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Hardware-accelerated speech recognition is needed to supplement today’s
cloud-based systems in power- and bandwidth-constrained scenarios such as
wearable electronics.  With efficient hardware speech decoders, client devices
can seamlessly transition between cloud-based and local tasks depending on the
availability of power and networking.  Most previous efforts in hardware speech
decoding [1–2] focused primarily on faster decoding rather than low-power
devices operating at real-time speed.  More recently, [3] demonstrated real-time
decoding using 54mW and 82MB/s memory bandwidth, though their 
architectural optimizations are not easily generalized to the weighted finite-state
transducer (WFST) models used by state-of-the-art software decoders.  This
paper presents a 6mW speech recognition ASIC that uses WFST search 
networks and performs end-to-end decoding from audio input to text output.

Algorithms and data structures developed for software speech decoders are also
applied in hardware.  Fig. 27.2.1 outlines the operation of a speech recognition
system, where annotated training data is used to generate statistical models of
speech production.  A hidden Markov model (HMM)-based Viterbi decoder
searches for the most likely path through millions of hidden states.  Different 
statistical models are needed for the transition p(xt | xt-1) and emission p(yt | xt)
probabilities.  Most modern decoders store transition information in a WFST,
which allows the system to combine and optimize several levels of knowledge
about the training data from the sub-phonetic to the grammatical level in a single
searchable network.  The emission probabilities (acoustic model) are 
represented using a diagonal Gaussian mixture model (GMM), which is well-
suited to modeling continuous distributions using relatively few parameters. 

Our architecture includes the entire speech-to-text decoding chain and 
addresses the constraints of low-power embedded systems, including limited
on-chip memory capacity and limited off-chip memory bandwidth.  The block
diagram shown in Fig. 27.2.2 illustrates the flow of information.  Audio samples
arriving at 16kHz pass through a chain of signal processing elements including
an FFT, filter bank, and DCT to generate 39-dimensional mel-frequency cepstral
coefficient (MFCC) feature vectors at 100Hz.  The filter bank takes advantage of
triangular response shapes to generate 26 outputs using only 2 multipliers, as
shown in Fig. 27.2.3.  We also decimate the real signal into a half-rate complex
signal in order to complete the FFT in half as many clock cycles.  These 
operations run at 1/16 of the decoder clock frequency and consume an average of
110μW at 0.9V, 50MHz decoder clock.

Each new feature vector triggers a time-synchronous Viterbi search update 
propagating a set of hypotheses (WFST states with likelihood scores) forward by
one time step.  A list of hypotheses is read from the active state list (ASL) for the
current frame, which is implemented as a hash table in on-chip SRAM.  The
WFST model is queried for reachable states, resulting in a large set of candidate
hypotheses for the next frame.  The GMM evaluates the likelihood of observing
the feature vector under each of these hypotheses, and likelihood scores are
used to select the most promising hypotheses for storage in the ASL for the next
frame.  Multiplexers swap read and write ports between the two ASLs and the
cycle repeats until the end of the utterance.  The control module traces 
backwards through ASL snapshots stored in memory to determine the most 
likely state sequence, which is converted to a text transcription using a table of
WFST output labels.

On-chip memory capacity limits the number of hypotheses that can be stored in
the ASL.  A constant beam width (search pruning threshold) would have to be
set fairly low in order to avoid overflowing the ASL, and desirable hypotheses
would be rejected.  As shown in [4], the overflow could be stored in off-chip
DRAM, but this incurs additional latency and memory bandwidth.  By adopting
a feedback scheme (shown in Fig. 27.2.4), we are able to obtain a 13.0% word
error rate (WER) with an ASL capacity of only 4096 states.  We approximate the
necessary beam width by regulating the fraction of candidate arcs accepted
throughout a Viterbi update.  The total number of candidates is predicted by
accumulating outgoing arc counts from the previous frame.  The histogram of

ASL sizes under zero, moderate, and excessive feedback levels is shown on the
right in Fig. 27.2.4.  With an appropriate feedback gain and clamp range, beam
width control will compress (but not eliminate) the natural variation in ambiguity
that occurs throughout an utterance.  This reduces the workload when there are
few good hypotheses, and avoids discarding the best hypotheses when there are
too many to be stored in the ASL.

Anticipating the use of slower non-volatile memories to reduce system power,
we applied optimizations to reduce memory bandwidth and make memory
accesses more sequential.  To make related WFST arcs appear close to each
other, we order the states in memory according to a breadth-first search.  Our
fully-associative WFST cache uses the pseudo-LRU eviction algorithm to 
maximize hit rate and prioritizes arcs at isolated memory locations to reduce
page or bank activation penalties.  In contrast, acoustic model reads of GMM
parameters are highly sequential but can easily exceed 1GB/s; our architecture
for reducing this bandwidth to a practical level is shown in Fig. 27.2.5.  Repeated
access of the same data is avoided by caching the likelihood of each mixture that
has been evaluated against a given feature vector; this cache occupies just 98Kb
and has an 86% hit rate.  We also quantize the GMM means to 5b and variances
to 3b, resulting in an 8:1 compression of parameters relative to 32b floating-
point format [5].  The impact on decoding accuracy is minimized by selecting a
nonlinear quantizer for each parameter according to its empirical distribution in
the model.  Separate quantization tables are stored for each dimension in order
to accommodate nonwhite feature spaces.  The combination of caching and
parameter compression reduces the GMM memory bandwidth from 2.9GB/s to
54MB/s without requiring storage of GMM results for multiple frames.

This IC was fabricated on a 65nm low-power logic process, and all tests were
performed in a real-world demonstration system using an FPGA for external
memory access and including all communication latencies.  Fig. 27.2.6 shows
the measured WER vs. decoding time tradeoff for the Wall Street Journal (Nov.
1992) data set, using a WFST with 2.9M states and 9.1M arcs.  The acoustic
model contains 10.2M parameters, or 6 times the complexity of that used in [3].
Power consumption is closely correlated with the number of hypotheses 
evaluated; accuracy and decoding speed can be traded for the desired level of
power consumption by adjusting the nominal beam width in conjunction with
voltage/frequency scaling.  There is no power gating, but we externally gate the
clock between utterances for an idle (leakage) power of 42μW.  SRAM accounts
for 74% of core area and 77% of power consumption, highlighting the 
importance of memory in speech decoding architectures.  Core power 
consumption averages 6.0mW during real-time decoding at 0.85V and 50MHz.
The die photo and specifications are summarized in Fig. 27.2.7.
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Figure 27.2.1: Overview of speech recognition system; components 
implemented on chip shown in dashed box. Figure 27.2.2: Block diagram of speech recognition chip.

Figure 27.2.3: Bandpass filter bank and FFT optimizations applied to MFCC
frontend.

Figure 27.2.5: Quantization and caching of Gaussian mixture models to reduce
memory bandwidth. Figure 27.2.6: Word error rate and energy consumption trends at 50 MHz.

Figure 27.2.4: Architecture and behavior of beam width control via feedback
to control variation in number of active states.
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Figure 27.2.7: Die photo and summary of chip specifications.


