
Spoken Language Understanding in a Nutrition

Dialogue System

by

Mandy B. Korpusik

B.S., Franklin W. Olin College of Engineering (2013)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

c© Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2015

Certified by. .
James R. Glass

Senior Research Scientist
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Theses

2

Spoken Language Understanding in a Nutrition Dialogue

System

by

Mandy B. Korpusik

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2015, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Existing approaches for the prevention and treatment of obesity are hampered by the
lack of accurate, low-burden methods for self-assessment of food intake, especially
for hard-to-reach, low-literate populations. For this reason, we propose a novel ap-
proach to diet tracking that utilizes speech understanding and dialogue technology
in order to enable efficient self-assessment of energy and nutrient consumption. We
are interested in studying whether speech can lower user workload compared to ex-
isting self-assessment methods, whether spoken language descriptions of meals can
accurately quantify caloric and nutrient absorption, and whether dialogue can effi-
ciently and effectively be used to ascertain and clarify food properties, perhaps in
conjunction with other modalities. In this thesis, we explore the core innovation of
our nutrition system: the language understanding component which relies on ma-
chine learning methods to automatically detect food concepts in a user’s spoken meal
description.

In particular, we investigate the performance of conditional random field (CRF)
models for semantic labeling and segmentation of spoken meal descriptions. On a
corpus of 10,000 meal descriptions, we achieve an average F1 test score of 90.7 for
semantic tagging and 86.3 for associating foods with properties. In a study of users
interacting with an initial prototype of the system, semantic tagging achieved an
accuracy of 83%, which was sufficiently high to satisfy users.

Thesis Supervisor: James R. Glass
Title: Senior Research Scientist

3

4

Acknowledgments

First, I would like to thank the Electrical Engineering and Computer Science de-

partment at MIT for accepting me into their graduate school Ph.D. program. I am

incredibly grateful for this opportunity and am really enjoying every moment here. I

could not have asked for a more welcoming, supportive community full of intelligent,

passionate researchers who love learning, exploring, and asking questions. I have

already learned so much here and cannot wait to see where this journey takes me.

Leslie and Janet, thank you for your warm welcome during our first semester here

in the EECS Women’s breakfast seminar—I will always remember the last morning

when you made us delicious, homemade waffles (including a gluten-free option)!

Thank you to GW6 and GWAMIT for providing many opportunities to meet

other graduate women at MIT and for organizing professional and social activities

for women such as the Path of Professorship workshop, GWAMIT mentoring pro-

gram (thank you, Kathy Huber, for being an awesome mentor!), empowerment and

leadership conferences, and book clubs.

Life at MIT would not be nearly as much fun without my best friends—thank

you Mengfei, Amy, Ramya, Jennifer, and Danielle for always being there for me,

celebrating my birthday (especially our first year here when you planned a scavenger

hunt and baked a gluten-free cake from scratch for me!), and of course, our girls’

nights! Mengfei, thank you for being the most considerate, kind, and thoughtful

roommate imaginable; Amy and Jennifer, thank you for being super intense, energetic

exercise buddies; and Ramya and Danielle, thank you for being lovely study buddies!

Thank you, Uncle Peter and Aunt Patty, for everything you have done for me

over the past six years. At first, I was terrified to move across the country, but your

support (especially all the times you drove me to and from the airport and helped

me move into my dorm rooms) eased the transition. It is truly a blessing to have had

the opportunity to spend all these holidays with you and get to know you so well.

Of course, I would like to thank the Spoken Language Systems group for becoming

my new family at MIT. I will always remember my first month here when you surprised

5

me the day before my birthday with what we now refer to as the “Mandy” cake (aka

triple chocolate mousse from Flour). Thank you to my officemates for putting up

with my repeating over and over, “This morning I had a bowl of cereal,” while I was

testing the nutrition system. Jackie, it was an honor to help proofread your Ph.D.

thesis and watch your defense—you have inspired me! Thank you, Jingjing, for co-

advising me my first semester here—you were always very helpful and provided great

ideas. Najim, thank you for always being the life of the party and for taking care of

me and introducing me to so many people at SLT. Marcia, thank you for your sense

of humor—you always brighten my day! Victor, thank you for always seeing the best

in me and for being such a helpful graduate counselor. Stephen and Ekapol—you are

like big brothers to me, and I am so grateful for all the advice you have given and

for always listening to me and comforting me (especially during distributed systems).

Scott, thank you for patiently answering my numerous questions and for all the help

you have given me, both teaching me about SLU and helping search for internships.

Most of all, thank you, Jim, for being the best advisor imaginable. You are one

of the nicest, most patient people I have ever met, and I am incredibly lucky to have

the opportunity to work with you! Thank you for taking the time to teach me new

concepts and to answer my questions. Thank you for always seeming like you have all

the time in the world for each of your many students and for genuinely caring about

us. If I become a professor one day, I hope to be like you!

Finally, thank you to my family, especially my parents, for being extremely caring

and supportive throughout my entire life—I would not be here, finishing my Master’s

thesis at MIT today, if not for you. You have shown me what it means to be an

engineer and have always supported me in following my dreams. Your love and

support mean so much to me! Thank you, Mom, for being my number one mentor

and role model of a woman in computer science—I am truly grateful for everything

you have done and continue to do for me, and I cannot thank you enough.

Thanks to undergraduate Calvin Huang for his work on the word vector features.

This research was sponsored in part by a grant from Quanta Computing, Inc., and

by the NIH.

6

Contents

1 Introduction 17

1.1 Dialogue Systems . 17

1.2 Obesity in the United States . 18

1.3 A Nutrition Dialogue System . 18

1.3.1 Previous Work . 19

1.3.2 An Initial Prototype . 20

2 Crowdsourcing the Data Collection 25

2.1 Background and Related Work . 25

2.2 Nutrition Data Collection . 27

2.3 Data Statistics . 27

2.4 Inter-Annotator Agreement . 29

2.5 Challenges and Solutions . 31

2.5.1 Meal Diary Submission Prefiltering 31

2.5.2 Property Labeling Prefiltering 31

2.5.3 Inaccurate Food Labels . 32

2.5.4 Ongoing Data Collection . 33

3 Conditional Random Fields (CRFs) for Semantic Tagging 35

3.1 Background and Related Work . 35

3.1.1 Semantic Tagging . 36

3.2 Classifiers . 37

3.2.1 CRFs . 37

7

3.2.2 Semi-CRFs . 38

3.3 Features . 39

3.4 Results . 40

3.4.1 Labeling Results . 41

3.4.2 Error Analysis . 42

3.4.3 Effects of Noisy Data . 45

3.5 Conclusion . 46

4 Distributional Semantics for Semantic Tagging 49

4.1 Background and Related Work . 50

4.2 Generating Word Vectors . 50

4.2.1 Skip-gram Model . 51

4.2.2 Multiple-sense Embeddings Model 53

4.2.3 GloVe Model . 53

4.3 Incorporating Word Vectors as Features 53

4.3.1 Dense Embeddings . 54

4.3.2 Clustering Embeddings . 54

4.3.3 Distributional Prototypes . 55

4.4 Results . 56

4.4.1 Qualitatively Analyzing Vectors 56

4.4.2 CRF Baseline . 58

4.4.3 Incorporating Vector Features 59

4.5 Independent Questions of Inquiry . 60

4.5.1 Handling Unknown Vectors 61

4.5.2 Performance with Varying Amounts of Data 62

4.6 Conclusion . 63

5 Associating Foods and Properties 65

5.1 Segmenting Approaches . 66

5.1.1 Simple Rule . 66

5.1.2 Markov Model . 66

8

5.1.3 Transformation-Based Learning 68

5.1.4 CRF . 68

5.2 Segmenting Results . 69

5.3 Food-Property Association with Word Vectors 73

5.4 Comparing Segmentation to Classification 76

5.5 Conclusion . 77

6 The Nutrition System Prototype 79

6.1 Related Work . 79

6.2 Ongoing Work . 81

6.2.1 Designing the User Interface 81

6.2.2 Connecting It to a Database 82

6.2.3 Engaging the User in Dialogue 83

6.2.4 Context Resolution . 84

6.3 System Evaluation . 84

7 Conclusion 87

7.1 Contributions . 87

7.1.1 Data Collection . 88

7.1.2 Semantic Tagging . 88

7.1.3 Distributional Semantics . 88

7.1.4 Food-Property Association . 88

7.2 Directions for Future Research . 89

7.2.1 Semantic Tagging . 89

7.2.2 Distributional Semantics . 89

7.2.3 Food-Property Association . 90

7.3 Looking Forward . 90

A Training CRFs 93

A.1 Inference . 93

A.2 Parameter Estimation . 95

9

B Measurements and Calculations 99

B.1 Kappa Score . 99

B.2 F1 Score . 100

B.3 Significance Tests . 100

10

List of Figures

1-1 A screenshot of the MyFitnessPal mobile application. 20

1-2 A screenshot of the PmEB mobile phone application where a is the

main menu, b is the current caloric balance, c is the meal selection

page, and d is the history. 22

1-3 A prototype of the nutrition system with an example food diary, where

“oatmeal,” “banana,” and “milk” are identified as food items and “a

bowl,” “a,” and “a glass” are quantities. 23

1-4 A diagram of the flow of the nutrition system. 24

2-1 The AMT task for labeling foods in a meal description. 28

2-2 The AMT task for labeling properties of foods. 28

2-3 Frequency of food items per meal description. 30

2-4 AMT task to collect unique, descriptive meals with the deployed system. 34

4-1 20 nearest neighbors of “bowl” and “cheese,” using 300-dimension

word2vec embeddings trained on the Google News corpus and reduced

to two dimensions through t-SNE. 57

4-2 20 nearest neighbors of “bowl” and “cheese,” using 300-dimension

word2vec embeddings trained on nutrition data and reduced to two

dimensions through t-SNE. 58

4-3 Semantic tagging average F1 score as a function of increasing data size,

for two feature sets: baseline and baseline combined with raw vector

values, raw similarity values, and shape. 64

11

5-1 A depiction of the food-property association task, in which the quantity

“a bowl” is assigned to the food “cereal,” and “two cups” is associated

with “milk.” . 65

5-2 A first-order Markov chain for the food description “I had a bowl of

cereal.” . 67

6-1 A diagram of the nutrition system’s current architecture. 80

6-2 An AMT task for evaluating the system’s performance on the sentence

“This morning for breakfast I had a bowl of oatmeal followed by a

banana.” . 85

B-1 Probability density function of the Student’s t distribution for varying

degrees of freedom v. 101

B-2 Probability mass function of the binomial distribution, where the tails

are used for McNemar’s significance test [23]. 103

12

List of Tables

2.1 Example AMT tasks (i.e., food labeling of meal descriptions) demon-

strating inconsistencies in data due to gaming the system, mistakes,

and confusion among Turkers. 26

2.2 Detailed information for each meal. 29

2.3 Labeling model’s 10-fold results (i.e., mean F1, variance, and standard

deviation) for different thresholds of Turkers in the property labeling

task. 29

2.4 Kappa scores for food and property labeling tasks. 30

3.1 Ten items from the food and brand lexicons. 40

3.2 Unigram, bigram, and POS features (10 each) learned by the semi-CRF. 40

3.3 CRF and semi-CRF cross-validation results for three different feature

sets. The highest average F1 score is shown in bold. 41

3.4 CRF token-level performance on test data. 42

3.5 Semi-CRF concept-level performance on test data. 42

3.6 CRF versus semi-CRF errors, where p < 0.01 (p = 2.64 × 10−401)

according to McNemar’s significance test. n00 is the number of tokens

labeled correctly by both, n11 is the number labeled incorrectly by

both, n10 is the number of tokens labeled correctly by the semi-CRF

but not the standard CRF, and n01 vice versa. 42

3.7 10 common CRF errors on the token level, along with the frequency of

the error on the test data. 43

13

3.8 10 common semi-CRF errors on the token level, along with the fre-

quency of the error on the test data. 43

3.9 An example meal description comparing the CRF and semi-CRF se-

mantic tag predictions, with errors shown in bold. 44

3.10 10 most common CRF errors per label category. 45

3.11 10 most common semi-CRF errors per label category. 45

3.12 Number of tokens missed by the CRF and semi-CRF for each label

category. 46

3.13 Semi-CRF semantic tagging performance on 38 randomly selected meal

descriptions, using both AMT labels and expert hand labels. 46

3.14 Examples of Turker labeling mistakes. 47

4.1 Top eight prototype words for each category (except Other) selected

using the NPMI metric, where out-of-vocabulary words were omitted. 55

4.2 Cross-validation average F1 scores across labels for three different sim-

ilarity threshold values δ, where the best threshold for each label is in

bold. These results were obtained on a smaller data set of 8,000 meal

descriptions. 55

4.3 Cross-validation average F1 scores when using raw similarity value fea-

tures with varying m (i.e., the number of prototypes per label). These

results were obtained on the most recent data set of 10,000 meal de-

scriptions. The first row is the CRF baseline method from Chapter 3,

as shown in the rightmost column of Table 3.4. 56

4.4 F1 scores per category when using all features (with vectors) trained

on three different data sources. 58

4.5 Average F1 scores on the semantic tagging task with CRF++, CRF-

suite, and Mallet on two feature sets: with and without raw word

vector values (i.e., dense embeddings). 59

14

4.6 CRFsuite F1 scores per label in the semantic tagging task with in-

crementally complex feature sets: baseline n-grams, POS tags, and

lexical features; dense embeddings; raw prototype similarities; shape;

and clusters. The first row is the CRF baseline method from Chapter 3,

as shown in the rightmost column of Table 3.4. 60

4.7 Semantic tagging F1 scores per label with only dense embedding fea-

tures, for six prediction methods. The full system is taken from Sec-

tion 4.4.3, where there is no OOV handling, but it performs better

because it uses the full set of features. 63

4.8 Average F1 scores on the semantic tagging task for six vocabulary

sizes with only dense embedding features, where prediction is done by

averaging the top two predicted words of the basic language model

trained on nutrition data. 63

5.1 Example of the food chunking classification problem, where a chunk

label B, I, or O is assigned to each token, given its semi-CRF label

(i.e., brand, quantity, description, or food). 69

5.2 A sample of five rules from the template for training the TBL model. 69

5.3 CRF++ template for learning features from tokens and property labels,

where token0 refers to the current token, and all other indices are

relative to the current token. label−2◦label−1 indicates the combination

of two features into a single feature. 70

5.4 Test performance of approaches to the food segmenting task, where

accuracy is calculated at the token-level and precision, recall, and F1

are computed at the phrase-level. The CRF (shown in bold) achieved

the best accuracy and F1 score. 71

5.5 BIO food chunking mistakes, where auto is the prediction and AMT is

the gold standard annotation. 71

15

5.6 TBL (with simple rule baseline) high-scoring rules, where score is the

number of improvements minus performance reductions. Ci represents

a chunk label at index i (e.g., B, I, or O), and Li indicates the food or

property label at i. 72

5.7 Performance of CRF+TBL on segmentation task using three different

label representations. 72

5.8 Oracle experiments on the segmenting task with six different meth-

ods, where AMT gold standard labels are used rather than semi-CRF

predictions. 73

5.9 Food-property association with three different classifiers, for both gold

standard semantic tags (i.e., oracle) and predicted tags. 75

5.10 Performance on the food-property association task using the prior ap-

proach of IOE segmenting with the CRF, the new food prediction

method with the random forest classifier, and the union, evaluated

on property tokens for all methods. 76

6.1 Examples of errors the system made in the AMT task for evaluating

performance. There are five error types: substitutions (i.e., labeling

a food as a non-food), insertions (labeling non-foods as food items),

tagging (i.e., swapping property tags), quantity (i.e., predicting the

incorrect database quantity), and USDA (i.e., selecting the incorrect

USDA hit). 86

B.1 McNemar’s matrix of tokens labeled correctly or incorrectly by two

methods. 103

16

Chapter 1

Introduction

Imagine you could track your diet simply by speaking to a mobile device about the

meals you eat on a daily basis. You would not need to manually calculate calories,

record foods one at a time, or select the correct match from a list of numerous options.

Rather, you would describe your meal, and the device would automatically identify

the foods and nutrition facts, asking followup questions as needed. You might even

have a dialogue about healthy alternatives or foods you should eat in order to address

the lack of a specific nutrient.

1.1 Dialogue Systems

Spoken dialogue systems like this one have become increasingly prevalent in today’s

society, especially with the advent of popular personal assistants such as Siri, Cor-

tana, and Google Now on mobile devices. These systems enable a user to converse

with a machine simply through speech, making tasks easier for users to accomplish.

Although dialogue systems have recently made great advances, they are still an im-

portant area of active research due to unsolved challenges in each of their underlying

components: speech recognition, language understanding, dialogue management, and

response generation. First, the speech recognizer extracts the words in a user’s query

from the speech waveform. Then, the language understanding engine determines

the user’s meaning, or semantics, given the recognition output. Using the semantic

17

representation of the user’s query and the current state of the system, the dialogue

manager selects the next action that the system should take. Finally, a response is

generated using a text-to-speech mechanism. In this work, we investigate approaches

for building the language understanding component of a nutrition system.

1.2 Obesity in the United States

A nutrition dialogue system has the potential to benefit society by addressing health

concerns in the United States, especially the rising obesity rate. According to the

work in [78], adult obesity increased from 13% to 32% between the 1960s and 2004,

and it predicted that by 2015, 75% of adults would be overweight or obese, and

41% obese. More than one-third of American adults (i.e., 78.6 million) are obese [55],

leading to health conditions such as heart disease, stroke, type 2 diabetes, and certain

types of cancer.

The rise of obesity in the US is also associated with increased medical spending; for

example, the estimated medical cost of obesity in 2008 was $147 billion [19]. Research

shows that, on average, obese patients cost Medicare over $600 more per year than

non-obese patients. From 1998 to 2006, the increase in spending costs attributable

to an increase in obesity was statistically significant for all private payer services,

ranging from $420 for inpatient services (an 82% increase in adult per capita medical

spending) to $568 for prescription drugs (a 90% increase). Across all payers, the data

indicate that obesity is associated with a 9.1% increase in annual medical spending,

or as much as $147 billion per year, with prescription drugs as the leading cost.

1.3 A Nutrition Dialogue System

In an effort to address the health concerns and medical costs caused by the rising

obesity rate in the United States, researchers have begun to explore the application

of dialogue systems to the medical domain. Prior work [43] has investigated the use

of dialogue for discussing with users the potential side effects of drugs based on other

18

patients’ online drug reviews. We plan to investigate whether dialogue would be

effective in helping users track their nutrient intake. Existing methods for treating

obesity through self-assessment of food intake are often too cumbersome and tedious

for patients to use, especially for hard-to-reach, low-literate populations [57].

1.3.1 Previous Work

To overcome the barrier preventing many obese individuals from easily tracking their

food intake, we propose building a spoken dialogue system with which users simply

describe their meals, and the system automatically determines the nutrition content.

Existing applications such as MyFitnessPal [33] (shown in Figure 1-1) for tracking nu-

trient and caloric intake require manually entering each eaten food by hand and select-

ing the correct item from a list of possibilities. Some apps such as CalorieCount [80]

use speech recognition, but the user only records one food item at a time and selects

the correct food from a list, rather than our novel approach of utilizing a dialogue

system to automatically select the appropriate food item and attributes.

In addition to commercial applications such as MyFitnessPal and CalorieCount,

academic research groups have also explored the benefits of incorporating technology

into diet tracking. One group built a mobile phone application called Nutricam

for recording dietary intake [64], which enabled recording a meal through both a

photograph and speech. When used by adults with type 2 diabetes, Nutricam was

found to be easier and faster to use than written food diaries, as well as acceptably

accurate. The main difference between Nutricam and our nutrition system is that they

asked a professional dietician to determine the nutrition facts, whereas our system

automatically detects the nutrient content. Another group demonstrated the usability

of a mobile phone application for diet tracking called PmEB (shown in Figure 1-2),

which users preferred over recording meals on paper [74]. Again, this app required

users to manually enter caloric and nutrient intake, whereas ours is automatic.

19

Figure 1-1: A screenshot of the MyFitnessPal mobile application.

1.3.2 An Initial Prototype

So far, we have built a nutrition logging prototype whose current interface is shown

in Figure 1-3. In this example, the user has said “I had a bowl of oatmeal followed by

a banana and a glass of milk.” The display shows the output of a speech recognizer,

along with color-coded semantic tags (e.g., quantity, brand, description, and food)

associated with particular word sequences. The segmented food concepts are then

shown in matrix form in a table along with potential matches to a nutritional database

containing over 20,000 foods from the USDA and other sources.

The flow of the nutrition system is shown in Figure 1-4. After the user gener-

ates a meal description by typing or speaking (to a speech recognizer), the language

understanding component processes the text, first by splitting the meal description

into tokens (i.e., words or segments of words). Each meal description contains food

and property tokens (e.g., brands, quantities, and descriptions), and each property is

20

associated with one (or more) of the foods. For example, “a bowl” is a quantity that

could be associated with “cereal,” whereas “a cup” would be associated with “milk.”

The language understanding component determines which tokens are foods and prop-

erties, and assigns properties to the foods which they describe (e.g., the quantity “2”

is associated with the food “pancakes” in Figure 1-4). We applied conditional random

field (CRF) models to the two language understanding tasks: semantic tagging (i.e.,

labeling tokens as foods or properties) and associating properties with foods.

In the remainder of this thesis, we begin by explaining the crowdsourcing methods

we have developed and deployed on Amazon Mechanical Turk (AMT) for data collec-

tion and annotation [47]. Chapter 3 provides details on the conditional random field

(CRF) models we have explored for language understanding, specifically the semantic

tagging task, and reports experimental results. In Chapter 4, we investigate distribu-

tional semantics approaches to language understanding, and Chapter 5 applies CRFs

and distributional semantics to the food-property association task. Finally, Chapter 6

presents an overview of the current system prototype, and Chapter 7 concludes and

describes future work.

21

Figure 1-2: A screenshot of the PmEB mobile phone application where a is the main
menu, b is the current caloric balance, c is the meal selection page, and d is the
history.

22

Figure 1-3: A prototype of the nutrition system with an example food diary, where
“oatmeal,” “banana,” and “milk” are identified as food items and “a bowl,” “a,” and
“a glass” are quantities.

23

Figure 1-4: A diagram of the flow of the nutrition system.

24

Chapter 2

Crowdsourcing the Data Collection

Before training machine learning models to make predictions on new, unseen data,

we must first provide the models with labeled (i.e., annotated) training data, as well

as testing data for evaluating the models’ performance. Since training our natural

language processing models requires thousands of annotated data samples, it would

be prohibitively time consuming for us to label all the data. Thus, we crowdsource

data collection (e.g., on platforms such as Amazon Mechanical Turk) by paying people

called “Turkers” to label small subsets of data. Since Turkers are not experts, we must

implement techniques for creating data collection tasks that are simple enough for

the average person to complete correctly. This chapter discusses the data collection

subtasks we designed for training the language understanding models in the nutrition

system, as well as challenges we encountered and our solutions.

2.1 Background and Related Work

There has been much prior work on crowdsourcing data collection and annotation,

especially on Amazon Mechanical Turk (AMT). AMT data has been used for research

ranging from linguistics and natural language processing (NLP) to computer vision,

information retrieval, human computer interaction, and economics [9]. For example,

crowdsourcing on AMT has been combined with NLP techniques for automatic poetry

generation, since machines and humans excel at complementary tasks (in thise case,

25

generating many possible phrases versus selecting meaningful, grammatically correct

phrases) [10], as well as grammatical error correction for foreign language learners [59].

When designing AMT tasks, there are several factors that must be taken into

consideration: settings, layout design (including task instructions), worker qualifica-

tions, and “gaming the system” prevention techniques. To illustrate the noisy nature

of AMT data, Table 2.1 shows examples of Turker mistakes when labeling foods

in meal descriptions. Settings include the number of workers per task, the reward

amount for successfully completing a task, how long the task will be available to

Turkers, and how long Turkers must wait before their work will be accepted or re-

jected; these settings affect how quickly and accurately Turkers complete tasks and

need to be tuned to each data collection task. The layout of the task can significantly

impact the quality of Turkers’ work, since the easier it is for Turkers to understand

what they are expected to do, the more likely they are to produce high quality work.

For additional quality control, properties can be set that require Turkers to be in a

certain location (e.g., we require Turkers to be in the US so that they are more likely

to speak English fluently) or have a rating above some threshold (e.g., we require

Turkers to have had at least 80% of their previous work accepted). Finally, Turkers

can be required to complete qualification tests prior to working on a task, both to

select for Turkers who do quality work and to provide Turkers with practice problems

where they can learn from their mistakes.

Turker Meal Description (Foods in Bold)

1 For Breakfast I had Brown Sugar Cinnamon Pop Tarts
2 For Breakfast I had Brown Sugar Cinnamon Pop Tarts
3 For Breakfast I had Brown Sugar Cinnamon Pop Tarts

1 For lunch i had a Tostino’s pepperoni Pizza
2 For lunch i had a Tostino’s pepperoni Pizza
3 None

1 For dinner last night I had an Italian sub from a local sub shop
2 For dinner last night I had an Italian sub from a local sub shop
3 For dinner last night I had an Italian sub from a local sub shop

Table 2.1: Example AMT tasks (i.e., food labeling of meal descriptions) demonstrat-
ing inconsistencies in data due to gaming the system, mistakes, and confusion among
Turkers.

26

Another challenge when collecting data on AMT is that many Turkers cheat in

order to complete tasks as quickly as possible. For example, if a task contains 10

multiple-choice questions, they may try to select the first option from the list for

every question in an effort to earn money more quickly. Prior work on AMT gaming

the system prevention embedded a support vector machine classifier within a task

for transcribing audio clips in order to automatically detect poor quality transcripts

and alert Turkers to improve their transcription before enabling them to submit the

task [38]. Other work has used a two-step collaboration process between translators

and editors to improve AMT data quality for machine translation; in the first task,

several Turkers translated a sentence from one language to another, and in the second

task, native speakers of the second language edited the translations [82].

2.2 Nutrition Data Collection

We deployed three subtasks of experiments on AMT in order to crowdsource our

data collection and annotation. Our goal was to collect meal descriptions, where each

token was labeled (e.g., as a brand, quantity, etc.), and property tokens were assigned

to food tokens (e.g., the quantity “bowl” was assigned to the food “cereal”). The first

phase involved the collection of food diaries, where we prompted Turkers to write a

description of a meal as they would imagine describing it orally. The diaries were

then tokenized and used as input for the second phase, shown in Figure 2-1, where

we asked users to label individual food items within the diaries. The third phase

combined the meal descriptions with their food labels and prompted Turkers to label

the concepts associated with a particular food item (see Figure 2-2).

2.3 Data Statistics

We collected and labeled 2,000 meal descriptions each of breakfast, lunch, dinner,

and snacks on AMT, which we used to train our models. The data were tokenized on

spaces, and if one of the resulting strings began or ended with a punctuation mark, we

27

Figure 2-1: The AMT task for labeling foods in a meal description.

Figure 2-2: The AMT task for labeling properties of foods.

further split the token on the punctuation (e.g., “She’s an MIT student.” ⇒ “She’s”

“an” “MIT” “student” “.”); thus, commas and periods became separate tokens, but

contractions and hyphenations retained their meaning. Five Turkers annotated each

of the food labeling human intelligence tasks (HITs), and three Turkers annotated

each of the property labeling HITs. A breakdown of the statistics for each meal

are listed in Table 2.2. Labeling lunch and dinner was slightly more challenging

than breakfast and snack, so Turkers earned more per HIT. Unfortunately, due to

Turkers copying and pasting meal descriptions, not all 2,000 descriptions per meal

were unique.

Initially, we used the AMT label for a token if at least four out of five Turkers

labeled the token as a food item or if three out of five Turkers labeled the token as

the same attribute. These thresholds were selected by comparing the performance of

28

Meal HIT Price Unique Data Training Data Testing Data

Breakfast $0.04 1,922 1,729 193
Lunch $0.05 1,963 1,766 197
Dinner $0.05 1,794 1,614 180
Snack $0.04 1,991 1,791 200

Table 2.2: Detailed information for each meal.

the resulting model trained on these labels, as shown in Table 2.3. However, it later

became clear that as we collected more data, many food labels were missing, and thus

the properties describing these foods were also missing, causing the resulting trained

models to often miss entire food concepts. Thus, we decided to lower the threshold

of Turkers for the food labeling task to one, since if even one Turker believed a token

was a food, we counted it. However, we used a threshold of two out of three Turkers

for the property labeling task because this improved the F1 score on the labeling task.

Every tenth query was added to the test set (for a total of 770 test queries), while

all other queries were part of the training data (6,900 training queries in total). The

histogram in Figure 2-3 shows that most food diaries contain two, three, or four foods.

Turkers tend to have high agreement when labeling foods and quantities, but there

are more conflicts among brands and descriptions.

Threshold Mean F1 Variance St. Dev.

1 78.75 2.21 1.49
2 84.05 2.38 1.54
3 84.58 2.81 1.68
4 83.74 1.01 1.01
5 76.80 2.78 1.67

Table 2.3: Labeling model’s 10-fold results (i.e., mean F1, variance, and standard
deviation) for different thresholds of Turkers in the property labeling task.

2.4 Inter-Annotator Agreement

We measured the reliability of the data annotations by calculating the inter-annotator

agreement among Turkers. Specifically, we calculated Fleiss’ kappa score (see Ap-

pendix B for more details). The kappa scores for the two labeling tasks are shown in

29

Figure 2-3: Frequency of food items per meal description.

Table 2.4. The score for the food labeling task is close to one and indicates substan-

tial agreement. As expected, the score for the property labeling task is lower, since

there were more categories and fewer annotations per task; in addition, distinguishing

between brands and descriptions was challenging for Turkers. However, the score still

indicates a fair amount of agreement [77].

AMT Task Kappa

Food Labeling 0.766
Property Labeling 0.409

Table 2.4: Kappa scores for food and property labeling tasks.

30

2.5 Challenges and Solutions

After the initial round of data collection, we noted that Turkers were producing food

diaries and annotations of lower quality than we desired. In order to improve the data,

we required the HITs to pass a series of checks before submission. Our algorithms

address several common trends we identified among low-quality annotations.

2.5.1 Meal Diary Submission Prefiltering

Often, a single food diary was submitted numerous times, resulting in semantically

identical data. Our solution was to generate a corpus of submitted responses and

disallow repeat submissions. In addition, low-quality descriptions often contained

few words, so we required diaries to consist of at least four words. Another attempt

to outwit the checker involved using repetition within a diary (e.g., “a a a a”). Our

solution to this challenge was to prevent diaries from containing more than 60%

repetition. Finally, due to extensive spelling errors, we required at least 60% English

for submission.

2.5.2 Property Labeling Prefiltering

In addition to the checks we implemented for preventing Turkers from gaming the

system when submitting diaries, we also incorporated algorithms for improving Turker

labeling performance. In order to determine whether the food and property labels

selected by the Turkers were reasonable, we automatically detected which tokens were

foods or properties in each meal description and required Turkers to label these tokens

upon submitting a property labeling task. If a token was missing, the submission error

message would require the Turker to return to the task to complete the labeling more

accurately, but would not reveal which tokens were missing.

In order to automatically generate the hidden food and property labels, we used

a trie matching algorithm trained on the USDA food lexicon. A trie is an n-ary

tree data structure where each node is a character, and a path from the root to a leaf

represents a token. We built a variant of the standard trie where each node contains a

31

token that is part of a USDA food entry, and a path from the root to a leaf represents

an entire food phrase. For example, one node might contain the token “orange,”

and one of its children nodes might contain the token “juice.” Then, the matching

algorithm would find every matching entry from the USDA trie that is present in a

meal description. For example, the meal description “I had a glass of orange juice”

would yield three trie matches: “orange,” “juice,” and “orange juice.”

Since the USDA food entries often contain only the singular or plural form of a

food token (e.g., “egg” but not “eggs”), we incorporated plural handling into the trie

matching. We used the Evo Inflector libary’s implementation of Conway’s English

pluralization algorithm to convert tokens from singular to plural [14]. In addition, we

tried using the Porter stemmer [62] to extract the stems of words, which provide the

singular forms of plural words; however, the stems were often inaccurate or not foods

(e.g., the stem of “topping” is “top,” and the singular of “greens” is “green,” neither

of which are foods), so we did not use the stemmer in the deployed AMT tasks. To

incorporate pluralization into the trie, for every food item in the USDA lexicon, we

added the plural form as another pattern in the trie.

Sometimes this check introduced new problems, since not every token matching

a USDA food word should be labeled. For example, in the meal description “Rather

than drinking my usual coffee this morning, I had a cup of tea,” the token “coffee”

was not actually consumed and thus should not be labeled; however, this requires

a deeper understanding of the context, which we have not yet implemented. We

manually fixed these tasks after Turkers reported difficulty submitting the task.

2.5.3 Inaccurate Food Labels

Turkers occasionally mislabeled food items, which caused confusion in the final round

of property labeling tasks. For example, in the meal description “I had a blueberry

yogurt,” Turkers labeled both “blueberry” and “yogurt” as foods, even though “blue-

berry” is actually a description in this context. Thus, in the property labeling task,

we added a button which enabled Turkers to specify that the token they were labeling

properties of was not a food. This introduced a problem where Turkers clicked the

32

“Not a food!” button for drinks; we fixed this by modifying the instructions to clarify

that drinks are foods.

In addition, we addressed the issue of mistakes in the food labeling round by com-

bining adjacent food tokens into single food items if they were not comma-separated,

and otherwise leaving them as separate foods. This combined tokens such as “blue-

berry yogurt” into one food and divided comma-separated phrases such as “veggies,

chicken” into two. We experimented with the Stanford part-of-speech (POS) tag-

ger [73] to identify which tokens were foods by keeping only the nouns; however,

even though removing adjectives eliminated colors, it kept some tokens that were

descriptions, not foods (e.g., “grape jam” and “wheat bread”).

2.5.4 Ongoing Data Collection

We are currently collecting and integrating more data into our existing set of training

and testing data for the labeling and food-property association models. Since Turkers

are able to evade each new anti-gaming-the-system mechanism we implement with

more subtle techniques (e.g., Turkers can evade the trie matching check by simply

labeling the entire meal description), we plan to explore a data annotation refinement

mechanism [38] where we will prevent submission when the number of labeled tokens

is much lower or greater than what our model predicts.

In addition, we may ask Turkers to respond to food diaries (e.g., “That sounds

delicious!”) and train a classifier on these responses to automatically give feedback

to Turkers on their meal descriptions in real-time. We have already launched a

new version of the initial meal diary collection task, shown in Figure 2-4, where we

incorporated the deployed nutrition system rather than a simple text box. Turkers

completed 500 HITs, in which we asked them to record any four meals (either spoken

or written), and asked for their feedback on using the system. In this manner, we

explored how real users interact with the system and gained useful feedback, such as

the preference for users to have the ability to modify the semantic tags and recognized

speech. This task yielded an additional 2,000 meals which we have incorporated into

the data set for a total of 10,000 annotated meal descriptions. As before, we required

33

that each description was unique, descriptive, non-repetetive, and spelled correctly.

Figure 2-4: AMT task to collect unique, descriptive meals with the deployed system.

Finally, we plan to address the limitation of the current approach for labeling the

data, in which adjacent meal description tokens labeled as foods are combined into a

single food item, with the last token representing the entire food phrase. This data

representation results in poor performance when searching the nutrition database for

a single-word food that in actuality should be a multi-word phrase. For example, “ice

cream” is labeled as a description followed by a food, but since the word “cream” is

a different food than “ice cream,” the database lookup will yield inaccurate results.

A simple solution is to augment the property labeling task so that it can handle food

items with multiple tokens, rather than only a single token.

34

Chapter 3

Conditional Random Fields

(CRFs) for Semantic Tagging

The language understanding component of the nutrition system that we have imple-

mented has two phases: semantically labeling the food concepts and properties in a

meal description, and assigning attributes to the correct food items. In the next two

chapters, we will first focus on the semantic tagging experiments and results. In this

chapter, we will discuss the baseline method using CRFs with conventional linguistic

features, and we will compare the standard CRF to its variation, the semi-CRF. In

Chapter 4, we will take our best baseline CRF system and augment it with distribu-

tional semantics features. We will then extend our work to cases in which there is

a limited vocabulary, and observe how the performance improves as we increase the

amount of training data.

3.1 Background and Related Work

In a semantic tagging task, also referred to as slot filling, meaning is extracted from

a user’s query by assigning values to pre-defined slots. For example, in our problem,

the slot concepts are foods, brands, quantities, and descriptions; the associated values

are words pulled directly from the query, such as “cereal” for the food slot. Several

different approaches have been used in the past for semantic tagging, but here we will

35

explore two in particular: conditional random fields (CRFs) and semi-Markov CRFs.

3.1.1 Semantic Tagging

The CRF is a popular method for sequence modeling tasks such as semantic tagging.

In the past, CRFs have been applied to many NLP problems, including Chinese word

segmentation (i.e., determining whether each character is the beginning of a word or

not) [87], sentence parsing [18], and determining string similarity [45]. CRFs have

been a popular approach in other fields as well. For example, in computer vision,

CRFs have been used for labeling images [30] in addition to foreground and shadow

segmentation in images [79]. Prior research has shown the applicability of CRFs

to the semantic tagging problem in particular [29], as well as the benefit of using

semi-CRFs for intent detection [39] and semantic labeling of user queries [42].

Other recent work on language understanding has applied frame-semantic parsers [13],

triangular CRFs [81], and neural networks [48, 16, 66] to the semantic tagging prob-

lem. The authors in [13] proposed a probabilistic frame-semantic parser for auto-

matically inducing and filling semantic slots in an unsupervised manner. In this

approach, a semantic parser trained on the linguistic resource FrameNet was used to

extract frames (corresponding to slot candidates) and lexical units (corresponding to

the values that fill the slots). They found that slots generated by their model aligned

well with those created by domain experts.

Due to the increasing popularity of neural networks, among both the speech and

language communities, several types of neural networks have been investigated for

slot filling. In the work in [81], a convolutional neural network-based triangular CRF

jointly modeled both the user intent (i.e., the goal of the user, given the query) as

well as slot filling, achieving gains of 0.9-2.1% over approaches that independently

model slot filling. The authors in [48] explored using a recurrent neural network

(RNN) and found that both the Elman-type and Jordan-type RNNs outperformed the

CRF baseline, but the bi-directional Jordan-type network worked best. Deep belief

networks were employed in both [16] and [66], outperforming CRFs on the standard

Airline Travel Information System (ATIS) test set, and outperforming maximum

36

entropy and boosting methods in a call routing domain.

3.2 Classifiers

For the first language understanding task in the system (i.e., labeling each token

in a meal description as a food, quantity, brand or description), we applied a stan-

dard conditional random field (CRF) baseline, which we compared to a semi-Markov

conditional random field (semi-CRF).

3.2.1 CRFs

Conditional random fields (CRFs) are useful models for natural language processing

tasks such as semantic tagging and slot filling that involve sequential classification.

In such a problem, we wish to predict a vector of output labels y = {y0, y1, ..., yT}

corresponding to a set of input feature vectors x = {x0,x1, ...,xT}. Due to com-

plex dependencies, this multivariate prediction problem is challenging. We can use

graphical models to represent a complex distribution over many variables more eas-

ily. The structure of the graphical model determines how the probability distribution

factorizes, based on a set of conditional independence assumptions [71].

In the past, generative models, such as the naive Bayes classifier and hidden

Markov models (HMMs), were popular. They describe how to “generate” values for

features given the label. However, since they model a joint probability distribution

p(y,x), these models can become intractable when there are complex dependencies.

The CRF takes a discriminative approach, where the conditional distribution p(y|x)

is modeled directly. The linear-chain CRF has the form

Pr(y|x, θ) =
1

Z(x)

T∏
t=1

exp{
K∑
k=1

θkfk(yt, yt−1,xt)} (3.1)

where θk is a weight parameter for feature function fk(yt, yt−1,xt), and Z(x) is the

normalization factor
∑

y

∏T
t=1 exp{

∑K
k=1 θkfk(yt, yt−1,xt)}. More details on training

CRFs can be found in Appendix A.

37

3.2.2 Semi-CRFs

To accomplish the first semantic tagging task (and to compare against the CRF

baseline method), we utilized a variation of the standard CRF model, a semi-Markov

conditional random field (semi-CRF). Rather than assigning an output label to each

token, a semi-CRF assigns an output label to token segments [65].

Semi-CRFs can be viewed as the conditional, or discriminative, version of gener-

ative semi-Markov chain models, in which there is a segment of tokens from i to di

where the behavior of the system may not be Markovian. The state si at token i

persists until token di, at which point there is a transition to a new state s′ which

only depends on state si. Semi-CRFs were developed because it seemed as though

they would perform better on segmenting tasks such as named entity recognition and

noun-phrase (NP) chunking. In our case, the semi-CRF is a reasonable choice for a

semantic tagging model because food items and properties are sequences of tokens.

For example, a quantity might be the segment “a cup.”

Rather than modeling the conditional probability of output y given input x,

Pr(y|x), a semi-CRF models the probability of a segmentation s given x, Pr(s|x),

where each segment si ∈ s consists of a start position tj, an end position uj, and a label

yj: si =< tj, uj, yj >. For example, the quantity segment “a cup,” appearing in the

food log “I had a cup of milk,” would be represented as < 2, 3, Quantity >, assuming

zero-indexing, since “a” has index 2 and “cup” has index 3. Also, rather than using

local feature functions f , which correspond to output labels of individual elements

in x, semi-CRFs use segment feature functions which correspond to output segments

of x. We define each segment feature function gk(j,x, s) = gk(yj, yj−1,x, tj, uj) ac-

cording to the Markov assumption that a segment sj depends only on the previous

segment sj−1. Then, if we let G(x, s) =
∑|s|

j=1 g(j,x, s), a semi-CRF estimates the

distribution

Pr(s|x,W) =
1

Z(x)
exp (W ·G(x, s)) (3.2)

where W is a weight vector for G and Z(x) is the normalization factor
∑

s′ exp (W ·G(x, s′)).

38

In addition, semi-CRFs provide the benefit of high-order CRFs without the associated

computational cost.

3.3 Features

The baseline features we selected for the food-property labeling task include n-

grams (unigrams, bigrams, trigrams, and 4-grams), lexicon features (e.g., the segment

matches an item in a lexicon of USDA food products), and part-of-speech (POS) tags.

We used Stanford’s open source tagger to generate POS tags [15].

The n-gram features are commonly used as baseline features for NLP classifiers. A

unigram feature checks whether the token is an exact match of a unigram seen in the

training data (e.g., whether the current token is the unigram “cup”), bigram features

check two consecutive tokens, trigrams consist of three consecutive tokens, and so on.

In the semi-CRF, the frequency cutoff is one, which means the n-gram must appear

at least twice (in order to avoid learning many sparse features for n-grams that only

appear once in the whole training data set). In addition, for the semi-CRF, n-grams

are contained within token segments. For example, the segment “shredded cheddar

cheese” would have two bigrams: “shredded cheddar” and “cheddar cheese.”

Lexicon features indicate whether the current token (in the case of the standard

CRF) or the current segment (for the semi-CRF) appear within a list of foods or

brands. Table 3.1 shows ten food items in the lexicon obtained from the USDA

National Nutrient Database for Standard Reference (containing 2,636 foods total),

as well as ten brand names from both the USDA and Wikipedia (containing 2,174

brands total). We would expect these features to boost food and brand detection.

One important distinction between the CRF and the semi-CRF with respect to the

lexicon features is that the semi-CRF can easily compare segments of tokens to foods

or brands that consist of multiple words, whereas it is more challenging to match

consecutive tokens against multi-word entries with the standard CRF.

The POS tag features indicate the part-of-speech of the current token (or segment

of tokens, in the semi-CRF). For example, foods are often nouns and would be assigned

39

Foods Brands

mackerel 1-2-3 Gluten Free
apple-raspberry 3 Musketeers

carrots 5-hour Energy
figs 7 Up

fritter 7 Whole Grain
bacon A&W
millet All-Bran

sausage sandwich Almond Dream
nachos with cheese Altoids
soybean curd cheese Ancient Quinoa Harvest

Table 3.1: Ten items from the food and brand lexicons.

the POS tag “NN” for singular nouns, “NNS” for plural nouns, “NNP” for singular

proper nouns, and “NNPS” for plural proper nouns. Descriptions and brands are more

likely to be adjectives, and as such would be assigned the POS tag “JJ.” Table 3.2

shows 30 different n-gram and POS tag features learned by the semi-CRF on the

training data.

Unigrams Bigrams POS Tags

16 I drank JJ (Adjective)
oz I ate VBZ (Verb, 3rd person singular present)

bottle 6 oz VBG (Verb, gerund)
of 8oz of VBP (Verb, non-3rd person singular present)

WinCo 1 orange CD (Cardinal number)
Purified had 16 IN (Preposition)
Drinking with some DT (Determiner)

Water 2 tablespoons NNS (Noun, plural)
and banana and NN (Noun, singular)

Granny of Blue NNP (Proper noun, singular)

Table 3.2: Unigram, bigram, and POS features (10 each) learned by the semi-CRF.

3.4 Results

To evaluate our methods for labeling and associating foods and properties, we split the

AMT data into training and test sets (with 9,000 and 1,000 meal descriptions each)

and computed the precision (i.e., the fraction of predicted labels that were correct),

40

recall (i.e., the fraction of gold standard labels that were predicted), and F1 (i.e., the

harmonic mean of precision and recall) scores for each approach (see Appendix B for

more details). We then measured statistical significance in performance differences

among several approaches using McNemar’s significant test, as described in detail in

Appendix B.

We begin by presenting results for the standard CRF (we used the Python CRF-

suite implementation [56]), and then compare its results to that of the semi-CRF.

3.4.1 Labeling Results

In order to select the best set of baseline features for the CRF and semi-CRF, we

ran cross-validation experiments with three different sets of features, as shown in

Table 3.3. We selected the combination of n-grams, food and brand lexicon features,

and POS tags for our final baseline feature set because they yielded the highest average

F1 score across all label categories for the CRF and semi-CRF with cross-validation.

Features CRF Average F1 Semi-CRF Average F1

N-grams 90.0 84.6
+ POS tags 90.1 85.1

+ POS tags + Lexicon 90.4 85.9

Table 3.3: CRF and semi-CRF cross-validation results for three different feature sets.
The highest average F1 score is shown in bold.

We measured the performance of the CRF and semi-CRF trained on our selected

feature set using the test data, as shown in Tables 3.4 and 3.5 respectively. We

evaluated the semi-CRF at the concept level as opposed to the token level so that a

concept is considered correct if the semi-CRF labels the concept correctly, even if a

word within the concept is labeled incorrectly (i.e., the current token’s label is the

same as either the previous or the next token’s label, and both the previous and next

tokens’ labels are correct). For example, “a bowl” would be counted as correct even

if “a” is labeled incorrectly, as long as “bowl” is labeled correctly.

We compared the CRF and the semi-CRF performance token by token, testing

for significance using McNemar’s significance test. As shown in the 2x2 matrix in

41

Label Precision Recall F1

Food 94.2 94.4 94.3
Brand 84.0 97.6 80.7

Quantity 88.9 95.0 91.8
Description 87.3 89.2 88.2

Other 96.1 94.0 95.0

Overall 90.1 94.0 90.0

Table 3.4: CRF token-level performance on test data.

Label Precision Recall F1

Food 94.4 78.4 85.7
Brand 74.6 67.3 70.8

Quantity 90.2 90.0 90.1
Description 77.2 70.5 73.7

Other 82.4 92.3 87.1

Overall 84.6 77.0 80.6

Table 3.5: Semi-CRF concept-level performance on test data.

Table 3.6, we found that the difference was statistically significant, where p < 0.01

(p = 2.64 × 10−401); thus, although the semi-CRF handles segmenting in a more

intuitive manner than do standard CRFs, we chose to use the CRF because the

performance was significantly better than that of the semi-CRF.

Semi-CRF Correct Semi-CRF Incorrect

CRF Correct n00 = 30, 830 n01 = 2, 584
CRF Incorrect n10 = 380 n11 = 2, 300

Table 3.6: CRF versus semi-CRF errors, where p < 0.01 (p = 2.64×10−401) according
to McNemar’s significance test. n00 is the number of tokens labeled correctly by both,
n11 is the number labeled incorrectly by both, n10 is the number of tokens labeled
correctly by the semi-CRF but not the standard CRF, and n01 vice versa.

3.4.2 Error Analysis

In Tables 3.7 and 3.8, we see 10 of the most common errors made by the CRF

and semi-CRF (excluding punctuation and function words). The semi-CRF appears

to miss many obvious foods, such as “eggs,” “onions,” “pizza,” and “bread.” These

errors could be due to a tokenization mismatch between the tokens in the AMT data

42

and the tokens generated by the POS tagger within the semi-CRF. Table 3.9 shows

an example meal description from the test data set and the corresponding CRF and

semi-CRF semantic tags. Both models tag most of the tokens correctly; however, the

semi-CRF incorrectly labels “toast using Aunt Millies” as a description, whereas the

CRF labels this phrase correctly. They both mistakenly tag “Oreo” as a food instead

of a brand.

Token Predicted Label AMT Label Frequency

large Quantity Description 8
small Quantity Description 6

medium Quantity Description 6
cheese Description Food 5
brand Other Brand 5

no Quantity Other 4
butter Food Description 4
glass Quantity Other 4
wheat Description Food 3
salt Food Other 3

Table 3.7: 10 common CRF errors on the token level, along with the frequency of the
error on the test data.

Token Predicted Label AMT Label Frequency

some Other Quantity 23
2 Other Quantity 18

eggs Other Food 17
onions Other Food 14
drink Food Other 13
sauce Other Food 11
pizza Other Food 11

scrambled Other Description 10
bread Other Food 10

tomatoes Quantity Food 10

Table 3.8: 10 common semi-CRF errors on the token level, along with the frequency
of the error on the test data.

More examples of the specific types of errors made by the CRF and semi-CRF are

shown in Tables 3.10 and 3.11. Foods, brands, and quantities are often mistakenly

labeled as other or as a description. Descriptions and brands are often swapped

43

Token CRF Label Semi-CRF Label AMT Label

I Other Other Other
had Other Other Other

three Quantity Quantity Quantity
pieces Quantity Quantity Quantity

of Other Other Other
toast Food Description Food
using Other Description Other
Aunt Brand Description Brand

Millies Brand Description Brand
Cracked Description Description Description
Wheat Description Description Description
Bread Food Food Food

. Other Other Other
I Other Other Other

had Other Other Other
10 Quantity Quantity Quantity

Double Description Description Description
Stuffed Description Description Description
Oreo Food Food Brand

cookies Food Food Food

Table 3.9: An example meal description comparing the CRF and semi-CRF semantic
tag predictions, with errors shown in bold.

or omitted altogether. From these errors, as well as the error statistics shown in

Table 3.12, we infer that both models identify foods, quantities, and other much

more easily than brands or descriptions, which reflects the high Turker disagreement

for the brand and description categories. In addition, some brands may not be seen in

training data (i.e., out-of-vocabulary words). To address these issues, we may need to

revise the AMT tasks to enable Turkers to more easily differentiate between brands

and descriptions. We have already begun to address this by creating a brand lexicon

using the nutritional database and Wikipedia. In the future, the nutrition system

may learn new brands or foods through dialogue with a user.

44

AMT Label Predicted Label Frequency

Food Description 103
Food Other 55
Brand Description 117
Brand Other 55

Quantity Other 108
Description Other 136
Description Food 87
Description Brand 61

Other Quantity 301
Other Description 135

Table 3.10: 10 most common CRF errors per label category.

AMT Label Predicted Label Frequency

Food Other 802
Food Description 327
Brand Description 165
Brand Other 154

Quantity Other 346
Description Description 589
Description Brand 156

Other Quantity 266
Other Description 233
Other Food 214

Table 3.11: 10 most common semi-CRF errors per label category.

3.4.3 Effects of Noisy Data

In order to identify the effects of noisy AMT data on the performance of the semi-CRF,

we compared the number of mistakes made on a random sample of meal descriptions

(i.e., 38 out of 771) labeled with AMT to the number of mistakes on the same sample,

but using more carefully hand-labeled gold standard tags. As shown in Table 3.13,

we found that the F1 score increased by 7%, from 82.6 to 88.6, when using the hand-

labeled data rather than AMT, which indicates that many of the semi-CRF errors are

actually due to inaccurate Turker labels. Some examples of Turker labeling mistakes

are shown in Table 3.14.

45

Label Num CRF Missed Num semi-CRF Missed Num Total

Food 178 (6%) 1,274 (40%) 3,155
Brand 202 (22%) 390 (43%) 902

Quantity 141 (5%) 430 (15%) 2,838
Description 315 (11%) 1,006 (35%) 2,917

Other 554 (6%) 774 (8%) 9,179

Table 3.12: Number of tokens missed by the CRF and semi-CRF for each label
category.

Labels Precision Recall F1

AMT 83.0 82.3 82.6
Expert 88.9 88.3 88.6

Table 3.13: Semi-CRF semantic tagging performance on 38 randomly selected meal
descriptions, using both AMT labels and expert hand labels.

3.5 Conclusion

In this chapter, we have presented the first task of the system’s language understand-

ing component: semantic tagging of foods and properties. We explored a baseline

approach of CRFs with conventional linguistic features. We compared the perfor-

mance of a standard CRF to that of a semi-CRF, which outputs segments (rather

than individual tokens) of foods and attributes. Since the performance of the CRF

was significantly better than that of the semi-CRF, we will only use the standard

CRF in the following chapter.

46

Token AMT Label Expert Label

Whole Foods Other Brand
some Other Quantity

tangerine Food Description
a Other Quantity

homemade Other Description
graham Food Description

Table 3.14: Examples of Turker labeling mistakes.

47

48

Chapter 4

Distributional Semantics for

Semantic Tagging

According to the theory of distributional semantics [68, 52], words or phrases with

similar meaning will be located in nearby regions within the continuous vector space.

Thus, the vector representation of words can improve machine learning algorithms by

enabling models to determine whether two words or phrases have similar semantics.

Recent work [3] has shown that using word embeddings learned from neural networks

as classifier features improves performance in many natural language processing tasks.

In this chapter, we will explore the application of distributional semantics to the

task of semantic labeling. Specifically, we will investigate three approaches for in-

corporating word embedding features into a CRF model for semantic tagging: using

vector values directly (i.e., dense embeddings), measuring the cosine similarity be-

tween tokens and “prototypes” (i.e., words most representative of a category, such

as “bread” for the food category), and assigning embeddings to clusters. We will

then examine the effects of unknown words in situations where there is a limited

vocabulary, and explore methods for predicting vectors. Finally, we will analyze the

effects of varying the amount of training data. We will begin with the best baseline

CRF model found in Chapter 3 (i.e., CRFsuite with n-gram, POS tag, and lexicon

features), since the CRF performed significantly better than the semi-CRF.

49

4.1 Background and Related Work

One application in which word vectors are useful is in analogy tasks [51], such as

predicting “king is to man as queen is to x.” The correct answer, “woman,” is de-

termined by selecting the word in the vocabulary with the largest cosine similarity

to the vector x, where x = vec(“man”) - vec(“king”) + vec(“queen”), and the cosine

distance is defined as

dist(x,y) =
x · y
‖x‖‖y‖

. (4.1)

Other applications of word embeddings include using them as the sole features for

part-of-speech taggers in multiple languages [1], tailoring them for dependency pars-

ing [2], using them to enrich spoken user queries within conversational interfaces on

smartphones [11], question answering [34], and semantic parsing [5]. Recent work has

also incorporated distributional semantics into spoken language understanding tasks

such as slot filling and semantic tagging. For example, in the work in [8], embeddings

were enriched with context (i.e., with entities and relations between subjects and

objects from a knowledge graph) before being used as CRF features for semantic tag-

ging in the movie domain. The authors in [12] induced semantic slots from unlabeled

speech data by augmenting a frame semantic parser with word embeddings, and [26]

jointly trained a recursive neural network for domain detection, intent determination,

and slot filling; each word (i.e., leaf node), as well as each internal node in the tree,

was associated with a continuous vector representation.

4.2 Generating Word Vectors

There are several different approaches to generating word vectors. A popular method

is through learning weights in a feed-forward or recurrent neural network language

model and saving the weights as vectors after the network is fully trained. This is the

approach taken by Mikolov in the skip-gram [50] and continuous bag-of-words [49]

models, which we used in this work. An alternative method, which we did not in-

50

vestigate, is that of the GloVe model [61]: a global log-bilinear regression model.

Finally, the multiple-sense skip-gram model (MSSG) [54] extends Mikolov’s original

skip-gram model by incorporating multiple meanings, or senses, of words. Although

we have not yet explored this model, we believe the MSSG is an interesting direction

for future work.

4.2.1 Skip-gram Model

One commonly used implementation of the neural network approach to learning em-

beddings is Mikolov’s skip-gram model [50], implemented and released publicly as

the word2vec toolkit1, which learns word vector representations that best predict

the context surrounding the word in a sentence or document. Given training words

w1, w2, ..., wT , the objective is to maximize the average log probability

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j|wt) (4.2)

where c is the size of the context window surrounding the center word wt. The

probability p(wt+j|wt) is defined using the softmax function

p(wO|wI) =
exp (v>wO

vwI
)∑W

w′O=1 exp (v>w′O
vwI

)
(4.3)

where vwI
and vwO

are the input and output vectors of w, and W is the vocabulary

size.

Unfortunately, this is computationally expensive due to the summation over the

entire vocabulary in the denominator. Therefore, we can apply approximation algo-

rithms such as hierarchical softmax or negative sampling. The hierarchical softmax

reduces the computation over W output nodes to only log(W) nodes by using a binary

tree representation, where there are W leaves and each word w in the vocabulary can

be reached by a path from the root to that leaf node. If we let n(w, j) be the j-th

node on the path from the root to word w, L(w) be the path length, ch(n) be an

1https://code.google.com/p/word2vec/

51

arbitrary fixed child of n, n(w, 1) be the root, n(w,L(w)) be the leaf w, and JxK be 1

if x is true and -1 otherwise, then the hierarchical softmax defines p(wO|wI) as

p(wO|wI) =

L(wO)−1∏
j=1

σ(Jn(wO, j + 1) = ch(n(wO, j))K · v>n(wO,j)
vwI

) (4.4)

where σ(x) = 1/(1 + exp (−x)). The hierarchical softmax is computed by a random

walk over each inner node on the path from the root to the leaf word wO. At each

step (i.e., each term of the product), a dot product is taken between vwI
and the

current tree node vn(w,j), with a weight of 1 if the node’s arbitrarily chosen child

ch(n(w, j)) matches the next node on the path to wO, and a weight of −1 otherwise.

Since the maximum path length of a binary tree is log(W), the computational cost is

proportional to log(W).

An alternative method to the hierarchical softmax is negative sampling, in which

we distinguish between the target word wO and k negative samples from the noise

distribution Pn(w) using logistic regression, resulting in the objective

log σ(v>wO
vwI

) +
k∑
i=1

Ewi∼Pn(w)[log σ(−v>wi
vwI

)], (4.5)

which is used as a replacement for every logP (wO|wI) term in the skip-gram objective.

Since frequent words such as “the” co-occur with many words, they often provide

less information than rare words. Therefore, we can apply a subsampling approach

in order to avoid the imbalance between rare and frequent words. We discard each

word wi in the training data with probability

P (wi) = 1−

√
t

f(wi)
(4.6)

where f(wi) is the frequency with which word wi appears in the data, and t is a

threshold that can be tuned on a development set. In our experiments, we trained

the vectors with the continuous bag-of-words (CBOW) approach, which predicts the

current word based on the context [49].

52

4.2.2 Multiple-sense Embeddings Model

The multiple-sense skip-gram (MSSG) [54] was built as an extension of Mikolov’s

original skip-gram model in order to address the problem of representing each of

the different meanings of a word with only a single vector. For example, in the

vector space, “bowl” might lie close to food-related words such as “cereal,” as well

as sports-related words such as “football” or “game.” Thus, it would be useful to

extract multiple embeddings per word, one for each sense. A non-parametric version,

NP-MSSG, automatically determines the correct number of embeddings to assign to

each word. We have not explored MSSG yet, but it is an area for future work.

4.2.3 GloVe Model

An alternative open source word vector toolkit is GloVe (for “Global Vectors”) [61],

which relies on a novel global log-bilinear regression model that combines the advan-

tages of two families of methods: local context window models, such as word2vec,

and latent semantic analysis, which leverages global co-occurrence statistics but per-

forms poorly on word analogy tasks. GloVe reaches 75% accuracy on an analogy task

and outperforms several other methods on similarity and named entity recognition

(NER) tasks. We did not use GloVe in our experiments, but it would be interesting

to evaluate how well GloVe vectors perform compared to word2vec’s embeddings.

4.3 Incorporating Word Vectors as Features

Since words with similar meaning lie near each other in vector space, we can use

the pre-trained vectors of tokens as new features in the CRF tagging and segment-

ing models in order to indicate whether certain words (e.g., “bread” and “cereal”)

have related semantics. There are several methods for incorporating such vectors

as features: assigning each dimension of the vector to a new feature and using the

float values directly, clustering the embeddings and using the cluster which a token is

closest to as the feature, and defining prototypes for each label category from which

53

we use the similarity between tokens and prototypes as the features [27].

4.3.1 Dense Embeddings

First, we directly used vector component values as features for each of the 300 di-

mensions of the pre-trained word vectors from the Google News corpus, which has

a three million word vocabulary from about 100 billion words total (available on

the word2vec website2). For these experiments, we employed the CRFsuite [56] im-

plementation rather than CRF++ [37] (although performance was similar) for two

reasons: faster running time and the ability to use vector float values directly. Unfor-

tunately, using the continuous, dense embeddings as features in linear models such as

CRFs is not effective because these architectures perform better in high-dimensional,

discrete feature space. Thus, we explored two methods for discretizing the embedding

features.

4.3.2 Clustering Embeddings

One approach to make embeddings suitable for linear models is to cluster the embed-

dings and measure the Euclidean distance between words and clusters

d(p,q) =

√√√√ n∑
i=1

(qi − pi)2, (4.7)

where p is the vector of the word, q is the mean of the embeddings of the words

within the cluster, and n is the number of dimensions. Each token wi is assigned to

the cluster which it is nearest to, and the feature is simply that cluster ci. Compound

cluster features can be created by combining the cluster for the current token with the

clusters assigned to the previous or following tokens: ci ◦ ci+1, ci−1 ◦ ci, and ci−1 ◦ ci+1.

We used the k-means clustering algorithm (k = 500), as provided by the word2vec

toolkit.

2https://code.google.com/p/word2vec/

54

4.3.3 Distributional Prototypes

A more sophisticated approach to discretizing the continuous word embeddings is to

represent each label category with a prototype word, as shown in Table 4.1 (e.g.,

“bread” could represent food, and “Kellogg’s” could represent brands) and to use the

similarity between a token and prototypes as features [28]. We experimented both

with features representing the similarity between a token and individual prototypes,

as well as the average similarity between a token and all the prototypes in a category.

In addition, we explored binary features which fired when the similarity was below a

threshold δ tuned with cross-validation (see Table 4.2). The similarity was calculated

with cosine distance, and the prototypes were selected through normalized pointwise

mutual information (NPMI)

λn(label, word) =
λ(label, word)

−lnp(label, word)
, (4.8)

where λ(label, word) is the standard PMI

λ(label, word) = ln
p(label, word)

p(label)p(word)
. (4.9)

Label Prototypes

Food water, milk, sauce, coffee, tea, juice, sandwich, bread
Brand Kraft, Trader, Great, Kroger, Joe’s, Value, Farms, Quaker

Quantity cup, two, glass, oz, one, 2, 1, 8
Description white, green, peanut, black, whole, fresh, red, wheat

Table 4.1: Top eight prototype words for each category (except Other) selected using
the NPMI metric, where out-of-vocabulary words were omitted.

δ Food Brand Quantity Description

0.25 85.68 86.56 85.91 85.67
0.3 86.56 86.29 86.56 86.56
0.4 86.38 85.78 86.14 86.28

Table 4.2: Cross-validation average F1 scores across labels for three different similarity
threshold values δ, where the best threshold for each label is in bold. These results
were obtained on a smaller data set of 8,000 meal descriptions.

55

For each label category (i.e., food, brand, quantity, and description), the NPMI

was computed for every word in the vocabulary. The top m words were chosen as

prototypes for each label, where the value of m = 50 was selected through cross-

validation (see Table 4.3).

Model Food Brand Quantity Description Other Overall

Baseline 94.3 80.7 91.8 88.2 95.0 90.0

m = 40 94.7 81.8 92.0 88.7 95.2 90.5
m = 50 94.7 82.0 92.0 88.8 95.3 90.5
m = 60 94.8 81.8 92.0 88.6 95.2 90.5

Table 4.3: Cross-validation average F1 scores when using raw similarity value features
with varying m (i.e., the number of prototypes per label). These results were obtained
on the most recent data set of 10,000 meal descriptions. The first row is the CRF
baseline method from Chapter 3, as shown in the rightmost column of Table 3.4.

4.4 Results

In this section, we describe our results using the CRF with baseline features and

show how incorporating word embedding features improves performance. We begin

with the best CRF baseline model found in Chapter 3, and iteratively add more

sophisticated features: dense embeddings, prototype similarity, shape, and clusters.

4.4.1 Qualitatively Analyzing Vectors

First, in order to qualitatively examine how well the word vectors represented our

data, we measured the cosine similarity between pairs of word embeddings to find

their nearest neighbors and applied t-Distributed Stochastic Neighbor Embedding (t-

SNE) [76] before plotting the 300-dimensional vectors in two-dimensional space. As

expected, in Figure 4-1, the closest neighbors of “cheese” tend to be cheese-related

words such as “mozzarella” and “cheddar” and are closer to each other than to those

most similar to “bowl,” which are in another cluster further away. However, due to

the generic content of the Google news corpus, many of the words nearest to “bowl”

involve sports and championships (e.g., “Rose Bowl” and “NCAA Tournament”)

56

rather than quantities or food. Thus, for the visualization shown in Figure 4-2 only,

we trained the embeddings on our domain-specific nutrition data. This time, the

closest neighbors of “bowl” are food-related, such as “cereal” and “crispies.”

A comparison of the tagging performance using word vectors trained on nutrition

data versus Wikipedia and Google news is shown in Table 4.4. Performance with

the nutrition-trained vectors is lowest, most likely due to the smaller corpus size, and

Google news-trained vectors perform best, with an average F1 score of 90.7. The

performance difference between the nutrition-trained vectors and Google news was

not particularly significant, where p < 0.01 (p = 0.01), nor was the difference between

Wikipedia-trained and Google news vectors (p = 0.02).

Figure 4-1: 20 nearest neighbors of “bowl” and “cheese,” using 300-dimension
word2vec embeddings trained on the Google News corpus and reduced to two di-
mensions through t-SNE.

57

Figure 4-2: 20 nearest neighbors of “bowl” and “cheese,” using 300-dimension
word2vec embeddings trained on nutrition data and reduced to two dimensions
through t-SNE.

Data Food Brand Quantity Description Other Overall

Nutrition 94.5 81.3 91.9 88.3 95.1 90.2
Wikipedia 94.9 81.6 91.8 88.0 95.1 90.3

Google 95.0 82.7 91.7 88.9 95.2 90.7

Table 4.4: F1 scores per category when using all features (with vectors) trained on
three different data sources.

4.4.2 CRF Baseline

We evaluated the performance of feature sets with and without semantic vectors for

three CRF software implementations: CRFsuite [56], CRF++ [37], and Mallet [46].

As the baseline from Chapter 3, we used n-gram features (as-is and all-lowercase),

POS tags [44], and presence in USDA food and brand lexicons [21]. We found that

CRF++ and CRFsuite were both significantly better than Mallet (see Table 4.5),

where p < 0.01.

The shape features, which indicated whether or not the token was in titlecase,

lowercase, uppercase, a number, a piece of punctuation, or other, improved upon the

58

baseline features. Although this feature is not as helpful for speech as it is for text

(since there is almost no punctuation in recognized speech), shape features do provide

some important information, such as capitalization for brands.

Model No Vectors With Vectors

CRFsuite 90.0 90.5
CRF++ 90.0 90.0
Mallet 78.9 85.6

Table 4.5: Average F1 scores on the semantic tagging task with CRF++, CRFsuite,
and Mallet on two feature sets: with and without raw word vector values (i.e., dense
embeddings).

4.4.3 Incorporating Vector Features

To improve upon the baseline even further by using word vectors, first (as in Sec-

tion 4.3.1), we added features corresponding to the values of the tokens’ word2vec

embeddings, which increased the average F1 score by 0.5, as shown in Table 4.6. Since

the continuous, dense embeddings are not as effective as discrete features in linear

models such as CRFs, we explored a distributional prototype method for utilizing

vectors in a manner more suited to CRFs: we incorporated features corresponding

to the similarity between a token and distributional prototypes. When high scoring

prototypes did not appear in the corpus, we selected the next best prototype with a

vector representation.

We did not include prototypes for the Other category because this lowered the

average F1 score. We also found that averaging the similarities, as opposed to using a

unique feature for each prototype’s similarity, resulted in lower F1 scores. This could

be due to differences in meaning among the various prototypes within a category. For

example, drinks such as “juice” are considered foods, as is “bread;” however, a token

such as “tea” would be similar to drinks, but not to foods like “bread.” Therefore,

the token “tea” will have a large similarity value for the prototype “juice,” but low

similarity value for the prototype “bread,” so the average similarity value would be

a less informative feature than the individual similarity values for identifying “juice”

59

as a food item.

Model Food Brand Quantity Description Other Overall

Baseline 94.3 80.7 91.8 88.2 95.0 90.0
+ Dense 94.6 82.2 92.1 88.5 95.2 90.5
+ Protos 94.7 82.0 92.0 88.8 95.3 90.5
+ Shape 95.0 82.6 91.6 88.9 95.1 90.6

+ Clusters 95.0 82.7 91.7 88.9 95.2 90.7

Table 4.6: CRFsuite F1 scores per label in the semantic tagging task with incremen-
tally complex feature sets: baseline n-grams, POS tags, and lexical features; dense
embeddings; raw prototype similarities; shape; and clusters. The first row is the CRF
baseline method from Chapter 3, as shown in the rightmost column of Table 3.4.

We experimented with two similarity features: a binary number indicating whether

or not the similarity was below a threshold δ determined through cross-validation (i.e.,

0.3 for foods, quantities, and descriptions, and 0.25 for brands) and the raw value of

the similarity. The raw similarity value features improved upon the baseline combined

with raw word vector values, but the binary similarity did not yield further improve-

ment. This might be because the CRF is able to determine the relative importance of

each similarity feature, whereas the binary similarity weights the different prototypes’

similarities equally.

Finally, the addition of cluster features using word2vec’s built-in k-means clus-

tering (500 classes) improved performance. Thus, the baseline combined with shape

features, raw vector and similarity values, and clusters yielded the highest gain, with

an average F1 score of 90.7. The improvement of the word vector, shape, and cluster

features relative to the baseline was significant, where p < 0.01 (p = 0.003).

4.5 Independent Questions of Inquiry

Now that we have determined the best model and feature set for the semantic tag-

ging task, we wish to analyze the performance of our approach under two different

conditions: with a limited vocabulary, and with varying amounts of data. In the first

case, we explore methods for predicting unknown words’ vectors in order to boost

performance. We then show that increasing the training data improves results.

60

4.5.1 Handling Unknown Vectors

A challenge that speech recognition and language understanding systems often face

is handling words that are unknown, or out-of-vocabulary (OOV), since the training

data cannot contain every possible word a user might say [4]. OOV words are prob-

lematic when using embeddings as CRF features because if a word is unknown, then

it has no corresponding vector representation. So far, we have adopted the simplistic

approach of omitting these features by setting the unknown vectors to zero. In this

section, we investigate two alternative methods for handling unknown words: a lan-

guage model-based prediction of the OOV word, and a context-based representation

of the OOV word.

For the first approach, we used a bigram language model to predict an in-vocabulary

word to represent the OOV word. The predicted word is the most likely word given

the previous word (i.e., the language model predicts a token w that maximizes the

probability P (w|c), where c is the token that appears prior to w). The predicted

in-vocabulary word is then used to generate the word embedding features for the un-

known word. We experimented with two types of language models: a simple bigram

language model generated from bigram counts on the nutrition data, as well as the

language model generated by word2vec. We also predicted the top N words (where

N =1, 2, or 3) and averaged their embeddings to yield a single predicted embedding.

For the second approach, we explored a context-based representation of OOV

words, where we generated word vectors by summing the context words surrounding

the unknown word. We experimented with two context window sizes (e.g., one and

two), where a context window of size one includes the previous word, as well as the

subsequent word.

Since performance was already high, there was no significant gain from predicting

vectors for unknown words, where p < 0.01; in addition, it is difficult to determine

which feature sets benefit from OOV handling. Thus, to isolate the effect of word vec-

tor prediction on the raw vector value features, we investigated the performance of six

OOV handling methods when using only dense embedding features. As shown in Ta-

61

ble 4.7, using the basic bigram language model yielded better performance than using

the word2vec language model, and the language model-based prediction method per-

formed better than the context-based representation method (where a context window

of size one was better than a window of two). In addition, for the language model-

based prediction method, averaging the top two predicted words’ vectors, rather than

using only the top one, resulted in higher scores. Overall, the full system without

OOV handling performed best because it incorporated more features than only dense

embeddings.

Since the whole data set has an out-of-vocabulary rate of only 2% (with 24%

of meal descriptions containing at least one OOV word), we evaluated whether the

improvement would be more significant with a data set that has a higher OOV rate.

For this experiment, we declared only the top 20 prototype words for each of the

five categories (i.e., out of 100 words in total) to be in the vocabulary, and set the

remaining words as OOV. This resulted in an OOV word rate of 56% and 99.9% OOV

meal descriptions. As expected (see Table 4.8), while predicting unknown words

did not help on the original data set with 2% OOV rate, there was a significant

improvement of 20% when we limited the vocabulary to 100 words.

In the future, we will collect more data for continued testing, which may show

even more improvement when predicting unknown vectors; in addition, if we were to

use an ASR system trained on the nutrition corpus, recognition errors and nutrition-

specific terminology may cause the OOV rate to increase, in which case predicting

unknown words’ vectors could provide greater gains.

4.5.2 Performance with Varying Amounts of Data

We evaluated the semantic tagging performance of the CRF on both the baseline

and highest performing feature sets as a function of the amount of training data, as

shown in Figure 4-3. As expected, increasing the amount of training data from 2,000

to 10,000 meal descriptions significantly improved the semantic tagging performance

with both the baseline features and the best performing feature set, where p < 0.01.

The average improvement with the baseline features was 2.3 points, or 2.7%, when

62

OOV Handling Food Brand Quantity Descr. Other Overall

Sum context (cw = 1) 79.9 54.2 78.6 71.3 85.3 73.9
Sum context (cw = 2) 80.1 49.6 15.1 71.8 82.2 69.7

Basic lang model (top 1) 77.1 58.2 77.5 71.5 84.9 73.8
Basic lang model (top 2) 79.8 53.9 83.7 70.9 86.3 74.9
Basic lang model (top 3) 80.1 54.2 78.7 71.3 85.4 73.9

word2vec lang model (top 2) 79.9 54.2 78.4 71.2 85.2 73.8

Full System (no handling) 95.0 82.7 91.7 88.9 95.2 90.7
Full System (with handling) 94.7 81.8 91.9 88.5 95.2 90.4

Table 4.7: Semantic tagging F1 scores per label with only dense embedding features,
for six prediction methods. The full system is taken from Section 4.4.3, where there
is no OOV handling, but it performs better because it uses the full set of features.

Vocabulary Size Word OOV Rate No Prediction With Prediction

50 words 62% 41.6 59.4
100 words 56% 50.1 60.4
200 words 50% 59.3 62.8
400 words 45% 66.5 63.8
1000 words 38% 71.4 67.5
All words 2% 79.3 74.9

Table 4.8: Average F1 scores on the semantic tagging task for six vocabulary sizes
with only dense embedding features, where prediction is done by averaging the top
two predicted words of the basic language model trained on nutrition data.

using five times as many training samples; the average improvement with the best

feature set was 2.5 points, or 2.8%, which is a 0.2% relative improvement over the

baseline.

4.6 Conclusion

In this chapter, we have discussed more sophisticated features for CRF models in the

language understanding component of a nutrition dialogue system using word em-

beddings. We explored three approaches for incorporating word embedding features:

using the dense embedding values directly, measuring the raw and binary similarity

between a token and prototypes for each category (except Other), and assigning vec-

tors to clusters. We found that the best feature set consisted of baseline n-grams,

POS tags, lexicon, and word shape features; raw vector values; raw similarity values

63

Figure 4-3: Semantic tagging average F1 score as a function of increasing data size,
for two feature sets: baseline and baseline combined with raw vector values, raw
similarity values, and shape.

to individual prototypes; and clusters, yielding an average F1 score of 90.7.

Predicting out-of-vocabulary word vectors by summing the top two predicted to-

kens from a basic language model trained on nutrition data did not improve perfor-

mance with the full model; however, it provided a significant gain of 20% when using

only dense embedding features and a limited vocabulary of 100 words. Finally, as

expected, performance improved as the size of the training data set increased.

64

Chapter 5

Associating Foods and Properties

In the nutrition system, after the user describes his or her meal, the language under-

standing component must not only identify the foods and properties (i.e., semantic

tagging), but also determine which foods are associated with which properties, as

shown in Figure 5-1. There are two alternative approaches for accomplishing this

food-property association task: segmenting the meal description tokens into food

chunks (each containing a food item and its associated properties), and predicting

the most likely food for each property.

Figure 5-1: A depiction of the food-property association task, in which the quantity
“a bowl” is assigned to the food “cereal,” and “two cups” is associated with “milk.”

We investigated three approaches for segmenting the meal descriptions (using

semantic tags from the semi-CRF classifier because this was our default model at the

time of running these experiments): a Markov model (MM), transformation-based

learning, and a CRF classifier. However, due to issues arising with this segmentation

method, we considered conducting the food-property association independently of the

temporal methods. We explored three different classifiers for directly predicting the

65

food with the highest probability of being associated with each property.

5.1 Segmenting Approaches

The first four methods we investigated for associating foods with properties all in-

volved segmenting meal descriptions into food chunks, where all properties within a

chunk would be assigned to the food item that appears within the same chunk. For

example, the meal description “I ate two pancakes and drank a glass of milk” would

be segmented into two chunks: “two pancakes” and “a glass of milk.”

5.1.1 Simple Rule

As our baseline, since on average 86% of the attributes in the data appear prior to

their corresponding food item, we defined a simple rule which assigns properties to

the subsequent food. For example, in the description “I had a cup of milk with a

handful of blueberries,” the quantity “a cup” would be associated with “milk,” and

the quantity “a handful” with “blueberries.” In the case where an attribute appears

after the last food item in the description, the attribute is assigned to the last food.

5.1.2 Markov Model

To improve upon the baseline method, we took advantage of the sequential nature

of the food description data (e.g., a food item may be more likely to appear after

a brand than a quantity) by modeling it probabilistically. We defined a first-order

Markov chain, in which each observation xi depends only on the previous observation

xi−1. The joint distribution for a sequence of n observations under this generative

model is

p(x1, ..., xn) = p(x1)
n∏
i=2

p(xi|xi−1), (5.1)

which leads to the conditional distribution for observation xi, given all previous ob-

servations, of

66

p(xi|x1, ..., xi−1) = p(xi|xi−1), (5.2)

since, by the Markov assumption, xi depends only on the previous observation xi−1 [6,

70]. In our case, we let each observation in the Markov chain represent an attribute

or food item. For example, in the meal description “I had a bowl of cereal,” the

semi-CRF would label “a bowl” as a quantity and “cereal” as a food, resulting in the

Markov chain in Figure 5-2.

Figure 5-2: A first-order Markov chain for the food description “I had a bowl of
cereal.”

We implemented this Markov model with a finite state transducer (FST), which

transduces an input string into an output string [31]. Like a Markov model, an

FST has states and transitions with associated weights; we let each state represent a

possible food or property semi-CRF label and added start and end states. The input

to the FST is a string of food or property labels in a food diary, and the output is the

same string segmented by “#” such that each food item and its associated properties

are within the same segment. For example, the diary “I had a bowl of cereal with

milk” would correspond to the input string “Q F F” and would generate the output

“Q F # F.” This indicates that “a bowl” is a quantity describing “cereal,” and “milk”

has no attributes. With this approach, properties that appear after a food item may

be within the same segment (e.g., “Q F B # F”), and a single segment may contain

multiple food items (e.g., “F F” and “F # F” are both valid).

We used the frequency of label patterns (e.g., “Q B F D F”) that occur in the

training data to calculate the initial state distribution (e.g., P (Q) = 0.62) and the

state transition probabilities (e.g., P (F |D) = 0.74). In addition, using the histogram

in Figure 2-3, we calculated the probability that a subsequent food follows the current

67

food. The transition weights in the FST behave like negative log probabilities.

5.1.3 Transformation-Based Learning

We further improved upon both the simple rule and the Markov model approaches by

applying a transformation-based learning (TBL) algorithm. This method starts with

an initial solution to a problem (e.g., the simple rule baseline) and iteratively applies

transformations, selecting those which improve the performance most. We used the

Fast TBL toolkit developed at Johns Hopkins [20].

In order to adapt TBL to the food-property association problem, we framed it as

a classification task. To do this, we modeled it after the NP chunking problem, a

well-known natural language processing (NLP) task. In NP chunking, each word in a

sentence belongs to one of three classes: B (the start of an NP), I (inside an NP), or

O (outside an NP). For the food chunking problem, we used the same three classes

to label each word as belonging to a food chunk or not. The features used by the

classifier are composed of a token and its semi-CRF label (i.e., food, quantity, brand,

description, or other). An example food diary is shown in Table 5.1. We also defined

general rule templates (see Table 5.2) from which the model learns specific rules that

may be applied in order to improve the system’s performance. For example, the rule

template “chunk0 chunk1 label0 ⇒ chunk” implies that given the current chunk label,

the next chunk label, and the current semi-CRF label, the current chunk label should

be transformed to that specified by the rule.

5.1.4 CRF

As an alternative to the TBL algorithm, we investigated the CRF. Since it is a

discriminative classifier as well, the CRF was trained on the same data as the TBL

model. However, rather than defining a set of rule templates, we provided feature

templates corresponding to unigrams and bigrams of output tags that appear with

certain combinations of tokens and food or property labels, as shown in Table 5.3.

We used the CRF++ toolkit [37]. We also trained a TBL model using the CRF as

68

Token CRF Label Chunk

I Other O
had Other O
a Quantity B

bowl Quantity I
of Other I

cereal Food I
from Other I

Trader Brand I
Joe’s Brand I
and Other O
a Quantity B

glass Quantity I
of Other I

milk Food I

Table 5.1: Example of the food chunking classification problem, where a chunk label
B, I, or O is assigned to each token, given its semi-CRF label (i.e., brand, quantity,
description, or food).

Rule

Label−1, Label0, Label1 ⇒ Chunk
Chunk−1, Chunk0,Word0 ⇒ Chunk
Chunk−1, Chunk0, Label0 ⇒ Chunk

Chunk−1, Chunk0, Label−1, Label0 ⇒ Chunk
Chunk0, Chunk1,Word1,Word2 ⇒ Chunk

Table 5.2: A sample of five rules from the template for training the TBL model.

the initial solution.

5.2 Segmenting Results

In Table 5.4, we present the performance of six approaches to the food-property

association task. We trained and evaluated the models on a set of 8,000 annotated

meal descriptions. The TBL algorithm significantly improved upon the simple rule

and Markov model (MM) baselines, but not the CRF, where p < 0.01, although it

did provide higher precision. The CRF was significantly better than both the simple

rule and the Markov model, as well as the models with TBL on top of the simple rule

and Markov model. Overall, the CRF model performed best, achieving a token-level

69

Feature Rule Template

token−2

token−1

token0

token1

token2

token−1 ◦ token0

token0 ◦ token1

label−2

label−1

label0
label1
label2

label−2 ◦ label−1

label−1 ◦ label0
label0 ◦ label1
label1 ◦ label2

label−2 ◦ label−1 ◦ label0
label−1 ◦ label0 ◦ label1
label0 ◦ label1 ◦ label2

Table 5.3: CRF++ template for learning features from tokens and property labels,
where token0 refers to the current token, and all other indices are relative to the
current token. label−2 ◦ label−1 indicates the combination of two features into a single
feature.

accuracy of 86.9% and a phrase-level F1 score of 61.9.

A few examples of errors made by the different models are shown in Table 5.5.

Since brands and descriptions occasionally appear after a food, the simple rule incor-

rectly assigns attributes in these cases. For example, in the food diary “2 uncured

hot dogs from Trader Joes,” the simple rule mistakenly begins a new food chunk

with the brand “Trader Joes,” since “Trader Joes” is actually part of the food chunk

corresponding to “2 uncured hot dogs.” Although TBL corrects these errors, it oc-

casionally overcompensates by incorporating unrelated tokens into the food segment

(e.g., it predicts that “turned on the gas stove” belongs to the food segment “veg-

etable oil”). MM errors occur when it incorrectly segments the labels. For example,

it segments the phrase “a small iced coffee from Dunkin’ Donuts with cream” into

the output string “Q D F # B D F,” which incorrectly associates the brand “Dunkin’

70

Approach Acc Prec Recall F1

Simple Rule 76.7 48.0 48.0 48.0
Simple + TBL 84.9 57.5 57.4 57.5

MM 75.3 49.2 49.2 49.2
MM + TBL 84.8 56.4 56.5 56.4

CRF 86.9 60.6 63.3 61.9
CRF + TBL 86.9 63.3 60.6 61.9

Table 5.4: Test performance of approaches to the food segmenting task, where accu-
racy is calculated at the token-level and precision, recall, and F1 are computed at the
phrase-level. The CRF (shown in bold) achieved the best accuracy and F1 score.

Donuts” with “cream” instead of “coffee.” TBL is unable to correct some of the CRF

errors, which could be the reason it does not improve on the CRF’s performance.

Method Text Auto AMT

Simple 2 uncured hot dogs from Trader Joes BIIIOBI BIIIIII
Simple a hot chocolate from the local convenience store IIIOOBII OBIIIIII
+ TBL 2 uncured hot dogs from Trader Joes BIIIIII BIIIIII
+ TBL a hot chocolate from the local convenience store BIIIIIII OBIIIIII

MM a small iced coffee from Dunkin’ Donuts with cream BIIIOBIII BIIIIIIOB
MM a 7 layer burrito from Taco Bell OBIIOBI BIIIIII

+ TBL two pop tarts in each pack BIIIII BIIOOO
+ TBL rotisserie chicken and rice BIII BIOB

CRF garlic powder and cayenne pepper BIIII BIOBI
CRF Stonyfield whole-milk plain yogurt, ice IIIII BIIIB

+ TBL garlic powder and cayenne pepper BIIII BIOBI
+ TBL Stonyfield whole-milk plain yogurt, ice IIIII BIIIB

Table 5.5: BIO food chunking mistakes, where auto is the prediction and AMT is the
gold standard annotation.

The TBL toolkit outputs a list of successful rules, as shown in Table 5.6, where

the score is defined as the number of improvements minus performance reductions.

This allows us to observe where the baseline method made errors and which rules

were used to fix those mistakes. For example, the model learned that if the current

token is labeled Description and the previous token is labeled Food, then the current

chunk label should change from B to I. In addition, if the current token is the word

“I”, then the current chunk label should change from I to O, since new phrases or

sentences often start with with word “I.” Some rules specify that tokens labeled Brand

71

should have the chunk label I, which would fix the simple rule’s mistake of assigning

brands that appear after food items to the subsequent food rather than the prior

food. Finally, the word “from” is learned to be part of a food segment, whereas the

word “with” is often outside of any food segments.

Rule Score

C0 = B,L−1 = Food, L0 = Description⇒ C = I 849
C0 = I, word0 = “I”⇒ C = O 829

C−1 = I, C0 = B,L0 = Brand⇒ C = I 344
C0 = O,word0 = “from”⇒ C = I 300

C− = I, C0 = I, word0 = “with”⇒ C = O 288

Table 5.6: TBL (with simple rule baseline) high-scoring rules, where score is the
number of improvements minus performance reductions. Ci represents a chunk label
at index i (e.g., B, I, or O), and Li indicates the food or property label at i.

In addition to IOB labeling, there are two other representations for chunking tasks,

IOE and IOBES. In IOE, rather than marking the first token in a chunk with B and

the last with I, we mark the first token with I and the last with E (i.e., the “end”

token). In IOBES, we represent the first token with B and the last with E; however, if

a chunk consists of only a single token, we represent it with S. We experimented with

these other class types using the TBL algorithm on top of the CRF classifier, since it

was the best model under the BIO representation. As can be seen in Table 5.7, the

accuracies of the IOB and IOE representations are not significantly different, where

p < 0.01, but IOE has the highest F1 score.

Type Accuracy Precision Recall F1

IOB 86.9 63.3 60.6 61.9
IOE 87.2 63.2 65.3 64.2

IOBES 83.0 64.0 62.7 63.4

Table 5.7: Performance of CRF+TBL on segmentation task using three different label
representations.

We also explored whether incorporating the IOE segmentation labels as features

in the initial labeling task would improve the semantic tagging performance. In this

iterative two-step process, we used the results from the best method for the second

task (i.e., CRF+TBL with IOE label representation) to redo the first task. However,

72

the performance with the additional IOE label feature only slightly increased from

85.9% accuracy to 86.0%. Thus, we can conclude that adding IOE labels does not

significantly improve the semantic tagging task, where p < 0.01.

Finally, we conducted oracle experiments in order to observe how well the models

performed on the segmenting task when using the gold standard AMT labels directly,

rather than the semi-CRF predictions (we used the semi-CRF for semantic tagging

in this analysis because it was the baseline model we used at the time of the ex-

periments). Since the semi-CRF labeling errors are compounded when fed into the

segmenting task, we investigated how much the segmenter improved when provided

with correct labels. As shown in Table 5.8, the F1 scores for all six methods in the

oracle experiments were significantly higher (by McNemar’s test) than those from the

non-oracle experiments, as expected. This time, TBL significantly improved upon

the simple rule and the Markov model, but not the CRF. Therefore, although the

CRF with TBL had the highest recall, the CRF had the overall best accuracy and

F1 score.

Approach Acc Prec Recall F1

Simple Rule 90.1 67.5 74.6 70.9
Simple + TBL 93.1 77.8 78.1 77.9

MM 87.7 69.1 75.2 72.0
MM + TBL 91.7 74.8 73.5 74.2

CRF 93.7 78.9 77.7 78.3
CRF + TBL 93.6 77.7 78.7 78.2

Table 5.8: Oracle experiments on the segmenting task with six different methods,
where AMT gold standard labels are used rather than semi-CRF predictions.

5.3 Food-Property Association with Word Vectors

As an alternative to the four segmenting methods we have explored so far in this

chapter, we trained a classifier for assigning properties to foods. This approach indi-

rectly incorporated word embeddings into the food-property association task by using

the predicted semantic tags from the CRF trained on word vectors. Again, we com-

73

pared oracle experiments with gold standard tags to experiments using predicted tags,

where we used the model with the best feature combination from Section 4.4.3 (i.e.

n-grams, POS, lexicons, shape, raw vector values, and prototype similarity values).

One drawback to using the IOE labeling (i.e., segmenting) scheme proposed in

Section 5.1.3 is that the representation assumes properties appear either directly be-

fore or after the food with which they are associated, neglecting potential long-range

dependencies. For example, in the meal description “I had two eggs and some cheese

from Trader Joe’s,” the brand “Trader Joe’s” should be assigned to both “eggs” and

“cheese;” however, with the chunking scheme, it is impossible to associate “Trader

Joe’s” with “eggs” without also assigning the quantity “two” to “cheese.” In addi-

tion, converting the labeled AMT data to IOE format requires making assumptions

where some information (e.g., these long-range dependencies) is omitted. Thus, we

investigated an alternative method for food-property association where we trained

a classifier to predict which food a property describes. The challenge with this ap-

proach is determining whether a property describes more than one food. However,

since only 3% of property tokens in the labeled data describe multiple tokens, missing

some foods should not hurt the accuracy by a large margin.

In our approach, given a tagged meal description, for each of the property tokens,

the classifier determines with which food it is associated. Given a property token ti,

we iterate through each food token fj in the meal description and generate features

for each (ti, fj) pair. For each pair, the classifier outputs a probability that fj is the

corresponding food item for ti. Then, for each ti, the fj with maximal probability

is selected as the corresponding food item. Note that this does not allow a property

to be associated with more than one food, but we consider this a first step and will

explore association of properties with multiple foods in future work.

The classification is done using three features: whether or not the food token

comes before or after the property token, the distance between the two tokens, and

the semantic tag of the first token. We explored three different classifiers, using

the Scikit-learn toolkit’s implementation for Python [60]: a random forest (i.e., a

collection of decision tree classifiers trained on a random sample of training data) [7],

74

logistic regression, and a naive Bayes classifier. We used the spaCy NLP toolkit1 in

Python for dependency parsing, tokenizing, and tagging because it is fast and provides

shape features (e.g., capitalization, numbers, etc.) that improved performance over

our manually defined shape features. Performance was evaluated using precision,

recall, and F1 scores for property tokens only. In the oracle experiments, since we

use the gold standard semantic tags, the number of actual property tokens equals the

number of predicted property tokens, so the precision, recall, and F1 scores are all

equivalent.

As shown in Table 5.9, the random forest classifier performed best. As expected,

the performance is significantly better in the oracle experiments than when using

predicted tags, where p < 0.01; this is partly due to the semantic tagging model

predicting properties which are not actually properties, and so will always be marked

incorrect during evaluation. The random forest classifier constructs an ensemble of

decision trees by sampling with replacement from the training set. The decision trees

are constructed from splits made on random subsets of features, which increases the

bias, but decreases the variance due to averaging, which yields a better model overall.

The trees are combined by averaging their probabilistic predictions, and the trees are

constructed by finding features at each node that yield the largest information gain.

Model Precision Recall F1

Naive Bayes (Oracle) 94.6 94.6 94.6
Logistic Regression (Oracle) 95.2 95.2 95.2

Random Forest (Oracle) 96.2 96.2 96.2

Naive Bayes (Predicted) 84.1 87.3 85.7
Logistic Regression (Predicted) 84.2 87.4 85.7

Random Forest (Predicted) 84.7 87.9 86.3

Table 5.9: Food-property association with three different classifiers, for both gold
standard semantic tags (i.e., oracle) and predicted tags.

1https://honnibal.github.io/spaCy/

75

5.4 Comparing Segmentation to Classification

In order to compare the performance of this food-property association approach (i.e.,

classification) to that of the BIO chunking with the CRF (i.e., segmentation), we

converted the IOE labels from the CRF method to the predicted associations format

for both oracle and non-oracle experiments (see Table 5.10). These results show that

the new association approach using a random forest classifier yields a significantly

higher F1 score than the CRF, where p < 0.01, when evaluated on property tokens.

For the CRF method, the number of gold property tokens with associated foods is

greater than the number of property tokens with predicted foods, which indicates

that some properties were missed in the IOE chunking scheme and therefore were not

assigned any foods.

Model Precision Recall F1

Segmenting (Oracle) 87.9 83.9 85.9
Classifying (Oracle) 96.2 96.2 96.2
Combined (Oracle) 96.5 96.5 96.5

Segmenting (Predicted) 86.2 81.0 83.5
Classifying (Predicted) 84.7 87.9 86.3
Combined (Predicted) 84.9 88.2 86.5

Table 5.10: Performance on the food-property association task using the prior ap-
proach of IOE segmenting with the CRF, the new food prediction method with the
random forest classifier, and the union, evaluated on property tokens for all methods.

We also investigated whether the IOE labels from the CRF were complementary to

the food-property classification approach by incorporating the predicted IOE labels

as new features in the random forest classifier. As shown in the last row of both

sections of Table 5.10, the addition of the IOE labels does improve the classification

performance for both oracle and non-oracle experiments. The combination of the

random forest classifier with IOE labels relative to the CRF segmenter on its own

significantly improved the performance, where p < 0.01 (p = 0.002).

76

5.5 Conclusion

In this chapter, we have presented the second task of the system’s language under-

standing component: association of attributes with foods. We evaluated two ap-

proaches: segmentation and classification. For the segmenting approach, we explored

three methods for assigning properties to foods: a Markov model that segments meal

descriptions into food chunks, a TBL algorithm that iteratively learns rules to correct

the baseline’s errors, and a CRF classifier that outperforms the other methods.

Since the majority of attributes appear prior to their corresponding food items, the

baseline simple rule which associates foods with prior attributes performs similarly

to the Markov model approach. However, the simple rule makes mistakes which the

Markov model does not. For example, brands and descriptions may appear after a

food; in the diary “I had eggs from Trader Joe’s with bread,” “eggs” is the food item

and “Trader Joe’s” is its brand, but the simple rule would assign “Trader Joe’s” to

the food “bread.” Even though the Markov model is likely to segment these diaries

correctly, the TBL algorithm shows greater improvement by directly correcting these

errors through the use of transformation rules.

Transformation-based learning also improves upon the Markov model by learning

rules that fix typical errors made by this model. TBL and the CRF contain more

information than the Markov model by incorporating tokens, not just the food and

property labels, as well as tokens that are labeled Other. The CRF model (using IOE

labels) is the best, labeling the test data with the highest F1 score of 61.9 [36].

As an alternative to the segmenting methods, we investigated using classifiers to

predict the food with which a property is associated with the highest probability. We

used three features: the distance between a food and the property, the semantic tag

of the property, and whether the property is before or after the food token. We found

that the random forest classifier performed better than logistic regression and a naive

Bayes classifier, yielding an F1 score of 86.3 when using semantic tags predicted by

the CRFsuite model trained on word vector features. We also discovered that the

food prediction method is complementary to the IOE segmenting approach, since

77

incorporating IOE labels as additional features increased the F1 score to 86.5.

78

Chapter 6

The Nutrition System Prototype

The NLP methods we have explored thus far ultimately fit into the larger nutrition

system with the goal of enabling users to easily and efficiently track their dietary

intake. Although the language understanding component is a critical aspect of the

overall system, there are four other important areas we are currently investigating:

the user interface, connecting to nutrition databases, conversing with and responding

to the user through dialogue, and the initial speech recognition. The entire system

architecture is shown in the diagram in Figure 6-1. In this chapter, we describe

previous work in spoken dialogue systems, ongoing work on our nutrition system,

and evaluation of the overall system performance.

6.1 Related Work

There are two general areas into which dialogue systems are classified: task-oriented [58,

63, 17] and nontask-oriented [25, 35]. In the first category, the user has a specific goal

they wish to accomplish by interacting with the system, and there are a series of

commands available for instructing the system to complete a desired task. Nontask-

oriented systems, on the other hand, are more conversational in nature. There is no

specific task the user wishes to accomplish; rather, the system acts as a conversational

partner and ideally should be able to respond to any query in a natural, human-like

manner. While our proposed nutrition system is currently task-oriented, we envision

79

Figure 6-1: A diagram of the nutrition system’s current architecture.

expanding the queries to which the system can respond in order to make it more

conversational.

One of the first commercially deployed dialogue systems was the AT&T How May

I Help You? (HMIHY) system [24], which is a call routing system that classifies

customer’s calls and routes them to the appropriate destination. Two other early

dialogue systems developed at MIT were the JUPITER system [88] for obtaining

worldwide weather forecasts and the Mercury automatic flight booking system [69],

which provides telephone access to an online flight database. All three systems are

task-oriented; however, while dialogues in HMIHY are guided solely by the system

after the initial user query, in JUPITER and Mercury, the technology is more complex

because the user can ask questions to which the system must adapt. Whereas in

the past, dialogue systems have mostly been useful for answering weather queries,

providing summaries of restaurant or movie reviews, and booking flights, we propose

applying dialogue systems to the nutrition domain.

In the past, dialogue managers were often composed of rules constructed by

hand [69]. This approach works well when users strictly follow the system-defined

80

dialogue pattern; however, this model suffers when users direct the course of the

conversation themselves, or move outside the realm of the hand-crafted slots. The

rule-based approach is also expensive, requires experts, and becomes increasingly

complex as more slots and actions are incorporated into the set of dialogue states. As

an alternative, recent implementations of dialogue managers are more statistical in

nature [72, 41]. Dialogue managers built by [86] use a Partially Observable Markov

Decision Process (POMDP), in which a reward based on the state of the environment

allows the policy to be optimized through reinforcement learning. Thus, a POMDP

models uncertainty directly, as opposed to the rule-based approach of representing

uncertainty with additional hand-crafted dialogue states. Although we have not done

any of this in our current prototype, in the future we plan to investigate a combina-

tion of rule-based and statistical methods for dialogue management in the nutrition

system.

6.2 Ongoing Work

Although we have built an initial prototype of the system and connected all the pieces,

there is still a great deal to accomplish before the system is ready for real-world use.

We are moving beyond the language understanding component now, by connecting

the USDA nutrition database to the system and designing a user interface for both

the web and mobile devices. In the future, we plan to add a bar code scanning

feature and employ computer vision object recognition to automatically detect foods

and quantities.

6.2.1 Designing the User Interface

A critical component of the nutrition dialogue system is the user interface. As shown

in Figure 1-3, the current web prototype simply displays the user’s query, highlighted

with color-coded semantic tags, and a table with the corresponding food items, quan-

tities, and USDA database hits. Master of Engineering student Patricia Saylor is

building a framework for leveraging web technologies in websites such as the nutri-

81

tion system, including the microphone icon for displaying the audio level [67]. Our

undergraduate SuperUROP researchers are currently building a fun, efficient, and

user-friendly interface for both the web and tablet. The goal of the interface is to

make the system easy to use and rewarding so that users are motivated to log their

meals.

6.2.2 Connecting It to a Database

Another important component of the nutrition dialogue system, in addition to lan-

guage understanding and the user interface, is connecting the automatically extracted

food concepts to a nutrition database in order to extract relevant nutrition informa-

tion. This requires determining which database hits match the user’s spoken food

concepts, selecting the most similar hit for each food item, transforming the user’s

spoken quantity into the standard quantity used by the database, and obtaining the

nutrition facts.

In the current system prototype, Master of Engineering student Rachael Naphtal

has used the USDA Nutrient Database for Standard Reference and the Nutritionix

REST API1 in order to return a list of potentially matching food items from the

database. In her algorithm [53], a series of binary decisions are made to narrow down

the search to a short list of matches. If a valid brand is specified, then hits with that

brand are more likely to be selected.

One challenge we are addressing is narrowing down a list of the top database hits

to one matching food item. If several hits contain similar nutrition information (e.g.,

a raw apple with skin vs. a raw apple without skin), we simply select one arbitrarily.

In the future, we may explore a re-ranking method for re-ordering the list of hits

returned by the database according to how relevant the hit is; thus, the first food

product in the re-ranked list is most likely to be the correct match. By presenting

the user with the top few hits, the system can learn whether the re-ranked list was

correct or whether it made a mistake and must show hits further down in the list.

Through such active learning, the system may learn specific users’ preferences as well

1http://www.nutritionix.com/api

82

as improve its re-ranking algorithm in general.

6.2.3 Engaging the User in Dialogue

Another critical task that remains is determining how to translate user-described

quantities into database quantities. The current solution relies on matching regular

expressions to the phrases tagged as quantities in the meal description, as well as the

user manually updating the quantity amount and units in the table. To map their

quantities automatically, we plan to implement a dialogue manager. For example,

if the user says, “This morning I ate a stack of pancakes smothered in butter,” the

system must translate “smothered” into tablespoons before the nutrition facts can

be retrieved from the database. Thus, the system may ask a follow-up clarification

question such as, “How many tablespoons of butter did you eat?”

In a similar manner, dialogue may enable the system to select the correct match

from the list of possible food items returned by the nutrition database. For example,

if the user neglects to specify a brand for his or her cereal, but the database returns

a list of several items that all have different brands (e.g., “Kellogg’s” or “General

Mills”), then the system could ask the user to specify a brand.

In addition, the system could learn new out-of-vocabulary words (e.g., pastrami)

by asking the user whether an unknown word is a food or brand. Then, if the system

learns a new food, it can add it to a food lexicon used by the semantic tagging model

so that it will correctly identify the food in the future.

Finally, through dialogue, we can also personalize the system for each user by

constructing personal knowledge graphs [40]. For example, the system might ask

the user whether they eat the same kind of cereal or milk every day, and if so, save

that information so that subsequently the user need not describe their breakfast in

as much detail as the first time. Or the system may ask the user whether they have

any dietary restrictions, such as vegetarian or gluten-free, which would narrow down

the database hits without requiring the user to specify such a description of their

food every time they record a meal. The system might even have a conversation with

the user, discussing healthier alternatives or suggesting food options that contain

83

nutrients in which their meals are lacking. Such a system would ultimately enable

users, especially patients with obesity or diabetes, to more easily track their meals

and improve their health.

6.2.4 Context Resolution

In this work, we assumed that each user query is a new meal description. However,

this will not be the case when real users interact with the dialogue system. They will

add followup corrections and refinements (e.g., “No, I had potatoes, not tomatoes”),

or even ask open-ended questions (e.g., “How many calories are in an apple?”), and

the system will need to be able to handle these queries.

For context resolution, there are two aspects of correctly interpreting followup

queries: correctly tagging and segmenting the query, and correctly merging new in-

formation with old information. For the first aspect, the language understanding

component is able to tag and segment followup queries as is. For the second aspect,

we have begun handling followup refinements to previously recorded foods with rule-

based heuristics. For example, if the user says, “I drank a glass of milk,” and the

default database match is whole milk, the user may follow up with the refinement, “It

was almond milk.” For now, we assume that if the subsequent recordings following

a meal description contain the same food item that was previously recorded (e.g.,

“milk”), the table will update the description (e.g., “almond” will replace “whole”).

However, this simplistic approach does not include queries with intents other than

recording a new meal description or refining a previously recorded meal. Thus, in the

future, we may add a step to the language understanding component where we classify

the user intent (e.g., record a new meal, refine a description, correct the system, etc.)

and handle each intent differently.

6.3 System Evaluation

In order to evaluate the system’s overall performance on real users, we launched an

AMT task where Turkers rated how well the system performed on three separate

84

tasks: semantic tagging, quantity matching, and correctly identifying USDA (Nutri-

ent Database for Standard Reference)2 hits for matching foods. Each task cost $0.10.

We asked Turkers to record two meal descriptions each and to interact with the sys-

tem by revising the quantities and narrowing down the USDA hits to a single option.

As shown in Figure 6-2, we added three extra columns to each row with a checkbox for

Turkers to check if the system completed the task successfully. In addition, we added

two more checks underneath the table for Turkers to indicate whether the semantic

tagging component made any substitutions (i.e., labeled a food as something other

than a food) or insertions (i.e., labeled a non-food token as a food).

Figure 6-2: An AMT task for evaluating the system’s performance on the sentence
“This morning for breakfast I had a bowl of oatmeal followed by a banana.”

The results from 437 meal descriptions containing a total of 975 food concepts

indicated that 83% of the semantic tags were correct, 78% of the quantities were

2http://ndb.nal.usda.gov/ndb/search

85

correct, and 71% of the USDA HITs were correct matches. There were only 34

insertions and 96 substitutions. 355 meal descriptions containing 885 food concepts

were omitted due to cheating Turkers who neglected to rate the system on any of the

tasks. Table 6.1 gives examples of some of the common errors the system made, such

as deleting foods by incorrectly labeling them as descriptions, labeling descriptions as

brands, incorrectly mapping user-described quantities to quantities in the table, and

failing to find USDA matches for a food (e.g., Lay’s potato chips has no matching hit

in the USDA database).

Meal Description Error Predict Correct

2 22 oz beers, a Johnsonville bratwurst with ... Subst. Descr. Food
I had a cup of coffee with no sugar Insertion Food Other

Isagenix IsaLezn Bar - Chocolate Cream Crisp Tag Brand Descr.
16.9 ounces of Trader Joe’s Natural ... Water Quantity 1 serving 16.9 oz

Lay’s Salt and Vinegar Chips USDA None N/A

Table 6.1: Examples of errors the system made in the AMT task for evaluating
performance. There are five error types: substitutions (i.e., labeling a food as a non-
food), insertions (labeling non-foods as food items), tagging (i.e., swapping property
tags), quantity (i.e., predicting the incorrect database quantity), and USDA (i.e.,
selecting the incorrect USDA hit).

86

Chapter 7

Conclusion

In this thesis, we have examined the language understanding component of a novel

nutrition dialogue system that allows obesity patients to monitor their caloric and

nutrient intake more easily and efficiently than existing self-assessment methods. The

initial prototype of the system is composed of five parts: a speech recognizer that

converts the user’s spoken meal description into text, a language understanding engine

that extracts food concepts, a database search that finds the matching foods and

their corresponding nutrition facts, and a response generator that responds to the

user through text and images. In the future, we plan to incorporate a dialogue

manager to enable the system to interact with the user more deeply, by asking follow-

up clarification questions and building a repository of personalized knowledge about

each user.

7.1 Contributions

The methods presented here focused on the data collection and language understand-

ing methods for two components: semantic tagging and food-property association.

The primary contributions are as follows.

87

7.1.1 Data Collection

We gathered 10,000 labeled meal descriptions for training and testing data via Ama-

zon Mechanical Turk (AMT), which we discussed in Chapter 2. The AMT data

collection consisted of three tasks: writing a meal as if they were speaking, labeling

each food item in a meal, and labeling all the properties describing a specific food

in a diary. We identified challenges and designed and implemented novel solutions

for cheating prevention. In addition, we launched a task with the deployed nutrition

system so that Turkers could interact with the prototype and provide feedback on

their user experience.

7.1.2 Semantic Tagging

In Chapter 3, we showed that semi-CRF and standard CRF models are both viable

methods for semantic tagging of spoken meal descriptions. Our evaluation of the sys-

tem’s performance on Amazon Mechanical Turk demonstrated that semantic tagging

in the deployed system is reasonably accurate when tested by real users.

7.1.3 Distributional Semantics

We verified in Chapter 4 that incorporating neural network trained dense word em-

bedding features, as well as prototype similarity values, in the CRF classifier improves

semantic tagging performance, since according to the theory of distributional seman-

tics, vectors with similar meaning should lie near each other in vector space. In addi-

tion, we investigated a novel approach to predicting vectors for unknown words. Our

work suggests that with a limited vocabulary, predicting vectors for out-of-vocabulary

words improves semantic labeling performance when using dense embedding features.

7.1.4 Food-Property Association

We explored two approaches to the food-property association task in Chapter 5:

segmenting meal descriptions into food chunks using an IOE labeling scheme, and

88

predicting foods for each property using a classifier. In the segmenting approach, we

discovered that although transformation-based learning improved upon the Markov

model and simple rule baselines, it did not provide gains over the CRF model; rather,

the CRF model (with an IOE label representation) yielded the best F1 scores. For

the classification approach, we found that the random forest performed better than

logistic regression or a naive Bayes classifier. Finally, we found that the segmenting

and classification methods are complementary, since incorporating the CRF’s IOE la-

bels as features improved the performance of the random forest classifier in predicting

the most likely food for each property.

7.2 Directions for Future Research

There are many interesting directions we could take to improve and refine the tech-

niques of the language understanding components in the nutrition system. Here, we

describe a few possible extensions of our work in semantic tagging, distributional

semantics, and associating foods with properties in meal descriptions.

7.2.1 Semantic Tagging

In the future, we may apply coreference resolution techniques or relation extraction

methods to the problem of identifying words which refer to the same food. We

may also investigate whether combining the CRF with the semi-CRF provides any

performance gains. In addition, we will experiment with training our models on all

the AMT data annotations, rather than only the majority.

7.2.2 Distributional Semantics

In the future, we plan to compare the performance of word embedding features and k-

means clusters of vectors to that of Brown clusters, a hierarchical clustering algorithm

that has been applied successfully to many NLP tasks [75]. In addition, we would like

to explore multiple-sense embeddings [54], since many words have several meanings,

89

which are not all captured when using a single vector per word. Rather than using

word vectors, we could use letter trigram vectors [85], which may help avoid the issue

of out-of-vocabulary words. Finally, we could investigate the use of recurrent neural

networks (RNNs) [48, 84] or recurrent CRFs [83] as alternatives to the standard CRF.

7.2.3 Food-Property Association

In the future, we may jointly model the labeling and segmenting tasks, rather than

the three-step process of labeling, then segmenting, and finally using the segmenting

results to redo the labeling task. We could also reverse the order of these two phases

such that it matches the AMT annotation setup, where food concepts are identified

first, and only afterward are the fine-grained properties labeled. Finally, we plan to

enable association of properties with more than one food since with the random forest

classification approach, only one food is assigned to each property. In the data, 3%

of the properties describe multiple foods, so it may be beneficial to select a threshold

such that all foods predicted with a probability above the threshold are assigned to

the same property.

7.3 Looking Forward

In this thesis, we have explored the novel application of spoken language technology

to the challenge of reducing user burden for tracking food and nutrient intake, espe-

cially for obese individuals who find existing diet applications too tedious. As speech

recognition and spoken language understanding research advances, dialogue systems

are being applied to more and more domains, including health and education, which

can have a great impact on society. Personal assistants such as Siri are even able

to handle multiple domains at once. We envision a future where we will be able to

converse with computers in every aspect of our lives, from simple flight booking and

financial transactions to diet tracking and medical diagnosis, where each dialogue

will be tailored to a specific user, and information from previous conversations will

be stored for future reference. The future of technology is exciting, and speech and

90

language understanding will be at the forefront.

91

92

Appendix A

Training CRFs

A.1 Inference

Training a CRF involves two parts: parameter estimation (i.e., finding the set of

parameters θ such that the resulting distribution Pr(y|x, θ) best fits the training data)

and probabilistic inference (i.e., computing the marginal distributions Pr(ya|x, θ)

over a subset of output variables, as well as computing the most likely labeling y∗ =

argmaxyPr(y|x, θ) of a new input x). Here, we will focus on linear-chain CRFs, since

they are simple enough that inference can be exact, and they are used for sequence

labeling tasks such as our food and property semantic tagging task.

Computing the node and edge marginals is important because they are used in

the parameter estimation calculation. The forward-backward algorithm is used for

computing marginals, and the Viterbi algorithm is used for computing the most likely

output labels for a new input sequence.

First, we introduce new notation for a CRF, where we define transition weights

Ψ(yt, yt−1,xt) = exp{
K∑
k=1

θkfk(yt, yt−1,xt)}. (A.1)

The idea behind the forward-backward algorithm is that we can save computation

by caching inner sums in order to compute the outer sums for the probability p(x)

of the observed data. Plugging in the transition weights, we define forward variables

93

(representing intermediate sums) as

αt(j) =
∑

y<1...t−1>

Ψt(j, yt−1, xt)
t−1∏
t′=1

Ψt′(yt′ , yt′−1, xt′) (A.2)

which is calculated recursively

=
∑
i∈S

Ψt(j, i, xt)αt−1(i). (A.3)

The backward weights are defined similarly, except that the summations are in

the reverse order

βt(i) =
∑

y<t+1...T>

T∏
t′=t+1

Ψt′(yt′ , yt′−1, xt′) (A.4)

which is again calculated recursively

=
∑
j∈S

Ψt+1(j, i, xt+1)βt+1(j). (A.5)

After computing the forward and backward variables α and β, the marginals are

calculated as follows

Pr(yt−1, yt|x) =
αt−1(yt−1)Ψt(yt, yt−1, xt)βt(yt)

Z(x)
(A.6)

Pr(yt|x) =
αt(yt)βt(yt)

Z(x)
. (A.7)

Finally, we can compute the optimal assignment y∗ = argmaxyPr(y|x, θ)) using

the Viterbi algorithm by simply replacing the summations in the forward-backward

algorithm with maximizations. Instead of α, we have the analogous

δt(j) = maxy<1...t−1>Ψt(j, yt−1, xt)
t−1∏
t′=1

Ψt′(yt′ , yt′−1, xt′) (A.8)

94

which is similarly calculated recursively

δt(j) = maxi∈SΨt(j, i, xt)δt−1(i). (A.9)

Then, the maximizing assignment is computed through a backwards recursion

y∗T = argmaxi∈SδT (i) (A.10)

and

y∗t = argmaxi∈SΨt(y
∗
t+1, i, xt+1)δt(i) (A.11)

for t < T .

The most commonly used exact inference algorithm is the junction tree algorithm,

which successively groups variables until the graph becomes a tree and tree-specific

inference algorithms can be applied. In practice, though, approximate inference al-

gorithms are often used because parameter estimation requires performing inference

many times, so an efficient training algorithm is crucial. Two types of approxima-

tion algorithms are used: Monte Carlo and variational. Monte Carlo algorithms are

stochastic algorithms that produce samples from the distribution of interest. Vari-

ational algorithms convert inference into an optimization problem by attempting to

find an approximation of the marginals of interest. Although variational algorithms

are biased, they are also fast, which makes them more useful for CRFs.

A.2 Parameter Estimation

In linear-chain CRFs, parameter estimation is computed using numerical optimiza-

tion methods. We are given independent and identically distributed (iid) data D =

{x(i),y(i)}Ni=1, where x(i) = {x(i)
1 ,x

(i)
2 , ...,x

(i)
T } is a sequence of inputs, and {y(i) =

{y(i)
1 , y

(i)
2 , ..., y

(i)
T } is a sequence of predicted output labels. If we set an objective func-

tion l(θ), then we can find the optimal parameter setting by calculating the maximum

likelihood θ̂ML, which corresponds to the parameters under which the observed data

95

is most likely. As our objective function, we use the conditional log likelihood

l(θ) =
N∑
i=1

logPr(y(i)|x(i); θ). (A.12)

To compute the maximum likelihood estimate, we maximize l(θ). To do this, we first

substitute the CRF model in equation 3.1 into the likelihood:

l(θ) =
N∑
i=1

log[
1

Z(x(i))

T∏
t=1

exp{
K∑
k=1

θkfk(y
(i)
t , y

(i)
t−1,xt

(i))}] (A.13)

=
N∑
i=1

log[
T∏
t=1

exp{
K∑
k=1

θkfk(y
(i)
t , y

(i)
t−1,xt

(i))}] +
N∑
i=1

log
1

Z(x(i))
(A.14)

=
N∑
i=1

T∑
t=1

K∑
k=1

θkfk(y
(i)
t , y

(i)
t−1,xt

(i))−
N∑
i=1

logZ(x(i)). (A.15)

Next we introduce a regularization term, which prevents the model from overfitting

when there are many parameters. A penalty based on the Euclidean norm of θ is

applied, and a regularization parameter 1
2σ2 determines the strength of the penalty:

l(θ) =
N∑
i=1

T∑
t=1

K∑
k=1

θkfk(y
(i)
t , y

(i)
t−1,xt

(i))−
N∑
i=1

logZ(x(i))−
K∑
k=1

θ2
k

2σ2
. (A.16)

Next we take the partial derivatives of the likelihood with respect to each θk,

plugging in for the partition function Z:

∂l

∂θk
=

N∑
i=1

T∑
t=1

fk(y
(i)
t , y

(i)
t−1,xt

(i))− ∂

∂θk

N∑
i=1

log
∑
y

T∏
t=1

exp{
K∑
k=1

θkfk(y
(i)
t , y

(i)
t−1,xt

(i))}− θk
σ2

(A.17)

=
N∑
i=1

T∑
t=1

fk(y
(i)
t , y

(i)
t−1,xt

(i))−
N∑
i=1

∑
y

log
T∏
t=1

exp{fk(y(i)
t , y

(i)
t−1,xt

(i))} − θk
σ2

(A.18)

96

=
N∑
i=1

T∑
t=1

fk(y
(i)
t , y

(i)
t−1,xt

(i))−
N∑
i=1

T∑
t=1

∑
y,y′

fk(y, y
′,xt

(i))Pr(y, y′|x(i))− θk
σ2
. (A.19)

Since the partial derivatives contain marginal distributions, we must run inference

for each training sample every time the likelihood is computed. Since this objective

function is strictly concave, there is exactly one global optimum. Common opti-

mization techniques such as conjugate gradient and the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm approximate second-order information.

97

98

Appendix B

Measurements and Calculations

B.1 Kappa Score

Cohen’s kappa score is used for determining the agreement between two annotators,

whereas Fleiss’ kappa score is a statistical measure of the agreement among any

fixed number of raters giving categorical ratings [77]. It also assumes different items

are rated by different individuals. Fleiss’ kappa is more useful in our case because

multiple Turkers annotated each meal description (five each for food labeling and

three each for property labeling), assigning the categories “Food” and “Other” in

the food labeling task and the categories “Brand,” “Quantity,” “Description,” and

“Other” in the property labeling task.

Fleiss’ kappa, which expresses the amount of agreement among the annotators

exceeding the agreement that would be present if the annotations were all made

randomly, is calculated as

κ =
P̄ − P̄e
1− P̄e

(B.1)

where 1 − P̄e is the possible agreement above chance, and P̄ − P̄e is the actually

observed agreement above chance. A kappa score of one indicates perfect agreement,

whereas a score below zero indicates less than chance agreement. P̄ is the mean of

each Pi, where Pi is the agreement for word i and is computed as

99

Pi =
1

n(n− 1)

k∑
j=1

nij(nij − 1). (B.2)

P̄e is the sum of each Pj squared, where Pj is the proportion of words assigned to

category j and is calculated as

Pj =
1

Nn

N∑
i=1

nij. (B.3)

N is the total number of words that were labeled by Turkers, n is the number of

ratings per word, and k is the number of possible categories.

B.2 F1 Score

For evaluation, we calculated precision (i.e., the fraction of predicted labels that were

correct), recall (i.e., the fraction of gold standard labels that were predicted), and F1

(i.e., the harmonic mean of precision and recall) scores for each approach:

precision =
numCorrect

numPredict
(B.4)

recall =
numCorrect

numGold
(B.5)

F1 = 2 · precision · recall

precision + recall
(B.6)

B.3 Significance Tests

When comparing the performance of two methods, it is important to use statistical

tests in order to test whether the difference is significant; that is, we aim to show that

the difference in performance indicates that the two methods are indeed unequal and

thus that one yields better performance than the other. We call the case where two

methods are equal the null hypothesis H0, and the alternate hypothesis (that the two

100

methods are unequal) H1. If we can show the probability that the null hypothesis

holds is smaller than some threshold α, then we may reject it in favor of H1.

One common approach for testing the significance of the difference between two

methods is the Student’s t test, which is a likelihood ratio test based on the variable t2

of the Student’s t distribution (shown in Figure B-1). The likelihood ratio test allows

us to reject H0 if the ratio of the likelihood of the observed result given H0, L(X|H0),

over the likelihood of the observation given H1, L(X|H1), is small enough [32]. More

formally, the likelihood ratio λ = L(X|H0)
L(X|H1)

, where we reject H0 if λ ≤ λ0, and the

threshold λ0 is chosen such that P (λ ≤ λ0|H0) ≤ α.

Figure B-1: Probability density function of the Student’s t distribution for varying
degrees of freedom v.

In the Student’s t test, the likelihood ratio is equivalent to a test based on the

variable t2 of the Student’s t distribution, so we can compute the t statistic in order

to test significance. The critical region where we reject the null hypothesis consists of

the two tail regions of the t distribution with n−1 degrees of freedom, where n is the

number of samples, such that |t| > t0 and t0 is chosen so that P (t > t0) = α/2. We

can calculate the t statistic for several different scenarios, including equal or unequal

sample sizes and equal or unequal variances. In general, the equation for t is the

difference between the two means, divided by the standard error of this difference.

101

For unequal sample sizes and variances, this becomes

t =
X̄1 − X̄2

sX̄1−X̄2

, (B.7)

where X̄1 and X̄2 are the means and sX̄1−X̄2
is the standard error

sX̄1−X̄2
=

√
s2

1

n1

+
s2

2

n2

, (B.8)

where n1 and n2 are the sample sizes, and s2
1 and s2

2 are the variances.

An example from natural language processing (NLP) where we might apply the

paired t test is an information retrieval task. The goal is, given a user’s search query,

to retrieve the most relevant document containing the answer to the user’s query. We

can measure the success of the task by assigning a precision score to each query; we

can do this for several methods and compare their performance using the t significance

test. In this case, the t test is a reasonable choice because each method results in a set

of n precision scores, where n is the number of sample queries. We can then calculate

the mean and standard deviation of the precision scores for different approaches and

measure the significance using the t statistic.

However, in our case, the semantic tagging task consists of assigning a label to

each token in a set of food diaries, and each label is either correct or incorrect. The

t test does not apply on the token level because there is no set of values from which

to take the mean and standard deviation. It could apply if we were to calculate

the accuracy of labels per food diary, since we could then use those scores to get a

mean and standard deviation. However, this is not as fine-grained an approach as

McNemar’s significance test, which allows us to compare the labeling performance on

each token directly [22].

In McNemar’s significance test, we evaluate the performance of various methods

on each token, checking whether or not each method labeled the token correctly or

incorrectly. The algorithm collapses the results down to a 2x2 matrix, as shown in

Table B.1, which lists the number of tokens labeled correctly or incorrectly by both

102

methods along the diagonal (n00 and n11 respectively) and the number of tokens

labeled correctly by one method, but incorrectly by the other, on the off-diagonal

(i.e., n01 and n10).

Method 1/Method 2 Correct Incorrect

Correct n00 n01

Incorrect n10 n11

Table B.1: McNemar’s matrix of tokens labeled correctly or incorrectly by two meth-
ods.

Using the values in this 2x2 matrix, we can test the null hypothesis H0 that the

off-diagonals are equal, i.e., n01 = n10, or equivalently, whether n01

n01+n10
= 1

2
. Given

H0, the probability of observing k tokens classified asymmetrically (i.e., classified

correctly by one method but not the other) has a binomial probability mass function

(PMF) as shown in Fig. B-2

P (k) =

(
n

k

)
(
1

2
)n, (B.9)

where there are n = n01+n10 tokens in total. We then test for significance by checking

whether P < α. We can compute the probability P by summing the tails of the PMF

distribution

P =
l∑

k=0

P (k) +
n∑

k=m

P (k), (B.10)

where l = min(n01, n10) and m = max(n01, n10).

Figure B-2: Probability mass function of the binomial distribution, where the tails
are used for McNemar’s significance test [23].

103

104

Bibliography

[1] R. Al-Rfou, B. Perozzi, and S. Skiena. Polyglot: Distributed word representa-
tions for multilingual NLP. arXiv preprint arXiv:1307.1662, 2013.

[2] M. Bansal, K. Gimpel, and K. Livescu. Tailoring continuous word representations
for dependency parsing. In Proc. ACL, 2014.

[3] M. Baroni, G. Dinu, and G. Kruszewski. Dont count, predict! A systematic
comparison of context-counting vs. context-predicting semantic vectors. In Proc.
ACL, volume 1, pages 238–247, 2014.

[4] I. Bazzi. Modelling Out-of-vocabulary Words for Robust Speech Recognition. PhD
thesis, Massachusetts Institute of Technology, 2002.

[5] J. Berant and P. Liang. Semantic parsing via paraphrasing. In Proc. ACL,
volume 7, page 92, 2014.

[6] C. Bishop et al. Pattern Recognition and Machine Learning, volume 1. Springer
New York, 2006.

[7] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[8] A. Celikyilmaz, D. Hakkani-Tur, P. Pasupat, and R. Sarikaya. Enriching word
embeddings using knowledge graph for semantic tagging in conversational dialog
systems. genre, 2010.

[9] J. Chen, N. Menezes, A. Bradley, and T. North. Opportunities for crowdsourcing
research on Amazon Mechanical Turk. Interfaces, 5(3), 2011.

[10] Q. Chen, C. Lei, W. Xu, E. Pavlick, and C. Callison-Burch. Poetry of the crowd:
A human computation algorithm to convert prose into rhyming verse. In Second
AAAI Conference on Human Computation and Crowdsourcing, 2014.

[11] Y. Chen and A. Rudnicky. Dynamically supporting unexplored domains in con-
versational interactions by enriching semantics with neural word embeddings.
Proc. SLT, 2014.

[12] Y. Chen, W. Wang, and A. Rudnicky. Leveraging frame semantics and distri-
butional semantics for unsupervised semantic slot induction in spoken dialogue
systems.

105

[13] Y. Chen, W. Wang, and A. Rudnicky. Unsupervised induction and filling of
semantic slots for spoken dialogue systems using frame-semantic parsing. In
Proc. ASRU, pages 120–125, 2013.

[14] DM Conway. An algorithmic approach to English pluralization. In Proceedings
of the Second Annual Perl Conference. C. Salzenberg. San Jose, CA, O’Reilly,
1998.

[15] M. De Marneffe, B. MacCartney, C. Manning, et al. Generating typed depen-
dency parses from phrase structure parses. In Proc. LREC, volume 6, pages
449–454, 2006.

[16] A. Deoras and R. Sarikaya. Deep belief network based semantic taggers for
spoken language understanding. In Proc. INTERSPEECH, pages 2713–2717,
2013.

[17] L. Devillers, L. Lamel, and I. Vasilescu. Emotion detection in task-oriented
spoken dialogues. In Multimedia and Expo, 2003. ICME’03. Proceedings. 2003
International Conference on, volume 3, pages III–549. IEEE, 2003.

[18] J. Finkel, A. Kleeman, and C. Manning. Efficient, feature-based, conditional
random field parsing. In ACL, volume 46, pages 959–967, 2008.

[19] E. Finkelstein, J. Trogdon, J. Cohen, and W. Dietz. Annual medical spend-
ing attributable to obesity: Payer-and service-specific estimates. Health affairs,
28(5):w822–w831, 2009.

[20] R. Florian and G. Ngai. Fast transformation-based learning toolkit. Johns Hop-
kins University, USA, 2001.

[21] S. Gebhardt, L. Lemar, D. Haytowitz, P. Pehrsson, M. Nickle, B. Showell,
R. Thomas, J. Exler, and J. Holden. USDA national nutrient database for
standard reference, release 21. 2008.

[22] L. Gillick and S. Cox. Some statistical issues in the comparison of speech recog-
nition algorithms. In Proc. ICASSP, pages 532–535, 1989.

[23] J. Glass and V. Zue. MIT open courseware: Automatic speech recognition
(6.345), 2003.

[24] A. Gorin, G. Riccardi, and J. Wright. How may I help you? Speech communi-
cation, 23(1):113–127, 1997.

[25] A. Graesser, K. VanLehn, C. Rosé, P. Jordan, and D. Harter. Intelligent tutoring
systems with conversational dialogue. AI magazine, 22(4):39, 2001.

[26] D. Guo, G. Tur, W. Yih, and G. Zweig. Joint semantic utterance classification
and slot filling with recursive neural networks.

106

[27] J. Guo, W. Che, H. Wang, and T. Liu. Revisiting embedding features for simple
semi-supervised learning. In Proc. EMNLP, pages 110–120, 2014.

[28] J. Guo, W. Che, H. Wang, and T. Liu. Revisiting embedding features for simple
semi-supervised learning. In Proc. EMNLP, pages 110–120, 2014.

[29] S. Hahn, P. Lehnen, C. Raymond, and H. Ney. A comparison of various methods
for concept tagging for spoken language understanding. In LREC, 2008.

[30] X. He, R. Zemel, and M. Carreira-Perpindn. Multiscale conditional random fields
for image labeling. In Computer vision and pattern recognition, 2004. CVPR
2004. Proceedings of the 2004 IEEE computer society conference on, volume 2,
pages II–695. IEEE, 2004.

[31] I. Hetherington. The MIT finite-state transducer toolkit for speech and language
processing. In Proc. INTERSPEECH, 2004.

[32] P. Hoel, S. Port, and C. Stone. Introduction to Statistical Theory. Houghton
Mifflin Boston, 1971.

[33] J. Ingber. My fitness pal: A guide to an accessible fitness tool. 2014.

[34] M. Iyyer, J. Boyd-Graber, L. Claudino, R. Socher, and H. III. A neural network
for factoid question answering over paragraphs. In Proc. EMNLP, pages 633–644,
2014.

[35] K. Jokinen and M. McTear. Spoken dialogue systems. Synthesis Lectures on
Human Language Technologies, 2(1):1–151, 2009.

[36] M. Korpusik, N. Schmidt, J. Drexler, S. Cyphers, and J. Glass. Data collection
and language understanding of food descriptions. Proc. SLT, 2014.

[37] T. Kudo. CRF++: Yet another CRF toolkit. Software available at http://crfpp.
sourceforge. net, 2005.

[38] C. Lee and J. Glass. A transcription task for crowdsourcing with automatic
quality control. In Interspeech, pages 3041–3044. Citeseer, 2011.

[39] X. Li. Understanding the semantic structure of noun phrase queries. In Proc.
ACL, pages 1337–1345. Association for Computational Linguistics, 2010.

[40] X. Li, G. Tur, D. Hakkani-Tur, and Q. Li. Personal knowledge graph population
from user utterances in conversational understanding. In Proc. SLT, pages 224–
229. IEEE, 2014.

[41] J. Liu, P. Pasupat, S. Cyphers, and J. Glass. Asgard: A portable architecture
for multilingual dialogue systems. In Proc. ICASSP, pages 8386–8390, 2013.

107

[42] J. Liu, P. Pasupat, Y. Wang, S. Cyphers, and J. Glass. Query understanding
enhanced by hierarchical parsing structures. In Proc. ASRU, pages 72–77. IEEE,
2013.

[43] J. Liu and S. Seneff. A dialogue system for accessing drug reviews. In Proc.
ASRU, pages 324–329, 2011.

[44] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky. The
stanford CoreNLP natural language processing toolkit. In Proc. ACL: System
Demonstrations, pages 55–60, 2014.

[45] A. McCallum, K. Bellare, and F. Pereira. A conditional random field
for discriminatively-trained finite-state string edit distance. arXiv preprint
arXiv:1207.1406, 2012.

[46] Andrew Kachites McCallum. MALLET: A machine learning for language toolkit.
http://mallet.cs.umass.edu, 2002.

[47] I. McGraw, S. Cyphers, P. Pasupat, J. Liu, and J. Glass. Automating crowd-
supervised learning for spoken language systems. In Proc. INTERSPEECH,
2012.

[48] G. Mesnil, X. He, L. Deng, and Y. Bengio. Investigation of recurrent-neural-
network architectures and learning methods for spoken language understanding.
In Proc. INTERSPEECH, pages 3771–3775, 2013.

[49] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[50] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed rep-
resentations of words and phrases and their compositionality. In Advances in
Neural Information Processing Systems, pages 3111–3119, 2013.

[51] T. Mikolov, W. Yih, and G. Zweig. Linguistic regularities in continuous space
word representations. In HLT-NAACL, pages 746–751, 2013.

[52] G. Miller and W. Charles. Contextual correlates of semantic similarity. Language
and Cognitive Processes, 6(1):1–28, 1991.

[53] R. Naphtal. Natural Language Processing Based Nutritional Application. PhD
thesis, Massachusetts Institute of Technology, 2015.

[54] A. Neelakantan, J. Shankar, A. Passos, and A. McCallum. Efficient nonpara-
metric estimation of multiple embeddings per word in vector space. In Proc.
EMNLP, 2014.

[55] C. Ogden, M. Carroll, B. Kit, and K. Flegal. Prevalence of childhood and adult
obesity in the United States, 2011-2012. Jama, 311(8):806–814, 2014.

108

[56] Naoaki Okazaki. CRFsuite: A fast implementation of conditional random fields
(CRFs), 2007.

[57] World Health Organization. Obesity: Preventing and Managing the Global Epi-
demic. Number 894. World Health Organization, 2000.

[58] K. Papineni, S. Roukos, and R. Ward. Natural language task-oriented dialog
manager and method, June 12 2001. US Patent 6,246,981.

[59] E. Pavlick, R. Yan, and C. Callison-Burch. Crowdsourcing for grammatical
error correction. In Proceedings of the companion publication of the 17th ACM
conference on Computer supported cooperative work & social computing, pages
209–212. ACM, 2014.

[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in Python. The Journal of Machine Learning Research, 12:2825–2830,
2011.

[61] J. Pennington, R. Socher, and C. Manning. GloVe: Global vectors for word
representation. Proc. EMNLP, 12, 2014.

[62] M. Porter. An algorithm for suffix stripping. Program: Electronic Library and
Information Systems, 14(3):130–137, 1980.

[63] A. Raux and M. Eskenazi. Using task-oriented spoken dialogue systems for
language learning: Potential, practical applications and challenges. In In-
STIL/ICALL Symposium 2004, 2004.

[64] M. Rollo, S. Ash, P. Lyons-Wall, and A. Russell. Trial of a mobile phone method
for recording dietary intake in adults with type 2 diabetes: Evaluation and impli-
cations for future applications. Journal of telemedicine and telecare, 17(6):318–
323, 2011.

[65] S. Sarawagi and W. Cohen. Semi-markov conditional random fields for informa-
tion extraction. In Proc. NIPS, pages 1185–1192, 2004.

[66] R. Sarikaya, G. Hinton, and B. Ramabhadran. Deep belief nets for natural
language call-routing. In Proc. ICASSP, pages 5680–5683, 2011.

[67] P. Saylor. Spoke: A Framework for Building Speech-Enabled Websites. PhD
thesis, Massachusetts Institute of Technology, 2015.

[68] H. Schütze. Word space. In Advances in Neural Information Processing Systems
5. Citeseer, 1993.

[69] S. Seneff and J. Polifroni. Dialogue management in the Mercury flight reservation
system. In Proc. ANLP/NAACL Workshop on Conversational systems-Volume
3, pages 11–16. Association for Computational Linguistics, 2000.

109

[70] C. Sutton and A. McCallum. An introduction to conditional random fields for
relational learning. Introduction to statistical relational learning, pages 93–128,
2006.

[71] C. Sutton and A. McCallum. An introduction to conditional random fields. arXiv
preprint arXiv:1011.4088, 2010.

[72] B. Thomson. Statistical Methods for Spoken Dialogue Management. Springer,
2013.

[73] K. Toutanova, D. Klein, C. Manning, and Y. Singer. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational Linguis-
tics on Human Language Technology-Volume 1, pages 173–180. Association for
Computational Linguistics, 2003.

[74] C. Tsai, G. Lee, F. Raab, G. Norman, T. Sohn, W. Griswold, and K. Patrick.
Usability and feasibility of PmEB: A mobile phone application for monitoring
real time caloric balance. Mobile networks and applications, 12(2-3):173–184,
2007.

[75] J. Turian, L. Ratinov, and Y. Bengio. Word representations: A simple and
general method for semi-supervised learning. In Proc. ACL, pages 384–394.
Association for Computational Linguistics, 2010.

[76] L. Van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(2579-2605):85, 2008.

[77] A. Viera, J. Garrett, et al. Understanding interobserver agreement: The kappa
statistic. Family Medicine, 37(5):360–363, 2005.

[78] Y. Wang and M. Beydoun. The obesity epidemic in the United States–gender,
age, socioeconomic, racial/ethnic, and geographic characteristics: A systematic
review and meta-regression analysis. Epidemiologic reviews, 29(1):6–28, 2007.

[79] Y. Wang, K. Loe, and J. Wu. A dynamic conditional random field model for fore-
ground and shadow segmentation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 28(2):279–289, 2006.

[80] M. Worsham. Calorie count iPhone application offers first speech recognition tool
to the health and wellness industry, along with redesigned food-logging platform.
2011.

[81] P. Xu and R. Sarikaya. Convolutional neural network based triangular CRF for
joint intent detection and slot filling. In Proc. ASRU, pages 78–83, 2013.

[82] R. Yan, M. Gao, E. Pavlick, and C. Callison-Burch. Are two heads better than
one? Crowdsourced translation via a two-step collaboration of non-professional
translators and editors. In The 52nd Annual Meeting of the Association of Com-
putational Linguistics, 2014.

110

[83] K. Yao, B. Peng, G. Zweig, D. Yu, X. Li, and F. Gao. Recurrent conditional
random field for language understanding. In Proc. ICASSP, pages 4077–4081.
IEEE, 2014.

[84] K. Yao, G. Zweig, M. Hwang, Y. Shi, and D. Yu. Recurrent neural networks for
language understanding. In INTERSPEECH, pages 2524–2528, 2013.

[85] W. Yih, X. He, and C. Meek. Semantic parsing for single-relation question
answering. In Proc. ACL, 2014.

[86] S. Young, M. Gašić, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson, and
K. Yu. The hidden information state model: A practical framework for POMDP-
based spoken dialogue management. Computer Speech & Language, 24(2):150–
174, 2010.

[87] H. Zhao, C. Huang, and M. Li. An improved Chinese word segmentation system
with conditional random field. In Proceedings of the Fifth SIGHAN Workshop
on Chinese Language Processing, volume 1082117. Sydney: July, 2006.

[88] V. Zue, S. Seneff, J. Glass, J. Polifroni, C. Pao, T. Hazen, and L. Hetherington.
JUPITER: A telephone-based conversational interface for weather information.
Speech and Audio Processing, IEEE Transactions on, 8(1):85–96, 2000.

111

