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Abstract

In this thesis, I explore state of the art techniques for using neural networks to learn
semantically-rich representations for visual and audio data. In particular, I analyze
and extend the model introduced by Harwath et al. (2016), a neural architecture
which learns a non-linear similarity metric between images and audio captions using
sampled margin rank loss. In Chapter 1, I provide a background on multimodal
learning and motivate the need for further research in the area. In addition, I give an
overview of Harwath et al. (2016)’s model, variants of which will be used throughout
the rest of the thesis. In Chapter 2, I present a quantitative and qualitative analysis
of the modality retrieval behavior of the state of the art architecture used by Harwath
et al. (2016), identifying a bias towards certain examples and proposing a solution to
counteract that bias. In Chapter 3, I introduce the property of modality invariance
and explain a regularization technique I created to promote this property in learned
semantic embedding spaces. In Chapter 4, I apply the architecture to a new dataset
containing videos, which offers unique opportunities to include temporal visual data
and ambient audio unavailable in images. In addition, the video domain presents
new challenges, as the data density increases with the additional time dimension.
I conclude with a discussion about multimodal learning, language acquisition, and
unsupervised learning in general.
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Chapter 1

Introduction

1.1 Artificial Intelligence?

I had my first exposure to machine learning three years ago while doing a Tensorflow

tutorial writing a convolutional neural network (CNN) to classify 32x32 color images

in the CIFAR-10 dataset (Abadi et al. 2015; Krizhevsky et al.). CIFAR-10 is a 10

way classification task. In other words, I trained a model to answer the question “Is

this image an airplane, automobile, bird, cat, deer, dog, frog, horse, ship, or truck?”

nudging its distribution over the 10 labels to be closer and closer to the observed

label through the process of stochastic gradient descent. This is the same form many

supervised classification tasks take in machine learning. Supervised, meaning, there

are pairs of inputs and outputs—usually assigned by human annotators—used to

train the model.

After I trained my CIFAR-10 classifier, I remember running the network on an

image of my cat; the output: "90% cat, 10% horse". At the time, that was an exciting

result, but now it leaves me dissatisfied. I am not dissatisfied because the network

was not 99% certain it was a cat in the image, but rather that it did not understand

cats and horses enough to know that they are nothing alike. If that network had

been confused about a cat and dog, that I could understand, but a cat and horse, not

so much. The network lacked a conceptual understanding of cats and horses. How

can we be proud taking a world infinitely rich in visual concepts and reducing that
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infinity to 10,000, 1,000, or even 10 classes of objects and claim that a model that

can correctly identify the objects a significant percentage of the time is intelligent?

Moreover, the process of training a supervised classifier provides much more in-

formation to the learner than the way a newborn child learns to recognize objects in

the world. When a child points to a cat and says “horse”, the mother might correct

the child: “no, that’s a cat”. But learning from this scenario not only requires a

knowledge of the visual stimulus being perceived, but also an ability to understand

the mother’s feedback: the segmentation of the continuous audio signal into words,

the emphasis placed on the words “no” and “cat”, and the realization that “cat” is

a fundamentally different and potentially new concept than the one that had been

perceived: “horse”. In other words, supervised learning early in life appears implausi-

ble because the labels, themselves, are only available to the learner as noisy sensory

inputs.

In contrast to supervised learning, unsupervised learning seeks to find structure

in otherwise unlabeled, unstructured data. For example, one might learn new words

based on similar sounding unknown words that have previously been encountered

(Zhang and Glass 2009; Lee and Glass 2012). Recently, new research has begun in

the field of multimodal unsupervised learning (Harwath et al. 2016; 2018b; Harwath

and Glass 2017; Harwath et al. 2018a; Leidal et al. 2017). Here, multimodal is taken

to mean: concerning two modalities, such as an image and audio of someone verbally

describing the image. Like the mother telling the child that the object being perceived

is a “cat”, the co-occurrence of the sounds producing the word “cat” and the visual

image of the “cat” might provide the grounding necessary for a learner to learn a new,

previously unrecognized concept.

This thesis explores this unsupervised setting of machine learning. More specifi-

cally, I extend a model proposed by Harwath et al. (2016) which is capable of learning

semantic concepts through paired images and spoken captions of the images. My ef-

forts focus primarily on exploring new techniques to regularize and transform the

semantic space learned to reduce bias, remove noise, and obtain other properties con-

sidered desirable for concept learning. In addition, I apply the model to new areas,
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including a dataset containing short three second video clips (Monfort et al. 2018),

showing that the content of the dataset used for training can influence the kinds of

words and concepts learned.

1.2 Background

In this section I give an overview of the fundamental concepts required to understand

my contributions.

1.2.1 Unsupervised Learning

Unsupervised learning is a promising area of machine learning research whereby mod-

els are trained without using manually annotated labels from humans. In contrast

to traditional automatic speech recognition (ASR) systems which require a large

amount of manually annotated data—from pronunciation dictionaries to transcripts

of recorded audio—recent unsupervised models aim to learn meaningful structure

from audio alone (Lee and Glass 2012) or audio paired with other sensory inputs

(Harwath et al. 2016; Clark and Brennan 1991): data which can be attained by

collecting parallel streams of data from sensors.

Example applications of such unsupervised models are (a) pattern recognition to

identify the fundamental phonetic building blocks of speech (Lee and Glass 2012), (b)

semantic concept learning using an additional modality (vision) to provide grounding

traditionally provided by labels (Harwath et al. 2016), and (c) denoising and artificial

noise augmentation (Hsu et al. 2017a). Each of these examples involves learning a

latent embedding space rich in phonetic, semantic, and acoustic information, respec-

tively.

1.2.2 Multimodal Learning

Multimodal learning involves modeling two or more different channels of sensory

input, or modalities. In this thesis, I solely focus on sight and sound, and usually
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Figure 1-1: Semantically similar, but visually distinct images transitively linked by
grounding to the audio caption modality

sound containing speech, but the idea of “multimodal” learning is more general than

that. The techniques explored in this thesis may very well apply to other sets of

modalities with only minor modifications.

What kinds of tasks could multimodal learning be used for? For one, adding

in input from another modality can be used in supervised settings. For instance,

in Monfort et al. (2018), the authors find that adding ambient audio in a video

action-classification task improves classification performance. The task of modality

translation is often referred to by the specific direction of the translation: speech

recognition/speech to text, text to speech, image captioning (image to text), con-

ditional image generation (text to image), etc. Modality translation is useful from

a practical sense for those who are disabled, lacking the ability to sense a partic-

ular modality. Modality retrieval involves finding the most similar instance of one

modality given a query in a different modality, by some notion of similarity. For prob-

abilistic formulations of modality translation, a model trained to performed modality

translation can be used to perform modality retrieval by selecting the answer with

the greatest probability of being generated given the query.

One benefit of multimodal modeling is the potential for the additional modality

to provide contextual grounding for extracting semantic information via transitive

18



relationships in the semantic similarity space. For example, see Figure 1-1. If image 𝐴

is similar to audio 𝐵, and audio 𝐵 is similar to image 𝐶, then image 𝐴 is likely similar

to image 𝐶 by some higher level semantic notion of relevance, even if images 𝐴 and

𝐶 are not similar in appearance. This could be especially useful for learning semantic

concepts with wide variability in their expression at the sensory level. For instance,

there can be wide variability in speech audio due to the speaker’s gender or origin,

whether the speaker is a native speaker, ambient noise in the room, and even the

type of microphone and distance from the microphone to the sound source. Without a

higher level notion of semantic similarity relating two instances of a spoken word from

different speakers, it could be very difficult for a traditional unsupervised approach,

such as segmental dynamic-time-warping or fully Bayesian Gaussian mixture models

(Zhang and Glass 2009; Lee and Glass 2012), to recognize the two instances as the

same word from the audio signal alone.

1.2.3 Neural Networks

Neural networks are a class of functions which compute their outputs via a system

of smaller, interconnected functional units called neurons. They are often trained

through stochastic gradient ascent/descent, perturbing the parameters of the network

in the direction of the gradient of the objective with respect to the parameters. More

precisely, if the goal is to max𝜃 E𝑥∼𝒟Objective(𝑥, 𝑓(𝑥, 𝜃𝑡)) where 𝑥 are the inputs (or

input/output pairs if supervised) drawn from dataset 𝒟, a neural network 𝑓 with

parameters 𝜃 can be trained iteratively as follows:

𝜃𝑡+1 = 𝜃𝑡 + 𝜂E𝑥∼𝒟

[︂
𝜕Objective(𝑥, 𝑓(𝑥, 𝜃𝑡))

𝜕𝜃𝑡

]︂

where 𝜂 is the step size, a tunable hyperparameter.

The basic building block of the neural network is matrix multiplication. Linear

layers involve the matrix multiplication of a matrix of parameters (𝑊 , the weight

matrix) with a vector of inputs or intermediate “hidden” states and often include a
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bias vector, 𝑏, of parameters:

ℎ(𝑙+1) = ℎ(𝑙)𝑊 + 𝑏

Convolutional neural networks (CNNs) operate similarly to a linear layer, but can

use input cells surrounding the center cell spatially or temporally as additional input

to the matrix multiplication. This spatial/temporal context can be useful for images

or audio where local patterns are important for the overall task. The context window

is then convolved across the input spatially/temporally, generating an output feature

map. The context window is moved a certain number of spaces each iteration, called

the “stride”. It is important to note that the same parameters, 𝑊 (often referred to

as the “kernel” for CNNs) and 𝑏, are shared for each context window. If the kernel

size and stride of the convolution is one, the convolution is equivalent to a pixel-wise

linear layer between input and output channels.

1.2.4 Speech Recognition and Understanding

Despite advances in recent years leading to the creation of consumer speech recogni-

tion products like Apple’s Siri, Google’s Google/Home, and Amazon’s Alexa, speech

recognition and understanding is far from a solved problem. Human annotated speech

data for training supervised systems is expensive to collect, especially for uncommon

languages. In addition, variance between speakers, recording environments, micro-

phones, and the distance and angle between the microphone and sound source can all

change signal enough to cause significant error rates in a speech recognition system

if not addressed properly. To perform well despite these noise conditions, current

top-performing speech recognition systems require a large system of interworking

components. Traditionally, GMMs or DNNs model parts of phones in short time

scale (∼ 25 milliseconds) intervals called frames, HMMs recognize short-term tem-

poral relationships between frames that represent phones, and a system of composed

finite state transducers abstract from phone to phoneme to words. Recent work in

supervised speech recognition has looked to using end-to-end neural networks to map
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speech directly to phones or characters (Graves et al. 2013), but in general end-to-end

systems still fail to outperform state-of-the-art GMM/ANN-HMM-FST systems. The

expense and difficulty of collecting labeled data for uncommon languages1 and noise

conditions warrants further study into areas of domain adaptation and unsupervised

speech understanding.

Speech understanding involves training a model to recognize the semantic content

a speaker is attempting to convey. In general, this goal can be difficult to quantify

and evaluate, but in specific scenarios like action-oriented reinforcement learning or

modality retrieval, there are specific metrics to evaluate the model’s understanding.

1.3 Previous Work

The unsupervised learning of semantic relations through the co-occurrence and lack

of co-occurrence of sensory inputs is an increasingly attractive pursuit for researchers

(Harwath et al. 2016; Wang et al. 2016; Saito et al. 2016; Aytar et al. 2016). This

interest is primarily due to the expense of attaining labels for data. The ability to

learn semantic relevance with input pairings alone unlocks the potential of training

models using inexpensively-collected data with the only supervisory signal being the

co-occurrence of sensory inputs (Wang et al. 2016).

In addition, the learned semantic space has direct practical applications. One

particular application of a semantic space is cross-modality transfer learning: us-

ing paired inputs from two modalities and labels for one modality to learn how to

predict labels for the unlabeled modality. Aytar et al. (2016) use a teacher-student

model on videos to transfer knowledge from pretrained ImageNet and Places convo-

lutional neural networks (CNNs) identifying object and scene information in images

to train a CNN run on the raw audio waveform from the video to recognize the same

information. In Aytar et al. (2016)’s model, the shared semantic space consists of

the two categorical distributions over objects and scenes as opposed to being a high

dimensional Hilbert space, as is the case in the models I explore.

1and the impossibility for oral languages
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Wang et al. (2016) gave a comprehensive overview of existing approaches to an-

other practical application of shared semantic spaces: cross-modality information re-

trieval. The task is formulated as follows: given an input of one modality, find related

instances of another modality. One traditional approach to solving this problem is to

perform canonical correlation analysis on vector representations of paired speech and

audio to project inputs into a highly correlated shared embedding space (Rasiwasia

et al. 2010). Recent approaches focus on learning this projection using non-linear

neural networks trained through stochastic gradient descent rather than using linear

projections found through eigen-decomposition (Jansen et al. 2017). Neural networks

can be useful when working with low-level sensory input for which semantic content

is not readily accessible through linear transformation alone.

Harwath et al. (2016) presented an architecture, now referred to as “DAVEnet”

(Deep Audio Visual Embedding Network), which is trained to learn a semantic embed-

ding space into which images and spoken audio recordings of captions of the images

could be mapped. They evaluated their method by looking at the cross-modality

retrieval recall scores: e.g., given an image and 𝑁 audio captions, which one of the

𝑁 audio captions best describes the image? In addition, Harwath et al. (2016) intro-

duced the captioned Places 205 dataset, often referred to as “Places” in this thesis.

The dataset consists of approximately 400,000 images of scenes and associated spo-

ken audio captions, collected via Amazon Mechanical Turk. I describe DAVEnet in

further detail in Section 1.3.1.

Sun et al. (2016) showed that image captioning models could be applied to im-

prove automatic speech recognition word error rate when paired images were available

for the spoken caption. They used Karpathy and Fei-Fei (2015)’s image captioning

model to inform the language model, generating additional textual captions to im-

prove the N-gram language model. Sun et al. (2016) also used the model to rescore

the top hypothesis from the ASR beam search using a word-level RNN conditioned

on the image. By conditioning on visual context, the authors were able to attain

an improvement of 3% absolute word error rate over the baseline audio-only recog-

nizer. This work shows that the semantic information present in an image can reduce
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uncertainty when parsing speech prompted by the image. The results suggest that

there is a large amount of mutual information information shared between images

and visually prompted speech.

Harwath and Glass (2017); Harwath et al. (2018a;b) explored whether it might be

possible to capitalize on the mutual information shared between images and visually

prompted speech to learn key words and phrases for visually salient concepts in an

unsupervised manner. Harwath and Glass (2017) conduct a word learning experiment

whereby they segment regions of interest in images and audio clips, average pool

the embedding regions to a vector, and use 𝑘-means on the vectors to find clusters

representing concepts. Cluster purity is then evaluated using the words from textual

forced-alignments of the spoken captions as labels. The authors find that there are

many large, highly pure clusters learned for objects, colors, textures, and scenes.

Harwath et al. (2018b) adds an additional modality to the Places dataset: spoken

captions in Hindi. The authors find that using the additional modality during train-

ing and learning a similarity metric between the three different pairs of modalities

(English speech, Hindi speech, and images) provides additional grounding information

during training, improving modality retrieval performance. In addition, the approach

enables the unsupervised translation of certain key words and phrased from English

to Hindi and Hindi to English.

Harwath et al. (2018a) introduces new methods for calculating the similarity be-

tween image and audio embedding maps. In addition, they employ more fine-grained

clustering analysis than Harwath and Glass (2017), extracting volumetric regions with

high similarity density as the components used for clustering and comparing purities

both to the text from the forced-aligned caption and pixel-wise object labels from the

ADE20K dataset (Zhou et al. 2016). In addition, they explore the use of component-

wise concept detectors for components of the embedding, a similar approach to my

word learning experiments in Section 4.6. One difference is that they use the seg-

mentations and labels from ADE20K (Zhou et al. 2016) to choose detectors where

there is agreement between image detectors and spoken word detectors. Since (a) the

dataset I use in Section 4.6 does not have pixel-wise labels and (b) pixel-wise labels
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tend to be biased towards objects, I focus solely on word detectors from the audio

embeddings. Both Harwath et al. (2018b)’s approach and mine are based on network

dissection (Bau et al. 2017; Zhou et al. 2017).

Bau et al. (2017); Zhou et al. (2017) pioneered an approach called “network dis-

section” in which individual neurons in a fully convolutional architecture are tested

for sensitivity to inputs associated with specific labels. The approach is applied to

image classification networks using segmented, pixel-wise annotated data as input.

The technique involves thresholding the activations of the neuron: only the top 0.5th

percentile of activations for the neuron are considered active. Then, the intersect-

over-union (IOU) score is calculated between the activation of the neuron and the

presence of a label. Detectors with the highest IOU scores are highly label specific.

Usually a threshold for IOU is set, such as 0.04, such that only word-component pairs

with IOU scores greater than 0.04 are considered detectors. The authors show that

when the basis for the hidden state is randomly rotated (preserving the information,

but eliminating any “component-wise” alignment), the number of unique detectors

decreases, suggesting it may be advantageous during training for individual neurons

in the network to learn more interpretable, component-aligned concepts. The word

learning experiments I conduct in Section 4.6 are motivated by this finding.

Jansen et al. (2017) use a sampled margin ranking loss similar to Harwath et al.

(2016) but with the addition of a “semi-hard-negative” term. The term, explained

in detail in Section 1.3.1, involves selecting an impostor example with the greatest

similarity still less than the similarity of the ground truth example. The authors use

this objective to train a Siamese-style network to learn a similarity function between

audio recordings with random jitter applied. We borrow the use of the semi-hard-

negative term for use with our multimodal models.

Petridis et al. (2018) introduced a network which takes spoken audio and video

as input and predicts the word being spoken. The videos are short 1.16 second

clips of lips moving, speaking the word. The network is trained through supervised

classification. In contrast, the models I explore are unsupervised and do not use

videos of the speaker, but rather videos which the speaker is describing.
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Le (2013) uses another approach to unsupervised concept learning: rather than

grounding to another modality, the authors take a generative approach. They train

an image autoencoder on ten million images and used a classification metric to show

the latent space contained information that enabled it to classify faces. Though this

could be an avenue for future work, the DAVEnet models I work with in this thesis

are not generative and are able to learn high level semantic information solely through

grounding to additional modalities.

Monfort et al. (2018) introduce the Moments in Time dataset, a dataset of over

800,000 three second videos labeled with actions taking place in the videos. I give

further details about this dataset and use a subset of the dataset augmented with

spoken captions in Chapter 4, showing that DAVEnet is capable of learning more

action words when trained on the new dataset.

1.3.1 DAVEnet

In this section, I provide a full background on the DAVEnet architecture proposed by

Harwath et al. (2016); Harwath and Glass (2017); Harwath et al. (2018a;b). I describe

the structure of the model, its training objective, and evaluation procedure. As most

of my research focuses on variants of DAVEnet, its training objective, evaluation

procedures, and applications of the architecture, giving a full background of the model

is important for understanding my contributions.

At a high-level, the goal of DAVEnet is unsupervised speech understanding. Through

an unsupervised procedure, DAVEnet is able to learn to recognize semantically rele-

vant features in images and audio captions describing the images.

At training time, the goal of DAVEnet is to learn a similarity function between

images and audio captions such that paired images and audio are considered more

similar than mismatched (or “impostor”) images and audio. More specifically, for a

given image, the image’s “ground truth” audio caption should be more similar to it

than it is to any given impostor audio caption. Likewise, for a given audio caption,

the audio caption’s ground truth image should be more similar to it than it is to

any given impostor image. This goal is realized through the negative sample mar-
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gin ranking (SMR) loss and variants thereof (Harwath et al. 2016). The objective is

min𝜃 ℒSMR(𝒟; 𝜃), where ℒSMR is defined as:

ℒSMR(𝒟; 𝜃) := E𝑖∼𝒟

[︂
E𝑗∼𝒟:𝑗 ̸=𝑖

[︀
max

(︀
0,𝑚+ sim𝜃(𝐼

(𝑖), 𝐴(𝑗))− sim𝜃(𝐼
(𝑖), 𝐴(𝑖))

)︀]︀
+ E𝑘∼𝒟:𝑘 ̸=𝑖

[︀
max

(︀
0,𝑚+ sim𝜃(𝐼

(𝑘), 𝐴(𝑖))− sim𝜃(𝐼
(𝑖), 𝐴(𝑖))

)︀]︀]︂
(1.1)

where 𝑖 ∼ 𝒟 is an index drawn uniformly from 1 to the size of the dataset, 𝜃 are the

parameters of the model, 𝑚 is the margin hyperparameter (typically 1), and 𝐼(·) and

𝐴(·) are specific images and audio in the dataset, respectively.

In practice, the expectation over 𝑖 is estimated via minibatch subsampling and

batch averaging. Empirically, we have found that approximating the expectations

over 𝑗 and 𝑘 is best performed with only one negative sample each (two negative

samples total). This empirical finding likely indicates that sufficient stochasticity is

needed to avoid converging to sub-optimal local optima.

In addition to SMR loss, for some DAVEnet models, the objective function is

augmented with a semi-hard-negative loss term proposed in Jansen et al. (2017). The

example with the greatest similarity less than the ground-truth similarity is used as

the impostor example for margin rank loss. If such an example does not exist, we fall

back to uniform negative sampling: sampling an example that differs from the ground

truth example uniformly at random. We call this new loss term, (semi-) hard-negative

loss (ℒHN).

In practice, the two losses are blended together using a hyperparameter, 𝜆HN,

typically set to one:

ℒDN = ℒSMR + 𝜆HNℒHN (1.2)

DAVEnet is implemented as a neural architecture, shown in Figure 1-2. It consists

of two branches learning two functions—𝑓𝐼 and 𝑓𝐴—which perform non-linear trans-

formations on images and audio, mapping them to representations in which simple

linear kernel functions can be used to gauge semantic similarity. For example, the
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Figure 1-2: DAVEnet architecture with residual encoders. Inputs are encoded to em-
bedding maps via modality-specific encoder networks. Similarities are then computed
between all pairs of pixels/time steps in the embedding maps to form a matchmap.
When embeddings are mean pooled and similarity is computed between vectors, it
is mathematically equivalent to averaging the spatio-temporal matchmap similarities
but more computationally efficient.
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similarity function which we have found to be the best performing empirically is the

dot product, though cosine similarity or Euclidean similarity could also be used in

theory.

Thus far, the primary evaluation task for DAVEnet has been modality retrieval:

given an image, find an audio caption that best describes the image, or given an audio

caption, find the most relevant image it could be describing. Recall at 1, 5, and 10

(R@1, R@5, R@10) are used to assess performance at this task.

1.4 My Contributions and Thesis Outline

My contributions are centered around exploring properties of the DAVEnet model, ex-

ploring new objectives for training/evaluation-time techniques to change those prop-

erties, and applying the architecture to new domains, more specifically, I:

1. Identify and present a solution to the problem of bias towards certain audio

captions during modality retrieval,

2. Define the property of modality invariance and propose a regularization term to

use during training to encourage the property in the learned embedding space,

3. Apply DAVEnet to a new dataset with additional modalities: the Captioned

Moments dataset consisting of three second videos (Monfort et al. 2018), show-

ing that training on this new dataset enables the learning of action-related

concepts and concepts grounded to ambient sound.

In Chapter 2, I identify a problem with the current DAVEnet architecture: it

tends to have “favorite” audio captions which it chooses to match images far more

often than other audio captions. I propose and experiment with ways to downweight

this preference for captions that have high similarity a priori.

In Chapter 3, I further explain the property of modality invariance and why a

modality invariant embedding space could be desirable. I explain a series of exper-

iments I ran on a smaller digits-based dataset combining MNIST and TIDIGITS
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(LeCun et al. 1998; Leonard and Doddington 1993) in which I use a regularization

technique borrowed from variational models in a novel way as a means to filter out

semantically irrelevant modality information in the learned embedding space. This

research was the subject of my ASRU 2017 paper (Leidal et al. 2017).

In Chapter 4, I apply DAVEnet to a new dataset: Captioned Moments, a spoken

caption-augmented subset of Moments in Time (Monfort et al. 2018) consisting of

short three second videos depicting actions. I discuss the potential challenges and

benefits of adding the temporal dimension and ambient audio dimension in videos.

Using the technique of network dissection (Bau et al. 2017; Zhou et al. 2017), I analyze

the words learned by the model when trained on various datasets, showing that the

model tends to learn more action-related concepts and concepts grounded to ambient

video audio when fine-tuned on the Captioned Moments dataset.

In Chapter 5, I recap my results and conclude with a discussion regarding the fu-

ture directions of multimodal learning, language acquisition, and unsupervised learn-

ing in general.
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Chapter 2

Analysis of DAVEnet

2.1 Introduction

In the current machine learning research climate, it is very common for new model

architectures to be introduced in every paper. However, I find it interesting and

worthwhile when researchers take an existing model and dissect it: determining what

it does well, where it can be improved, and building an intuition for what the model

is learning. From there, new models can be designed to address the better understood

shortcomings of existing models.

I spent a portion of my time during my thesis analyzing DAVEnet, the topology

of its learned embedding space, its properties, and areas for improvement. In this

chapter, I give an overview of what I learned and discussions to help build intuition

about what DAVEnet might be learning.

I frame the discussion around a specific problem: “favoritism” in modality retrieval.

More precisely, I found the model that performs image to caption modality retrieval

by choosing the maximum a posteriori caption tends to be biased towards certain

audio captions. First, I introduce the problem. Then, I introduce a change I made

to the DAVEnet architecture to allow the model to learn two conditional probability

mass functions during training: given an image query, what is the probability an

audio caption is retrieved for the image, and given an audio caption query, what is

the probability an image is retrieved for the audio caption. Finally, I conclude with
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a discussion regarding how other potential solutions to the bias problem may work.

I propose a few ideas for regularization terms/sampling terms to try to combat the

problem at training time rather than during evaluation.

All models in this section were trained and evaluated on the Places 205 dataset,

referred to simply as “Places” (Harwath et al. 2016; Harwath and Glass 2017; Zhou

et al. 2014). The models with image encoders pretrained on ImageNet use a DAVEnet

architecture with a Resnet-50 image encoder (He et al. 2016) and residual audio

encoder (see Appendix A). The models with non-pretrained image encoders use a

DAVEnet architecture with a VGG-16 image encoder (Simonyan and Zisserman 2014)

and 5-layer convolutional audio encoder. For both cases, the audio branch has a

rectified linear output (constraining its range to the non-negative real subspace: {𝑥 ∈

R𝐷 | ∀𝑖 : 1 ≤ 𝑖 ≤ 𝐷. 𝑥𝑖 ≥ 0} where 𝐷 is the embedding dimension) while the image

branch has linear output. All models were trained using the blended hard-negative

sampled margin rank objective (Equation 1.2).

2.2 “Favorite” Audio Captions

The primary metric for evaluating DAVEnet is the modality retrieval recall score.

Introduced in Section 1.2.2, the task of modality retrieval involves finding the most

relevant example in one modality given a query in another modality. In the case of

DAVEnet, it involves finding the most similar audio caption to a given image, or the

most similar image to a given audio caption, with the goal of matching each query

to its ground truth pair. That is, image to caption recall (@1) would be 1.0 if each

image is matched to the one caption describing that image. Recall at 𝐾 (R@𝐾)

means the percentage of examples for which the correct ground truth example was in

the top 𝐾 examples when sorted by similarity in decreasing order. The state-of-the-

art DAVEnet architecture attains R@10 scores around 70% with a pretrained image

encoder and 50% for a non-pretrained image encoder. The exact recall scores for

non-pretrained and pretrained models are given in the “Baseline” and “Baseline (P)”

rows of Table 2.1. The caption to image direction performs better in both cases, but
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(a) Audio caption which is selected as the most similar audio caption for 14 different images. The 14
images are shown. The spoken caption is “valley of the foothills of the green mountains lots of green
grass and a body of water a river.”

(b) Audio caption containing no speech, only background noise, which is selected as one of the top 10
most similar audio captions for 113 different images. 14 of the 113 images are shown.

Figure 2-1: Examples of “favorite” audio captions for caption retrieval R@1 (a) and
R@10 (b)
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Figure 2-2: (a) The distribution of similarities for paired images with the silent ut-
terance shown in Figure 2-1(b) are shown in red. The distribution of all pairwise
similarities is shown in blue. (b) shows the distribution of 𝐿2 norms of the audio
embeddings. Note how the silent caption lies close to the origin.

Figure 2-3: (a) and (c) are histograms showing the number of times a given audio
caption was in the top-1 or top-10 relevant audio captions for a given image. For
example, in (a), the first bar indicates that 586 audio captions were never selected
as the most similar audio caption for an image. The last bar in (a) indicates that 1
audio caption was selected as the most similar audio caption for 14 images. (b) and
(d) are histograms showing the number of times a given image was in the top-1 or
top-10 relevant images for a given audio caption.
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especially for the pretrained model.

Curious as to why caption to image modality retrieval tended to outperform image

to caption, I looked to more specific statistics about the modality retrieval process.

Figure 2-3 shows histograms of the number times each example is selected to be in the

top 𝐾 most similar examples for a query from the other modality for 1000 validation

pairs. Figure 2-3(a) shows that 586 audio clips were never selected as the most similar

audio clip to an image, yet one audio clip was selected 14 times as the most similar

audio clip to an image. That audio clip is shown in Figure 2-1(a).

Though one might argue that the audio clip shown in Figure 2-1(a) is rightfully

considered relevant to all 14 images to which it is matched, the task is not truly to

retrieve the most similar audio caption, but rather to retrieve the “correct”, ground

truth audio caption, even if it does not best describe the image. Similarity is merely

a heuristic for choosing the correct ground truth audio caption, but it is not always

an admissible heuristic. For example, if there is a vague, uninformative caption of an

image, it might be considered less similar than a longer, more informative description

for a different image. From another perspective, an overly descriptive caption for

an image might dilute the more informative content, leading it to be considered less

similar than a more concise description. Finally, since image embeddings can be

negative, there is a notion of “dissimilarity”: if an image does not align with the

content of a caption, the pair may have a negative similarity. If the caption contains

few if any recognized words, the caption may nonetheless have high relative similarity

to images, as there is no recognizable content to prove dissimilarity. Though this last

case might seem construed, there is evidence suggesting it may be the case: the audio

clip which was found to be in the top ten most similar audio clips for 113 different

images contains no speech, only background noise. This silent audio caption has

pairwise similarity scores with images that are very close to zero (well above the

mean of -26.7) and its embedding lies much closer to the origin than average (see

Figure 2-2), suggesting the audio embedding may zero-out negative components of

the image embedding during the dot product.

Regardless of the properties of the similarity metric and its admissibility as a
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heuristic for modality retrieval, the fact that 586 audio clips were never selected to

match an image means that only 414 unique audio clips were selected at least once

to match an image, setting the image to caption R@1 upperbound at 41.4%. In

the context of post-processing, this upper-bound poses a barrier for improving recall

based on the scores derived from an already-trained model. In addition, one can view

the silent audio caption which occurs in the top ten captions for 113 images as a

“wasted” slot in the top ten for each of those images. With this in mind, I set out to

find a solution to the highly skewed caption recall distribution.

2.3 My Solution: Compensating for the Prior

Figure 2-3 shows that some audio captions are favored over others a priori. To study

this further, I transform similarity scores into conditional probability distributions

using the softmax function. From this point of view, the current procedure for image

to caption modality retrieval involves selecting the maximum a posteriori caption

given and image. For a set of 𝑁 images and 𝑀 captions, I now show how to convert the

similarity score matrix, 𝑆, into conditional probability distributions and approximate

prior distributions. First I introduce notation.

Suppose instead of the process of modality retrieval being a deterministic process,

it is a stochastic process where the retrieved image given a query is selected randomly

according to a distribution. Since there are finite images and captions, we can assign

each an ID1. Let 𝑄𝐼 be the random variable representing the ID of the queried image

for image to caption retrieval. Let 𝑅𝐴 be the random variable representing the ID of

the retrieved caption for image to caption retrieval. Let 𝑄𝐴 be the random variable

representing the ID of the queried caption for caption to image retrieval. Let 𝑅𝐼

be the random variable representing the ID of the retrieved image for caption to

image retrieval. Let 𝐼 be the 𝑁 by 𝐷 matrix of image embeddings (where 𝐷 is

the embedding dimension) and 𝐴 be the 𝑀 by 𝐷 matrix of audio embeddings. 𝑆

1In practice, it is most convenient if the IDs of paired audio captions are equal, representing the
diagonal of the similarity matrix. However, the theory holds without this assumption.
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represents the similarity matrix.

The goal is to compensate for the skewed distribution 𝑃 (𝑅𝐴 | 𝑄𝐼), but first simi-

larities must be converted into probabilities. I do so with the softmax function with

temperature hyperparameter 𝜏 .

𝑆 =
[︁
sim(𝐼𝑖, 𝐴𝑗)

]︁
𝑖,𝑗

𝑃 (𝑅𝐼 = 𝑖|𝑄𝐴 = 𝑎) =
𝑒

𝑆𝑖,𝑎
𝜏∑︀𝑁

𝑖′=1 𝑒
𝑆𝑖′,𝑎

𝜏

𝑃 (𝑅𝐴 = 𝑎|𝑄𝐼 = 𝑖) =
𝑒

𝑆𝑖,𝑎
𝜏∑︀𝑀

𝑎′=1 𝑒
𝑆𝑖,𝑎′

𝜏

In the case of dot product similarity, 𝑆 = 𝐼𝐴𝑇 . For numeric stability, the max of the

similarities along the axis being softmaxed is often subtracted before exponentiation.

The prior of a given audio caption can then be estimated as:

𝑃 (𝑅𝐴 = 𝑎) = E𝑖∼𝑃 (𝑄𝐼) [𝑃 (𝑅𝐴 = 𝑎 | 𝑄𝐼 = 𝑖)]

=
𝑁∑︁
𝑖=1

𝑃 (𝑅𝐴 = 𝑎 | 𝑄𝐼 = 𝑖)𝑃 (𝑄𝐼 = 𝑖)

=
1

𝑁

𝑁∑︁
𝑖=1

𝑃 (𝑅𝐴 = 𝑎 | 𝑄𝐼 = 𝑖)

assuming each of the 𝑁 images is equally likely to be queried.

As one would expect, for a given caption, 𝑎, the 𝑃 (𝑅𝐴 = 𝑎) is highly correlated to

the number of images for which 𝑎 is the most similar audio caption (|{𝑖|∀𝑖 : 1 ≤ 𝑖 ≤

𝑁 ∧ 𝑎 = argmax𝑎′𝑆𝑖,𝑎′}|). This correlation is shown in Figure 2-4(a) (𝑅2 = 0.971).

To compensate for the model’s tendency to select the same audio captions repeat-

edly, we can divide the posterior, 𝑃 (𝑅𝐴 | 𝑄𝐼), by the prior, 𝑃 (𝑅𝐴), to attain an odds

ratio which we call the posterior-inverse-prior (PIP), or posterior-prior-1:

PIP(𝑎 | 𝑖) = 𝑃 (𝑅𝐴 = 𝑎 | 𝑄𝐼 = 𝑖)

𝑃 (𝑅𝐴 = 𝑎)
=

𝑃 (𝑄𝐼 = 𝑖 | 𝑅𝐴 = 𝑎)

𝑃 (𝑄𝐼 = 𝑖)
∝ 𝑃 (𝑄𝐼 = 𝑖 | 𝑅𝐴 = 𝑎)

(2.1)
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Figure 2-4: Correlation between number of images for which a given audio
caption is the most similar audio caption to the image and 𝑃 (𝑅𝐴 = 𝑎) =
E𝑖∼𝒟 [𝑃 (𝑅𝐴 = 𝑎|𝑄𝐼 = 𝑖)], with the expectation estimated over images in (a) the val-
idation set and (b) the training set. 𝜏 = 1.0 was used for the softmax.

Odds ratios are common-place in information theory. For example, the expected log

odds ratio between the posterior and prior over a dataset is the conditional entropy,

representing the expected number of bits of information the condition provides (Cover

and Thomas 1991). Intuitively, the odds ratio represents a notion of “surprise”, or

more specifically a quantifier of the change in belief, called information. For example,

if Alice asks Bob which car will win in a race: a NASCAR race car or a Toyota Camry,

Bob would almost definitely say the race car. If, however, Bob was then informed

that the race car had flat tires, Bob’s belief that the Camry would win would increase

drastically. The information that the race car’s tires were flat changed Bob’s belief

drastically and therefore would have a high posterior prior ratio. On the other hand,

if Bob were instead have been told the Camry had flat tires, his belief would not

change much, as he already thought that the race car would win. Being informed

that the Camry had flat tires therefore has a posterior prior ratio close to one. The

ratio can be less than one if belief decreases.

The traditional image to caption modality retrieval process is: for a given 𝑖, select

the 𝑎 which maximizes 𝑆𝑖,𝑎. I now change that to: for a given 𝑖, select the 𝑎 which

maximizes PIP(𝑎 | 𝑖). Intuitively, this can be thought of as choosing the audio caption

which seems significantly more likely after seeing the image than before. The greater
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the change in probability (the greater the “surprise”) is, the higher the score is.

There is one caveat: since 𝑃 (𝑅𝐴 = 𝑎) was estimated via an expectation over

images, the task has been changed. Originally, the task was: given one image and

𝑀 captions, find the caption most similar to the image. With the change, the task

becomes: given 𝑁 images—one of which is the query—and 𝑀 captions, find the

caption most similar to the queried image. In other words, using PIP as a direct

substitution for similarity provides more information as input than in the original

evaluation procedure. However, the use of this additional information can be avoided

if 𝑃 (𝑅𝐴 = 𝑎) is approximated via an expectation over images in the training set

rather than the validation set. These images in the training set can be considered

memorized parameters of the model, and therefore PIP serves as a fair comparison to

using similarity directly. Though the 𝑃 (𝑅𝐴 = 𝑎) estimated via an expectation over

the training images2 is not as correlated to the number of images to which the audio

caption was most similar as when estimated via an expectation over validation images

(see Figure 2-4(b) versus Figure 2-4(a)), there is still a correlation (𝑅2 = 0.547).

2.4 Results

Evaluating PIP(𝑎 | 𝑖) and PIP(𝑖 | 𝑎) (calculated in the same manner but with priors

over images estimated from training captions) for modality retrieval recall @1, @5,

and @10 yields the results given in Table 2.1 in the Posterior-Prior-1 rows. The

recall statistics in italics do not serve as a fair point of comparison, since they were

collected using validation examples to approximate the prior. This caveat is described

in further detail at the end of Section 2.3. However, the italicized metrics act as oracle

recalls for the ideal case where the expectation of the posterior over queried training

examples equals the expectation over queried validation examples.

First I will discuss the results for image to caption retrieval. For both the pre-

trained model, the improvement was greatest for R@1 with 21.9% relative improve-

2a Monte Carlo estimate with 1000 images from the training set was used rather than the full
402,385 images available in the training set.
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ment as opposed to only 6.7% and 4.2% for R@5 and R@10, respectively. This suggest

that the posterior-inverse-prior technique helps best at sorting out the order among

the top few retrieved examples but has less effect on the total sorting. For the non-

pretrained model, the effect of the technique is less pronounced for R@1 than for

the pretrained case, but more pronounced for R@5 and R@10: 17.5%, 17.9%, 7.9%

relative improvement, respectively. The improvement is visually apparent in Figure 2-

5(b), as the posterior-prior-1 generally has more images with low-index ground truth

captions than the baseline.

The results for caption to image retrieval are more mixed. There are cases were

the baseline outperforms posterior-prior-1 in Table 2.1, and in the cases where that

is not the case, posterior-prior-1 only attains slight improvements. This is visually

evident in the similarity of the baseline and posterior-prior-1 curves in Figure 2-5(a).

The fact that recall improved is a good result of using the posterior-prior-1 score

for modality retrieval, but it does not show whether or not the original problem of the

model’s bias towards certain audio captions was solved. A histogram of the number

of times audio captions were retrieved for a given image (shown in Figure 2-6(a) and

Figure 2-6(b)) answers that question.

For image to caption R@1, 449 audio captions were never selected as the most

similar audio caption to an image, reduced from 586 using similarity alone. The

maximum number of times an audio caption was selected as the most similar caption

Caption to Image Image to Caption
Model R@1 R@5 R@10 R@1 R@5 R@10

Baseline 0.145 0.386 0.499 0.120 0.335 0.468
Posterior-Prior-1 (𝜏 = 6.2) 0.150 0.401 0.499 0.141 0.395 0.505

(*) Posterior-Prior-1 (𝜏 = 6.2) 0.155 0.416 0.514 0.147 0.401 0.512
Baseline (P) 0.273 0.606 0.735 0.219 0.564 0.687

Posterior-Prior-1 (𝜏 = 3.0) (P) 0.292 0.604 0.730 0.267 0.602 0.716
(*) Posterior-Prior-1 (𝜏 = 3.0) (P) 0.301 0.622 0.743 0.277 0.623 0.733

Table 2.1: Results of prior-compensation experiments as compared to the baseline.
(P) indicates the image encoder was pretrained on ImageNet. (*) indicates that the
prior was calculated using examples of the queried modality from the validation set
rather than the training set (changing the task).
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Figure 2-5: A histogram of the index of the ground truth “correct” example in the list
of retrieved examples sorted in descending order by various similarity metrics. (P)
indicates that the model used was pretrained. For example, the point in the upper left
of (b) indicates that 267 images for a pretrained model using Posterior-Prior-1 had the
correct ground truth audio caption as the most similar audio caption (corresponding
to 0.267 R@1 reported in Table 2.1).

Figure 2-6: A histogram identical to Figure 2-3, except using the posterior-
priorsuperscript score for modality retrieval rather than the similarity score.
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for an image was 8, down from 14.

For image to caption R@10, three audio captions were never selected in the top ten

audio captions for an image, reduced from 37 using similarity alone. The maximum

number of times an audio caption was selected in the top ten audio captions for an

image was 29, down from 113.

These results suggest that the posterior-prior-1 score is an effective evaluation-time

technique for reducing bias during modality retrieval tasks.

2.5 Discussion: Other Potential Solutions

One might be tempted to try to use the posterior-prior-1 technique during training

rather than only during evaluation. In this procedure, one would perform a softmax on

the mini-batch similarity matrix, then marginalize to approximate 𝑃 (𝑅𝐴) and 𝑃 (𝑅𝐼),

and then calculate the batch’s log-odds ratios PIP(𝑖 | 𝑎) and PIP(𝑎 | 𝑖). Sample margin

ranked loss with hard negative blending (as given in Equation 1.2) could then be used

on the log-odds ratios as opposed to the similarity matrix directly, as in the original

formulation. Preliminary experiments with this architecture empirically showed that

this training objective was not stable and quickly led to infinite gradients.

I did, however, find that simply performing a softmax on the similarity matrix

and performed sampled margin rank loss with hard negative blending on 𝑃 (𝑅𝐴 | 𝑄𝐼)

and 𝑃 (𝑅𝐼 | 𝑄𝐴) rather than on 𝑆 led to results equivalent to, if not slightly better

than, the baseline. In this setup, I found it beneficial to use a global parameter, 𝜏 ,

the learned temperature for the softmax. This could be beneficial for future variants

of the model, as the model learns using a probability mass function over examples,

which can be useful for regularization, negative sampling, and other techniques which

depend on a probability mass function. For example, during sampled margin rank

loss, instead of negative sampling uniformly, one might sample a categorical distribu-

tion over examples with weights proportional to the posterior over examples in the

minibatch. Another option might be to use the probability mass function to regular-

ize the prior. For example, one could use the Kullback-Liebler (KL) divergence, also
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known as relative entropy, of the empirical prior from the uniform distribution as a

regularization term:

ℒ = ℒDN + 𝜆KL

(︁
𝐷KL (E𝑎 [𝑃 (𝑅𝐼 | 𝑄𝐴 = 𝑎)] || Uniform(𝑁))

+𝐷KL (E𝑖 [𝑃 (𝑅𝐴 | 𝑄𝐼 = 𝑖)] || Uniform(𝑁))
)︁

which adds a loss term which increases as the empirical prior deviates from the uniform

distribution.

Another avenue which should be explored is explicitly training the model on silence

and white noise, both for audio and images. Such inputs should not be similar to

any non-silent input. This could help counteract the problem shown in Figure 2-1b

where the silent audio was similar to many images. In addition, jitter in pixel values

should be added to inputs at training time to avoid memorization.

2.6 Conclusion

In this chapter, I looked in detail at the behavior of a DAVEnet architecture in

the context of a modality retrieval task. In particular, I looked at image to caption

modality retrieval, identifying a problem where the model was biased to certain audio

captions. I proposed and evaluated a solution to that problem involving compensating

for the prior at evaluation time. Finally, I proposed potential changes to the model

during training time, including new sampling procedures and regularization terms,

that may help combat the problem during training for future work on the model.
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Chapter 3

Modality Invariance

3.1 Introduction

Humans perceive the world through an array of specialized sensory organs: the eyes,

ears, nose, tongue, and skin. By processing the stream of signals from these organs,

we are able to perceive and understand the world around us. Each of these organs

provides information about our surroundings from a different modality: sight, sound,

smell, taste, and touch, respectively. By the same token, machine learning models

can be given input data from various sensory channels, or modalities, as well.

A modality invariant representation of data is a transformed representation of

sensory information such that it is impossible to predict the original modality from

the transformed representation. More specifically:

Definition 3.1.1. Modality invariance. Given two modalities, ℐ and 𝒜, an embed-

ding space 𝒮, and two functions:

𝑓𝐼 : ℐ ↦→ 𝒮

𝑓𝐴 : 𝒜 ↦→ 𝒮

The pair < 𝑓𝐼 , 𝑓𝐴 > is considered modality invariant if it is impossible to learn a

function 𝒮 ↦→ {𝐴, 𝐼} which classifies embeddings as their original modality with
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Figure 3-1: A non-modality invariant embedding space (left) versus a modality in-
variant embedding space (right). The embedding space is a 2D t-SNE projection of
the 128 dimensional embedding space learned by the model introduce in Section 3.3.
It contains images of handwritten digits (squares) and spoken audio recordings of
digits (circles). The color of the point corresponds to the ground truth digit label.

probability sufficiently greater than chance.

For an example of a non-modality invariant embedding space versus a modality

invariant embedding space, see Figure 3-1. These embedding spaces are produced

from a model I describe in Chapter 3. In the left, there are clusters that correspond

to digit-modality pairs, whereas in the right, the clusters only correspond to digits.

Modality information has been filtered out when learning the encoder for the second

embedding space.

In the trivial case, the transformation could be an injection to some constant,

like zero, or in general sampling from any distribution independent of the modality.

In that case, the representation is modality invariant, but also contains no semantic

information present in original signal. Another example of a modality invariant repre-

sentation is to learn a classification function on the separate modalities in a supervised

fashion. So long as the empirically observed prior distributions1 over predicted labels
1the expectation of the learned posterior over all conditions.
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for the classifiers for both modalities are the same, the predicted labels can be consid-

ered a modality invariant representation, albeit learned in a supervised manner. The

techniques in this chapter will explore unsupervised techniques for learning modality

invariant, semantically rich representations.

3.1.1 Benefits of Modality Invariance

What are the benefits of modality invariance? For one, learning a function on the

embedding space becomes easier. In other words, filtering out modality information

can be viewed as a way to de-noise more important semantic information for tasks

which only pertain to the semantic content expressed in the modalities rather than

the form of expression itself. An example of such a task is digit classification. For

instance, imagine spoken and handwritten digits between zero and nine, inclusive, are

encoded to a shared embedding space. If the embedding space is modality invariant,

digits will occupy the same subspace, regardless of whether they were spoken or

handwritten. A much weaker classifier could then be used to classify the embeddings.

This can be expressed more formally by showing that modality invariant embeddings

can be classified more accurately by classification models with less parameters than

non-modality invariant embeddings.

The function on the embedding space does not have to be a discriminative clas-

sifier. It could also generate output in another modality. For example, it could map

the embedding to generated spoken audio or a generated image. This could be useful

for modality translation, because only one decoder function per decoded modality

needs to be learned if there is a common, modality invariant input representation. To

make an analogy to another area of computer science: it is similar to the LLVM com-

piler, which has multiple frontend syntaxes and multiple backend architectures but

one shared intermediate representation: there only needs to be a function mapping

the intermediate representation to the machine code for a specific architecture. The

benefit of the shared representation lies in the number of functions required. Imagine

there are four input modalities and four output modalities. To be able to convert

between any pair of input and output modalities directly, one would have to learn
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4! = 24 functions. But, if there is a shared intermediate representation, only 4+4 = 8

functions are required (one for each input modality to intermediate representation and

one from the intermediate representation to each output modality).

In addition to the practical benefits of a modality invariant embedding space,

the goal is biologically inspired as well. More specifically, psychological studies show

children are able to learn through associating stimuli during their early years. For

example, a child hearing his or her mother pronounce “seven” or write a “7” might

learn to think of the same concept upon hearing or seeing either. In fact, Man et al.

(2012) showed that the temporoparietal cortex of the human brain produces content-

specific and modality-invariant neural responses to audio and visual stimuli.

3.1.2 My Approach

In general, when learning a latent space for unsupervised concept discovery2, it is

advantageous to filter out an information considered noise unrelated to the semantic

concepts of interest. For example, if the goal is to train a model which can learn to

distinguish and identify sensory inputs representing digits in the same way a human

would, it is important for the model to filter out sensory noise that does not affect

the underlying semantic content. To this end, in this chapter I take a closer look at a

technique for regularizing the learning process using a conditional entropy loss term

to filter out undesired information.

I train a neural model based on DAVEnet to map speech audio and image inputs

into a modality invariant semantic embedding space. In my method, I map image

and audio inputs to the parameterizations of diagonal Gaussians representing the

posterior distribution over semantic embeddings. I then sample embeddings from this

distribution and use sampled margin rank loss (defined in Equation 1.1) to encourage

samples from paired audio and image inputs to be more similar than mismatched pairs

of audio and images. Although (Harwath et al. 2018a; 2016) have shown DAVEnet can

learn a semantically rich embedding space with this objective, the embedding space

learned by DAVEnet with sampled-margin-rank loss alone is not modality invariant.
2by clustering points in the latent space, for instance
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Figure 3-2: (a) 2D PCA of 1024-dimensional embedding space and (b) 𝐿2 norm
of 1024 dimension embeddings for Imagenet-Pretrained Resnet-DAVEnet trained on
Places

For example, Figure 3-2 shows that image and audio captions occupy separate sub-

spaces of the learned embedding space when DAVEnet is trained on Places.

In my approach, I explore methods of better encouraging modality-invariance.

That is, not only should semantically similar content within the same modality be

clustered in the embedding space, but the distributions of embeddings for semantically

equivalent audio and images should be the same. This goal is based on the assumption

that modality-specific information is effectively noise for tasks requiring only the

semantic content of the sensory input.

My experiments use a simpler dataset and architecture than DAVEnet. I focus

on a combined dataset consisting of pairs of spoken and handwritten digits ranging

from 0 to 9. The spoken digits are drawn from the TIDIGITS corpus (Leonard and

Doddington 1993) while the handwritten digits are from MNIST (LeCun et al. 1998).

To drive the posterior distributions over embeddings to be the same for semanti-

cally equivalent inputs across modalities, I introduce a term to the objective which

regularizes the amount of information encoded in the semantic embedding. The term,

borrowed from variational autoencoders (VAEs), is the KL divergence of the posterior

distribution from the unit Gaussian. My results suggest that when this regulariza-

tion term is increased from zero during hyperparameter tuning, modality-information

tends to be filtered out prior to semantic-information. I believe this regularization
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technique has the potential to be useful for filtering out information in information-

rich embedding spaces in general.

3.2 Previous Work

Saito et al. (2016) developed an adversarial neural architecture to learn modality-

invariant representations of paired images and text. Modality-invariance was encour-

aged using an adversarial setup in which the discriminator was given one of the two

representations or a sample drawn from the unit Gaussian. The discriminator was

tasked with determining which modality the input originated from or whether it was

drawn from the unit Gaussian. The encoders were trained through gradient reversal,

as used previously in adversarial domain adaptation and generative adversarial net-

works (Saito et al. 2016; Ganin and Lempitsky 2015; Ganin et al. 2016; Tzeng et al.

2017; Goodfellow et al. 2014).

Kashyap (2017) also applied Harwath et al. (2016)’s approach to the MNIST and

TIDIGITs dataset, focusing primarily on using the embeddings for cross-modality

transfer learning. My early work with MNIST and TIDIGITS focuses more on the

learned embedding space itself, and methods to promote modality-invariance.

Hsu et al. (2017a) designed a convolutional variational autoencoder (CVAE) for

log Mel-filterbanks of speech drawn from the TIMIT dataset. In my work concerning

MNIST and TIDIGITS, I use the same convolutional network architecture for my

audio encoder network.

For the multi-modality MNIST-TIDIGITS work conducted so far, the network

architecture and loss function is based on Harwath et al. (2016), but instead of de-

terministically mapping inputs to embeddings, I map inputs to the parameterization

of a diagonal Gaussian, and sample embeddings from it. In addition, I add a reg-

ularization term for the posterior distributions. In this regard, my method takes a

similar approach to achieving modality-invariance as Saito et al. (2016) insofar as

we both drive the distribution of embeddings to have minimal deviation from a unit

Gaussian prior distribution of embeddings. I have also empirically found that at least
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in cases where semantic information is discrete and closed, encoders can deceive a

discriminator without using gradient reversal. In addition, the problem of modality-

invariant embeddings using speech as one of the modalities has yet to be explored, so

my research makes a novel contribution in this area.

3.3 Methods

I will first formalize the problem. Given a set of co-occurring images and captions,

(𝑥
(𝑖)
𝑣 , 𝑥

(𝑖)
𝑎 ), 𝑖 = 1...𝑁 where 𝑥

(𝑖)
𝑣 ∈ 𝒱 (image space) and 𝑥

(𝑖)
𝑎 ∈ 𝒜 (audio caption space),

functions 𝑓𝑣 ∈ ℱ𝑣 : 𝒱 ↦→ R𝐷 and 𝑓𝑎 ∈ ℱ𝑎 : 𝒜 ↦→ R𝐷 are chosen to optimize some

objective that promotes the encoding of semantic information contained in the inputs

𝑥
(𝑖)
𝑣 and 𝑥

(𝑖)
𝑎 into 𝑓𝑣(𝑥

(𝑖)
𝑣 ) and 𝑓𝑎(𝑥

(𝑖)
𝑎 ), respectively. 𝐷 is the latent dimension. For

example, if 𝑥
(𝑖)
𝑣 is a picture of a handwritten “7” and 𝑥

(𝑖)
𝑎 is an audio recording of

someone saying “seven”, 𝑓𝑣(𝑥
(𝑖)
𝑣 ) and 𝑓𝑎(𝑥

(𝑖)
𝑎 ) should be considered highly semantically

related by some similarity metric. As with DAVEnet, I aim to increase the margin

between the similarity of representations of co-occurring inputs and the similarity of

representations of non-co-occurring inputs using sampled margin rank loss, defined

in Equation 1.1. Note that hard-negative margin rank loss is not used for this model.

For brevity, we refer to this loss as similarity loss, ℒsim.

In contrast to DAVEnet, my encoders, 𝑓𝑣 and 𝑓𝑎, are non-deterministic. The

model learns the deterministic functions 𝜇𝑣 : 𝒱 ↦→ R𝐷 and log 𝜎2
𝑣 : 𝒱 ↦→ R𝐷. Then

𝜇𝑣(𝑥
(𝑖)
𝑣 ) and log 𝜎2

𝑣(𝑥
(𝑖)
𝑣 ) are used to parameterize a diagonal Gaussian representing

Image (𝑥(𝑖)
𝑣 )

Audio (𝑥(𝑗)
𝑎 )

Image Encoder (𝜇𝑣, log 𝜎
2
𝑣)

Audio Encoder (𝜇𝑎, log 𝜎
2
𝑎)

Posterior (𝑝
𝑓𝑣 | 𝑥

(𝑖)
𝑣

)

Posterior (𝑝
𝑓𝑎 | 𝑥

(𝑗)
𝑎

)

Sample

Sample

Embeddings (𝑓𝑣(𝑥
(𝑖)
𝑣 ))

Embeddings (𝑓𝑎(𝑥
(𝑗)
𝑎 ))

sim(·) (dot product) Similarity Score

Figure 3-3: The high-level model structure. The image/audio are encoded to the
parameterization of the posterior distribution. Embeddings are then sampled from
the parameterized posterior distributions and used to calculated the similarity using
the dot product.
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the posterior distribution over embeddings:

𝑝
𝑓𝑣 | 𝑥

(𝑖)
𝑣

:= 𝒩
(︀
𝜇𝑣(𝑥

(𝑖)
𝑣 ), diag

(︀
𝜎2
𝑣(𝑥

(𝑖)
𝑣 )

)︀)︀
(3.1)

Embeddings are then sampled from the posterior:

𝑓𝑣(𝑥
(𝑖)
𝑣 ) ∼ 𝑝

𝑓𝑣 | 𝑥
(𝑖)
𝑣

and likewise for 𝑓𝑎. This process is illustrated in Figure 3-3. During training, 16

samples were sampled per input point and the re-parameterization trick described in

Kingma and Welling (2013) was used to backpropagate through the sampling process.

In addition to ℒsim, I used the KL divergence of the predicted posteriors (diagonal

Gaussians) over embeddings from the prior over embeddings (the unit Gaussian) as

a regularization term I call information gain (IG) loss:

ℒIG = E𝑖∼𝒟
[︀
𝐾𝐿(𝑝

𝑓𝑣 | 𝑥
(𝑖)
𝑣

|| 𝒩 (0, 𝐼𝑧))

+𝐾𝐿(𝑝
𝑓𝑎 | 𝑥

(𝑖)
𝑎

|| 𝒩 (0, 𝐼𝑧))
]︀

In practice, the expectation is approximated over the minibatch.

The total loss function is then:

ℒ = ℒSim + 𝜆IGℒIG + 𝜆WDℒWD (3.2)

where ℒWD is the sum of all Frobenius norms of weight matrices and convolutional

kernels, and 𝜆IG and 𝜆WD are tunable hyperparameters.

3.4 Datasets

For images, I used the MNIST dataset of handwritten digits (LeCun et al. 1998). The

dataset contains 60K training images and 10K test images. The images are 28x28

8-bit grayscale images, and each is preprocessed to have pixel values between 0 and

1. For audio, I use the TIDIGITS dataset of spoken utterances sampled at 20 KHz
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(Leonard and Doddington 1993). I only use digit strings containing a single digit

from men, women, and children. After filtering out utterances which contain more

than one digit, 6,456 training utterances, 1,076 test utterances, and 1,076 validation

utterances remain. Using the Kaldi speech recognition toolkit (Povey et al. 2011),

80 dimensional log Mel-filterbank features were calculated with a 25ms window size

and a 10ms frame shift, using a Povey window3. To create inputs of the same size, I

pad or crop each spectrogram to 100 frames (i.e., one second of speech) which is one

frame longer than the mean frame length of the available utterances. I preprocessed

each filterbank to have zero mean and unit variance. Longer utterances were center

cropped. Shorter utterances were zero padded at the end after adjusting the filterbank

to have zero mean. For TIDIGITS, I also combined the utterances labeled “oh” and

“zero” into one class for the purpose of labeling clusters during analysis4.

3.5 Experiments

I used convolutional neural networks to predict the parameterizations of 𝑝
𝑓𝑣 | 𝑥

(𝑖)
𝑣

and

𝑝
𝑓𝑎 | 𝑥

(𝑖)
𝑎

(Equation 3.1). I trained the networks to minimize Equation 3.2 for the

MNIST and TIDIGITS datasets described in Section 3.4. I compared the embedding

spaces produced when 𝜆IG = 0 and when 𝜆IG > 0 to gauge the effect of regularizing

information gain in the posterior.

I set the embedding dimension to be 𝐷 = 128, which is consistent with the latent

embedding dimensionality used by Hsu et al. (2017a) for their variational autoencoder

for 58 phones. I did not explore other values of 𝐷. The encoders for both images

and audio are convolutional networks which produce the parameterization (the mean

and log variance vectors) of the posterior distribution over embeddings. The audio

encoder uses a similar architecture as the encoder portion of Hsu et al. (2017a)’s

variational autoencoder for 80 dimensional log Mel-filterbank speech. The specific

architectures for the convolutional image and audio encoders is given in Table 3.1. A

3
(︀
1
2 − 1

2 cos
(︀
2𝜋𝑛
𝑁

)︀)︀0.85, available in the Kaldi speech recognition toolkit (Povey et al. 2011).
4Training does not depend on explicit class labels except insofar as pairing audio and image

inputs based on their ground truth digit labels.
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Image Encoder Audio Encoder
3× 3 conv., 64 filters, same padding 1× 𝐹 conv., 64 filters, same padding.

ReLU tanh
BatchNorm (Ioffe and Szegedy 2015) 64 channels

3× 3 conv., 2× 2 strides, 128 filters, same padding 3× 1 conv., 2× 1 strides, 128 filters, same padding
ReLU tanh

BatchNorm (Ioffe and Szegedy 2015) 128 channels
3× 3 conv., 2× 2 strides, 256 filters, same padding 3× 1 conv., 2× 1 strides, 256 filters, same padding

ReLU tanh
BatchNorm (Ioffe and Szegedy 2015) 256 channels

Flatten to vector Flatten to vector
512 unit fully connected 512 unit fully connected

ReLU ReLU
BatchNorm (Ioffe and Szegedy 2015) 512 channels

256 unit linear output 256 unit linear output

Table 3.1: Neural architectures used for the image and audio encoders for experiments
with TIDIGTS/MNIST. The audio encoder architecture is based on the encoder used
in Hsu et al. (2017a). Note that for the audio encoder, 𝐹 = 80 mel-filters. For the
256 unit linear output, 128 units are for 𝜇 and 128 for log 𝜎2.

weight decay (𝜆WD) of 10−6 is used for all convolutional and fully connected layers.

The initial learning rate was 10−5 which was decayed by a factor of 0.9 every 10

epochs. The Adam learning rate scheduler algorithm (Kingma and Ba 2014) was

used with 𝛽1 = 0.95, 𝛽2 = 0.999, and 𝜖 = 10−8. 128 distinct image-audio pairs

were used for each batch. After processing each image or audio input through the

respective encoder to produce a posterior distribution, 16 embeddings were sampled

per input.5 This produced a total of 2,048 image-audio embedding pairs in each

batch.

Negative sampling was performed by selecting one of the other 2,047 sample pairs

in the batch. While it would at first seem reasonable to disallow negative samples

for a training pair to be drawn from the same underlying digit class, such a mecha-

nism implies a ground truth digit labeling of all examples within a batch. In other

words, the knowledge of which negative example pairs not to sample is equivalent to

the network possessing an oracle with knowledge of which audio/visual sample pairs

within a batch were drawn from the same underlying digit class. This oracle would

allow the network to trivially recover the ground truth digit labeling of all examples

within a batch. In an effort to avoid this, I allow negative samples to be chosen from

any digit class regardless of the initial example’s digit class. Empirically, I found that

5Positive image-audio embedding pairings were established by matching corresponding sampled
embeddings for each input.
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the weight of the positive examples can easily overcome the “contradictory” signals

introduced by this sampling scheme, allowing the model to produce a semantically

rich embedding space.

The model was trained for 100 epochs. In contrast to the other models in this

thesis, which were implemented using PyTorch (Paszke et al. 2017), this model was

implemented using TensorFlow (Abadi et al. 2015). An epoch was defined as the

number of batches required to cover all training examples in the larger of the two

datasets (MNIST) exactly once. Training required about 35 minutes on an NVIDIA

TitanX GPU.

3.6 Results

To analyze the learned semantic space, I sampled embeddings for inputs from the

unseen test set, sampling 16 samples per input point. I ran K-means clustering with

𝑘 = 10 and calculated the cluster purity of the resulting clusters, defined as:

1

𝑁

𝑘∑︁
𝑖=1

max
𝑗=1...𝑘

(|𝑐𝑖 ∩ 𝑦𝑗|)

where 𝑐𝑖 is the set of all points in cluster 𝑖 and 𝑦𝑗 is the set of all points of class 𝑗

(their ground truth digit label). This metric represents the accuracy of a classifier

which classifies a point, 𝑥, according to the majority class of the cluster whose mean

is closest to 𝑥 using euclidean distance.

I then used a subset of 2,152 sample embeddings (1,076 from images, 1,076 from

audio) and performed a classification task to predict the original input point’s modal-

ity from the embeddings using a support vector machine (SVM) with a Gaussian

RBF kernel. 1600 examples were used for the training set and the remaining were

used for the test set. I used 3-fold validation to select a 𝐶 value for the SVM. Com-

paring the modality classification test accuracy to the prior on modality (1
2
) allows

us to gauge the extent to which the embeddings are modality-invariant. Perfectly

modality-invariant embeddings would result in a test accuracy of 1
2

for the modality
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Figure 3-4: 2 dimensional t-SNE projections of 128 dimensional embeddings produced
from using various weights, 𝜆IG, for the KL divergence regularization term.
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Figure 3-5: Effects of tuning the weight, 𝜆IG, of the KL divergence regularization
term. The shaded region is considered ideal: modality classification is nearly random
and cluster purity reaches its peak.

classification task.

I evaluated the effect of 𝜆IG on the cluster purity and modality invariance of the

embeddings learned by the model. Results from using the modality classifier and

cluster purity analysis are shown in Figure 3-5 and Table 3.2.

In addition, I used 200 samples per modality to compute a two dimensional t-SNE

projection6 of the embeddings produced by each hyperparameter setting. I plotted

these samples in Figure 3-4 and colored them according to class label. For both cells

in a row, the same t-SNE model was used, so the embeddings for both modalities

were projected into the same two-dimensional space.

The additional ℒIG term resulted in greater cluster purity, as shown in Figure 3-5.

The lower cluster purity for ℒSim alone (𝜆IG = 0) is visually evident in the first row

of Figure 3-4: though there are clear semantic clusterings of samples from the same

digit, there are typically two clusters per digit—one for images and one for audio. One

possible explanation for why the cluster purity is low (0.525) for 𝜆IG = 0 is that when

K-Means is performed with 𝑘 = 10, 𝑘 is about half the number of digit clusters in the

embedding space (one for each digit-modality pair), resulting in K-Means clusters with

members nearly evenly split between two digits. This finding shows that while using

ℒSim alone, embeddings originating from the same modality may still be significantly

6t-SNE was selected over PCA for its ability to show relative pairwise distances (Maaten and
Hinton 2008)
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𝜆IG Cluster Purity Modality SVM Acc.
0.00e+00 0.525 1.000
1.00e-05 0.542 1.000
6.81e-05 0.516 1.000
4.64e-04 0.707 1.000
3.16e-03 0.980 0.859
2.15e-02 0.984 0.554
1.47e-01 0.975 0.520
1.00e+00 0.679 0.516

Table 3.2: Cluster purities and modality classification accuracies for various values of
𝜆IG.

closer together than embeddings of different modalities, regardless of the similarity

of semantic content. The 100% accuracy of the SVM in predicting the modality of

embeddings when 𝜆IG = 0, as shown in Figure 3-5(a), further supports the finding

that the embedding space produced from using ℒSim alone is not modality invariant.

In contrast, the embeddings produced when using ℒIG = 2.15 · 10−2 for train-

ing were only able to be classified by an SVM with 55.4% accuracy, as shown in

Table 3.2. Although this metric is not the ideal 50% accuracy of truly modality-

invariant embeddings, the embedding space produced using ℒIG is much closer to

being modality-invariant than the space produced by ℒSim alone.

Figure 3-5 shows that minimizing the divergence of the posterior over embeddings

from the prior improves modality invariance. This could be due to the fact that the

KL divergence represents the amount of information about an embedding conveyed

by an input, and by limiting the amount of information, we force the encoders to

filter out information. This is the same reason why variational autoencoders exhibit

de-noising behavior (Kingma and Welling 2013). Since semantic information is im-

portant for minimizing ℒSim, modality information tends to be filtered out before

semantic information. For my model, Figure 3-5(ii) shows that 𝜆IG ≈ 2.15 · 10−2 is

the empirically observed ideal cutoff point at which increasing 𝜆IG to further limit

the total information conveyed in the posterior begins to also to overly restrict the

semantic information conveyed, resulting in a drop in cluster purity. Figure 3-4 shows

this trend qualitatively. Row 1 shows sampled embeddings resulting from an under-
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regularized model; row 3, well regularized; and row 5, over regularized.

3.7 Application to the Places Dataset

I ran preliminary experiments in which I attempted to apply this regularization tech-

nique to DAVEnet, trained on Places. Though the objective is stable, preliminary

results suggest there is a significant trade-off between modality invariance and re-

call scores as 𝜆IG is tuned, suggesting that the two types of information are more

complexly related for open-ended semantic concepts than for digits.

For stability in the training procedure, I found it necessary to make the following

adjustments in the implementation. First, an epsilon term is needed for the log

variance. Empirically, I found this necessary to avoid diverging to infinite losses.

Second, a bias term is needed for the log variance. In neural network training, it is

common to initialize the bias vector to zero. However, for the log variance component

of the output, I initialized the bias to −8 (setting the initialize standard deviation of

the predicted Gaussian to 𝑒−4). For the more complex dataset, I found this change

necessary for the margin similarity loss to decrease below random chance. Intuitively,

this could be because the Gaussian noise with a log-variance of 0 (the default bias)

overwhelms the signal-to-noise ratio for the similarity loss term at the start of training.

By biasing the noise variance to start small, the model is effectively using the means

as single points until it learns to increase the log-variance through stochastic gradient

descent to decrease the ℒIG term. By the end of training for 𝜆IG = 10−4, log-variances

were generally around -6.6 on average. Therefore, the log variance used in practice

is:

logvar
(︀
𝑥(𝑖)
𝑣

)︀
= 𝑏1 + log

(︂
𝜖+ 𝑒

log 𝜎2
𝑣

(︁
𝑥
(𝑖)
𝑣

)︁)︂
where 𝑏 is the bias coefficient (−8) and 𝜖 = 10−8. The fact that both hyperparameter

settings involve −8 is coincidental.

I ran experiments with four settings of 𝜆IG: 10−4, 10−3, 10−2, and 10−1, all with

margin of 1, semi-hard-negative loss with coefficient 1, and learning rate of 10−3. The

image encoder was a ResNet-50 network pretrained on ImageNet. 𝜆IG = 10−1 was not
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stable, and the loss quickly diverged. 𝜆IG = 10−2 was stable, but failed to improve

over random chance for modality retrieval due to over regularization. 𝜆IG = 10−3 and

𝜆IG = 10−4 both were able to increase above random chance for modality retrieval.

𝜆IG = 10−3 obtained recall scores of 0.65 and 0.70 R@10 for image to caption and

caption to image, respectively. 𝜆IG = 10−4 obtained recall scores of 0.66 and 0.70

R@10 for image to caption and caption to image, respectively, which is slightly below

the state of the art reported in Table 2.1 (0.69 and 0.74).

Despite recall decreasing slightly, modality invariance increases. Though the

modalities still occupy separate subspaces (meaning that modality can still be per-

fectly classified), as shown in the PCA projection in Figure 3-6(b), the individual

components of the embedding are more modality invariant than without regulariza-

tion. Figure 3-6(a) shows the distributions of the 𝐿2 norms of the embeddings are

much more similar than without regularization (Figure 3-2(b)). In addition, the dis-

tributions for individual components (i.e. dimensions) of the embedding are generally

aligned, as qualitatively shown for one component in Figure 3-6(c).

Quantitatively, I designed a procedure whereby I found the best linear classifier

for the 1,000 validation points for each dimension. Since this classifier “stump” was

classifying a finite number of points in 1 dimension, it was possible to try all 2𝑁 + 2

classifiers and select the one with greatest accuracy. This best-classifier accuracy

for each component is shown as a histogram in Figure 3-6(d). Note that the most

modality-invariant component would have a classification accuracy of 0.5. Figure 3-

6)d) shows that the 𝜆IG = 10−4 model learns an embedding space with many more

components with greater modality invariance than the 𝜆IG = 0 model.

Though there is some evidence suggesting that the regularization technique pro-

motes modality invariance on the Places dataset, recall scores suffer, and the embed-

ding space is not modality invariant to the same degree as for the models trained

on MNIST/TIDIGITS. This suggests that modality information and semantic infor-

mation are entangled to a greater degree for the open-ended semantic information

present in the Places dataset as opposed to the discrete set of concepts present in

MNIST/TIDIGITS.
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(a) 𝐿2 Norm of Embeddings (b) The modalities still occupy separate sub-
spaces.

(c) The distribution of activations for one
component of the embedding.

(d) Component-wise modality classification
stump accuracies. Height of bar represents
number of components with the specific clas-
sification accuracy. 50% represent complete
modality invariance.

Figure 3-6: ℒIG regularization results of Imagenet-Pretrained Resnet-DAVEnet
trained on Places with 𝜆IG = 10−4.
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3.8 Discussion: Modality Invariance for Open-Ended

Semantic Concepts

One reason that the regularization technique proposed in this chapter might not

extend well to Places is that open-ended semantic information, like scene descriptions,

is not inherently modality invariant. There are degrees to which information can fit

a concept, and there can be many concepts portrayed at once. For example, the

caption, “A picture of a dog”, might technically fit a closeup image of a dog lying

on the grass, and it might also fit an image of a dog in the distance in a field, but

in the latter there are other concepts conveyed in the image as well that might be

more apparent. There may be other concepts represented in a modality that are

important for a task like modality retrieval, but which prevent learning a strictly

modality invariant representation without also losing important semantic information

for modality retrieval. In other words, semantic concepts become blurred, and because

of this it becomes less easy to separate semantic and modality information through

regularization.

A possible method of counteracting the problem of entangled modality and se-

mantic information might be to learn a factorized embedding space. In this setup,

the embedding space is factorized into multiple subspaces. Some of these subspaces

are regularized to be modality invariant, forcing any modality-specific information to

be stored in a separate subspace. This would force the distribution over component-

wise modality invariance (as shown in Figure 3-6(d)) to become a bimodal distribution

with the components for the modality invariant subspace having high modality invari-

ance (low classification accuracy) and the components for the non-modality invariance

subspace having low modality invariance (high classification accuracy). This idea is

similar to and inspired by the factorized variation autoencoder proposed by Hsu et al.

(2017b).
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3.9 Conclusion

In this chapter, my goal was to learn a joint modality-invariant semantic embedding

space for speech and images in an unsupervised manner. I focused on spoken utter-

ances and images of handwritten digits. I found that by sampling encodings rather

than predicting them directly, and by regularizing the posterior distribution over em-

beddings, I was able to learn a more modality-invariant semantic embedding space.

From an adversarial perspective, I was able to deceive an adversarial discriminator

(the modality-classifying SVM) without the use of gradient reversal or any adversarial

setup during training. This leads me to suspect ℒIG may be a useful regularization

term in other approaches to learning domain or modality invariant embeddings.

I then applied the technique to DAVEnet trained on the Places dataset. I found

that though component-wise modality invariance improved, the embeddings were still

not modality invariant in certain components. This finding suggests that for more

complex datasets with open semantic concepts, modality and semantic information

might be entangled to a greater degree than for datasets with closed and discrete

concepts, like digits. Drawing inspiration from (Hsu et al. 2017b), I proposed a

way to isolate non-modality invariant information in the embedding space using a

factorized representation where modality invariance is encouraged for only part of

the embedding.

So far in this thesis, the only modalities I have focused on have been images and

spoken audio. In the next chapter, I explore a new dataset consisting of short three

second videos. Using this new dataset, I explore the use of a new modality: video,

which differs from images in that it has a time dimension and an ambient audio track.
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Chapter 4

Learning Actions from Captioned

Videos

4.1 Introduction

Harwath et al. (2018a); Harwath and Glass (2017) have shown DAVEnet is able to

learn hundreds of semantic concepts in an unsupervised fashion. However, these

learned concepts typically correspond to objects, textures, materials, colors, back-

grounds, etc. but not actions taking place in the images. There are a few possible

explanations for this finding, for instance: (1) when someone describes an image,

they are more likely to describe objects in the image and the setting of the image

than actions taking place in the image, and (2) the Places dataset is better suited

for object/scene recognition than action recognition. In this chapter, I experiment to

see if either of these hypotheses could be the case. To do so, I turn to a new dataset:

the Captioned Moments dataset (referred to simply as “Moments” for short), based

on the Moments in Time dataset (Monfort et al. 2018).

The goal of this chapter is to use the Moments in Time video dataset, designed

for a discriminative action classification task, in place of the Places dataset as a way

to encourage DAVEnet to learn more actions and verbs. Eventually, if the network is

capable of understanding a broader range of types of concepts, it may be possible to

start learning relations between concepts, such as abstraction from known concepts
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(a) Video frames

(b) Video ambient (left) and caption (right) audio

Figure 4-1: An example from the Captioned Moments corpus, with video from the
Moments in Time corpus (Monfort et al. 2018)

to new concepts.

This chapter is organized as follows: first I introduce the Moments in Time dataset

(Monfort et al. 2018) and our augmented dataset: the Captioned Moments dataset.

This section includes examples from the dataset, information on how the dataset was

preprocessed, and a link to the Github repository containing the metadata for the

dataset and data loader scripts written for PyTorch (Paszke et al. 2017).

Second, I give a description of the DAVEnet models and architectures used for

training and discuss opportunities for incorporating modalities not present in the

image-based Places dataset. I then give results collected for various configurations

of the model and training procedure. I conclude with a discussion regarding the

opportunities and challenges of working with Captioned Moments dataset, including

my recommendations for future work in the area.
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4.2 Datasets

The Moments in Time dataset consists of three-second videos, each labeled with one

of 339 actions which is taking place in the video (Monfort et al. 2018). There are

802,244 videos in the training set and 33,900 videos in the validation set. Moments in

Time was designed for discriminative action classification and is typically evaluated

using top-5 classification accuracy.

Using Amazon Mechanical Turk, we collected approximately 104,000 spoken cap-

tions for a subset of the videos in the Moments in Time dataset. Each caption

describes one video from the Moments in Time dataset, and each video is usually

only captioned once. 188 videos are captioned more than once1 affecting a total of

379 utterances. For the purpose of partitioning and negative sampling, the fact that

these videos were duplicates was ignored2. An example video/caption pair is shown

in Figure 4-1.

Using the Google ASR API, we collected approximate text transcriptions of the

spoken captions. The captions contain an average of 19.3 words, a median of 16

words, and a standard deviation of 9.5 words. These text transcriptions are used for

evaluation purposes. In some experiments in this chapter, I train a modified DAVEnet

model which uses text as an additional input modality. I explicitly specify whether

text was used during training for a specific experiment.

I split the 104,000 utterances into two partitions: a development partition of 1,000

held-out utterances and a training partition of the remaining utterances. I performed

this split as a random choice without replacement, selecting utterances uniformly at

random (independent of speaker, label, or any other information). Table 4.1 shows

the top 15 most common labels for each of the partitions.

Note that the Captioned Moments dataset is significantly smaller than the Places

dataset, which has approximately 400,000 captioned images. There are also fewer

speakers for the Captioned Moments dataset than the places dataset. There are

1at most three times
2two videos which were each captioned twice are split across the train/development split, but

they have different captions in both cases.
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Index Label # in Train %
1 talking 1312 1.3%
2 standing 1219 1.2%
3 dancing 1147 1.1%
4 bicycling 1116 1.1%
5 sitting 1023 1.0%
6 laughing 955 0.9%
7 discussing 705 0.7%
8 running 704 0.7%
9 playing 679 0.7%
10 raining 675 0.7%
11 marching 628 0.6%
12 biting 614 0.6%
13 singing 592 0.6%
14 kneeling 591 0.6%
15 driving 560 0.5%

(a) Top 15 most common labels for
103,000 training utterances for Cap-
tioned Moments

Index Label # in Dev %
1 standing 19 1.9%
2 dancing 16 1.6%
3 bicycling 13 1.3%
4 sitting 13 1.3%
5 talking 12 1.2%
6 squatting 11 1.1%
7 raining 10 1.0%
8 saluting 9 0.9%
9 crying 8 0.8%
10 burning 8 0.8%
11 walking 8 0.8%
12 hammering 7 0.7%
13 officiating 7 0.7%
14 discussing 7 0.7%
15 sprinkling 7 0.7%

(b) Top 15 most common labels for
1,000 development utterances for Cap-
tioned Moments

Table 4.1: Top 15 labels for both partitions of Captioned Moments

Speaker Index # in Train %
1 15991 15.5%
2 14760 14.3%
3 9324 9.0%
4 4466 4.3%
5 4289 4.2%
6 3772 3.7%
7 3369 3.3%
8 2869 2.8%
9 2781 2.7%
10 2655 2.6%

(a) Captioned Moments Train

Speaker Index # in Dev %
1 159 15.9%
2 132 13.2%
3 78 7.8%
4 47 4.7%
5 43 4.3%
6 34 3.4%
7 33 3.3%
8 31 3.1%
9 28 2.8%
10 26 2.6%

(b) Captioned Moments Dev

Speaker Index # in Train %
1 17620 4.4%
2 17399 4.3%
3 14435 3.6%
4 13573 3.4%
5 12887 3.2%
6 12834 3.2%
7 12710 3.2%
8 12031 3.0%
9 12026 3.0%
10 11830 2.9%

(c) Places Train

Speaker Index # in Dev %
1 50 5.0%
2 43 4.3%
3 38 3.8%
4 37 3.7%
5 36 3.6%
6 34 3.4%
7 31 3.1%
8 30 3.0%
9 30 3.0%
10 30 3.0%

(d) Places Dev

Table 4.2: Top 10 speakers with most utterances in each partition. For comparison,
(c) and (d) are from Places.
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2,683 speakers in the Places dataset (271 in the validation set) and only 780 speakers

in the Captioned Moments dataset (154 in the validation set). Though this differ-

ence seems reasonable considering Captioned Moments is only one quarter the size

of Places, there are two speakers disproportionately represented in the Captioned

Moments dataset. Table 4.2 shows the speakers with the most utterances for each

partition. Approximately 30% of the training set and development set for Captioned

Moments consists of utterances from the top two speakers. In contrast, the top two

speakers for Places only produced approximately 9% of the captions for the training

and development sets. Another indicator that there is a disproportionate represen-

tation of the top two speakers in Captioned Moments is the raw count of utterances

recorded for the top two speakers: in Captioned Moments, the counts are similar

to the counts for the top speakers in Places, despite Captioned Moments only be-

ing a quarter of the size of Places. The disproportionate representation of the two

speakers in Captioned Moments means the model might be more likely to overfit the

over-represented speakers.

Only 71,475 of the videos for the Captioned Moments dataset have an ambient3

audio track. Some models used in this chapter do not use the ambient audio, and for

the ones that do, I explicitly specify how I handle the case when an audio track is

missing.

Loading videos into a format suitable for training can be difficult. For one, there is

the problem of data density. Since MPEG4 videos are stored as a compressed series of

frame deltas, to convert the video into a series of dense image representations increases

the memory footprint dramatically. In addition, to feed multiple frames through a

deep image network dramatically increases the amount of GPU memory requires. For

example, my three-frame models (which take three uniformly spaced frames as input)

require four NVIDIA Titan-X Pascal GPUs with 12 GB of GPU memory each to train

with a batch size of 128. For Places, only two Titan-X Pascal GPUs are required.

Since (1) a sufficiently large batch size is necessary for the negative sampled margin

rank loss objective, (2) intermediate states from the forward pass must be stored

3as opposed to caption
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for the backward pass to avoid recomputing the forward pass, and (3) all pairwise

modalities for the batch must be computed for the loss function, it is impossible to

break up the batch into smaller chunks run serially in the forward pass to decrease

the memory footprint without having to repeat forward computations during the

backward pass.

Working with videos is also difficult because the most common way to decode the

MPEG4 format is using FFmpeg (FFmpeg Developers 2017). To load video frames

and audio into Python, one must either (a) launch a subprocess of the FFmpeg

executable or (b) use the FFmpeg C library. Most available Python packages use

(a), but I have found it too slow for online data loading during training, even when

performed asynchronously. The few packages which have bindings for (b) (including

OpenCV (Bradski 2000)) have often experienced segmentation faults, which could be

due to low level race conditions when parallelizing the data loading pipeline using

threads. For those reasons, I copy Monfort et al. (2018) and use FFmpeg to extract

video frames as JPEGs and the ambient video audio as MP3s as a preprocessing step

before training. Code to extract uniformly spaced frames is provided in the Captioned

Moments Github repository.

4.3 Models

In the following experiments, I used a DAVEnet architecture with a ResNet-50 Image

encoder, and residual audio encoder (see Appendix A). The models are trained with

blended semi-hard negative loss and uniformly negative sampled margin ranking loss,

using the objective function given in Equation 1.2.

I pool the outputs from the encoders to a single vector. Similarities are then

computed between the pooled embeddings. Pooling to vectors enables the efficient

use of semi-hard-negative sampling (Jansen et al. 2017), which requires the evaluation

of all 𝑁2 pairwise similarities in the mini-batch of size 𝑁 . If similarities were computed

between embedding maps rather than vectors, as performed in (Harwath et al. 2018a),

semi-hard-negative sampling becomes computationally expensive. Currently, most
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experiments I ran on Captioned Moments were performed using vector models (pool,

then compute similarity) with semi-hard-negative sampling due to the success of

semi-hard-negative sampling. The experiments I report in this chapter all models are

vector-based models.

I run a series of three experiments. First, I run basic vector DAVEnet models on

Captioned Moments using a setup similar to Places using a random video frame at

training time and the center frame at test time. The goal of this experiment is to

provide a comparison to Places and set a baseline. Then, I explore how adding in

video-specific information to the training process affects performance. In addition,

I explore with varying effective video frame rate at evaluation time, when there are

less GPU memory constraints.

Third, I describe preliminary experiments I ran using 𝑘 modalities rather than

just two. In these experiments, I treat ambient video audio as an entirely separate

modality from the video frames. I also experiment with adding in the ASR textual

caption as a fourth modality. In this setup, the sampled margin ranking loss4 can be

computed between modality pairs. For example, there is a sampled margin ranking

loss between images and caption audio, caption audio and caption text, caption audio

and video audio, etc. The sampled margin ranking losses are then added to compute

the total loss. This formulation of the problem allows modality retrieval in multiple

directions, for example: given a textual caption, find the most similar video audio,

or given video audio, find the most similar video frames. These models are based

on (Harwath et al. 2018b) in which the authors use spoken Hindi captions as an

additional input modality and learn pairwise similarities between the six possible

pairs of spoken English captions, Hindi captions, and images.

4.4 Experiments

In this section, I explore the use of videos in the traditional 2-way modality retrieval

setting. For Places, the two directions were “image to caption” and “caption to image”.

4and optionally, the semi-hard-negative loss, although not used here.
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Caption to Image Image to Caption
# Frames Dataset Image Enc. Pre. D.N. Pre. R@1 R@5 R@10 R@1 R@5 R@10

0 Random Baseline 0.001 0.005 0.010 0.001 0.005 0.010
1 Places 100K 0.008 0.041 0.088 0.014 0.057 0.094
1 Places 100K X 0.075 0.225 0.339 0.084 0.231 0.338
1 Places 0.142 0.360 0.478 0.113 0.323 0.442
1 Places X 0.262 0.581 0.703 0.197 0.522 0.661
1 Moments 0.006 0.025 0.044 0.009 0.027 0.043
1 Moments X 0.025 0.095 0.148 0.037 0.110 0.177
1 Moments X 0.045 0.142 0.207 0.037 0.127 0.203
1 Moments X X 0.089 0.263 0.365 0.083 0.254 0.349

Table 4.3: One-frame, no audio vector experiment results, comparing Places and
Captioned Moments. On the left, the columns are: number of frames, dataset, image
encoder pretrained (on ImageNet), DAVEnet pretrained (on Places).

For Captioned Moments, they are “video to caption” and “caption to video”. However,

for consistency across the datasets, I refer to the “video to caption” and “caption to

video” directions as “image to caption” and “caption to image”, respectively.

4.4.1 Comparing Performance to Places

Since Places is significantly larger than Captioned Moments, I ran experiments with a

subset of the Places dataset I call “Places 100K”, containing 100K training utterances

and using the same validation set as used for Places. Table 4.3 shows the results of

the experiments. Note that the recall performances are dataset-specific; that is, there

is a different Places-specific validation set for Places models than Captioned Moments

models. Without pretraining, the Captioned Moments model surpasses the random

baseline, but barely, with an average R@10 score of 0.043. In contrast, the Places

100K model obtains an average R@10 score of 0.091 without pretraining (albeit on

a different validation set). It seems that 100K utterances is not a sufficient amount

of training data to obtain satisfactory performance for a non-pretrained model. In

contrast, when trained on the full Places dataset, the non-pretrained model obtains

an average R@10 score of 0.46.

For the models with the pretrained image encoder (pretrained on ImageNet), the

results are the same: the Places 100K model performs approximately twice as well as

the Captioned Moments model, and the the full Places model performs almost twice

as well as the Places 100K model. It seems likely that the models with less data are
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Figure 4-2: All plots show evaluation statistics over time during the training process,
measured in number of minibatches of size 128. (a) shows the average R@10 recall on
a 1000-utterance subset of the training data. (b) shows the average R@10 recall on
the validation set. (c) shows the quantity training recall / (training recall + validation
recall), used to assess overfitting. The closer the metric is to 1, the more the model is
overfitting. If training and validation performance is the same, the metric is 0.5. P.
stands for pretrained, N.P. for non-pretrained, and S. for seeded (pretrained DAVEnet
on Places). Note that Captioned Moments and Places models are being evaluated on
different datasets.

overfitting the training set. To check this hypothesis, I tracked the average R@10

score for the validation set and a 1000 utterance subset of the training set during

training. The results are shown in Figure 4-2. Notice how all models approach 1.0

recall on the training set as training progresses. The smaller training sets approach

1.0 much more quickly and are most prone to overfitting. In addition, using the

proportion metric shown in Figure 4-2(c), non-pretrained models overfit to a greater

degree than pretrained models.

To see whether the poorer performance on Captioned Moments was an issue of

training the model or simply a more difficult evaluation set, I evaluated each of the

models on the both validation sets (Places and Captioned Moments). The results

(only for R@10) are reported in Table 4.4. Notice that the model with an image

encoder pretrained on ImageNet then trained on Places and fine-tuned on Captioned

Moments performs the best on average across the two validation sets. The most in-

teresting result is that the Places model with a pretrained image encoder outperforms

the Captioned Moments model with a pretrained image encoder on the Captioned

Moments validation set, suggesting that the overfitting due to the size of the training

set is severely limiting the Captioned Moments model’s modality retrieval ability.

Next I experiment with adding video-specific information to see if recall improves.
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Image DAVEnet Evaluation Dataset
# Training Encoder Pretrained Places Captioned Moments

Frames Dataset Pretrained Places I2A R@10 A2I R@10 I2A R@10 A2I R@10
1 Places 100K 0.088 0.094 0.025 0.033
1 Places 100K X 0.339 0.338 0.095 0.101
1 Places 0.478 0.442 0.133 0.138
1 Places X 0.703 0.661 0.270 0.237
1 Captioned Moments 0.024 0.028 0.044 0.043
1 Captioned Moments X 0.086 0.092 0.148 0.177
1 Captioned Moments X 0.262 0.216 0.207 0.203
1 Captioned Moments X X 0.421 0.397 0.365 0.349

Table 4.4: Results of evaluating one-frame no audio models on both validation sets.
Only R@10 scores are reported.

4.4.2 Training with Video-Specific Modalities and Dimensions

I ran a series of three-frame video experiments. In these experiments, I used three

evenly-spaced frames from the video as input. I used the image encoder to encode each

frame independently. In this section, after encoding the video frames independently

using the image encoder, I pooled the frame maps along the time axis, pooled them

spatially, and finally computed the similarity score with the pooled audio caption

embedding using the dot product. Three frames, though seemingly small, was the

most I could use while fitting the batch into GPU memory using four NVIDIA Titan-

X Pascal GPUs. Note that all models in this section were seeded with the weights

from a DAVEnet trained on Places with an image encoder which was first pretrained

on ImageNet.

In addition, I experimented with adding in ambient video audio as additional

input. For these models, I used a shallower version of the residual audio encoder used

for captions: it only uses 4 residual blocks. Note that the weights in the video audio

encoder are not shared with weights in the caption audio encoder. After the video

audio is encoded and average pooled, it is concatenated to the pooled video vector

to make the video embedding. The ambient video audio embedding vector is 128-

dimensions while the video encoder output is 1,024; therefore, the video embedding is

a 1,024 + 128 = 1,152 dimensional vector. Correspondingly, the output of the caption

audio encoder is 1,152 dimensions. The similarity score is computed by taking the dot

product of the combined video embedding and the pooled caption audio embedding.

Table 4.5 shows that the addition of modality-specific information during train-
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Video Caption to Image Image to Caption
# Frames Audio Frame Pooling R@1 R@5 R@10 R@1 R@5 R@10

1 - 0.089 0.263 0.365 0.083 0.254 0.349
3 Max 0.080 0.261 0.372 0.095 0.280 0.400
3 Mean 0.122 0.293 0.396 0.103 0.288 0.377
3 X Max 0.078 0.268 0.382 0.085 0.281 0.416
3 X Mean 0.112 0.300 0.419 0.101 0.289 0.414

Table 4.5: Modality retrieval results from adding modality-specific information. The
pooling procedure was: pool frames temporally, average pool frames spatially, then
compute similarity. The temporal frame pooling method used at both training and
evaluation time is specified in the “Frame Pooling” column.

ing, particularly additional frames, improves recall performance. Adding video audio

tends to improve R@10 performance marginally, but this improvement could be noise

due to stochasticity during the training process. To evaluate the significance of the

improvement, I lesioned the video audio components of the embeddings for the model

trained with video audio at evaluation time. Figure 4-3 shows that the lesioned model

performs nearly as well as the non-lesioned model in all cases, suggesting that the

video audio component of the embedding does not benefit recall. However, the audio

could help provide additional grounding during training, resulting in the improved

recall performance when audio was added in Table 4.5. Since R@10 performance im-

proved about 1% for both pooling procedures when audio was added during training,

it leads me to think the improvement is not coincidental; rather, the addition of the

video modality helps to provide additional grounding during training.

Figure 4-3(a) shows that increasing the number of frames used at evaluation does

not necessarily improve performance. In fact, when max temporal pooling is used, it

decreases performance. This could be because the model becomes more susceptible

to noisy outliers in activations in one of the frames as more frames are added. The

probability there is an outlier increases as the number of frames increases. Average

pooling does not suffer from this problem and, in fact, benefits the additional frames,

improving approximately 2% from the 1 to 15 frame case as showing in Figure 4-3(b).

Note that since video frames are encoded independently and then pooled tem-

porarily using max or average pooling, the current model has no notion of a change
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Figure 4-3: The effect on recall when increasing the number of frames used at evalu-
ation time. Two different models were used for (a) and (b) with the only distinction
being the temporal frame pooling procedure used (both at training time and evalua-
tion time). In both cases, three frames were used during training.

in the content of video over time. In other words, the increase in performance with

additional frames is almost solely due to (a) additional training data and (b) better

visibility for objects occluded or poorly oriented in one frame. To allow the model to

learn to account for change over time, a volumetric convolution along the spatial and

time axes could be used; however, I did not run experiments to this end.

The experiments in this section support the claim that additional video-specific

information, such as the temporal dimension for visual information and the ambi-

ent video audio, contain information which can improve DAVEnet’s performance on

modality retrieval tasks.

4.5 Experiments Across k Modalities

I briefly experimented experimented with 𝑘-way modality models before switching my

focus 2-modality models. The models in this section all used a VGG16 (Simonyan and

Zisserman 2014) pretrained on ImageNet as the image encoder and the traditional

DAVEnet map convolutional audio encoder, described in Appendix A. All encoders

used tanh as the final output function, constraining activations to the range -1 to 1.

The reason for using tanh was to avoid the asymmetry of using linear output for one

encoder (the image encoder) and ReLU output for another encoder (the audio en-
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A2I I2A A2T T2A A2V V2A I2T T2I I2V V2I T2V V2T
IA 0.287 0.259 - - - - - - - - - -
IT - - - - - - 0.371 0.408 - - - -
IAV 0.263 0.246 - - 0.028 0.050 - - 0.111 0.147 - -
ITV - - - - - - 0.348 0.392 0.107 0.155 0.064 0.082
ITAV 0.289 0.266 0.825 0.796 0.051 0.070 0.365 0.412 0.112 0.157 0.067 0.073

Table 4.6: Recall @10 from 𝑘-way modality experiments. “I” corresponds to video
frames, “V” to ambient video audio, “A” to caption audio, and “T” to caption ASR
text.

coder), as empirically are the best performing output activations when working with

only images and caption audio. The margin is set to 0.1, which I found works bet-

ter for the tanh output activation than the traditional margin of 1. In addition, the

models are trained with sampled margin ranking loss alone, rather than blended sam-

pled margin ranking loss and semi-hard-negative loss. This was due to the fact that

sampled margin ranking loss and the ResNet-based architecture were not available

at the time the experiments were run. Only one random frame from the video was

used during training time, and the center frame was used at evaluation time. Caption

audio and video frame encoders were initialized with weights from a DAVEnet pre-

trained on Places. For models which used caption ASR text, the encoder consisted of

an embedding layer mapping words to 200-dimensional embeddings, followed by two

1D convolutions with kernel size 3 and stride 1.

Table 4.6 shows the results of the experiments. The table shows the resultant

change of recall as video audio and caption ASR text are added as additional modal-

ities. The only modality which consistently improved recall was the caption text.

In fact, the addition of video audio tends to decease recall. This could be due to

overfitting in one modality pair.

In practice, I found the 𝑘-way modality pair setup poses many challenges. Namely,

it can be difficult to balance the gradients from the multiple modality pairs. Often-

times, the easier direction (audio to text, text to audio, for example) overwhelm the

gradient for the loss, causing the embedding space to be well suited for that one di-

rection but no other directions. One possible way to overcome this might be to use a

factorized embedding space. In this setup, certain components of the embedding for

one modality would be designated for computing similarity with another modality. In
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other words, there would be a separate embedding space and similarity function for

every pair of modalities. Transfer learning could still occur, as the encoder network

leading up to the final split would be shared across the factorized subspaces.

My preliminary experiments using 𝑘-modalities did not obtain satisfactory results

compared to the 2-modality models described in the previous sections. However, with

more time and the use of certain modeling techniques, like a factorized embeddings

space, future work could certainly obtain better results for 𝑘-way modality modeling.

I conclude with a summary of the pros and cons of 𝑘-modality modeling versus 2-

modality modeling. First the pros:

1. For modality retrieval, it is possible to query any modality given any other

modality. For example, I can query for the most similar video frames to an

ambient audio recording.

2. In theory, the objective seems better suited for transfer learning and grounding,

as described in (Harwath et al. 2018b).

The cons:

1. It can be difficult to tune the learning rate for each direction of retrieval to

avoid easier modality-pairs dominating the gradient.

2. It is not clear how to query for a modality given multiple modalities. For

example: “what is the most similar audio caption to the given video image and

ambient audio?”

4.6 Word and Concept Learning Experiments

In this section, I describe the technique I used to assess the concepts learned by a

model for a particular dataset. The technique is called neural dissection, proposed

by Bau et al. (2017); Zhou et al. (2017). The process is also quite similar to the

process used in Section 5.2 of (Harwath et al. 2018a), except that I do not use the

image embeddings or similarity scores; only the audio embeddings. This has the added
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Only Places (forgot 17
words)

Both (retrained 99
words)

Only Moments (learned
17 words)

around, castle, dining, gar-
den, lights, market, office,
painting, photo, restaurant,
side, sign, stairs, station,
tall, tower, video

area, baby, background,
baseball, beach, black,
blue, boat, boxing, boy,
brick, bridge, brown,
building, buildings, bushes,
car, cars, chairs, child,
children, church, city,
clouds, dancing, dark,
desk, dirt, distance, door,
dressed, fence, field, fire,
floor, flowers, fountain, girl,
glass, grass, green, ground,
house, inside, jacket,
kitchen, large, machine,
man, men, mountain,
mountains, night, ocean,
orange, outside, parking,
people, person, plants,
playing, pool, red, river,
road, rock, rocks, rocky,
room, shirt, sitting, skies,
sky, small, snow, stage,
standing, stone, store,
street, table, tables, top,
track, tracks, train, tree,
trees, walking, wall, walls,
water, white, window,
windows, woman, wooden,
yellow, young

ball, bicycle, camera, dog,
game, girls, group, hands,
he, picture, running, says,
talking, two, watching,
wearing, wood

Table 4.7: Words for which a detector was learned, based on network dissection (Bau
et al. 2017; Zhou et al. 2017) analysis with transcript forced-alignments. The model
used for Captioned Moments was fine-tuned on Places. Both models were evaluated
on the concatenated validation datasets from Places and Captioned Moments, so as
to have the same evaluation vocabulary for network dissection.
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benefit of not requiring pixel-level annotations for the images, which is required for the

technique described in Section 5.2 of (Harwath et al. 2018a) but which is not available

for the datasets of interest in this chapter. In addition, pixel-level annotations are

inherently biased towards objects, and one goal of this section is to study whether

training DAVEnet on the Captioned Moments dataset will cause the recognizer to

learn more action words.

In contrast to (Harwath et al. 2018a), the technique used here does not seek to

prove that the image encoder and audio encoder are agreeing upon a concept. Rather,

it merely shows which words activate specific components of the audio embedding.

Here, “activate” means that the component’s activation was within the top 0.5% of

activations for the unpooled audio embedding in that dimension. Image embeddings

which also respond strongly in that dimension may be recognizing a visual stimulus

corresponding to that word, but they more generally will respond to a stimulus cor-

related to the presence of the word in the caption. For example, if the word the audio

encoder responds to is “street”, the image encoder might respond to a street lamp

or traffic light, despite them not explicitly being streets. Likewise, for action verbs

like “running”, the image architecture might respond to specific visual stimuli, like a

racing bib, or the runner’s legs.

Using the audio embedding map output from DAVEnet before pooling to a single

vector, I generate a set of embedding vectors paired with words based on the force

alignment of the Places Google ASR transcripts of the audio captions. Note that

these embedding-word pairs are downsampled by a factor of eight from the input Mel-

filterbank, having an effective windows size of 200 milliseconds and a frame shift of 80

milliseconds. The receptive field size due to convolution is approximately 1.3 seconds.

Because of the downsampling, it is common for there to be multiple words associated

with a single time step in the embedding map. For that reason, I calculate IOU scores

on a per-word basis. That is, I take the bit vector corresponding to the presence of a

single word at each time step in the entire audio corpus (concatenated along the time

axis) and calculate the intersect-over-union with the bit vector corresponding to the
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activation of a particular component of the embedding. Let:

𝑊 (𝑤, 𝑡) := word 𝑤 is present at timestep 𝑡

IOU can then be defined:

IOU𝑤,𝑑 =

∑︀𝑇
𝑡 [[𝑊 (𝑤, 𝑡) ∧ 𝐴𝑡,𝑑 > percentile𝑡′(𝐴𝑡′,𝑑, 𝜏)]]∑︀𝑇
𝑡 [[𝑊 (𝑤, 𝑡) ∨ 𝐴𝑡,𝑑 > percentile𝑡′(𝐴𝑡′,𝑑, 𝜏)]]

where 𝑇 is the number of timesteps in the corpus, 𝑑 is the dimension of interest in

the embedding, and 𝑤 is the word of interest. 𝜏 is the threshold for activation. I

set 𝜏 = 99.5th percentile for my experiments, in accordance with Zhou et al. (2017).

IOU can be though of as the ratio of co-occurrences to all occurrences, taking values

between 0 and 1. It can also be thought of as the fraction of time when one of the

events5 occurs, both of them occur.

Using the IOU score, it is possible to see if the activation of individual components

is correlated to the presence of certain words in the transcript. To do so for a particular

component of the embedding, I select the words with the top IOU scores for the

component. As an additional threshold, I only consider a word-component pair a

detector if the IOU score exceeds 0.05 (5% of all occurrences of the word or the

component are co-occurrences).

Note that IOU’s should not be thought of like an accuracy. Due to the thresh-

olding of activations, only the top 0.5th percentile of activations for a component are

considered “activated” for the purpose of IOU calculation, but the presence of a word

could still result in a high activation for that component. In addition, if the firings

occur at the middle frame of the word, but not in the surrounding frames, IOU may

still be low. For those reasons, the IOU scores should not be considered accuracy

metrics but rather as a metric for comparing the relative strength of detectors.

I ran the IOU analysis on two models: the first was trained on Places and the sec-

ond was initialized with the parameters of the first and then fine-tuned on Captioned

Moments using three frames and audio, as described in Section 4.4.2. Note that the
5the activation of an embedding component or the presence of a word
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Word IOU Before IOU After Rank Before Rank After # Passed # Passed By
talking 0.037 (1) 0.104 (1128) 145 / 160 48 / 160 97 0
hands 0.028 (1022) 0.080 (937) 157 / 160 73 / 160 84 0
baby 0.073 (22) 0.163 (876) 84 / 160 25 / 160 59 0
wood 0.041 (1023) 0.069 (1023) 139 / 160 85 / 160 56 2

bicycle 0.036 (866) 0.057 (866) 149 / 160 98 / 160 52 1
ball 0.032 (277) 0.054 (49) 152 / 160 104 / 160 49 1
dog 0.047 (276) 0.077 (1119) 122 / 160 76 / 160 48 2

camera 0.048 (1004) 0.077 (822) 121 / 160 77 / 160 47 3
game 0.037 (749) 0.055 (97) 146 / 160 103 / 160 45 2
large 0.078 (691) 0.121 (691) 78 / 160 38 / 160 41 1
he 0.030 (188) 0.052 (188) 154 / 160 115 / 160 40 1

running 0.036 (301) 0.053 (64) 148 / 160 110 / 160 41 3
she 0.028 (1002) 0.049 (282) 156 / 160 119 / 160 38 1

wearing 0.042 (187) 0.056 (16) 136 / 160 99 / 160 41 4
two 0.037 (231) 0.053 (542) 147 / 160 111 / 160 38 4

Table 4.8: The 15 words which moved forward the most in the sorted list of max
IOU-ranking when fine tuned on Captioned Moments. Green words correspond to
“learned” words and blue words to “remembered” words. Only words with IOU greater
than 0.04 were considered. Words with IOU greater than 0.05 were considered known.
The parenthesized integer next to the IOU score corresponds to the dimension of the
embedding with that particular IOU score. Dimensions greater than 1024 are shown
in red and correspond to ambient video audio dimensions. Notice that “talking” and
“dog” have detectors in dimensions 1128 and 1119 (ambient video audio dimensions)
of the embedding. The full table is given in Appendix B.

IOU scores were calculated from the same validation set: the concatenation of the

Places validation set and the Captioned Moments validation set.

There were 456 total detectors and 319 dimensions containing detectors for the

Places model. There were 496 total detectors and 361 dimensions containing detectors

for the Captioned Moments model. The Places and Captioned Moments models both

had detectors for 116 unique words, but each model had detectors for different words.

See Table 4.7 for a list of the words learned/forgotten when the model is fine-tuned

on Captioned Moments. In addition, Appendix B gives a more detailed list of word

detector changes between the pretrained and fine-tuned models.

Notice that certain “scene” words like “restaurant”, “station”, “market”, “office”,

“castle”, “garden”, and “dining (room)” are forgotten when the model is trained on the

Captioned Moments dataset. However, action words, like “running”, “talking”, “watch-

ing”, and “wearing” are learned. More precisely, there were component-wise detectors

exceeding the IOU threshold for the “forgotten” words before fine-tuning that weren’t

present after fine-tuning, and there were “learned” words with component-wise detec-
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Figure 4-4: Locations where component-wise detector for dimension 64 is activated
(activation of embedding is greater than 99.5th percentile). Dimension 64 is a detec-
tor for the word “running” for the audio encoder, with an IOU score of 0.053. For
visualization, the boolean mask representing detector activation was upsampled to
the size of the image using bilinear interpolation, resulting in non-binary values of
the overlay’s opacity channel.

tors after fine-tuning that did not have detectors before fine-tuning.

I also performed a ranking-based analysis of the learned words. Since IOU cutoffs

for known words are somewhat arbitrary, instead I sorted the list of words by their

max IOU scores over all dimensions. I sorted the words based on their IOU scores

before and after fine tuning and tracked how the position of the word in the list

changed after fine tuning. Table 4.8 shows the top 15 words which moved up the

most in the sorted list, passing many words and being passed by few. As you can

see, action words like “talking”, “running”, and “wearing” are in the top 15. Also

interesting: the detectors for “talking” and “dog” are in ambient audio dimensions of

the video embedding. This suggests that the model has learned a rudimentary form

of voice activity detection in an unsupervised fashion, and might be able to recognize

a dog bark or whine. The full version of Table 4.8 is located in Appendix B.

Since the network dissection so far has been performed on audio embeddings

alone with the goal of identifying recognized words, I look to the images/videos to

qualitatively gauge if the recognized words correspond to relevant regions of the im-

ages/videos. In lieu of a pixel-wise labeling for the datasets of interest, the quanti-

tative analysis to this end performed in (Harwath et al. 2018a) is not relevant here.

Instead, I used the technique of thresholding a component of the embedding’s acti-

vation on the image embeddings. Just like when I thresholded activation for audio

83



embeddings, I set the threshold for activation to be the 99.5th percentile. From the

audio IOU analysis, dimension 64 (out of 1024) had a detector for the word “running”

with an IOU score 0.053. I selected the images with a large number of spatial regions

with dimension 64 activated, based on the image embedding thresholding. The results

are shown in Figure 4-4, with the yellow overlay corresponding to the regions in which

dimension 64 of the embedding is activated above the 99.5th percentile threshold.

Analysis was also performed using precision/recall/𝐹1/𝐹0.5 analysis using the ac-

tivation of a component as a prediction. Using 𝐹0.5 score, results were quite similar to

using IOU score, and the use of IOU score is consistent with Bau et al. (2017); Zhou

et al. (2017), so IOU results were used. In general, precision was high and recall was

low, likely because there were short spikes of activation in the middle of words, and

the threshold for activation is quite high (the 99.5th percentile).

4.7 Chapter Summary

The audio IOU analysis gives quantitative support that the network recognizes the

word “running” while the images give qualitative support that the network under-

stands the concept “running”, at least to some degree. Hypothesis (2) from Sec-

tion 4.1 is supported by the fact that the network learns detectors for new action

words when fine-tuned on the Captioned Moments dataset. That is, the fact that

DAVEnet learned few action words when trained on Places was in part due to the

dataset. However, there are still a disproportionately large number of object words

recognized by the network, suggesting that hypothesis (1), that captions are more

likely to describe objects present in an image, also has merit.

The Moments in Time dataset is quite large, having approximately 800K videos.

Once Captioned Moments is expanded to have captions for a greater proportion of

these 800K videos, the problem of overfitting the training set and requiring pretraining

on another dataset should be resolved. Future work might focus on adjusting the

learning objective to allow the model to be trained with a smaller batch size. This

would help combat the constraint of GPU-memory, which is an impediment for fast
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model iteration since four GPUs are currently required to train the 3-frame models.

Another interesting direction to explore is to better explore DAVEnet’s capacity to

model retrieval for the directions “video frames to ambient audio” and “ambient audio

to video frames” (without captions). This is similar to Aytar et al. (2016)’s work,

except that instead of having categorical distributions over explicit objects/scenes

which are regularized to be similar, a learned similarity function is used. Preliminary

experiments I conducted exploring this task show that DAVEnet can attain at least

0.23 R@10 for both directions, but further experiments are needed.
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Chapter 5

Conclusion

5.1 Summary of Contributions and Findings

In this thesis, I:

1. Identified and presented a solution to the problem of bias towards certain audio

captions during modality retrieval,

2. Defined the property of modality invariance and proposed a regularization term

to use during training to encourage the property in the learned embedding space,

3. Applied DAVEnet to a new dataset with additional modalities: the Captioned

Moments dataset consisting of three second videos (Monfort et al. 2018), show-

ing that training on this new dataset enables the learning of action-related

concepts and concepts grounded to ambient sound.

In Chapter 2, I analyzed the behavior of DAVEnet on the modality retrieval task,

finding that the network exhibited a bias towards certain audio captions during the

image to caption retrieval task. One of these “favorite” audio captions were selected

in the top 10 audio captions for over one hundred images. Meanwhile, over 500 audio

captions were never selected as the most similar audio caption to an image. I proposed

a technique to compensate for this bias at evaluation time: using the posterior inverse

prior (Equation 2.1) in place of similarities.
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A posterior probability distribution over retrieved captions given a queried image

was estimated from the similarities using the softmax function. Then, the prior

probability a caption is selected was estimated using an expectation over images in

the training set. During modality retrieval, the similarity is replaced by the odds ratio

of the posterior probability a caption is selected given an image divided by the prior

probability the caption is selected. Performance for image to caption retrieval showed

a relative improvement of about 20% R@1. In addition, the empirical distribution

over selected audio captions was less skewed, suggesting the posterior-inverse-prior

helped eliminate the problem of bias towards certain audio captions during modality

retrieval.

In Chapter 3, I introduced the property of modality invariance for a semantic

embedding space. I used a regularization term corresponding to the amount of in-

formation contained in an input to filter out information considered noise for the

sampled margin rank loss objective. In the case of the TIDIGITS/MNIST dataset I

used for my experiments, modality information was considered noise for the objective

and filtered out, while semantic information (e.g. digit identity) was preserved. I ran

preliminary experiments applying the regularization technique to DAVEnet trained

on Places, and I found that the component-wise modality invariance increased without

significantly impacting modality retrieval performance. I also discuss why it might be

difficult to disentangle semantic and modality information for open-ended semantic

concepts: certain concepts have inherently modality-specific properties, unlike dig-

its. One way to account for modality-specific semantic properties might be to use

a factorized embedding space, wherein some dimensions of the embedding are con-

strained to be modality invariant while others are allowed to contain modality-specific

information.

In Chapter 4, I described the new Captioned Moments dataset: a spoken caption-

augmented subset of the Moments in Time dataset (Monfort et al. 2018). I analyze

properties of the dataset and note practical considerations for using it to train models.

I trained a video frame-level DAVEnet on the dataset to compare the performance of

models trained on Places with models trained on Captioned Moments. I found that
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models trained on Captioned Moments tended to overfit the training set fairly quickly,

but to a similar degree to models trained on a similar-sized subset of Places. This

finding suggests that more captions must be collected for the approximately 700K

non-captioned videos available in Moments in Time before training non-pretrained

DAVEnets on the dataset can perform satisfactorily.

I then experimented using multiple input frames from the video as well as the

ambient audio track from the video. I found that performance improved as frames

were added, using certain pooling methods. I also performed a word-learning ex-

periments using network dissection (Bau et al. 2017; Zhou et al. 2017) that showed

that when a model which was pretrained on Places was fine-tuned on Captioned Mo-

ments, component-wise detectors for action words like “running”, “talking”, “wearing”,

and “watching” were learned. In addition, I found that component-wise detectors for

“talking”, “dog”, and “machine” were learned in ambient audio-specific components

of the embedding, showing that the caption audio is being grounded to the ambient

audio track for certain concepts. This is also a promising finding, as it suggests that

the model might be learning a rudimentary voice activity detector in an unsupervised

fashion.

5.2 Future Directions

For my work in Chapter 2, future research should explore how one might decrease bias

toward captions during training rather than as a post-processing step. For example,

one option might be to regularize the conditional entropy of the posterior distribution

over retrieved captions given a queried image using the KL divergence from a uniform

prior. This could have the same benefits as posterior-inverse-prior post-processing

without breaking the maximum a posterior selection criterion.

For my work concerning modality invariance, future research should continue to

explore the property of modality invariance and how to attain it in embedding spaces

for open-ended semantic concepts, like objects and scenes. It may be the case that

the regularization technique proposed is not well suited for situations where there
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are modality-specific components to some concepts that cause modality and semantic

information to be entangled. In such cases, it may be necessary to learn a factorized

embedding space or use an adversarial setup, like Saito et al. (2016), to achieve

modality invariance. In addition, future work could explore the property’s usefulness

in a generative setting, such as for modality translation using the embedding space

as a latent representation, similar to Hsu et al. (2017a;b)’s work using variational

autoencoders to model speech.

For future work on Captioned Moments, the first priority should be to collect

at least 300K more captions for the non-captioned videos in the Moments in Time

dataset. This would help reduce the problem of overfitting and allow for a fair com-

parison with the full Places dataset using non-pretrained models.

After more captions are collected, new sampling procedures should be explored

that allow a smaller batch size to be used. For example, if semi-hard-negative loss is

not used, sampled margin rank loss can be reformulated using a small batch size by

having batches of globally negative sampled triplets rather than sampling the triplets

from the current, sufficiently large batch. Such a sampling procedure would remove

the “sufficiently large” constraint on the batch size which makes it difficult to fit into

memory the intermediate states for DAVEnet models which accept multi-frame video

as input.

Additional word and concept learning experiments should be conducted on the

Captioned Moments models, and on DAVEnet models in general. The word learning

experiments I explored involved the analysis of component-specific detectors, but the

model may understand complex concepts which aren’t well represented by a single

component in the embedding. For that, hierarchical clustering techniques, as used

by (Harwath et al. 2018a), may be used. One interesting direction would be to

cluster the embedding space in such a way that the clusters would maximize inter-

cluster similarity, using the learned similarity metric. This would differ from the

clustering analysis used in (Harwath et al. 2018a), since the similarity metric itself

would be used as the criterion for “goodness” of cluster membership, rather than

Euclidean distance in the high dimensional embedding space of the concatenated
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image and audio embeddings. Since similarity cannot be computed between two

images or two audio components, a notion of “transitive intra-modality similarity”

could be introduced; for instance, if computing the similarity between two images,

one could find a path between the images via an audio caption which maximizes the

sum of the similarities. For example:

𝑆intramodality(𝐼1, 𝐼2) = max
𝐴

(𝑆𝐼1,𝐴 + 𝑆𝐼2,𝐴)

where 𝑆𝐼,𝐴 is the traditional inter-modality similarity between image 𝐼 and audio cap-

tion 𝐴. There are likely ways to formulate this transitive similarity metric instead as

an expectation over queried audio, using the probabilistic formulation of the similar-

ity introduce in Chapter 2. This intra-modality similarity metric would be similar to

the idea of transitive grounding introduced in Chapter 1 and depicted in Figure 1-1.

The use of topic modeling to model the audio embedding space should also be

explored. This approach would allow the temporal context of audio embeddings to

be better modeled. For example, in the Latent Dirichlet Allocation (LDA) approach

(Blei et al. 2003), a spoken caption utterance would represent a document, and the

document would be characterized as a mixture of topics. A likelihood distribution

would be used to model the probability of an audio embedding frame given the topic.

Using generative approaches such as LDA on the high level embedding space learned

by DAVEnet might enable the learning of semantic relations between learned words.

5.3 Discussion

Multimodal concept learning is an exciting new area of unsupervised research. It

has the potential not only to learn to recognize new words, but also to recognize

visual and auditory stimuli that correspond to those words. This might show that

the model possesses a much deeper understanding of the word and visual concepts,

an understanding grounded in past experience of co-occurring stimuli. More over,

due to the transitive nature of the pairwise similarity metric, the model has a notion
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of word-to-word similarity and image-to-image similarity through grounding with

another modality. Unlike models like skip-grams or continuous bag of words, which

look for intra-modality context to learn similarities in how words are used among

other words, multimodal models use cross-modality context to learn similarities in

how words are expressed. However, this is not to say that intramodality context is

not important.

Imagine word-embeddings which capture not only how a word is used in a sen-

tence and what words might be synonyms based on similar usage, but also what the

concept the word refers to looks like, what it sounds like, and how it moves and

interacts with its environment. Such a word-embedding could be constructed using

the concatenation of DAVEnet embeddings correlated to words with the embeddings

from a skip-gram model. Recent work by Chung and Glass (2018) has even shown

that skip-gram models can be applied directly to speech, so it is not unreasonable

to consider a speech embedding space which captures both cross-modality expressive

information from DAVEnet embeddings as well as grammatical and intramodality in-

formation from a skip-gram model. Of course, a key component of these embeddings

is that they not only contain information concerning object/scenes, but also actions

(as I explored in Chapter 4) and object relations. Promoting modality invariance (as

I explored in Chapter 3) might help denoise the embedding space of modality specific

information which distracts from the more important semantic content. Finally, there

may be a need to eliminate bias towards easier-to-recognize, commonly occurring con-

cepts (as I explored in Chapter 2). Once constructed, this semantic embedding space

may enable the creation of speech understanding models which can rival the perfor-

mance of text-based natural language understanding, an outcome which is promising

for extending natural language understanding to non-written oral languages.

The field of speech understanding is on the brink of learning its own written

language. For many years, it has been the assumption of many researchers and

engineers that in order to do any high-level natural language understanding on spoken

language, one first had to convert speech to text and then train models to understand

the text. DAVEnet is proving that wrong. DAVEnet has shown that its possible
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to uncover discrete concepts which align very naturally with discrete concepts we as

humans understand and can use one or two words to describe, all from unstructured

sensory data. This is very much like a human child, learning to recognize the concepts

of “cat” and “horse” from the spoken feedback he or she receives from their mother.

The question now becomes: can we learn to better discretize this real-valued high

level semantic representation?

Currently, the four basic tools we have at our disposal for discretization are clus-

tering, binning, argmax-ing, and sampling discrete distributions. Each has its pros

and cons, and there are many new directions of research with the goal of unifying these

non-differentiable approaches (often performed after training) with stochastic gradi-

ent descent to shape low-level weights of the neural network at training time. None

has taken off as “the way” to learn a discrete variable in a neural architecture. It may

be one of these approaches, or it may be an entirely different approach for going from

continuous to discrete and optimizing through that transformation. However, once a

method is found, it may very well be possible to learn a latent sequence of discrete

variables representing a learned written language, learned in an entirely unsupervised

fashion from speech and other sensory input. In this learned written language, it will

be possible to use grammars, use 𝑁 -grams, learn autoregressive distributions, and do

everything one would do with text instead with the discrete representation.

I conclude with a reflection. My contributions in this thesis are a small step in the

direction of a lofty goal: learning to understand spoken language in an unsupervised

fashion. For the goal to be realized, it will require collaboration from researchers

across labs, across disciplines even. The following is certain: it’s an exciting time for

machine learning and artificial intelligence.
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Appendix A

Model Architectures

In this Appendix, I give a description of the different DAVEnet encoder modules used

in this thesis. Note that for the TIDIGITS/MNIST experiments in Chapter 3, the

model descriptions are given in Table 3.1. In this section, the embedding dimension

(typically 1024) is referred to as 𝐷. For convolutions, constant padding before the

convolution is used, as is standard with PyTorch (Paszke et al. 2017). All models in

this section are implemented in PyTorch (Paszke et al. 2017).

A.1 Traditional DAVEnet Architecture
First the image encoder:

1. VGG16 through Conv 5-3 (final maxpool and fully connected layers removed) (Simonyan and Zisserman 2014)
2. 3× 3 convolution with stride 1 and padding 1, from 512 channels to 𝐷 channels

the output is downsampled spatially by a factor of 16 as compared to the input.
Next the audio encoder. The input is a 40× 𝑇 mel-spectrogram with 1 channel.

1. BatchNorm 2D (Ioffe and Szegedy 2015)
2. 40× 1 convolution with stride 1, padding 0, from 1 channel to 128 channels
3. 1× 11 convolution with stride 1, padding (0, 5), from 128 channels to 256 channels
4. 1× 3 max pooling with stride (1, 2), padding (0, 1)

5. 1× 17 convolution with stride 1, padding (0, 8), from 256 channels to 512 channels
6. 1× 3 max pooling with stride (1, 2), padding (0, 1)

7. 1× 17 convolution with stride 1, padding (0, 8), from 512 channels to 512 channels
8. 1× 3 max pooling with stride (1, 2), padding (0, 1)

9. 1× 17 convolution with stride 1, padding (0, 8), from 512 channels to 𝐷 channels

the output is downsampled temporally by a factor of 8 as compared to the input.
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A.2 Residual DAVEnet Architecture
First the image encoder:

1. ResNet-50 with final average pool and fully connected layer removed (He et al. 2016)
2. 1× 1 convolution with stride 1 and padding 0, from 2048 channels to 𝐷 channels

the output is downsampled spatially by a factor of 32 as compared to the input.
Next the audio encoder: the residual audio encoder is more complicated to describe

than the models listed thus far. It consists of a series of blocks of the form:

1. 1× 9 convolution with stride (1, stride), padding (0, 4), from 𝐷in channels to 𝐷planes channels
2. BatchNorm 2D (Ioffe and Szegedy 2015)
3. ReLU
4. 1× 9 convolution with stride 1, padding (0, 4), from 𝐷planes channels to 𝐷planes channels
5. BatchNorm 2D (Ioffe and Szegedy 2015)

The output of this block is added to a downsampled residual connection of the input
to the block. The input is downsampled using:

1. 1× 1 convolution with stride (1, stride), padding 1, from 𝐷in channels to 𝐷planes channels
2. BatchNorm 2D (Ioffe and Szegedy 2015)

if the stride for the block is not 1. If the stride for the block is 1, the input itself is
used as the residual connection. We refer to this residual block architecture simply as
“Residual block” in the following model description. Note that the input is a 40× 𝑇
mel-spectrogram with 1 channel.

1. 40× 1 convolution with stride 1, padding (0, 1), no bias, from 1 channel to 128 channels.
2. BatchNorm 2D (Ioffe and Szegedy 2015)
3. ReLU
4. Residual block from 128 channels to 128 channels with stride 2
5. ReLU
6. Residual block from 128 channels to 128 channels with stride 1
7. ReLU
8. Residual block from 128 channels to 256 channels with stride 2
9. ReLU

10. Residual block from 256 channels to 256 channels with stride 1
11. ReLU
12. Residual block from 256 channels to 512 channels with stride 2
13. ReLU
14. Residual block from 512 channels to 512 channels with stride 1
15. ReLU
16. Residual block from 512 channels to 𝐷 channels with stride 2
17. ReLU
18. Residual block from 𝐷 channels to 𝐷 channels with stride 1
19. ReLU

the output is downsampled temporally by a factor of 8 as compared to the input.
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Appendix B

Word Detectors

In Chapter 4, I describe a series of experiments I ran training a DAVEnet model

on the new Captioned Moments dataset. At the end, I take the most successful

DAVEnet, which took 3 video frames and the ambient audio as input, and used

network dissection (Bau et al. 2017; Zhou et al. 2017) to determine how training on the

Captioned Moments dataset affected the model’s word detection and understanding.

I argued that the model’s increased ability to detect action words, such as “running”

and “talking”, showed that training on the Captioned Moments dataset might enable

DAVEnet to learn more action-related concepts.

In this Appendix, I show the 25 dimensions with the word detectors with greatest

IOU scores for both the Places model and the fine-tuned Captioned Moments model.

Then I give the full version of Table 4.8.

97



From the Places model:

Dim. 529 trees (0.509), tree (0.064)

Dim. 363 trees (0.407)

Dim. 92 red (0.405), orange (0.052)

Dim. 391 trees (0.372), tree (0.122)

Dim. 172 water (0.340), ocean (0.096), river (0.091), beach (0.058)

Dim. 994 people (0.337), walking (0.058)

Dim. 53 snow (0.325)

Dim. 890 white (0.321)

Dim. 29 building (0.285), buildings (0.131)

Dim. 838 table (0.282), tables (0.157), chairs (0.082)

Dim. 751 black (0.273)

Dim. 707 room (0.273), inside (0.061)

Dim. 962 blue (0.270)

Dim. 601 white (0.269)

Dim. 598 green (0.249), grass (0.051)

Dim. 995 man (0.247), men (0.079)

Dim. 278 yellow (0.246), green (0.066)

Dim. 463 field (0.228), grass (0.195)

Dim. 249 sitting (0.227)

Dim. 131 building (0.221)

Dim. 710 walking (0.220)

Dim. 801 sitting (0.211), standing (0.109)

Dim. 579 black (0.205), white (0.057)

Dim. 467 red (0.196)

Dim. 419 people (0.193), baseball (0.059)

From the fine-tuned model:

Dim. 529 trees (0.420), tree (0.073)

Dim. 172 water (0.357), ocean (0.081), beach (0.054)

Dim. 391 trees (0.344), tree (0.139)

Dim. 92 red (0.330)

Dim. 29 building (0.325), buildings (0.110)

Dim. 363 trees (0.322), grass (0.093)

Dim. 53 snow (0.307)

Dim. 994 people (0.305)

Dim. 890 white (0.303)

Dim. 838 table (0.276), tables (0.114), chairs (0.084)

Dim. 1116 people (0.266)

Dim. 598 green (0.258)

Dim. 751 black (0.255)

Dim. 579 black (0.244), white (0.058)

Dim. 995 man (0.241), men (0.051)

Dim. 601 white (0.238), wooden (0.050)

Dim. 278 yellow (0.228), orange (0.054)

Dim. 396 trees (0.226), tree (0.110)

Dim. 962 blue (0.218)

Dim. 903 building (0.211), buildings (0.075), house (0.072)

Dim. 463 field (0.205), grass (0.193)

Dim. 158 bridge (0.195)

Dim. 239 inside (0.194)

Dim. 60 sky (0.191), skies (0.053)

Dim. 815 building (0.190), buildings (0.084)

The next table shows words, sorted from those which moved forward the most

in the sorted list of max IOU-ranking when fine tuned on Captioned Moments to

those that moved backwards the most. Simply put, the list is sorted by words which

were learned through fine-tuning to words that were forgotten. Green bold words

correspond to “learned” words and blue words to “remembered” words. Red italicized

words correspond to “forgotten” words. Only the 160 words with IOU greater than

0.04 in either the Places model or the Captioned Moments model were considered.

Words with IOU greater than 0.05 were considered known for the purpose of deciding

which words were forgotten, retained, or learned.

The parenthesized integer next to the IOU score corresponds to the dimension

of the embedding with that particular IOU score. Dimensions greater than 1024

are shown in red and correspond to ambient video audio dimensions. Notice that

“talking”, “dog”, and “machine” have detectors in dimensions 1128 and 1119 (ambient

video audio dimensions) of the embedding.
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Word IOU Before IOU After Rank Before Rank After # Passed # Passed By
talking 0.037 (1) 0.104 (1128) 145 / 160 48 / 160 97 0
hands 0.028 (1022) 0.080 (937) 157 / 160 73 / 160 84 0
baby 0.073 (22) 0.163 (876) 84 / 160 25 / 160 59 0
wood 0.041 (1023) 0.069 (1023) 139 / 160 85 / 160 56 2

bicycle 0.036 (866) 0.057 (866) 149 / 160 98 / 160 52 1
ball 0.032 (277) 0.054 (49) 152 / 160 104 / 160 49 1
dog 0.047 (276) 0.077 (1119) 122 / 160 76 / 160 48 2

camera 0.048 (1004) 0.077 (822) 121 / 160 77 / 160 47 3
game 0.037 (749) 0.055 (97) 146 / 160 103 / 160 45 2
large 0.078 (691) 0.121 (691) 78 / 160 38 / 160 41 1
he 0.030 (188) 0.052 (188) 154 / 160 115 / 160 40 1

running 0.036 (301) 0.053 (64) 148 / 160 110 / 160 41 3
she 0.028 (1002) 0.049 (282) 156 / 160 119 / 160 38 1

wearing 0.042 (187) 0.056 (16) 136 / 160 99 / 160 41 4
two 0.037 (231) 0.053 (542) 147 / 160 111 / 160 38 4
dark 0.060 (513) 0.096 (606) 91 / 160 57 / 160 35 1

outside 0.081 (650) 0.120 (650) 73 / 160 39 / 160 36 2
young 0.082 (306) 0.131 (614) 71 / 160 37 / 160 35 1
kids 0.028 (154) 0.046 (154) 158 / 160 125 / 160 33 0
girls 0.043 (856) 0.056 (856) 132 / 160 100 / 160 37 5
group 0.046 (813) 0.060 (813) 125 / 160 94 / 160 34 3
picture 0.046 (854) 0.061 (230) 124 / 160 93 / 160 34 3

car 0.097 (418) 0.150 (418) 54 / 160 27 / 160 28 1
cartoon 0.026 (259) 0.043 (980) 159 / 160 133 / 160 26 0
flower 0.032 (155) 0.046 (329) 153 / 160 127 / 160 30 4
bushes 0.051 (839) 0.063 (720) 115 / 160 90 / 160 30 5

girl 0.074 (856) 0.094 (856) 83 / 160 58 / 160 28 3
watching 0.044 (64) 0.053 (225) 130 / 160 106 / 160 32 8

cars 0.080 (418) 0.103 (418) 74 / 160 50 / 160 27 3
person 0.087 (492) 0.112 (950) 66 / 160 42 / 160 28 4
hair 0.024 (1004) 0.041 (1004) 160 / 160 137 / 160 23 0

someone 0.029 (966) 0.044 (492) 155 / 160 132 / 160 26 3
says 0.042 (167) 0.053 (199) 134 / 160 112 / 160 31 8
child 0.051 (306) 0.066 (306) 110 / 160 87 / 160 28 5
bed 0.040 (375) 0.048 (501) 143 / 160 122 / 160 30 9

waterfall 0.042 (791) 0.050 (928) 138 / 160 117 / 160 30 9
stage 0.087 (105) 0.105 (97) 64 / 160 47 / 160 23 5

dressed 0.057 (522) 0.074 (522) 97 / 160 80 / 160 21 4
shop 0.035 (412) 0.041 (412) 150 / 160 136 / 160 22 8

structure 0.042 (631) 0.048 (384) 135 / 160 121 / 160 26 12
football 0.033 (503) 0.041 (97) 151 / 160 138 / 160 22 9

boy 0.054 (306) 0.062 (306) 103 / 160 91 / 160 19 7
couch 0.040 (99) 0.045 (43) 140 / 160 130 / 160 22 12

baseball 0.079 (49) 0.087 (49) 77 / 160 67 / 160 15 5
floor 0.119 (915) 0.140 (915) 42 / 160 32 / 160 12 2
shirt 0.123 (811) 0.146 (811) 39 / 160 29 / 160 12 2
night 0.070 (984) 0.075 (984) 87 / 160 79 / 160 13 5
beach 0.074 (319) 0.078 (319) 82 / 160 75 / 160 12 5
tree 0.122 (391) 0.139 (391) 40 / 160 33 / 160 10 3

inside 0.175 (239) 0.194 (239) 23 / 160 16 / 160 7 0
tractor 0.042 (701) 0.044 (701) 137 / 160 131 / 160 21 15
forest 0.039 (485) 0.041 (936) 144 / 160 139 / 160 21 16
skies 0.051 (60) 0.053 (60) 114 / 160 109 / 160 19 14

flowers 0.071 (213) 0.074 (213) 86 / 160 81 / 160 12 7
ground 0.090 (466) 0.097 (466) 61 / 160 56 / 160 13 8
street 0.134 (30) 0.149 (30) 33 / 160 28 / 160 7 2

wooden 0.165 (1023) 0.186 (1023) 24 / 160 19 / 160 5 0
bridge 0.193 (158) 0.195 (158) 20 / 160 15 / 160 5 0
orange 0.052 (92) 0.054 (278) 109 / 160 105 / 160 18 14
jacket 0.055 (624) 0.059 (624) 100 / 160 96 / 160 14 10
men 0.083 (717) 0.088 (717) 69 / 160 65 / 160 12 8

woman 0.160 (74) 0.179 (74) 26 / 160 22 / 160 4 0
shorts 0.047 (811) 0.049 (811) 123 / 160 120 / 160 20 17
plants 0.059 (720) 0.063 (720) 92 / 160 89 / 160 10 7
green 0.249 (598) 0.258 (598) 12 / 160 9 / 160 3 0
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Word IOU Before IOU After Rank Before Rank After # Passed # Passed By
building 0.285 (29) 0.325 (29) 7 / 160 4 / 160 3 0
yellow 0.246 (278) 0.228 (278) 14 / 160 12 / 160 2 0
man 0.247 (995) 0.241 (995) 13 / 160 11 / 160 2 0
sky 0.193 (60) 0.191 (60) 19 / 160 18 / 160 3 2

grass 0.195 (463) 0.193 (463) 18 / 160 17 / 160 3 2
field 0.228 (463) 0.205 (463) 15 / 160 14 / 160 1 0
water 0.340 (172) 0.357 (172) 3 / 160 2 / 160 1 0
chair 0.040 (637) 0.040 (637) 142 / 160 142 / 160 18 18
table 0.282 (838) 0.276 (838) 8 / 160 8 / 160 0 0
snow 0.325 (53) 0.307 (53) 5 / 160 5 / 160 1 1
trees 0.509 (529) 0.420 (529) 1 / 160 1 / 160 0 0
fire 0.074 (77) 0.072 (77) 81 / 160 82 / 160 10 11

black 0.273 (751) 0.255 (751) 9 / 160 10 / 160 0 1
white 0.321 (890) 0.303 (890) 6 / 160 7 / 160 0 1
red 0.405 (92) 0.330 (92) 2 / 160 3 / 160 0 1

statue 0.045 (665) 0.045 (665) 126 / 160 128 / 160 17 19
church 0.084 (384) 0.084 (305) 68 / 160 70 / 160 8 10

top 0.093 (1) 0.093 (1) 58 / 160 60 / 160 9 11
boxing 0.098 (639) 0.100 (639) 53 / 160 55 / 160 7 9
rock 0.104 (688) 0.102 (688) 51 / 160 53 / 160 7 9
wall 0.147 (847) 0.141 (847) 29 / 160 31 / 160 2 4

mountains 0.175 (763) 0.164 (763) 22 / 160 24 / 160 1 3
blue 0.270 (962) 0.218 (962) 11 / 160 13 / 160 1 3

people 0.337 (994) 0.305 (994) 4 / 160 6 / 160 0 2
rocks 0.092 (688) 0.090 (688) 59 / 160 63 / 160 7 11

background 0.136 (556) 0.134 (556) 31 / 160 35 / 160 2 6
sitting 0.227 (249) 0.183 (249) 16 / 160 20 / 160 1 5
snowy 0.045 (53) 0.042 (53) 129 / 160 134 / 160 18 23
stone 0.164 (384) 0.144 (384) 25 / 160 30 / 160 0 5
house 0.183 (849) 0.155 (849) 21 / 160 26 / 160 0 5

parking 0.058 (617) 0.056 (617) 95 / 160 101 / 160 9 15
playing 0.088 (62) 0.084 (368) 63 / 160 69 / 160 6 12
door 0.097 (248) 0.093 (248) 55 / 160 61 / 160 6 12
brick 0.116 (640) 0.104 (640) 43 / 160 49 / 160 2 8
road 0.124 (341) 0.110 (341) 38 / 160 44 / 160 3 9

mountain 0.141 (763) 0.133 (763) 30 / 160 36 / 160 1 7
river 0.148 (951) 0.135 (951) 28 / 160 34 / 160 1 7

walking 0.220 (710) 0.167 (710) 17 / 160 23 / 160 0 6
train 0.131 (333) 0.111 (333) 36 / 160 43 / 160 2 9
boat 0.087 (880) 0.081 (880) 65 / 160 72 / 160 5 13

standing 0.110 (822) 0.101 (653) 46 / 160 54 / 160 2 10
clouds 0.077 (431) 0.064 (431) 79 / 160 88 / 160 5 14
store 0.136 (212) 0.114 (212) 32 / 160 41 / 160 0 9
rocky 0.072 (688) 0.059 (688) 85 / 160 95 / 160 5 15

children 0.122 (306) 0.103 (616) 41 / 160 51 / 160 1 11
small 0.131 (942) 0.109 (942) 35 / 160 46 / 160 0 11

buildings 0.131 (29) 0.110 (29) 34 / 160 45 / 160 0 11
room 0.273 (707) 0.179 (707) 10 / 160 21 / 160 0 11

parked 0.043 (617) 0.039 (617) 133 / 160 145 / 160 14 26
pink 0.049 (712) 0.045 (712) 117 / 160 129 / 160 13 25
tower 0.051 (903) 0.047 (432) 111 / 160 123 / 160 12 24
tracks 0.057 (701) 0.053 (701) 96 / 160 108 / 160 7 19

classroom 0.043 (734) 0.039 (707) 131 / 160 144 / 160 14 27
restaurant 0.051 (233) 0.046 (735) 113 / 160 126 / 160 12 25

glass 0.082 (891) 0.070 (891) 70 / 160 83 / 160 4 17
dancing 0.105 (789) 0.090 (789) 49 / 160 62 / 160 3 16
tables 0.157 (838) 0.114 (838) 27 / 160 40 / 160 0 13
front 0.040 (204) 0.031 (510) 141 / 160 155 / 160 5 19

garden 0.054 (110) 0.050 (720) 104 / 160 118 / 160 8 22
desk 0.081 (870) 0.068 (736) 72 / 160 86 / 160 3 17
pool 0.091 (628) 0.080 (628) 60 / 160 74 / 160 3 17

window 0.112 (908) 0.093 (908) 45 / 160 59 / 160 1 15
ocean 0.096 (172) 0.081 (172) 56 / 160 71 / 160 2 17
chairs 0.129 (988) 0.102 (988) 37 / 160 52 / 160 0 15
fence 0.056 (525) 0.052 (167) 98 / 160 114 / 160 6 22
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Word IOU Before IOU After Rank Before Rank After # Passed # Passed By
dirt 0.086 (513) 0.069 (345) 67 / 160 84 / 160 3 20
track 0.105 (701) 0.087 (701) 50 / 160 68 / 160 1 19
brown 0.105 (810) 0.088 (810) 48 / 160 66 / 160 1 19
shoes 0.045 (282) 0.039 (282) 128 / 160 146 / 160 12 31

machine 0.059 (474) 0.053 (1050) 93 / 160 113 / 160 5 24
kitchen 0.113 (137) 0.089 (506) 44 / 160 64 / 160 0 20
area 0.076 (844) 0.055 (844) 80 / 160 102 / 160 3 25
walls 0.080 (847) 0.059 (847) 75 / 160 97 / 160 2 24
stairs 0.055 (246) 0.047 (246) 101 / 160 124 / 160 6 29
city 0.103 (30) 0.076 (30) 52 / 160 78 / 160 1 27

cloudy 0.045 (431) 0.030 (155) 127 / 160 156 / 160 4 32
office 0.052 (147) 0.042 (707) 107 / 160 135 / 160 9 37
truck 0.048 (701) 0.036 (940) 120 / 160 151 / 160 7 38
lights 0.050 (984) 0.038 (638) 116 / 160 149 / 160 6 39

fountain 0.079 (791) 0.051 (487) 76 / 160 116 / 160 1 41
old 0.048 (384) 0.025 (384) 119 / 160 160 / 160 0 41

photograph 0.048 (186) 0.027 (233) 118 / 160 159 / 160 0 41
station 0.056 (438) 0.041 (800) 99 / 160 140 / 160 5 46
distance 0.088 (429) 0.053 (711) 62 / 160 107 / 160 1 46
windows 0.108 (908) 0.062 (908) 47 / 160 92 / 160 0 45

video 0.051 (1011) 0.029 (107) 112 / 160 158 / 160 0 46
market 0.052 (790) 0.035 (412) 108 / 160 154 / 160 1 47
painting 0.053 (935) 0.035 (825) 106 / 160 153 / 160 1 48
photo 0.054 (107) 0.037 (107) 102 / 160 150 / 160 1 49
around 0.054 (834) 0.030 (934) 105 / 160 157 / 160 0 52
side 0.068 (199) 0.040 (650) 89 / 160 141 / 160 2 54
tall 0.067 (706) 0.039 (355) 90 / 160 143 / 160 2 55

dining 0.058 (578) 0.035 (595) 94 / 160 152 / 160 0 58
castle 0.069 (477) 0.039 (384) 88 / 160 147 / 160 1 60
sign 0.093 (199) 0.039 (199) 57 / 160 148 / 160 0 91
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