedup for the Piecewise Aggregation

Approximated lower-bound estimate. Since both lower-bound estimates guarantee

138

no false dismissals (i.e. admissible search), the system attains the same spoken term

detection error rate as the baseline system without pruning.

In the first part of Chapter 6, we described a GPU parallelized implementation

of an unsupervised spoken term detection system based on lower-bound KNN-DTW

search. The spoken term detection algorithm is carefully re-designed to fit the GPU’s

parallel computing architecture. In a spoken detection task using the TIMIT corpus,

a 55x speed-up is achieved compared to our previous CPU-based implementation

without affecting the detection performance. On artificially replicated data, exper-

imental results indicate that the total running time of the entire spoken detection

system grows linearly with corpus size. On average, searching a spoken term on a

single desktop computer with modern GPUs requires 2.4 seconds/corpus hour. In the

second part of Chapter 6, we presented a GPU parallel implementation for training

DBNs. By deriving update formulas in the matrix form, the DBN pre-training and

back-propagation can fully utilize the GPU’s parallel programming architecture. The

phonetic classification experiment on the TIMIT corpus showed a speed-up of 36x

for the pre-training and 45x for the back-propagation for a two-layer DBN trained on

the GPU platform as compared to the CPU platform.

7.2 Future Work

Although experiments in this thesis showed promising results for the query-by-

example spoken term detection task, there is still much room for improvement for

each of the three main techniques. Detailed discussion are presented in the following

sections.

7.2.1 Posteriorgram Generation

In this thesis, we showed that DBNs generate better posteriorgrams compared to

GMMs. DBN-based models belong to the category of neural network models which

are not fully Bayesian. One future direction is to develop a fully Bayesian probabilistic

model to produce posteriorgrams. One candidate is to use the Dirichlet Process

139

Mixture Model (DPMM). A Dirichlet Process Mixture Model (DPMM) can be viewed

as a sequence of finite mixture models where the number of mixture components is

taken to infinity [89, 103, 45, 55]. In contrast to the conventional GMM which needs

to select a proper number of mixture components, the DPMM assumes an infinite

number of mixture components which are distributed according to a Dirichlet process.

This soft assignment of the number of mixture components helps automatically learn

the best model configuration for the speech data without any supervision.

To be specific, a DPMM can be represented by the following two sampling process.

φi | G ∼ G

xi | φi ∼ F (φi)
(7.1)

where G is distributed according to a Dirichlet process, φi represents parameters of

i-th Gaussian component, F (φi) is the actual Gaussian distribution function and xi

represents the i-th observation. To model an observation xi, a Gaussian distribution

F (φi) is randomly sampled from the base distribution G. The construction of sam-

pling φi from G can be done by the stick-breaking process [35, 118] or the Chinese

restaurant process [10, 1]. In contrast to the finite case, every time an x is observed,

we can select an existing mixture component to model x, but there is also a small

chance to create a new mixture component for x with probability inversely propor-

tional to the number of existing mixture components. In practice, a DPMM training

procedure can stop when posterior probabilities of all observations on a newly created

mixture component are less than a threshold [70]. This stopping criterion represents

an approximation of the infinite DPMM for practical use while not losing too much

modeling power.

In our case, if we can apply the DPMM for posteriorgram generation, we do not

need to set a specific number of mixture components for each speech corpus/task.

The learning algorithm itself can determine the best number of mixture components

needed. Then, for each speech frame, the posteriorgram can be computed in the

conventional way using Eq.3.1. One possible challenge is that the current DPMM

learning algorithm requires Markov Chain Monte Carlo (MCMC) sampling which

140

is not efficient for large speech corpora [126]. We need to derive a good way to

organize speech data to speed-up the training process. The recent development of the

variational approximation of DPMM learning [11, 70, 127] is also worth investigating.

7.2.2 Letter-to-Posteriorgram HMM

If some word level annotations are provided, we could establish alignments from

labeled words to refined posteriorgrams. Since the letter sequences are already em-

bedded in the word level labels, a Letter-to-Posteriorgram Hidden Markov Model

(LP-HMM) can be trained to automatically align HMM states to letters. Inspired by

the HMM text-to-speech framework [29, 128], using LP-HMM, a typed keyword (a

letter sequence) can be represented by a series of posteriorgram frames by sampling

the mean from the HMM state sequence. In other words, given a typed keyword

input, we synthesize its posteriorgram representation by running a state traverse in

LP-HMM according to the letter sequence in the keyword. After this step, since a

typed keyword is converted to a series of posteriorgrams, the DTW algorithm can

then be used to search the keyword posteriorgrams against the entire test data. If

this idea worked, it would be a good extension to our current unsupervised query-by-

example keyword detection system when there are some labeled data available. The

training of LP-HMM for query-by-typing keyword search is illustrated in Figure 7-1.

7.2.3 Posteriorgram Evaluation

A recent work by M. Carlin et. al [15] presented a method of evaluating the quality

of posteriorgrams generated by a supervised phonetic recognizer. It evaluates phonetic

posteriorgrams without coupling to any specific task. The results showed that their

metrics for posteriorgrams are closely related to phone recognition accuracy.

Specifically, their evaluation method requires word pair alignment on a fully la-

beled dataset. Consider the following four sets of word pairs in a speech corpus.

• C1: same word spoken by same speaker

• C2: same word spoken by different speakers

141

Figure 7-1: The left figure shows the workflow of training LP-HMM. Using a pos-
teriorgram representation. Since the letter sequences are already embedded in the
word level labels, a Letter-to-Posteriorgram Hidden Markov Model can be trained to
automatically align HMM states to letters. The right figure shows query-by-typing
keyword search using trained LP-HMM. A typed keyword (a letter sequence) can be
represented by a series of posteriorgram frames by sampling the mean from the HMM
state sequence. Since a typed keyword is converted to a series of posteriorgrams, the
DTW algorithm can be then used to search the keyword posteriorgrams against the
entire test data.

142

• C3: different word spoken by same speaker

• C4: different word spoken by different speakers

A word pair (wi, wj) ∈ Ck, k = 1 · · · 4 represents a basic unit for evaluation. The

similarity of any word pair can be measured using DTW alignment. The total sim-

ilarity of a word pair set is the summation of DTW similarities normalized by the

size of the set. If S(Ck) denotes the total similarity of the word pair set k, it is

expected that a good posteriorgram representation of speech frames would result

in S(C1) � S(C2) � S(C3) � S(C4). Instead of using normalized summation of

similarities for each set, we can also compare the DTW similarity distribution for

each word pair set. KL divergence can be applied to calculate the distance between

DTW similarity distributions. Using this method, a quantitative measurement could

be derived for examining the quality of posteriorgrams. We would like to investi-

gate this evaluation method for our unsupervised Gaussian posteriorgrams as well as

posteriorgrams generated by improved models discussed above.

7.2.4 Lower-Bounding for Spoken Term Discovery

Using the lower-bounded DTW search, we presented methods for fast spoken term

matching on posteriorgram representation. One future direction is to apply the same

lower-bound idea to the spoken term discovery task, which essentially replaces the

one versus many spoken term matching with the many versus many spoken term dis-

covery matching. To discover recurring patterns (i.e. frequently used words or short

phrases) in two speech utterances, the original Segmental Dynamic Time Warping

(S-DTW) approach requires at least O(MN2) time, where M is the maximum length

between two utterances and N is the minimum warping length. As for the spoken

term detection task, for a large speech corpus, the original S-DTW algorithm has a

considerable computational burden. Therefore, it is worth investigating if a similar

lower-bounded estimate idea could apply to the S-DTW search. For instance, if the

lower-bound estimate exists, a linear-time fast-match could be used as the first pass to

find highly possible regions for recurring patterns. Then, in the second pass, an exact

143

DTW could be performed to refine the first pass results and output the final recur-

ring pattern candidates. Moreover, it would be interesting to investigate whether the

lower-bound idea can be combined with the approximation based method proposed

by Jansen et al. in [59, 60].

7.2.5 Hierarchical Parallel Implementation

The current parallel implementation for lower-bounded DTW search and DBN

training can be viewed as device level parallelization. Both implementations are multi-

threaded for a specific device (i.e. a GPU card) on a single computer. One possible

extension is to consider a hierarchical multi-CPU and multi-GPU parallel structure.

For example, consider a compute farm with 100 CPU cores and 512 x 100 GPU cores

(i.e. each CPU core is equipped with a GPU card with 512 cores). An entire speech

task can be first divided into 100 sub-tasks. Each sub-task is then multi-threaded

on 512 GPU cores. This hierarchical parallel structure can utilize advantages from

both host level parallelization and device (instruction) level parallelization, which we

believe, can further speed up the proposed spoken term search and DBN training

algorithms.

144

Appendix A

Phonetic Distribution of Gaussian

Components

In Gaussian posteriorgram generation, we assume that through unsupervised

GMM training, each Gaussian component can be viewed as a self-organizing pho-

netic class. To validate this assumption, a phonetic histogram analysis is applied

to visualize the underlying acoustically meaningful information represented by each

Gaussian component. Specifically, after unsupervised GMM training, each speech

frame can be decoded and represented by Gaussian posteriorgrams. Since the TIMIT

dataset provides a time-aligned phonetic transcription, for each Gaussian component,

by summing all posterior probabilities of each phone, we can calculate a distribution

over phones belonging to that Gaussian component. By drawing a bar for every

TIMIT phone for one Gaussian component, we can have a histogram of the underly-

ing phonetic distribution of that Gaussian component. In the following sections, we

group Gaussian components by phone manner classes.

A.1 Vowels

145

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ae axr
eh

ey
ih

ix

iy

ux

y

Phone Index

Component 0

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

aa

ae

ah

ax

axray

eh

er

ey

ih

ix

iy
l

mn

ow

q

r

uhuw

ux

Phone Index

Component 1

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ae

ay

eh

ey

ih

ix

iy

Phone Index

Component 2

Figure A-1: Vowels 1

146

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

aa

ae

ah

aw
ax

ay

eh

er

ey ih

ix

iy

ow

r

Phone Index

Component 5

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

aa

ae

ah

ao

aw

ay

eh

ey

ih
ow

Phone Index

Component 14

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ae

ah

ax

axr

ay dhdx

eh
erey

ih

ix

iy
l

m

n

ng

q
r

ux

v

Phone Index

Component 18

Figure A-2: Vowels 2

147

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

aa

ae

ahao

aw

ax

ay

eh l
ow

oy r

Phone Index

Component 25

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

aa

ah

ao

aw

ax

ay
eh

el

l

ow

oy

uh w

Phone Index

Component 29

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

ae

ah

ax

ay dh

eh ey

ih

ix

iy

k

l

m

n

q t
ux

Phone Index

Component 30

Figure A-3: Vowels 3

148

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

aa

ae

ah

ax

axr

ay

eh

er

ey

ih

ix

iy

ow

oy

r

uh

Phone Index

Component 31

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

ae
eh

ey

ih

ix

iy

q

ux y

Phone Index

Component 32

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ae

ay

eh

er

ey

ih

ix

iy

ux

Phone Index

Component 33

Figure A-4: Vowels 4

149

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

aa

ae

ah

ao

aw

ay

eh

erey

ih ow

r

Phone Index

Component 34

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

dcl
dx

ey

gcl

h#

hh
hvih

ix

iy

k

kcl m

n

ng

q

tcl ux

y

Phone Index

Component 39

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ey

ih

ix

iy

n q
ux

y

Phone Index

Component 45

Figure A-5: Vowels 5

150

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

aa

ah

ao

aw

ax

axr

ay

eh
el er

l
ow

oy
q

r
w

Phone Index

Component 48

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 aa

ae

ah

ao

aw
ax

ay

eh

er
ey

ih
ix

l

ow

oy
q

r

Phone Index

Component 49

Figure A-6: Vowels 6

A.2 Semi-vowels and Retroflex

151

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

aa

ah

ao

aw

ax

axr

el

er k

l

m

n

ow

q
r

uw
v

w

Phone Index

Component 12

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

ao

ax

el

l

mn

ow

q

r
uw v

w

Phone Index

Component 15

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

aa

ao

ax

el

l

ow

oy

uw

w

Phone Index

Component 23

Figure A-7: Semi-vowels

152

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ax

axr

er

ix

m

n p

q

r

v
w

Phone Index

Component 3

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

aa
ahao ax

axr

eh

er

ix

r

Phone Index

Component 7

Figure A-8: Retroflex

153

A.3 Nasals

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

ax axr
dhdx

en

ey ih

ix

iy

l

m

n

ng

q r
uxv

Phone Index

Component 24

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

bcl
dcl

dh

en gcl

h#

kcl
l

m

n

ng

pau
pcl

q

tcl

v

w

Phone Index

Component 26

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ax bcl dcldh
en

ix

m

n

ng

q tcl
v

w

Phone Index

Component 28

Figure A-9: Nasals

154

A.4 Fricatives

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

dh

f

h#

hh jh
k

kcl

p

paupcl

s

sh

t

tclth v

z

Phone Index

Component 4

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

f

k p

s

sh

t

th

z

Phone Index

Component 8

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ch

d
f jh

k

s

sh

t

z

Phone Index

Component 9

Figure A-10: Fricatives 1

155

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ch dcldh

f

h#

jh kcl

s

t

tcl

th
v

z

Phone Index

Component 10

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ch

s

sh
t

z

Phone Index

Component 17

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 s

sh
t

z

Phone Index

Component 19

Figure A-11: Fricatives 2

156

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

ch

d

dh

f

hh
jh

k

p

s

sh

t

th

v

z

Phone Index

Component 27

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

ax
d

dh

f ih

ix

iy

k
l

m

n

p

s

t

v

z

Phone Index

Component 37

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

s

sht

z

Phone Index

Component 47

Figure A-12: Fricatives 3

157

A.5 Affricates

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ch

f

jh

k

s

sh

t

z

zh

Phone Index

Component 20

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ch

jh

s

sh

t

z

zh

Phone Index

Component 43

Figure A-13: Affricates

158

A.6 Stops and Stop Closures

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

b
d

dh

f

g
h#

hh

hv

k

kcl

p

q

s

t

tcl v

Phone Index

Component 6

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

b

d

dh
eh

f

g
hhhvihix

k

p
s

sh

t

z

Phone Index

Component 11

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

bcl dcl

gcl

h#

kcl

pau

pcl

tcl

Phone Index

Component 35

Figure A-14: Stops and Stop Closures

159

A.7 Silence

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

bcl

dcl

epi
gcl

h#

kcl

m
n

pau

pclq

tcl

Phone Index

Component 13

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

bcl dcl

h#

kcl
pau

pcl tcl

Phone Index

Component 16

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

b
dcldh

f

g

h#

hh

hv

k

kcl

n

p

pau

q
s

t
tcl

v

Phone Index

Component 21

Figure A-15: Silence 1

160

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

dcl

h#

kcl paupcl tcl

Phone Index

Component 22

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
h#

kcl
pau

pcl tcl

Phone Index

Component 36

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

dcl
dh epi

f

h#

hh k

kcl

p

pau

pcl
q s t

tcl

th
v

z

Phone Index

Component 38

Figure A-16: Silence 2

161

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

bcl dcl

h#

kcl
pau

pcl tcl

Phone Index

Component 41

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

bcl dcl

h#

kcl
pau

pcl tcl

Phone Index

Component 42

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

bcl
dcl

dh epi

f

h#

kcl paupcl s

tcl

th z

Phone Index

Component 44

Figure A-17: Silence 3

162

Bibliography

[1] D. Aldous. Exchangeability and related topics. In Ecole d’Ete de Probabilites
de Saint-Flour, pages 1–198, 1985.

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. ACM Commununications, 51:117–122,
2008.

[3] G. Aradilla, H. Bourlard, and M. Magimai-Doss. Posterior features applied to
speech recognition tasks with user-defined vocabulary. In Proc. ICASSP, 2009.

[4] A. Asaei, B. Picart, and H. Bourlard. Analysis of phone posterior feature space
exploiting class specific sparsity and MLP-based similarity measure. In Proc.
ICASSP, 2010.

[5] I. Badr, I. McGraw, and J. Glass. Pronunciation learning from continuous
speech. In Proc. Interspeech, pages 549–552, 2011.

[6] J. Baker, Li Deng, J. Glass, S. Khudanpur, C.-H. Lee, N. Morgan, and
D. O’Shaughnessy. Developments and directions in speech recognition and un-
derstanding. IEEE Signal Processing Magazine, 26(3), 2009.

[7] Y. Bengio. Learning deep architectures for AI. Foundations and Trends in
Machine Learning, 2(1):1–127, 2009.

[8] Y. Bengio and X. Glorot. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proc. AISTATS, pages 249–256, 2010.

[9] NVidia CUDA C Best Practices Guide. http://developer.nvidia.com/

cuda-downloads/.

[10] D. Blackwell and J. B. Macqueen. Ferguson distributions via pólya urn schemes.
The Annals of Statistics, 1:353–355, 1973.

[11] D. M. Blei and M. I. Jordan. Variational inference for dirichlet process mixtures.
Bayesian Analysis, 1:121–144, 2005.

[12] H. Bourlard and N. Morgan. Connectionist Speech Recognition: A Hybrid Ap-
proach. Kluwer Academic Publishers, Norwell, MA, USA, 1993.

163

[13] H. Bourlard and N. Morgan. Continuous speech recognition by connectionist
statistical methods. IEEE Trans. on Neural Networks, 4:893–909, 1993.

[14] P. Cardinal, P. Dumouchel, G. Boulianne, and M. Comeau. GPU accelerated
acoustic likelihood computations. In Proc. Interspeech, pages 964–967, 2008.

[15] M. A. Carlin, S. Thomas, A. Jansen, and H. Hermansky. Rapid evaluation of
speech representations for spoken term discovery. In Proc. Interspeech, 2011.

[16] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani. Locally adaptive
dimensionality reduction for indexing large time series databases. ACM Trans.
on Database Systems, 27(2):188–228, 2002.

[17] K. Chan, W. Fu, and C. Yu. Haar wavelets for efficient similarity search of
time-series: With and without time warping. IEEE Trans. on Knowledge and
Data Engineering, 15(3):686–705, 2003.

[18] H.-A Chang and J. Glass. Hierarchical large-margin gaussian mixture models
for phonetic classification. In Proc. ASRU, pages 272–277, 2007.

[19] X. Chen, A. Eversole, G. Li, D. Yu, and F. Seide. Pipelined back-propagation
for context-dependent deep neural networks. In Proc. Interspeech, 2012.

[20] J. Chong, E. Gonina, Y. Yi, and K. Keutzer. A fully data parallel WFST-based
large vocabulary continuous speech recognition on a graphics processing unit.
In Proc. Interspeech, pages 1183–1186, 2009.

[21] W. Chung-Hsien and C. Yeou-Jiunn. Multi-keyword spotting of telephone
speech using a fuzzy search algorithm and keyword-driven two-level CBSM.
Speech Communication, 33:197–212, 2001.

[22] M. Cohen, N. Morgan, D. Rumelhart, V. Abrash, and H. Franco. Context-
dependent connectionist probability estimation in a hybrid HMM-neural net
speech recognition system. Computer Speech and Language, 8:211–222, 1994.

[23] NVidia CUDA CUBLAS. https://developer.nvidia.com/cublas.

[24] NVidia CUFFT. https://developer.nvidia.com/cufft/.

[25] G. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-trained deep
neural networks for large vocabulary speech recognition. In IEEE Trans. on
Audio, Speech and Language Processing, 2012.

[26] G. E. Dahl, D. Yu, L. Deng, and A. Acero. Large vocabulary continuous
speech recognition with context-dependent DBN-HMMs. In Proc. ICASSP,
pages 4688–4691, 2011.

[27] L. Deng and H. Strik. Structure-based and template-based automatic speech
recognition: Comparing parametric and non-parametric approaches. In Proc.
Interspeech, 2007.

164

[28] P. R. Dixon, T. Oonishi, and S. Furui. Fast acoustic computations using graph-
ics processors. In Proc. ICASSP, pages 4321–4324, 2009.

[29] R. E. Donovan and P. C. Woodland. Automatic speech synthesiser parameter
estimation using hmms. In Proc. ICASSP, pages 640–643, 1995.

[30] M. Doss, T. Stephenson, H. Bourlard, and S. Bengio. Phoneme-grapheme based
speech recognition system. In Proc. ASRU, pages 94–98, 2003.

[31] M. Dredze, A. Jansen, G. Coppersmith, and K. Church. NLP on spoken docu-
ments without ASR. In Proc. EMNLP, 2010.

[32] D. P. W. Ellis, R. Singh, and S. Sivadas. Tandem acoustic modeling in large-
vocabulary recognition. In Proc. ICASSP, pages 517–520, 2001.

[33] U. Erra. Toward real time fractal image compression using graphics hardware.
In Proc. Advances in Visual Computing, 2005.

[34] NIST Spoken Term Detection 2006 Evaluation. http://www.nist.gov/

speech/tset/std/.

[35] T. S. Ferguson. A bayesian analysis of some nonparametric problems. The
Annals of Statistics, 1(2):209–230, 1973.

[36] W. N. Francis and H. Kucera. Frequency analysis of English usage: lexicon and
grammar. Houghton-Mifflin, 1982.

[37] A. Garcia and H. Gish. Keyword spotting of arbitrary words using minimal
speech resources. In Proc. ICASSP, 2006.

[38] H. Gish, M. Siu, A. Chan, and W. Belfield. Unsupervised training of an hmm-
based speech recognizer for topic classification. In Proc. Interspeech, pages
1935–1938, 2009.

[39] J. Glass. Towards unsupervised speech processing. In Proc. ISSPA, 2012.

[40] J. Glass, T. Hazen, S. Cyphers, I. Malioutov, D. Huynh, and R. Barzilay. Recent
progress in the mit spoken lecture processing project. In Proc. Interspeech, pages
2553–2556, 2007.

[41] J. Glass, T. Hazen, L. Hetherington, and C. Wang. Analysis and processing of
lecture audio data: preliminary investigations. In Proc. of HLT-NAACL, pages
9–12, 2004.

[42] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood
component analysis. Advances in Neural Information Processing Systems,
17:513–520, 2005.

[43] Google. http://www.google.com/mobile/voice-search/.

165

[44] N. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli. High
performance discrete fourier transforms on graphics processors. In Proc. the
IEEE conference on Supercomputing, pages 1–12, 2008.

[45] P. J. Green, S. Richardson, and I. France. Modelling heterogeneity with and
without the dirichlet process. Scandinavian Journal of Statistics, 28:355–377,
2000.

[46] T. Hazen, W. Shen, and C. White. Query-by-example spoken term detection
using phonetic posteriorgram templates. In Proc. ASRU, 2009.

[47] J. Hennebert, C. Ris, H. Bourlard, S. Renals, and N. Morgan. Estimation of
global posteriors and forward-backward training of hybrid HMM/ANN systems.
In Proc. Eurospeech, pages 1951–1954, 1997.

[48] H. Hermansky, D. P.W. Ellis, and S. Sharma. Tandem connectionist feature
extraction for conventional HMM systems. In Proc. ICASSP, 2000.

[49] G. Hinton. A practical guide to training restricted boltzmann machines. Tech-
nical report, Department of Computer Science, University of Toronto, 2010.

[50] G. Hinton, L. Deng, D. Yu, G. Dahl, A.Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. Sainath, , and B. Kingsbury. Deep neural networks for
acoustic modeling in speech recognition. IEEE Signal Processing Magazine, 29,
2012.

[51] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep
belief networks. Neural Computation, 18(7):1527–1554, 2006.

[52] J. Hoberock and N. Bell. Thrust: A Parallel Template Library. http://www.

meganewtons.com/.

[53] D. Horn, J. Sugerman, M. Houston, and P. Hanrahan. Interactive k-d tree GPU
raytracing. In Proc. the symposium on Interactive 3D graphics and games, pages
167–174, 2007.

[54] Xuedong Huang, Alex Acero, and Hsiao-Wuen Hon. Spoken Language Process-
ing: A Guide to Theory, Algorithm, and System Development. Prentice Hall
PTR, 2001.

[55] H. Ishwaran and L. F. James. Gibbs sampling methods for stick-breaking priors.
Journal of the American Statistical Association, 96:161–173, 2001.

[56] F. Itakura. Minimum prediction residual principle applied to speech recognition.
IEEE Trans. on Speech and Audio Processing, 23:52–72, 1975.

[57] C. Jankowski, A. Kalyanswamy, S. Basson, and J. Spitz. NTIMIT: a phonet-
ically balanced, continuous speech, telephone bandwidth speech database. In
Proc. ICASSP, 1990.

166

[58] A. Jansen and K. Church. Towards unsupervised training of speaker indepen-
dent acoustic models. In Proc. Interspeech, 2011.

[59] A. Jansen, K. Church, and H. Hermansky. Towards spoken term discovery at
scale with zero resources. In Proc. Interspeech, 2010.

[60] A. Jansen and B. Durme. Efficient spoken term discovery using randomized
algorithms. In Proc. ASRU, 2011.

[61] A. Jansen and B. Durme. Indexing raw acoustic features for scalable zero
resource search. In Proc. Interspeech, 2012.

[62] A. Jansen and P. Niyogi. An experimental evaluation of keyword-filler Hidden
Markov Models. Technical report, University of Chicago, 2009.

[63] E. Keogh. Exact indexing of dynamic time warping. In Proc. VLDB, pages
406–417, 2002.

[64] E. Keogh and M. Pazzani. Scaling up dynamic time warping for datamining
applications. In Proc. the International Conference on Knowledge Discovery
and Data mining, pages 285–289, 2000.

[65] M. Killer, S. Stker, and T. Schultz. Grapheme based speech recognition. In
Proc. of the Eurospeech, pages 3141–3144, 2003.

[66] S. Kim, S. Park, and W. Chu. An index-based approach for similarity search
supporting time warping in large sequence databases. In Proc. the International
Conference Data Engineering, pages 607–614, 2001.

[67] T. Kinnunen and H. Li. An overview of text-independent speaker recognition:
From features to supervectors. Speech Communications, 52(1):12–40, 2010.

[68] K. Kintzley, A. Jansen, and H. Hermansky. Event selection from phone poste-
riorgrams using matched filters. In Proc. Interspeech, pages 1905–1908, 2011.

[69] K. Kirchhoff, J. Bilmes, S. Das, N. Duta, M. Egan, G. Ji, F. He, J. Hender-
son, D. Liu, M. Noamany, P. Schone, R. Schwartz, and D. Vergyri. Novel
approaches to arabic speech recognition: Report from the 2002 johns-hopkins
summer workshop. In Proc. ASRU, 2003.

[70] K. Kurihara. Collapsed variational dirichlet process mixture models. In Proc.
Joint Conference on Artificial Intelligence, 2007.

[71] LDC. http://www.ldc.upenn.edu/.

[72] Y. Lecun, L. Bottou, G. Orr, and K. Müller. Efficient backprop. Lecture Notes
in Computer Science, 1524:5–50, 1998.

[73] C. Lee and J. Glass. A nonparametric bayesian approach to acoustic model
discovery. In Proc. ACL, pages 40–49, 2012.

167

[74] C.-H. Lee, F. K. Soong, and K. K. Paliwal. Automatic Speech and Speaker
Recognition: Advanced Topics. Springer, 1996.

[75] H. Lee, Y. Largman, P. Pham, and A. Ng. Unsupervised feature learning for
audio classification using convolutional deep belief networks. Advances in Neural
Information Processing Systems, pages 1096–1104, 2009.

[76] K. F. Lee. Context dependent phonetic HMMs for continuous speech recogni-
tion. IEEE Trans. Speech and Audio Processing, 1990.

[77] Y. Lin, T. Jiang, and K. Chao. Efficient algorithms for locating the length-
constrained heaviest segments with applications to biomolecular sequence anal-
ysis. J. Com. Syst. Sci., 65(3):570–586, 2002.

[78] I. Malioutov and R. Barzilay. Minimum cut model for spoken lecture seg-
mentation. In Proc. the Annual Meeting of the Association for Computational
Linguistics (COLING-ACL), pages 25–32, 2006.

[79] I. Malioutov, A. Park, R. Barzilay, and J. Glass. Making sense of sound: Unsu-
pervised topic segmentation over acoustic input. In Proc. ACL, pages 504–511,
2007.

[80] M. McCool, K. Wadleigh, B. Henderson, and H. Lin. Performance evaluation of
gpus using the rapidmind development platform. In Proc. the IEEE conference
on Supercomputing, 2006.

[81] T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Cernocky. Strategies for
training large scale neural network language models. In Proc. ASRU, pages
196–201, 2011.

[82] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur. Recurrent
neural network based language model. In Proc. Interspeech, pages 1045–1048,
2010.

[83] A. Mohamed, G. Dahl, and G. Hinton. Acoustic modeling using deep belief
networks. IEEE Trans. on Audio, Speech and Language Processing, 20(1):14–
22, 2012.

[84] A. Mohamed, G. E. Dahl, and G. E. Hinton. Deep belief networks for phone
recognition. In Proc. NIPS Workshop on Deep Learning for Speech Recognition
and Related Applications, 2009.

[85] B. C. J. Moore. An Introduction to the Psychology of Hearing. Academic, 1997.

[86] N. Morgan. Deep and wide: Multiple layers in automatic speech recognition.
IEEE Trans. on Audio, Speech and Language Processing, 20(1):7–13, 2012.

[87] N. Morgan and H. Bourlard. Continuous speech recognition using multilayer
perceptrons with hidden Markov models. In Proc. ICASSP, pages 413–416,
1990.

168

[88] A. Muscariello, G. Gravier, and F. Bimbot. Audio keyword extraction by un-
supervised word discovery. In Proc. Interspeech, pages 656–659, 2009.

[89] R. Neal. Bayesian mixture modeling. In Proc. the Workshop on Maximum
Entropy and Bayesian Methods of Statistical Analysis, pages 197–211, 1992.

[90] M. Newman. Fast algorithm for detecting community structure in networks.
Phys. Rev. E, 69(6), 2004.

[91] Nuance. http://www.nuance.com/recognizer/languages.asp.

[92] Nuance. http://www.nuance.com/for-individuals/by-industry/

education-solutions/transcribing-interview/index.htm.

[93] A. Oppenheim. Signals and systems. Prentice Hall, 1997.

[94] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. Lefohn, and
T. Purcell. A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum, 26(1):80–113, 2007.

[95] A. Park. Unsupervised pattern discovery in speech: applications to word ac-
quistion and speaker segmentation. PhD thesis, MIT Department of Electrical
Enginering and Computer Science, 2006.

[96] A. Park and J. Glass. Towards unsupervised pattern discovery in speech. In
Proc. ASRU, pages 53–58, 2005.

[97] A. Park and J. Glass. Unsupervised word acquisition from speech using pattern
discovery. In Proc. ICASSP, 2006.

[98] A. Park and J. Glass. Unsupervised pattern discovery in speech. IEEE Trans.
on Audio, Speech and Language Processing, 16(1), 2008.

[99] S. Phillips and A. Rogers. Parallel speech recognition. International Journal of
Parallel Programming, 27(4):257–288, 1999.

[100] NIST Spoken Term Detection Evaluation Plan. http://www.nist.gov/

speech/tests/std/docs/std06-evalplan-v10.pdf/.

[101] L. Rabiner and B.-H. Juang. Fundamentals of speech recognition. Prentice-Hall,
Inc., 1993.

[102] J. Ramos. Using TF-IDF to determine word relevance in document queries. In
Proc. of ICML, 2003.

[103] C. E. Rasmussen. The infinite gaussian mixture model. In Neural Information
Processing Systems, pages 554–560. MIT Press, 2000.

[104] T. Rath and R. Manmatha. Lower-bounding of dynamic time wapring dis-
tances for multivariate time series. Technical Report MM-40, University of
Massachusetts Amherst, 2002.

169

[105] S. Renals and N. Morgan. Connectionist probability estimation in HMM speech
recognition. IEEE Trans. on Speech and Audio Processing, 2:161–174, 1992.

[106] D. A. Reynolds. An overview of automatic speaker recognition technology. In
Proc. ICASSP, pages 4072–4075, 2002.

[107] D. A. Reynolds and R. C. Rose. Robust text-independent speaker identification
using gaussian mixture speaker models. IEEE Trans. on Speech and Audio
Processing, 3(1):72–83, 1995.

[108] A. Robinson, G. Cook, D. Ellis, E. Fosler-Lussier, S. Renals, and D. Williams.
Connectionist speech recognition of broadcast news. Speech Communications,
pages 27–45, 2002.

[109] R. Rose and D. Paul. A Hidden Markov Model based keyword recognition
system. In Proc. ICASSP, volume 2, pages 129–132, 1990.

[110] D. Rumelhart, G. Hinton, and R. Williams. Learning representations by back-
propagating errors. Nature, pages 696–699, 1988.

[111] T. Sainath, B. Kingsbury, and B. Ramabhadran. Auto-encoder bottleneck fea-
tures using deep belief networks. In Proc. ICASSP, pages 4153–4156, 2012.

[112] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for
spoken word recognition. IEEE Trans. on Speech and Audio Processing, 26:43–
49, 1978.

[113] R. Salakhutdinov. Learning Deep Generative Models. PhD thesis, Dept. of
Computer Science, University of Toronto, 2009.

[114] R. Salakhutdinov and G. Hinton. Deep Boltzmann Machines. In Proc. AI and
Statistics, volume 5, pages 448–455, 2009.

[115] R. Salakhutdinov and Hugo Larochelle. Efficient learning of deep boltzmann
machines. In Proc. AI and Statistics, 2010.

[116] D. Sart, A. Mueen, W. Najjar, E. Keogh, and V. Niennattrakul. Accelerating
dynamic time warping subsequence search with gpus and fpgas. In Proc. IEEE
International Conference on Data Mining, pages 1001–1006, 2010.

[117] S. Scanzio, S. Cumani, R. Roberto, F. Mana, and P. Laface. Parallel imple-
mentation of artificial neural network training for speech recognition. Pattern
Recognition Letters, 31(11):1302–1309, 2010.

[118] J. Sethuraman. A constructive definition of dirichlet priors. Statistica Sinica,
4:639–650, 1994.

[119] M. Siu, H. Gish, S. Lowe, and A. Chan. Unsupervised audio pattern discovery
using HMM-based self-organized units. In Proc. Interspeech, pages 1001–1004,
2011.

170

[120] M. Siu, H., A. Chan, and W. Belfield. Improved topic classification and keyword
discovery using an hmm-based speech recognizer trained without supervision.
In Proc. Interspeech, pages 2838–2841, 2010.

[121] G. Sivaram and H. Hermansky. Sparse multilayer perceptron for phoneme recog-
nition. IEEE Trans. on Audio, Speech and Language Processing, 20(1):23–29,
2012.

[122] K. Stevens. Acoustic Phonetics. MIT Press, 1999.

[123] ATI Stream. http://www.amd.com/stream/.

[124] Y. Takebayashi, H. Tsuboi, and H. Kanazawa. Keyword-spotting in noisy con-
tinuous speech using word pattern vector subabstraction and noise immunity
learning. In Proc. of ICASSP, volume 2, pages 85–88, 1992.

[125] Intel Hyperthreading Technology. http://http://www.intel.com/

content/www/us/en/architecture-and-technology/hyper-threading/

hyper-threading-technology.html.

[126] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet
processes. Journal of the American Statistical Association, 101(476):1566–1581,
2006.

[127] Y. W. Teh, K. Kurihara, and M. Welling. Collapsed variational inference for
HDP. In Advances in Neural Information Processing Systems, volume 20, 2008.

[128] K. Tokuda, T. Kobayashi, T. Masuko, T. Kobayashi, and T. Kitamura. Speech
parameter generation algorithms for hmm-based speech synthesis. In Proc.
ICASSP, pages 1315–1318, 2000.

[129] NVidia CUDA Toolkit 4.0. http://developer.nvidia.com/

cuda-toolkit-40/.

[130] E. Trentin and M. Gori. A survey of hybrid ann/hmm models for automatic
speech recognition. Neurocomputing, 37:91–126, 2001.

[131] F. Valente, M. Doss, C. Plahl, S. Ravuri, and W. Wang. A comparative large
scale study of mlp features for mandarin ASR. In Proc. Interspeech, pages
2630–2633, 2010.

[132] F. Valente, M. Doss, C. Plahl, S. Ravuri, and W. Wang. Transcribing mandarin
broadcast speech using multilayer perceptron acoustic features. IEEE Trans.
Audio, Speech and Language Processing, 19, 2011.

[133] J. Vanek, J. Trmal, J. V. Psutka, and J. Psutka. Optimization of the gaussian
mixture model evaluation on GPU. In Proc. Interspeech, pages 1737–1740, 2011.

[134] B. Varadarajan, S. Khudanpur, and E. Dupoux. Unsupervised learning of acous-
tic sub-word units. In Proc. of ACL, pages 165–168, 2008.

171

[135] D. Vergyri, W. Wang, A. Stolcke, J. Zheng, M. Graciarena, D. Rybach, C. Gol-
lan, R. Schlter, K. Kirchhoff, A. Faria, and N. Morgan. Development of the
SRI/Nightingale arabic ASR system. In Proc. Interspeech, pages 1437–1440,
2008.

[136] O. Vinyals and S. Ravuri. Comparing multilayer perceptron to deep belief
network Tandem features for robust ASR. In Proc. ICASSP, pages 4596 –4599,
2011.

[137] VistaWide. http://www.vistawide.com/languages/language_statistics.

htm.

[138] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh. Indexing multi-
dimensional time-series with support for multiple distance measures. In Proc.
SIGKDD, pages 216–225, 2003.

[139] M. D. Wachter, M. Matton, K. Demuynck, P. Wambacq, R. Cools, and D. V.
Compernolle. Template-based continuous speech recognition. IEEE Trans. on
Audio, Speech and Language Processing, 15(4), 2007.

[140] L. Wilcox and M. Bush. Training and search algorithms for an interactive
wordspoting system. In Proc. of ICASSP, volume 2, pages 97–100, 1992.

[141] Y. Yan, M. Fanty, and R. Cole. Speech recognition using neural networks with
forward-backward probability generated targets. In Proc. ICASSP, pages 3241–
3244, 1997.

[142] B. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary Lp forms. In
Proc. VLDB, pages 385–394, 2000.

[143] B. Yi, H. Jagadish, and C. Faloutsos. Efficient retrieval of similar time sequences
under time warping. In Proc. the International Conference Data Engineering,
pages 201–208, 1997.

[144] Youtube. http://www.youtube.com.

[145] Y. Zhang, K. Adl, and J. Glass. Fast spoken query detection using lower-bound
dynamic time warping on graphical processing units. In Proc. ICASSP, pages
5173–5176, 2012.

[146] Y. Zhang and J. Glass. Unsupervised spoken keyword spotting via segmental
DTW on Gaussian posteriorgrams. In Proc. ASRU, pages 398–403, 2009.

[147] Y. Zhang and J. Glass. Towards multi-speaker unsupervised speech pattern
discovery. In Proc. ICASSP, pages 4366–4369, 2010.

[148] Y. Zhang and J. Glass. An inner-product lower-bound estimate for dynamic
time warping. In Proc. ICASSP, pages 5660–5663, 2011.

172

[149] Y. Zhang and J. Glass. A piecewise aggregate approximation lower-bound es-
timate for posteriorgram-based dynamic time warping. In Proc. Interspeech,
pages 1909–1912, 2011.

[150] Y. Zhang, R. Salakhutdinov, H.-A Chang, and J. Glass. Resource configurable
spoken query detection using deep Boltzmann machines. In Proc. ICASSP,
pages 5161–5164, 2012.

[151] Q. Zhu, A. Stolcke, B. Chen, and N. Morgan. Using MLP features in SRIs
conversational speech recognition system. In Proc. Interspeech, pages 2141–
2144, 2005.

173

