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Abstract

We apply a general recurrent neural net-
work (RNN) encoder framework to commu-
nity question answering (cQA) tasks. Our ap-
proach does not rely on any linguistic pro-
cessing, and can be applied to different lan-
guages or domains. Further improvements are
observed when we extend the RNN encoders
with a neural attention mechanism that en-
courages reasoning over entire sequences. To
deal with practical issues such as data spar-
sity and imbalanced labels, we apply vari-
ous techniques such as transfer learning and
multitask learning. Our experiments on the
SemEval-2016 cQA task show 10% improve-
ment on a MAP score compared to an infor-
mation retrieval-based approach, and achieve
comparable performance to a strong hand-
crafted feature-based method.

1 Introduction

Community question answering (cQA) is a
paradigm that provides forums for users to ask
or answer questions on any topic with barely any
restrictions. In the past decade, these websites
have attracted a great number of users, and have
accumulated a large collection of question-comment
threads generated by these users. However, the
low restriction results in a high variation in answer
quality, which makes it time-consuming to search
for useful information from the existing content. It
would therefore be valuable to automate the pro-
cedure of ranking related questions and comments
for users with a new question, or when looking for
solutions from comments of an existing question.

Automation of cQA forums can be divided into
three tasks: question-comment relevance (Task A),
question-question relevance (Task B), and question-
external comment relevance (Task C). One might
think that classic retrieval models like language
models for information retrieval (Zhai and Lafferty,
2004) could solve these tasks. However, a big
challenge for cQA tasks is that users are used to
expressing similar meanings with different words,
which creates gaps when matching questions based
on common words. Other challenges include in-
formal usage of language, highly diverse content of
comments, and variation in the length of both ques-
tions and comments.

To overcome these issues, most previous work
(e.g. SemEval 2015 (Nakov et al., 2015)) relied
heavily on additional features and reasoning capa-
bilities. In (Rocktäschel et al., 2015), a neural
attention-based model was proposed for automati-
cally recognizing entailment relations between pairs
of natural language sentences. In this study, we first
modify this model for all three cQA tasks. We also
extend this framework into a jointly trained model
when the external resources are available, i.e. select-
ing an external comment when we know the ques-
tion that the external comment answers (Task C).

Our ultimate objective is to classify relevant
questions and comments without complicated hand-
crafted features. By applying RNN-based encoders,
we avoid heavily engineered features and learn the
representation automatically. In addition, an atten-
tion mechanism augments encoders with the ability
to attend to past outputs directly. This becomes help-
ful when encoding longer sequences, since we no
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longer need to compress all information into a fixed-
length vector representation.

In our view, existing annotated cQA corpora are
generally too small to properly train an end-to-end
neural network. To address this, we investigate
transfer learning by pretraining the recurrent sys-
tems on other corpora, and also generating addi-
tional instances from existing cQA corpus.

2 Related Work

Earlier work of community question answering re-
lied heavily on feature engineering, linguistic tools,
and external resource. (Jeon et al., 2006) and (Shah
and Pomerantz, 2010) utilized rich non-textual fea-
tures such as answer’s profile. (Grundström and
Nugues, 2014) syntactically analyzed the question
and extracted name entity features. (Harabagiu and
Hickl, 2006) demonstrated a textual entailment sys-
tem can enhance cQA task by casting question an-
swering to logical entailment.

More recent work incorporated word vector into
their feature extraction system and based on it de-
signed different distance metric for question and an-
swer (Tran et al., 2015) (Belinkov et al., 2015).
While these approaches showed effectiveness, it is
difficult to generalize them to common cQA tasks
since linguistic tools and external resource may be
restrictive in other languages and features are highly
customized for each cQA task.

Very recent work on answer selection also in-
volved the use of neural networks. (Wang and Ny-
berg, 2015) used LSTM to construct a joint vector
based on both the question and the answer and then
converted it into a learning to rank problem. (Feng
et al., 2015) proposed several convolutional neural
network (CNN) architectures for cQA. Our method
differs in that RNN encoder is applied here and by
adding attention mechanism we jointly learn which
words in question to focus and hence available to
conduct qualitative analysis. During classification,
we feed the extracted vector into a feed-forward
neural network directly instead of using mean/max
pooling on top of each time steps.

3 Method

In this section, we first discuss long short-term mem-
ory (LSTM) units and an associated attention mech-

anism. Next, we explain how we can encode a
pair of sentences into a dense vector for predict-
ing relationships using an LSTM with an attention
mechanism. Finally, we apply these models to pre-
dict question-question similarity, question-comment
similarity, and question-external comment similar-
ity.

3.1 LSTM Models

LSTMs have shown great success in many differ-
ent fields. An LSTM unit contains a memory cell
with self-connections, as well as three multiplicative
gates to control information flow. Given input vector
xt, previous hidden outputs ht−1, and previous cell
state ct−1, LSTM units operate as follows:

X =

[
xt

ht−1

]
(1)

it = σ(WiXX +Wicct−1 + bi) (2)

ft = σ(WfXX +Wfcct−1 + bf ) (3)

ot = σ(WoXX +Wocct−1 + bo) (4)

ct = ft � ct−1 + it � tanh(WcXX + bc) (5)

ht = ot � tanh(ct) (6)

where it, ft, ot are input, forget, and output gates,
respectively. The sigmoid function σ() is a soft gate
function controlling the amount of information flow.
W s and bs are model parameters to learn.

3.2 Neural Attention

A traditional RNN encoder-decoder ap-
proach (Sutskever et al., 2014) first encodes an
arbitrary length input sequence into a fixed-length
dense vector that can be used as input to subsequent
classification models, or to initialize the hidden state
of a secondary decoder. However, the requirement
to compress all necessary information into a single
fixed length vector can be problematic. A neural
attention model (Bahdanau et al., 2014) (Cho et
al., 2014) has been recently proposed to alleviate
this issue by enabling the network to attend to
past outputs when decoding. Thus, the encoder no
longer needs to represent an entire sequence with
one vector; instead, it encodes information into
a sequence of vectors, and adaptively chooses a
subset of the vectors when decoding.
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Figure 1: RNN encoder for related question/comment selection.
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Figure 2: Neural attention model for related question/comment selection.

3.3 Predicting Relationships of Object Pairs
with an Attention Model

In our cQA tasks, the pair of objects are (question,
question) or (question, comment), and the relation-
ship is relevant/irrelevant. The left side of Figure 1
shows one intuitive way to predict relationships us-
ing RNNs. Parallel LSTMs encode two objects inde-
pendently, and then concatenate their outputs as an
input to a feed-forward neural network (FNN) with
a softmax output layer for classification.

The representations of the two objects are gener-
ated independently in this manner. However, we are
more interested in the relationship instead of the ob-
ject representations themselves. Therefore, we con-
sider a serialized LSTM-encoder model in the right
side of Figure 1 that is similar to that in (Rocktäschel
et al., 2015), but also allows an augmented feature
input to the FNN classifier.

Figure 2 illustrates our attention framework in
more detail. The first LSTM reads one object, and
passes information through hidden units to the sec-
ond LSTM. The second LSTM then reads the other

object and generates the representation of this pair
after the entire sequence is processed. We build an-
other FNN that takes this representation as input to
classify the relationship of this pair.

By adding an attention mechanism to the encoder,
we allow the second LSTM to attend to the sequence
of output vectors from the first LSTM, and hence
generate a weighted representation of first object ac-
cording to both objects. Let hN be the last output
of second LSTM and M = [h1, h2, · · · , hL] be the
sequence of output vectors of the first object. The
weighted representation of the first object is

h′ =

L∑

i=1

αihi (7)

The weight is computed by

αi =
exp(a(hi, hN ))

∑L
j=1 exp(a(hj , hN ))

(8)

where a() is the importance model that produces a
higher score for (hi, hN ) if hi is useful to determine



the object pair’s relationship. We parametrize this
model using another FNN. Note that in our frame-
work, we also allow other augmented features (e.g.,
the ranking score from the IR system) to enhance the
classifier. So the final input to the classifier will be
hN , h′, as well as augmented features.

3.4 Modeling Question-External Comments
For task C, in addition to an original question (oriQ)
and an external comment (relC), the question which
relC commented on is also given (relQ). To incor-
porate this extra information, we consider a multi-
task learning framework which jointly learns to pre-
dict the relationships of the three pairs (oriQ/relQ,
oriQ/relC, relQ/relC).

Figure 3 shows our framework: the three lower
models are separate serialized LSTM-encoders for
the three respective object pairs, whereas the upper
model is an FNN that takes as input the concatena-
tion of the outputs of three encoders, and predicts
the relationships for all three pairs. More specifi-
cally, the output layer consists of three softmax lay-
ers where each one is intended to predict the rela-
tionship of one particular pair.

For the overall loss function, we combine three
separate loss functions using a heuristic weight vec-
tor β that allocates a higher weight to the main task
(oriQ-relC relationship prediction) as follows:

L = β1L1 + β2L2 + β3L3 (9)

By doing so, we hypothesize that the related tasks
can improve the main task by leveraging common-
ality among all tasks.

4 Experiments

We evaluate our approach on all three cQA tasks.
We use the cQA datasets provided by the Semeval
2016 task 1. The cQA data is organized as follows:
there are 267 original questions, each question has
10 related question, and each related question has
10 comments. Therefore, for task A, there are a total
number of 26,700 question-comment pairs. For task
B, there are 2,670 question-question pairs. For task
C, there are 26,700 question-comment pairs. The
test dataset includes 50 questions, 500 related ques-
tions and 5,000 comments which do not overlap with

1http://alt.qcri.org/semeval2016/task3

the training set. To evaluate the performance, we use
mean average precision (MAP) and F1 score.

Baseline System: Figure 4 illustrates our base-
line systems. The IR-based system is scored by the
Google search engine. For each question-comment
pair, or question-question pair, we use Google’s rank
to calculate the MAP. While there is no training on
the target data, we expect that Google used many ex-
ternal resources to produce these ranks. The feature-
rich system is that proposed by (Belinkov et al.,
2015) in SemEval-2015. In this approach, they com-
pute text-based, vector-based, metadata-based and
rank-based features from the pre-processed data.
The features are used by a linear SVM for com-
ment selection. This system includes traditional
handcrafted features, and some RNN-based features
(word vectors). It also includes the information from
the IR system (ranked-based). So we believe it is a
strong baseline to compare with our model.

RNN encoder: Our system is based on
Theano (Bastien et al., 2012; Bergstra et al.,
2010). Table 1 gives a list of hyper-parameters
we considered. As suggested by (Greff et al.,
2015), the hyper-parameters for LSTMs can be
tuned independently. We tuned each parameter
separately on a development set (split from the
training set) and simply picked the best setting.
Our experiments show that using word embeddings
from Google-News provides modest improvements,
but fixing the embedding degrades performance a
lot. Also, using separate parameters for LSTMs is
better than sharing. For the optimization method,
AdaDelta converged faster, but AdaGrad gives
better performance. Note that all the parameters
were tuned on Task A, and we simply applied them
to Task B and C. This is for saving computation, and
also because Task A is more well-defined compared
to B and C in terms of dataset size and label balance.

4.1 Preliminary Results
Table 2 shows the initial results using the RNN en-
coder for different tasks. We observe that the atten-
tion model always gets better results than the RNN
without attention, especially for task C. However,
the RNN model achieves a very low F1 score. For
task B, it is even worse than the random baseline.
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Figure 3: Joint learning for external comment selection.
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Task A Task B Task C
Model MAP F1 MAP F1 MAP F1

Random 0.4860 0.5004 0.5595 0.4691 0.1383 0.1277
Parallel LSTM 0.6123 0.6091 0.5553 0.4087 0.2413 0.0057

Seq LSTM 0.6175 0.6063 0.5620 0.4299 0.2356 0.0115
w/ Attention 0.6239 0.6323 0.5723 0.4334 0.2837 0.1449

Table 2: The RNN encoder results for cQA tasks (bold is best).

Embedding init or random, fix or update
Two LSTM shared or not

#cells for LSTM 64, 128, 256
# nodes for MLP 128, 256

Optimizer AdaGrad, AdaDelta, SGD
learning rate 0.001,0.01,0.1
Regularizer Dropout, L2 regularization
Dropout rate 0.0, 0.2, 0.3, 0.4, 0.5

L2 0, 0.001, 0.0001, 0.00001

Table 1: The hyper-parameters we tuned. Terms in
bold represent the selected final parameters.

We believe the reason is because for task B, there
are only 2,670 pairs for training which is very lim-
ited training for a reasonable neural network. For
task C, we believe the problem is highly imbalanced
data. Since the related comments did not directly
comment on the original question, more than 90% of
the comments are labeled as irrelevant to the original

question. The low F1 (with high precision and low
recall) means our system tends to label most com-
ments as irrelevant. In the following section, we in-
vestigate methods to address these issues.

4.2 Robust Parameter Initialization
One way to improve models trained on limited data
is to use external data to pretrain the neural network.
We therefore considered two different datasets for
this task.

• Cross-domain: The Stanford natural language
inference (SNLI) corpus (Bowman et al., 2015)
has a huge amount of cleaned premise and hy-
pothesis pairs. Unfortunately the pairs are for
a different task. The relationship between the
premise and hypothesis may be similar to the
relation between questions and comments, but
may also be different.

• In-domain: since task A seems has reason-



able performance, and the network is also well-
trained, we could use it directly to initialize task
B.

To utilize the data, we first trained the model on each
auxiliary data (SNLI or Task A) and then removed
the softmax layer. After that, we retrain the network
using the target data with a softmax layer that was
randomly initialized.

For task A, the SNLI cannot improve MAP or F1
scores. Actually it slightly hurts the performance.
We surmise that it is probably because the domain is
different. Further investigation is needed: for exam-
ple, we could only use the parameter for embedding
layers etc. For task B, the SNLI yields a slight im-
provement on MAP (0.2%), and Task A could give
(1.2%) on top of that. No improvement was ob-
served on F1. For task C, pretraining by task A is
also better than using SNLI (task A is 1% better than
the baseline, while SNLI is almost the same).

In summary, the in-domain pretraining seems bet-
ter, but overall, the improvement is less than we ex-
pected, especially for task B, which only has very
limited target data. We will not make a conclusion
here since more investigation is needed.

4.3 Multitask Learning

As mentioned in Section 3.4, we also explored a
multitask learning framework that jointly learns to
predict the relationships of all three tasks. We set
0.8 for the main task (task C) and 0.1 for the other
auxiliary tasks. The MAP score did not improve,
but F1 increases to 0.1617. We believe this is be-
cause other tasks have more balanced labels, which
improves the shared parameters for task C.

4.4 Augmented data

There are many sources of external question-answer
pairs that could be used in our tasks. For exam-
ple: WebQuestion (was introduced by the authors
of SEMPRE system (Berant et al., 2013)) and The
SimpleQuestions dataset 2. All of them are positive
examples for our task and we can easily create neg-
ative examples from it. Initial experiments indicate
that it is very easy to overfit these obvious negative
examples. We believe this is because our negative

2http://fb.ai/babi.

examples are non-informative for our task and just
introduce noise.

Since the external data seems to hurt the perfor-
mance, we try to use the in-domain pairs to enhance
task B and task C. For task B, if relative question
1 (rel1) and relative question 2 (rel2) are both rele-
vant to the original question, then we add a positive
sample (rel1, rel2, 1). If either rel1 and rel2 is ir-
relevant and the other is relevant, we add a negative
sample (rel1, rel2, 0). After doing this, the samples
of task B increase from 2, 670 to 11, 810. By apply-
ing this method, the MAP score increased slightly
from 0.5723 to 0.5789 but the F1 score improved
from 0.4334 to 0.5860.

For task C, we used task A’s data directly. The
results are very similar with a slight improvement
on MAP, but large improvement on F1 score from
0.1449 to 0.2064.

4.5 Augmented features

To further enhance the system, we incorporate a one
hot vector of the original IR ranking as an additional
feature into the FNN classifier. Table 3 shows the
results. In comparing the models with and without
augmented features, we can see large improvement
for task B and C. The F1 score for task A degrades
slightly but MAP improves. This might be because
task A already had a substantial amount of training
data.

4.6 Comparison with Other Systems

Table 4 gives the final comparison between differ-
ent models (we only list the MAP score because it
is the official score for the challenge). Since the two
baseline models did not use any additional data, in
this table our system was also restricted to the pro-
vided training data. For task A, we can see that if
there is enough training data our single system al-
ready performs better than a very strong feature-rich
based system. For task B, since only limited train-
ing data is given, both feature-rich based system and
our system are worse than the IR system. For task
C, our system also got comparable results with the
feature-rich based system. If we do a simple system
combination (average the rank score) between our
system and the IR system, the combined system will

http://fb.ai/babi


Task A Task B Task C
Model MAP F1 MAP F1 MAP F1

w/ Attention 0.6239 0.6323 0.5723 0.4334 0.2837 0.1449
w/ Attention + aug features 0.6385 0.6218 0.6585 0.5382 0.3236 0.1963

Table 3: cQA task results with augmented features (bold is best).

give large gains on tasks B and C3. This implies that
our system is complimentary with the IR system.

Task A Task B Task C
Model MAP MAP MAP

IR 0.538 0.714 0.307
Attention 0.639 0.659 0.324

Feature-Rich & IR 0.632 0.685 0.339
Attention & IR 0.639 0.717 0.394

Table 4: Compared with other systems (bold is best).

5 Analysis of Attention Mechanism

In addition to quantitative analysis, it is natural to
qualitatively evaluate the performance of the atten-
tion mechanism by visualizing the weight distribu-
tion of each instance. We randomly picked several
instances from the test set in task A, for which the
sentence lengths are more moderate for demonstra-
tion. These examples are shown in Figure 5, and
categorized into short, long, and noisy sentences for
discussion. A darker blue patch refers to a larger
weight relative to other words in the same sentence.

5.1 Short Sentences

Figure 5a illustrates two cQA examples whose ques-
tions are relatively short. The comments corre-
sponding to these questions are “...snorkeling two
days ago off the coast of dukhan...” and “the doha
international airport...”. We can observe that our
model successfully learns to focus on the most rep-
resentative part of the question pertaining to classi-
fying the relationship, which is ”place for snorkel-
ing” for the first example and “place can ... visited
in qatar” for the second example.

3The feature-rich based system was already combined with
the IR system)

5.2 Long Sentences

In Figure 5b, we investigate two examples with
longer questions, which both contain 63 words. In-
terestingly, the distribution of weights does not be-
come more uniform; the model still focuses atten-
tion on a small number of hot words, for example,
“puppy dog for ... mall” and “hectic driving in doha
... car insurance ... quite costly”. Additionally,
some words that appear frequently but carry little in-
formation for classification are assigned very small
weights, such as I/we/my, is/am, like, and to.

5.3 Noisy Sentence

Due to the open nature of cQA forums, some con-
tent is noisy. Figure 5c is an example with excessive
usage of question marks. Again, our model exhibits
its robustness by allocating very low weights to the
noise symbols and therefore excludes the noninfor-
mative content.

6 Conclusion

In this paper, we demonstrate that a general RNN en-
coder framework can be applied to community ques-
tion answering tasks. By adding a neural attention
mechanism, we showed quantitatively and qualita-
tively that attention can improve the RNN encoder
framework. To deal with a more realistic scenario,
we expanded the framework to incorporate metadata
as augmented inputs to a FNN classifier, and pre-
trained models on larger datasets, increasing both
stability and performance. Our model is consistently
better than or comparable to a strong feature-rich
baseline system, and is superior to an IR-based sys-
tem when there is a reasonable amount of training
data.

Our model is complimentary with an IR-based
system that uses vast amounts of external resources
but trained for general purposes. By combining
the two systems, it exceeds the feature-rich and IR-
based system in all three tasks.



(a) short sentences

(b) long sentences

(c) noisy sentence

Figure 5: Visualization of attention mechanism on short, long, and noisy sentences.

Moreover, our approach is also language indepen-
dent. We have also performed preliminary experi-
ments on the Arabic portion of the SemEval-2016
cQA task. The results are competitive with a hand-
tuned strong baseline from SemEval-2015.

Future work could proceed in two directions: first,
we can enrich the existing system by incorporat-
ing available metadata and preprocessing data with
morphological normalization and out-of-vocabulary
mappings; second, we can reinforce our model by
carrying out word-by-word and history-aware at-

tention mechanisms instead of attending only when
reading the last word.
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