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ABSTRACT

Domain mismatch between training and testing can lead to signifi-
cant degradation in performance in many machine learning scenar-
ios. Unfortunately, this is not a rare situation for automatic speech
recognition deployments in real-world applications. Research on ro-
bust speech recognition can be regarded as trying to overcome this
domain mismatch issue. In this paper, we address the unsupervised
domain adaptation problem for robust speech recognition, where
both source and target domain speech are available, but word tran-
scripts are only available for the source domain speech. We present
novel augmentation-based methods that transform speech in a way
that does not change the transcripts. Specifically, we first train a vari-
ational autoencoder on both source and target domain data (without
supervision) to learn a latent representation of speech. We then trans-
form nuisance attributes of speech that are irrelevant to recognition
by modifying the latent representations, in order to augment labeled
training data with additional data whose distribution is more simi-
lar to the target domain. The proposed method is evaluated on the
CHiME-4 dataset and reduces the absolute word error rate (WER)
by as much as 35% compared to the non-adapted baseline.

Index Terms— unsupervised domain adaptation, robust speech
recognition, variational autoencoder, data augmentation

1. INTRODUCTION

Recent advances in neural network-based acoustic models [1, 2, 3,
4, 5] have greatly improved the performance of automatic speech
recognition (ASR) systems, enabling more applications to adopt
speech-based human-machine interaction. With the increasing use
of ASR systems in everyday life, ASR robustness under adverse
conditions becomes more essential than ever. Some robust ASR
research focuses on enhancing speech, by applying beam-forming
techniques [6, 7], estimating noise masks [8, 9], or training denois-
ing models [10, 11], etc. Other research extracts robust acoustic
features [12, 13, 14, 15] that are intended to be invariant for ASR
even in adverse environments. Another line of research investi-
gates modeling techniques, including, but not limited to, model
adaptation [16, 17], and training models on data in adverse condi-
tions [18, 19]. Over the past decade, neural network-based acoustic
models have come to dominate the ASR field. To utilize the full
capacity of neural network-based acoustic models, it is often a good
strategy to train a model with as much, and as diverse a dataset as
possible [20].

In this paper, we consider a highly adverse scenario, where both
source and target domain speech are available, but word transcripts
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are only available for the source domain data. We present novel
augmentation-based methods that transform speech, but, do not re-
quire altering existing transcripts. Specifically, we first train an un-
supervised sequence-to-sequence recurrent variational autoencoder
(VAE) on both source and target domain data to learn a latent rep-
resentation of speech. We then transform “nuisance” attributes of
speech, such as speaker identities and noise types, that do not con-
tain linguistic information, and are thus irrelevant to ASR, by mod-
ifying the latent representation, in order to create additional labeled
training data whose distribution is more similar to the target domain.
We evaluate the proposed methods on data from the CHiME-4 chal-
lenge [21], which is highly mismatched from the source domain data,
WSJ0 [22]. The proposed method reduces the absolute word error
rate (WER) by as much as 35% compared to a non-adapted baseline.

The rest of the paper is organized as follows. In Section 2, we
introduce the VAE model, and present the augmentation methods in
Section 3. Related work is discussed in Section 4. Experimental
setup and results are shown in Section 5 and 6 respectively. Lastly,
we conclude our work and discuss about future work in Section 7.

2. VARIATIONAL AUTOENCODER MODEL

2.1. Variational Autoencoder

Consider a speech datasetD = {x(i)}Ni=1 consisting of N i.i.d. sam-
ples of observed variables x. We assume that the data are gener-
ated from some random process that involves latent variables z as
follows: (1) a latent variable z is drawn from a prior distribution
pθ∗(z); (2) an observed variable x is drawn from a conditional dis-
tribution pθ∗(x|z). We assume that both pθ∗(z) and pθ∗(x|z) come
from some distribution family parameterized by θ. To learn this gen-
erative process with the presence of only observed data, it is often re-
quired to estimate the posterior distribution pθ(z|x); however, with
moderately complex conditional distributions pθ(x|z), true poste-
rior distributions are generally intractable.

A variational autoencoder [23] addresses this issue by intro-
ducing an encoder and a decoder. The decoder maps the latent
variable z to the conditional distribution pθ(x|z), while the en-
coder maps the observed variable x to the approximated poste-
rior distribution qφ(z|x), an approximation of the true posterior
pθ(z|x). The log marginal likelihood of the dataset is the sum of
individual log marginal likelihood log pθ(x

(1),x(2), · · · ,x(N)) =∑N
i=1 log pθ(x

(i)), and each can be rewritten as:

log pθ(x) = DKL(qφ(z|x)||pθ(z|x)) + L(θ, φ;x)
≥ L(θ,φ;x)
= −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)[log pθ(x|z)], (1)
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where L(θ, φ;x) is the variational lower bound to the log marginal
likelihood of data x. Since the exact ML estimation for the parame-
ter θ is intractable, we optimize the variational lower bounds in Eq.1
of the dataset instead to obtain the approximate ML estimation for θ.
Under certain mild condition for qφ(z|x), we can rewrite the second
term in Eq.1 to be the expectation taken over an auxiliary noise dis-
tribution such that the Monte Carlo estimation of the expectation is
differentiable w.r.t. φ. By maximizing Eq.1, we can apply stochastic
gradient based approaches to jointly optimize θ and φ.

2.2. Sequence-to-Sequence Recurrent VAE Architecture

In this work, we use a filter bank for the frame-level representa-
tion of speech, which are extracted every 10ms using a 25ms win-
dow. We let the observed data x = {x1, · · · , x20} be a sequence
of 20 frames, roughly at the scale of a syllable. VAEs are applied
to learn the generative process of syllable-level speech segments.
For the model we consider here, both the conditional distribution
pθ(x|z) and the approximate posterior distribution qφ(z|x) are di-
agonal Gaussian distributions:

pθ(x|z) = N (z; fµz (x; θ), exp(flog σ2
z
(x; θ)))

qφ(z|x) = N (z; gµx(z;φ), exp(glog σ2
x
(z;φ))),

of which the mean (fµz (x; θ) and gµx(z;φ)) and the log vari-
ance (flog σ2

z
(x; θ) and glog σ2

x
(z;φ)) are computed with neural

networks. The prior is considered a centered isotropic multivariate
Gaussian pθ(z) = N (z;0, I) of 64 dimensions.

To model the temporal relationship within speech segments, we
apply a sequence-to-sequence long short-term memory (Seq2Seq-
LSTM) architecture as illustrated in Figure 1. The encoder is a two
layer LSTM with 512 hidden units, which inputs the speech segment
frame by frame. The outputs from both layers are then concatenated
and fed into a fully connected Gaussian parameter layer that pre-
dicts the mean and the log variance of the latent variable z. The
reparameterization trick is applied to rewrite the latent variable as
z = fµz (x; θ) +

√
exp(flog σ2

z
(x; θ)) � ε, where � denotes the

element-wise product, and vector ε is sampled fromN (0, I).
The decoder is also a two layer LSTM with 512 hidden units

that takes the sampled latent variable as the input and generates a se-
quence of outputs. Each output is used as the input to another fully-
connected Gaussian parameter layer that predicts the mean and the
log variance for one frame of x. The entire model can be seen as
a stochastic sequence-to-sequence autoencoder that encodes a frame
sequence stochastically to the latent space, and then decodes statis-
tically from a sampled latent variable to a sequence of frames.
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Fig. 1. Illustration of Seq2Seq LSTM VAE architecture.

2.3. Latent Attribute Representations

To losslessly reconstruct speech segments from their latent variables,
the latent variables must encode the factors that result in the variabil-
ity of speech segments. It is proposed and empirically verified in [24]

that VAEs learn to use orthogonal subspaces to encode speaker and
phone attributes, and the prior distribution of z conditioned on some
label r of some type of attribute a is normally distributed. Suppose
ya is the associated label of the attribute a for data x, these assump-
tions can be formulated as follows: pθ(z|ya = r) = N (z;µr,Σr),
and µri ⊥ µrj if ri and rj are labels of different types of attributes,
such as a speaker and a phone.

The mean of the conditional prior µr is defined as the latent
attribute representation, and can be estimated by averaging the latent
variables of speech segments which have the label r. This can be
formulated as follows:

µr ≈
N∑
i=1

fµz (x
(i); θ)1

y
(i)
a =r

/
N∑
i=1

1
y
(i)
a =r

. (2)

3. DATA AUGMENTATION METHODS

Here we introduce the idea of nuisance attribute representations in
the scenario of speech recognition, and discuss how to compute these
representations without supervision. We then summarize how we
generate transformed labeled training utterances based on these nui-
sance attribute representations.

3.1. Nuisance Attributes and VAE-Based Augmentation Method

We define the nuisance attribute to be the factors that affect the sur-
face form of a speech utterance but not the linguistic content, such
as speaker identity, channel, and background noise, etc. These at-
tributes, unlike phonetic attributes, are generally consistent within an
utterance, which implies that we can assume the labels for these at-
tributes are the same for all the segments within an utterance. There-
fore, we can compute one latent nuisance representation for each ut-
terance using Eq.2. Suppose {x(i)

uttj
}Nj

i=1 is the set of segments from

an utterance uttj , we then have µuttj =
∑Nj

i=1 fµz (x
(i)
uttj

; θ)/Nj .
We generate labeled training data (i.e. with transcripts) for au-

tomatic speech recognition systems by transforming nuisance at-
tributes of the labeled source data. The newly generated data can still
use the original transcript for training but differ in some aspect, such
as speaker quality and background noise, from the original speech.
Figure 2 shows the flowchart of generating transformed labeled data.
Let ({x(i)

uttj
}Nj

i=1, trauttj ) be the source utterance of Nj segments
with the transcript trauttj that we want to modify from. We first
encode and sample each segment x(i)

uttj
to generate z(i)

uttj
using a

trained VAE encoder. Then the same modification operation is ap-
plied to each latent variable in {z(i)

uttj
}Nj

i=1 to produce {z̃(i)
uttj
}Nj

i=1.

Finally, we decode {z̃(i)
uttj
}Nj

i=1 using the same trained VAE decoder

to obtain the modified utterance {x̃(i)
uttj
}Nj

i=1 that shares the same
transcript trauttj with the original utterance. In other words, we

create new labeled training data: ({x̃(i)
uttj
}Nj

i=1, trauttj ). We next
introduce two types of modification operations in Section 3.2 and
3.3 respectively.

3.2. Type I: Nuisance Attribute Replacement

The first type of modification operation we consider is to replace the
nuisance attribute of one utterance with that of another utterance. We
assume VAEs use orthogonal subspaces to model phone attributes
and nuisance attributes, and apply the operation derived in [24]. Let
{z(i)
uttsrc

}Nj

i=1 be the encoded latent variables of the source utterance
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Fig. 2. Flowchart of generating transformed labeled data.

segments we want to modify from, µuttsrc be the latent nuisance
representation from the source utterance, and µutttar be the latent
nuisance representation from the target utterance. Then we modify
z
(i)
uttsrc

as follows:

z̃
(i)
uttsrc

= z
(i)
uttsrc

− µuttsrc + µutttar .

Figure 3 shows two examples of modifying the nuisance at-
tributes, where the first row is the original utterance and the second
row is the modified utterance. In Figure 3(a), a clean utterance is
modified by replacing its nuisance attributes with those from a noisy
utterance. Conversely, Figure 3(b) illustrates an example of modify-
ing a noisy utterance by replacing its nuisance attributes with those
estimated from a clean utterance. In the figure, segments within an
utterance are separated by vertical black lines. From both exam-
ples we can observe that while the spacing between harmonics and
the level of noise changes, the linguistic content does not seem to
change after replacing the nuisance attributes.

(a) modifying a clean utterance to be like a noisy utterance

(b) modifying a noisy utterance to be like a clean utterance

Fig. 3. Two examples of replacing the nuisance attributes.

3.3. Type II: Latent Nuisance Subspace Perturbation

The fundamental assumption of this work is that VAEs learn to use
orthogonal subspaces to model linguistic factors and nuisance fac-
tors respectively. Hence, we are able to modify the nuisance attribute
without changing the original linguistic attribute by only modifying
factors in the latent nuisance subspace, but keeping factors in the la-
tent linguistic subspace intact. While the operation in Section 3.2
bypasses the search for the latent nuisance subspace, we can alterna-
tively discover this subspace, and then sample or perturb the factors
in it to change the nuisance attribute of an utterance.

3.3.1. Determining the latent nuisance subspace with PCA

Given a dataset ofM utterances, we can computeM latent nuisance
representations {µuttj}Mj=1, with one for each utterance. The la-
tent nuisance subspace is composed of a set of bases, which captures
the variations among these latent nuisance representations. We ap-
ply principle component analysis (PCA) on the M latent nuisance
representations to obtain a list of eigenvectors {ed}Dd=1, sorted in a
descending order by their associated eigenvalues {σ2

d}Dd=1, whereD
is the dimension of the latent variable z. Each eigenvalue interprets
the variance of latent nuisance representations along the direction of
its associated eigenvector. We plot the eigenvalues in Figure 4 in a
descending order, where we can observe that most of the variation is
captured by the first few dimensions.

0 10 20 30 40 50 63
index of eigenvectors

0

1

ei
ge
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Fig. 4. Eigenvalues of PCA analysis on latent nuisance representa-
tions in a descending order.

3.3.2. Soft latent nuisance subspace perturbation

An intuitive way to determine and perturb the latent nuisance sub-
space is to select the first few eigenvectors and only perturb in those
directions. We refer to this as hard latent nuisance subspace pertur-
bation, since it demands a hard decision on the rank of the subspace.
Alternatively, we propose an approach called soft latent nuisance
subspace perturbation, which generates a perturbation vector p as
follows:

p = γ
D∑
d=1

ψdσded, ψd ∼ N (0, 1),

where ψd is drawn from a normal distribution, σd and ed are square
root of d-th largest eigenvalue and its associated eigenvector, and γ
is a hyper-parameter, referred to as the perturbation ratio. It can
be observed that the expected scale we perturb along an eigenvector
ed is proportional to the standard deviation of latent nuisance rep-
resentations along that eigenvector, which is the square root of its
eigenvalue σ2

d. This approach thus automatically adapts to different
distributions of eigenvalues, regardless how many dimensions a VAE
learns to use to model the nuisance attributes.

Fig. 5. An example of perturbing latent nuisance attributes.

Let {z(i)
uttsrc

}Nj

i=1 be the encoded latent variables of the source
utterance segments we want to perturb. We modify each latent vari-
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able as follows:
z̃
(i)
uttsrc

= z
(i)
uttsrc

+ p,

which adds the same perturbation vector p to each segment in an
utterance such that the nuisance attribute change is consistent for
all segments within an utterance. Figure 5 shows an example of
perturbing the latent nuisance attributes with γ = 1.0, where the
first row is the original utterance and the second row is the perturbed
utterance.

4. RELATED WORK

Deep domain adaptation (DDA) to acoustic modeling [19] is a state-
of-the-art approach that also addresses the unsupervised domain
adaptation problem for robust speech recognition. This work adopts
a domain-adversarial training method for neural networks [25],
which encourages the networks to learn features that are discrimi-
native for the main learning task, but not discriminative with respect
to domains. Specifically, the neural network acoustic model in [19]
is composed of one common feature extractor network, and two
predictor networks that predict the senone labels and domain labels,
respectively. The feature extractor network and the senone predictor
network are trained to minimize the senone prediction error and
maximize the domain prediction error, while the domain predictor
network is trained to minimize the domain prediction error. Hence,
during training, unlabeled target-domain data are used to update
the feature extractor and domain predictor network, and labeled
source-domain data are used to update all three networks.

Our proposed data augmentation method takes a different view
by generating more domain-diverse data in order to train more robust
models. The two views are complementary, and could be potentially
applied in combination.

5. SETUP

5.1. Dataset

Our dataset is based on the CHiME-4 challenge [21], which tar-
gets distant-talking ASR and whose setup is based on the speaker-
independent medium (5K) vocabulary subset of the Wall Street Jour-
nal (WSJ0) corpus [22]. The training set of the CHiME-4 dataset
consists of 1,600 utterances recorded in four noisy environments
from four speakers, and 7,138 simulated noisy utterances based on
the clean utterances in the WSJ0 SI-84 training set. We use the orig-
inal 7,138 clean utterances as the labeled source-domain data, and
the 1600 single channel real noisy utterances as the unlabeled target-
domain data for unsupervised domain adaptation. Performance is
evaluated on both the real noisy utterances and the original clean
utterances in the development partition of the CHiME-4 dataset in
terms of the word error rate (WER).

In addition, we also repeat our experiments on Aurora-4 [26]
to compare with the results reported in [19]. Aurora-4 is a broad-
band corpus designed for noisy speech recognition tasks based on
WSJ0 as well. Two microphone types, clean/channel are included,
and six noise types are artificially added to both microphone types,
which results in four conditions: clean(A), channel(B), noisy(C),
and channel+noisy(D). We use the clean training set as the labeled
source-domain data, and the multi-condition development set as the
unlabeled target-domain data. The multi-condition test eval92 set is
used for evaluation.

5.2. VAE Setup and Training

All the original clean utterances and the real noisy utterances are
mixed and split into training and development sets with the ratio
of 90-10 for training the Seq2Seq LSTM VAE. The VAE is trained
with stochastic gradient descent using a mini-batch size of 128 with-
out clipping to minimize the negative variational lower bound plus
an L2-regularization with weight 10−4. The Adam [27] optimizer
is used with β1 = 0.95, β2 = 0.999, ε = 10−8, and initial learn-
ing rate of 10−3. Training is terminated if the lower bound on the
development set does not improve for 50 epochs.

5.3. ASR Setup and Training

Kaldi [28] is used for feature extraction, decoding, forced align-
ment, and training of an initial HMM-GMM model on the original
clean utterances. The recipe provided by the CHiME-4 challenge
(run gmm.sh) and the Kaldi Aurora-4 recipe are adapted by only
changing the training data being used. The Computational Network
Toolkit (CNTK) [29] is used for neural network-based acoustic
model training. For all CHiME-4 experiments, the same LSTM
acoustic model [1] with the architecture proposed in [30] is applied,
which has 1,024 memory cells and a 512-node projection layer
for each LSTM layer, and 3 LSTM layers in total. Following the
training setup in [31], LSTM acoustic models are trained with a
cross-entropy criterion, using truncated backpropagation-through-
time (BPTT) [32] to optimize. Each BPTT segment contains 20
frames, and each mini-batch contains 80 utterances, since we find
empirically paralleling 80 utterances has similar performance to 40
utterances.

For all Aurora-4 experiments, the same 6 layer fully-connected
deep neural network (DNN) acoustic model with 2,048 hidden units
at each layer is applied, which is same architecture as the one in [19],
except that the number of hidden units are doubled. The input to
the DNN is a context window of 11 frames, with five frames of left
context and five frames of right context. Each frame is represented
using filter bank features with delta and delta-delta coefficients as
proposed in [19]. DNN acoustic models are trained with the cross-
entropy criterion, with a mini-batch size of 256. For both LSTM and
DNN training, a momentum of 0.9 is used starting from the second
epoch [33]. Ten percent of the training data is held out as a validation
set to control the learning rate. The learning rate is halved when no
gain is observed after an epoch.

We assume for both nuisance attribute replacement and latent
nuisance subspace perturbation, the time alignment of senones does
not change. Therefore, the same forced alignment is used to train the
acoustic models.

6. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we verify the effectiveness of the proposed VAE-
based data augmentation methods for unsupervised domain adapta-
tion. On each dataset, the same acoustic model architectures and
training procedures, as well as the same language models are used
for all the experiments. For the CHiME-4 dataset, besides reporting
the WER on the clean and the noisy development sets respectively,
we also show the WER for the noisy set by the four recording lo-
cations: bus (BUS), cafe (CAF), pedestrian area (PED), and street
junction (STR). All the CHiME-4 results are listed in Table 1. For
the Aurora-4 dataset, we report the averaged WER as well as the
WER in four conditions in Table 2. Different sets of experiments are
separated by double horizontal lines and indexed by the Exp. Index
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Setting WER (%) WER (%) in Noisy Condition by Type
Exp. Index Aug. Method Fold Clean Noisy BUS CAF PED STR

1 Orig. 1 19.04 87.80 96.16 92.35 78.46 84.24
Recon. 1 19.61 90.72 98.95 93.45 81.52 88.97

2 Repl. Clean 1 20.03 67.12 71.99 76.84 55.32 64.33
Repl. Noisy 1 26.31 57.66 62.12 69.25 46.89 52.38

3
Pert., γ = 1.0 1 20.01 53.06 55.66 66.12 41.94 48.50
Uni-Pert., γ = 1.0 1 19.70 65.07 69.27 75.28 53.65 62.06
Rev-Pert., γ = 1.0 1 19.75 87.98 95.13 90.58 76.71 89.50

4

Pert., γ = 0.5 1 19.55 65.61 67.87 77.37 54.54 62.66
Pert., γ = 1.0 1 20.01 53.06 55.66 66.12 41.94 48.50
Pert., γ = 1.5 1 19.99 53.59 57.09 64.91 42.23 50.11
Pert., γ = 2.0 1 20.39 58.10 64.35 69.12 45.39 53.55

5
Orig. + Repl. Noisy 2 19.88 55.72 60.72 66.46 45.08 50.63
Repl. Noisy 2 25.26 55.59 59.24 67.85 44.65 50.63
Pert., γ = 1.0 2 19.82 52.49 55.52 65.04 41.17 48.24

Table 1. CHiME-4 development set word error rate of acoustic models trained on different augmented sets.

on the first column. The second column, Aug. Method, explains the
augmentation method and the hyper-parameter being used. The ratio
of the new training set to the original clean training set is listed on
the third column, referred to as the Fold.

6.1. Baselines

We first establish baselines by training models on two sets. The first
set, Orig., refers to the original clean training set that does not in-
volve VAE. The second set, Recon., refers to the reconstructed clean
training set that is generated by using the VAE to first encode and
then decode. Note that this does not involve the modification meth-
ods mentioned in Sections 3.2 and 3.3.

The results are listed in Table 1, Exp. Index 1. The fourth row
shows the results on the matched domain (clean), and the fifth row
shows the results on the mismatched domain (noisy). It can be ob-
served that the performance degrades significantly when the models
are tested on the mismatched domain. The WER increases from
19.04% to 87.08% for Orig., and from 19.61% to 90.72% for Recon.
respectively. In addition, since the reconstruction from the VAE is
not perfect, part of the information may be lost during this process.
Hence, the model trained on Recon. is slightly worse than the one
trained on Orig. for all testing conditions. Lastly, the relative WERs
of the four location are consistent on the both training sets. BUS
appears to be the most difficult one, while PED is the easiest one
among the four locations.

6.2. Replacing Nuisance Attributes

We evaluate the effectiveness of augmenting data by replacing
the nuisance attributes as mentioned in Section 3.2. Let Usrc =
{µuttj}

Msrc
j=1 be the set of latent nuisance representations of the

source domain utterances, and Utar = {µuttj}Mj=Msrc
be the

set of latent nuisance representations of the target domain utter-
ances. Msrc is the number of source domain utterances, and
Mtar = M − Msrc is the number of target domain utterances.
We create the augmented set Repl. Clean by replacing the latent
nuisance representation of each source domain utterance with one
drawn from Usrc. The Repl. Noisy is generated similarly but is
replaced with one drawn from Utar .

The results are shown in Table 1, Exp. Index 2. For both aug-
mented methods, we observe at least 20% absolute WER reduction
on the target domain compared to the baselines. We observe an ad-
ditional 10% absolute WER reduction when replacing the latent nui-
sance representations with those taken from the target domain in-
stead of the source domain. We also observe that Repl. Noisy shows
6% worse WER on the source domain than Repl. Clean. The rela-
tive strength of Repl. Clean and Repl. Noisy on different domains
verifies the effectiveness of our proposed method at shifting the dis-
tribution from one domain to another.

6.3. Correctness of Soft Latent Nuisance Subspace Perturbation

We first examine the correctness of our proposed soft latent nui-
sance subspace perturbation by proposing two alternative perturba-
tion methods. To eliminate the effect of the perturbation scale on
the performance, we consider two alternative methods subject to the
constraint that the expected squared Euclidean norm of the perturba-
tion vector p is the same as the proposed method.

Recall that p = γ
∑D
d=1 ψdσded for our proposed method.

We then have: E
[
||p||22

]
= γ2∑D

d=1 σ
2
d E
[
ψ2
d

]
= γ2∑D

d=1 σ
2
d.

We then consider uniform perturbation to be a method that per-
turbs each direction with the same expected scale, controlled by the
same perturbation ratio hyper-parameter γ. The perturbation vec-
tor puni derived from this method can be formulated as puni =

γ
∑D
d=1 ψdσunied, where σuni =

√∑D
d=1 σ

2
d/D. In addition,

we design another method that reverses the expected perturbation
scales from the proposed soft latent nuisance subspace perturbation
method, named the reverse soft latent nuisance subspace perturb-
ing. The perturbation vector prev can be formulated as prev =
γ
∑D
d=1 ψdσD−ded.
We show the results of soft latent nuisance subspace perturba-

tion (Pert.), uniform perturbation (Uni-Pert.), and reverse soft latent
nuisance subspace perturbation (Rev-Pert.) in Table 1, Exp. Index 3,
which all use the same perturbation ratio γ = 1.0. We can clearly
observe the superiority of the proposed method among the three
methods applied on the target domain. Pert. reduces the absolute
WER by almost 35% from the baseline and outperforms Uni-Pert.
by 12%, while Rev-Pert. achieves almost no improvement. This ex-
periment verifies the importance of determining an appropriate way
to perturb the latent space and the correctness of our method.
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Setting WER (%) WER (%) by Condition
Exp. Index Aug. Method/Baselines Fold Avg. Clean(A) Noisy(B) Channel(C) Channel+Noisy(D)

0 Clean-DNN-HMM [19] - 36.22 3.36 29.74 21.02 50.73
DDA-DNN-HMM [19] - 22.53 3.24 14.52 17.82 34.55
DNN-PP [34] - 18.7 5.1 12.0 10.5 29.0

1 Orig. 1 53.98 3.38 50.56 42.67 67.70
Recon. 1 66.29 4.58 65.44 51.02 79.97

2 Repl. Noisy 1 22.53 4.80 16.31 14.72 32.99

3

Pert., γ = 0.5 1 35.37 4.11 27.73 33.51 48.52
Pert., γ = 1.0 1 24.82 4.35 17.11 22.38 36.36
Pert., γ = 1.5 1 21.98 4.24 15.08 16.87 32.69
Pert., γ = 2.0 1 20.68 4.45 14.33 14.74 30.72
Pert., γ = 2.5 1 20.99 4.99 15.35 15.54 30.22
Pert., γ = 3.0 1 21.18 5.29 15.47 15.71 30.45
Pert., γ = 3.5 1 21.33 5.45 16.13 14.70 30.29
Pert., γ = 4.0 1 22.00 6.43 17.15 15.00 30.62

4

Pert., γ = 2.0 2 20.06 4.13 13.85 14.96 29.77
Pert., γ = 2.0 4 19.42 4.09 13.34 14.14 28.92
Pert., γ = 2.0 8 18.86 4.28 12.89 13.51 28.16
Pert., γ = 2.0 16 18.76 4.04 12.84 13.54 28.01

Table 2. Aurora-4 test eval92 set word error rate of acoustic models trained on different augmented sets.

6.4. Effect of Perturbation Ratios

We next examine the effect on the hyper-parameter γ by choosing
four scales: 0.5, 1.0, 1.5, 2.0, and list the results in Table 1, Exp.
Index 4. We observe different WER trends for different perturba-
tion ratios for the two testing conditions. First, regarding the target
domain WER, we notice that γ = 1.0 reaches the best performance
among the four scales. The smaller the perturbation ratio is, the more
similar to the original clean data the augmented perturbed data would
be. Hence, when we decrease the perturbation ratio, the performance
would asymptotically approach those of the original clean data. On
the other hand, as we increase the perturbation ratio, the chance of
the perturbed utterances becoming linguistically different increases.
This may hurt the performance and cancel out the benefit of having
more diverse data by perturbing the nuisance attributes. As for the
source domain WER, we observe degradation when increasing the
perturbation ratio, because the perturbed data distribution becomes
less similar to original clean data distribution.

6.5. Effect of Dataset Size

In this section, we study the effect of the size by combining differ-
ent sets of augmented data or the original data. Specifically, three
cases are considered: (1) combining Repl. Noisy with the original
data. (2) combining Repl. Noisy with another copy of Repl. Noisy.
(3) combining Pert., γ = 1.0 with another copy of Pert., γ = 1.0.

The results are listed in Table 1, Exp. Index 5. In the first two
cases, both source and target domain WERs are improved from the
one-fold Repl. Noisy. While adding another copy of Repl. Noisy
shows slightly better (0.13%) WER in the target domain of the
first two cases, adding the original clean data significantly reduces
(6.43%) WER in the source domain. This suggests that the second
case addresses the issue of Repl. Noisy on shifting the data dis-
tribution entirely to the target domain. In the third case, a slight
but consistent 0.19% and 0.57% WER reductions from the one-fold
Pert., γ = 1.0 in the source and target domain are observed. In
summary, all three cases show improvement by increasing the size.

6.6. Comparing with DDA on Aurora-4

In this section, we repeat the experiments on the Aurora-4 dataset
and compare with deep domain adaptation. Table 2 listed our
Aurora-4 results and the reference results. DNN-PP [34] is a
method compared in [19] that requires parallel clean-noisy data for
training an speech enhancement model as a preprocessor.

Baseline results are established in Table 2, Exp. Index 1, where
the models are trained with the original clean features (Orig.), and
the VAE-reconstructed clean features (Recon.), respectively. Here
we can observe significant degradation on mismatched domains (B,
C, and D) from the matched domain (A). Results of nuisance at-
tribute replacement and soft latent nuisance subspace perturbation
with different perturbation ratios are shown in Table 2, Exp. Index 2
and Exp. Index 3. Both augmentation methods achieve roughly 30%
absolute WER reduction, and the soft latent nuisance subspace per-
turbation reaches the best performance when using a perturbation
ratio γ = 2.0. By increasing the dataset size, we observe further
WER reduction from two-fold to 16-fold.

Since the detailed training recipe is not provided in [19], we
could not reproduce exactly the same baseline results. However, de-
spite the fact that our baseline is 17.76% worse than that in [19],
our best system (18.76%) still achieves better performance than the
result of DDA (22.53%) that was reported in [19], and matches the
results of DNN-PP [34] without the need for parallel data.

7. CONCLUSION AND FUTURE WORK

In this paper, we present two VAE-based data augmentation methods
for unsupervised domain adaptation to robust ASR. In particular, we
study the latent representations obtained from VAEs, which enable
us to transform nuisance attributes of speech through modifying the
latent variables. Our proposed methods are evaluated two datasets,
and achieve about 35% absolute WER reduction on both sets. For fu-
ture work, we plan to investigate the proposed augmentation method
using more advanced FHVAE models [35], which explicitly disen-
tangle sequence and segment level attributes in the latent space.
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