
66 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 53, NO. 1, JANUARY 2018

A Low-Power Speech Recognizer and Voice
Activity Detector Using Deep Neural Networks
Michael Price, Member, IEEE, James Glass, Fellow, IEEE, and Anantha P. Chandrakasan, Fellow, IEEE

Abstract— This paper describes digital circuit architectures
for automatic speech recognition (ASR) and voice activity
detection (VAD) with improved accuracy, programmability, and
scalability. Our ASR architecture is designed to minimize off-chip
memory bandwidth, which is the main driver of system power
consumption. A SIMD processor with 32 parallel execution units
efficiently evaluates feed-forward deep neural networks (NNs)
for ASR, limiting memory usage with a sparse quantized weight
matrix format. We argue that VADs should prioritize accuracy
over area and power, and introduce a VAD circuit that uses
an NN to classify modulation frequency features with 22.3-µW
power consumption. The 65-nm test chip is shown to perform
a variety of ASR tasks in real time, with vocabularies ranging
from 11 words to 145 000 words and full-chip power consumption
ranging from 172 µW to 7.78 mW.

Index Terms— CMOS digital integrated circuits, deep neural
networks (DNNs), speech recognition, voice activity detec-
tion (VAD), weighted finite-state transducers (WFSTs).

I. INTRODUCTION

AUTOMATIC speech recognition (ASR) figures promi-
nently in the speech interfaces that are now used for a

variety of human/machine interactions. Real-time ASR is com-
putationally demanding, and the requirements often increase
as researchers identify improved modeling techniques.

Circuit designs tailored to specific tasks reduce the overhead
of general-purpose architectures, such as x86 or ARM, reduc-
ing the energy cost of those tasks by up to 100× [1]. There
are also opportunities to modify algorithms and runtime para-
meters for favorable power/performance tradeoffs. However,
the large difference in convenience and energy cost between
on-chip (small) and off-chip (large) memories complicates
hardware/software co-design efforts.

The speech interface on any given device is typically used
infrequently, so its memory must be non-volatile. Flash and
other non-volatile memories have a higher energy-per-bit than
DRAM (typically 100 pJ/bit for MLC flash [2]), so there is a
strong incentive to minimize memory bandwidth. A wake-up
mechanism is necessary to enable and disable the interface
at appropriate times; we investigate the use of voice activity

Manuscript received May 3, 2017; revised July 18, 2017; accepted
September 3, 2017. Date of publication October 25, 2017; date of current
version December 26, 2017. This work was supported by Quanta Computer
through the Qmulus Project. This paper was approved by Guest Editor
Muhammad M. Khellah. (Corresponding author: Michael Price.)

The authors are with the Massachusetts Institute of Technology, Cambridge,
MA 02139 USA (e-mail: price@alum.mit.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2017.2752838

Fig. 1. Conceptual illustration of speech recognizer with voice-activated
power gating. Training is performed off-line to prepare models stored in an
external memory and used by search and acoustic modeling within the chip.
This paper describes the digital ASIC and supporting software components
surrounded by dashed boxes.

detection (VAD) to disable ASR and save power during non-
speech input. We characterize three VAD algorithms at SNRs
from 30 to −5 dB and provide a VAD design with less
than 10% equal error rate (EER) down to 1-dB SNR on a
challenging data set, reducing the energy losses associated
with false alarms in noisy conditions.

This paper demonstrates digital IC implementations of VAD
and ASR, as shown in Fig. 1. Our implementation accepts
audio samples from an ADC or digital microphone, labels
regions of the waveform as speech/non-speech, and outputs
text transcriptions by performing ASR with models stored in
an external memory.

Section II provides background on the ASR problem and
previous work. Sections III and IV describe the design of
acoustic modeling and search subsystems that minimize mem-
ory bandwidth while preserving accuracy, programmability,
and scalability. Section V describes the VAD algorithms and
circuits in the context of minimizing system power, rather than
the power of the VAD itself. Section VI describes the circuit-
level techniques and measurement results, and Section VII
concludes this paper.

II. BACKGROUND

A. ASR Formulation

We provide a brief overview of the hidden Markov
model (HMM) framework for ASR [3], [4]. Fig. 2 shows

0018-9200 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

PRICE et al.: LOW-POWER SPEECH RECOGNIZER AND VOICE ACTIVITY DETECTOR USING DNNs 67

Fig. 2. HMM formulation of ASR. Searching for word hypotheses requires
two types of statistical models: a WFST for transitions between hidden states,
and an acoustic model for the observations (feature vectors) conditioned on
each hidden state.

TABLE I

DATA SETS USED FOR ASR EXPERIMENTS [7]–[10]. THE

LM PERPLEXITY CAN BE INTERPRETED AS A BRANCHING
FACTOR, WITH HIGHER PERPLEXITY INDICATING

FEWER CONSTRAINTS FOR SEARCH [11]

a speech HMM, which expresses the relationship between
hidden variables xt and observed variables yt . Viterbi search is
used to “decode” the most likely word sequence (based on xt)
from the feature vectors yt . The feature vectors are extracted
from the audio stream using a representation, such as mel-
frequency cepstral coefficients (MFCCs) [5].

The HMM factorizes the joint probability of all observed
and hidden variables as

p(x, y) = p(x0)

T−1∏

t=0

p(xt+1|xt)p(yt |xt).

In this formulation, xt is a discrete index to a state in a
weighted finite-state transducer (WFST) [6]; yt is a real-valued
vector that is observed before decoding. The forward update
of Viterbi search approximates the likelihood of all reachable
states at the next time step

p(xt+1) =
∑

xt

p(xt) p(xt+1|xt) p(yt+1|xt+1)

≈ max
xt

p(xt) p(xt+1|xt) p(yt+1|xt+1).

We follow the standard practice of training different recog-
nizers for different tasks, each with its own vocabulary and
acoustic properties. Some of the tasks we studied are listed
in Table I. Having a range of tasks lets us evaluate the
scalability of the ASR implementation.

B. Previous Work

Since the 1980s, there have been sporadic efforts to exploit
special-purpose hardware for speech applications; please con-
sult [4] for an overview. Diverse priorities and baselines have
led to FPGA and ASIC demonstrations of ASR, whether

real time or much faster [12], [13]. The architectures and
frameworks used for ASR are still in flux.

Deep neural networks (DNNs) have become popular for
ASR due to their improved accuracy [14]. The computer
science community continues to develop new types of NNs
and identify combinations that work well [15]. The circuits
community has studied DNNs and developed efficient imple-
mentations, primarily for computer vision [16]. Other recent
work has covered architectural exploration [17] and the appli-
cation of code generation tools [18].

The wide range of algorithms available for VAD also
provides opportunities to apply special-purpose architec-
tures. Power can be minimized through a variety of tech-
niques, whether minimum-energy operation in deeply scaled
CMOS [19], or mixed-signal design with adaptive feature
granularity [20]. These efforts have brought VAD power
consumption down to a few μW.

C. Contributions

This paper builds on previous efforts in two major areas:
1) circuit implementations supporting modern algorithms and
frameworks and 2) pushing down power consumption from
a system-level perspective. The key results were presented
in [21]; more details on all aspects of this paper are provided
in [22]. Many degrees of freedom and their impacts are
considered in pursuit of more accurate, programmable, and
scalable embedded ASR capabilities.

III. ACOUSTIC MODELING

A. Choosing a Modeling Framework

HMM-based ASR can be broken down into feature extrac-
tion (front end), acoustic modeling, and search. The acoustic
model has to evaluate the likelihood of input features yt with
respect to a set of distributions p(y|i), where i is the index
of an acoustic state or senone. The features are typically 10–
40 dimensions. While feature extraction is not a performance
bottleneck for ASR, we implemented a configurable MFCC
accelerator to avoid the overhead of adding a processor.

Experiments performed in [23] compared three acoustic
modeling frameworks in the context of minimizing memory
bandwidth: Gaussian mixture model (GMM), subspace GMM,
and DNN. These comparisons made assumptions about the
hardware architecture that would be used in each case. Overall,
the DNNs offered the best tradeoff between bandwidth and
accuracy. Bandwidth reductions can be achieved by using
smaller networks (for example, 256–512 hidden nodes per
layer) and keeping the width constant across layers to max-
imize the utilization of on-chip memory. These dimensional-
ity changes are complemented by the scalar quantization of
weights and the use of sparse weight matrices, both of which
have minor impacts on accuracy. Our models are still large
enough that the weight and bias parameters for each layer
cannot be cached in on-chip memory.

B. DNN Accelerator Architecture

We evaluate feed-forward DNNs using a fixed-function
SIMD architecture shown in Fig. 3. This architecture computes

68 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 53, NO. 1, JANUARY 2018

Fig. 3. Block diagram of SIMD NN evaluator, relying on a shared sequencer
and 32 EUs. External memory access is read-only due to internal storage of
activations.

Fig. 4. EUs and local memory are grouped into chunks that can be
reconfigured for different network sizes.

likelihood results for multiple frames simultaneously using the
same model. The sequencer decodes a compressed parameter
stream arriving from off-chip memory, and sends weight and
bias coefficients to the execution units (EUs) where they are
used and discarded. Each EU has local memory for storing
the feature vector, intermediate results (activations), and log-
likelihood outputs for one frame. This means the network
parameters are the only data fetched from off-chip memory,
and that the memory access is read-only.

Increasing the size of local memories would allow the use
of wider networks (or more output targets), but it would also
take up area that could otherwise be used for more EUs.
Furthermore, the SRAMs have some area overhead from sense
amplifiers and I/O logic, meaning that the area is not linearly
proportional to depth. As a compromise, we group EUs into
chunks, which each have access to a group of SRAMs. For
small networks, each EU connects directly to one SRAM.
For a network that would overflow one SRAM, every other
EU is disabled, but the active EUs use two adjacent SRAMs.
For a network that would overflow two SRAMs, three out
of every four EUs are disabled, and the active EUs use four
adjacent SRAMs. These options are shown in Fig. 4. Our
implementation relied on clock gating to disable EUs, since
leakage was small enough (on the order of 5 μA per EU) that
power gating would provide little advantage.

Fig. 5. EU block diagram (pipelining, addresses, and control signals not
shown).

We opted to store intermediate results in 24-bit format, pro-
vide 32 EUs in eight chunks, and support up to 1024 nodes per
layer without penalty (4096 nodes maximum). This arrange-
ment requires 1.5 Mb of SRAM. Having 32 EUs means
that small networks only need to be evaluated 3.125 times
per second at 100 frames/s, reducing both memory bandwidth
and clock frequency.

C. Sequencer and Execution Unit Design

The interface between the sequencer and the EU is a
command FIFO, as well as a data FIFO that supplies (index,
value) pairs. These interfaces are broadcasted to all active
EUs. The sequencer interprets the NN data structure as it is
streamed in, 1 byte per clock cycle. Before providing packed
weight coefficients, each layer specifies a quantization lookup
table (loaded into SRAM) and optionally a per-row binary
sparsity pattern stored as its run length encoding (RLE). In
the dense mode, the column index counter increases serially;
in the sparse mode, the counter increases according to the RLE
output.

The EU is shown in Fig. 5. A 24-bit multiply/accumulate is
used to avoid extra reads/writes during the affine transforma-
tion. The output is saved to SRAM and can be fed through a
sigmoid or rectified linear unit (ReLU) non-linearity afterward.
The ReLU should be used with caution, because it does not
suppress errors caused by quantized weights. We approximate
the sigmoid operation σ(x) = (1/1 + e−x) with a piecewise
fifth-order fit evaluated using Horner’s method.

In addition to affine layers, we support elementwise addition
and multiplication operations. These are useful for feature
transforms not handled by the front end shown in Fig. 1, such
as cepstral mean and variance normalization.

IV. VITERBI BEAM SEARCH

The NN acoustic models provide a ripe opportunity for
hardware acceleration due to their regular structure. Accel-
erating search requires a more complex architecture, but we
believe it is equally important for energy efficiency. Our appli-
cation scenarios require up to 1M hypotheses to be expanded

PRICE et al.: LOW-POWER SPEECH RECOGNIZER AND VOICE ACTIVITY DETECTOR USING DNNs 69

Fig. 6. Improved search architecture including WL and merged state lists.

and evaluated per second, which would require GHz clock
frequencies on a general-purpose processor.

The Viterbi search algorithm creates hypotheses about the
speech production process and propagates them forward in
time, using observation likelihoods from the acoustic model.
Pruning is used to limit the number of hypotheses and
speed-up decoding. Through software studies [23], we devel-
oped several algorithmic techniques to improve the memory
efficiency of Viterbi search algorithm operating on WFST
transition models. Fig. 6 shows an architecture supporting
these techniques: WFST compression and caching, predictive
beamwidth control, a merged two-frame state list, and a word
lattice (WL). This section provides details on the design of the
state list and WFST fetch components. For information about
the pruning and WL algorithms, please see [22].

A. State List

The search architecture, including state list and WFST data
structures, has been designed to preserve memory locality.
This is not only a benefit to energy efficiency, but a major
convenience in a special-purpose digital design. It allows us
to avoid having a shared memory hierarchy that connects to
every module. Instead, each module has local memory for
just the information it needs. There are only two external
memory dependencies in the search subsystem: WFST fetch
and the WL.

Fig. 7 shows the data structures stored in the state list and
passed through each stage of the search pipeline.

1) State List: Every hypothesis refers to a particular WFST
state and its log likelihood, along with a (state, time) pair
for the most recent word label leading up to the current
state. We call this the WL state.

2) WFST Request: To expand a state in the WFST, we need
to know its address and length (in bytes). In response,
we receive a sequence of arcs. Each arc that we expand
has a destination state, input and output labels, and
weight. After this, we no longer need to know the source

state; the WL state is sufficient for recovering word
sequences.

3) Scoring: Before search is run, the acoustic model has
computed a likelihood for each senone (input label). For
each unscored arc, we retrieve the appropriate likelihood
and combine it with the source state score and arc weight
to get the overall likelihood of the destination state. After
this, we no longer need the input label.

4) Pruning: The scored arc has all the information neces-
sary to save a new hypothesis in the state list, provided
that its score exceeds the pruning cutoff (and that of any
existing hypothesis at the same state). If the scored arc
has a word label (i.e., non-ε output label), it will also
be sent to the WL.

Bit fields have been sized conservatively to allow WFST sizes
up to 4 GB, vocabularies up to 16M words, and acoustic
models with up to 64k senones. These limits could be reduced
to save area in a more restrictive implementation. The imple-
mentation uses hash tables similar to [4] that are dynamically
resized to keep load factor between 1/16 and 3/4.

The state list is designed to perform a sequential scan (read-
ing frame t states) while also performing reads, inserts, and
updates of frame t + 1 states. If it detects that the hash
table has expanded, the scan must be restarted in order to
ensure that all frame t states are read. It supports a “prune
in place” operation that deletes all states from frame t + 1
whose likelihoods fall below the specified cutoff; this is needed
to prevent overflow. After each forward pass is completed,
it performs an “advance” operation that moves information
from frame t + 1 fields to frame t fields, because t is being
incremented. States that were present in frame t but not t + 1
are deleted.

The state list is sized to trade between area and accu-
racy (high capacity is needed for larger recognition tasks).
Our implementation has a capacity of 8192 states (223 bits
per entry, or 1.8 Mb total). Merging the two frames and using
single-ported hash tables allowed us to double capacity relative
to [4] while using 11% less area.

B. WFST
The WFST encapsulates the time-varying aspects of the

HMM. There are no simple rules for computing the size
of the WFST; it is generally proportional to the number of
N-grams in the language model (LM), rather than the size of
the vocabulary.

To simplify interfaces, the WFST is treated as a read-only
key/value store. Fig. 8 shows our WFST fetch architecture.
Compression and caching techniques reduce the memory
bandwidth of the millions of read queries generated while
decoding each utterance.

As shown in [23], this search architecture delivers accuracy
comparable to Kaldi. Amortized search throughput is approx-
imately one hypothesis per 40 clock cycles.

V. VOICE ACTIVITY DETECTION

A. Accuracy Influences Power Consumption

Accuracy (rather than power) of the VAD is the main driver
of system power when the VAD is used for power gating.

70 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 53, NO. 1, JANUARY 2018

Fig. 7. Data fields for state list entries and in-flight hypotheses. The architecture is designed to preserve memory locality.

Fig. 8. WFST fetch architecture with caching and model compression.

A simple model for time-averaged system power is

Pavg = pVAD + [(1 − pM)D + pFA(1 − D)] pdownstream

where D is the duty cycle of speech, pM is the probability
of misses, and pFA is the probability of false alarms. The
coefficient (1 − pM)D + pFA(1 − D) reflects how often
the downstream system is enabled—a duty cycle that can
be far higher than D, if pFA is significant. Differences in
this contribution from the downstream system can far exceed
the differences in power consumption between different VAD
implementations.

A variety of research groups have presented hardware
VADs, some with impressively low power consumption [19],
[20], but there is a risk of reduced accuracy in low-SNR and
non-stationary noise conditions. Our test chip allows direct
comparison of three VAD algorithms that make tradeoffs
between accuracy, power, and area. The VAD buffers the
input samples (as the ASR is powered down until speech
is detected), and can perform downsampling if the sample
rates used by VAD and ASR differ. The latency of the VAD
algorithm and any post-filtering of VAD decisions typically
range from 100 to 500 ms. When ASR starts up, the recognizer
must process the buffered audio, but it can be run faster than
real time (by adjusting the clock frequency or beamwidth) as
necessary to “catch up” to the incoming samples. Other ASR
start-up overheads (including configuration from the external
memory) are comparatively small, on the order of 1 ms.

B. Three VAD Algorithms

The block diagram of our VAD is shown in Fig. 9. Each
algorithm works as follows.

1) Energy-Based: Thresholding a signal based on its short-
term energy is a workable VAD approach in low-noise con-
ditions. The energy-based (EB) algorithm we implemented
tracks changes in energy over time that distinguish speech
from many non-speech sounds [24]. These energy differences
are weighted by an estimate of SNR, reflecting the decrease
in confidence when SNR is low.1 We compute the SNR by
estimating noise energy as the minimum frame energy over
the last 100 frames, plus 3 dB. To obtain clean decisions,
the threshold is applied to a moving average of the scaled
energy differences Dt over the previous 21 frames

Et = 10 log10

N−1∑

n=0

x2[kt + n]

SNRpost = max

(
0, Et −

(
T

min
t ′=0

Et−t ′ + 3

))

Dt = √|Et − Et−1|SNRpost.

2) Harmonicity: A simple but robust VAD technique
is to threshold audio frames based on their harmonic-
ity (HM), or the amplitude ratio between the periodic and
non-periodic components of the signal. Not all speech is
periodic: unvoiced phonemes (some fricatives, affricates, and
stop consonants) consist of turbulence and silence. However,
every utterance (except perhaps whispering) contains a mixture
of unvoiced and voiced sounds.

Boersma [25] provided the mathematical underpinnings for
accurate estimates of HM. Dividing out the autocorrelation of
the fast Fourier transform (FFT) window gives us a normalized
autocorrelation that allows accurate pitch extraction. In our
experience, a threshold of 6–8 dB detects speech reliably

r
′
x x [t] = rx x[t]

rww[t]
H = 10 log10 max

T1<t<T2

r
′
x x [t]

r ′
x x [0] − r ′

x x [t]
.

3) Modulation Frequencies: The EB and HM algorithms
are rule-based; it is difficult to design rules that cover every
scenario, and these schemes fail to reject certain non-speech
sounds (such as railroad noise or background music). These
challenges motivate a supervised learning approach: trans-
forming the signal into an appropriate representation and

1Use of the square root to compress energy differences was suggested in
an unpublished successor to [24].

PRICE et al.: LOW-POWER SPEECH RECOGNIZER AND VOICE ACTIVITY DETECTOR USING DNNs 71

Fig. 9. Block diagram of VAD that can selectively enable EB, HM, and MF algorithms. Score computation pipelines for each module are shown.

Fig. 10. MF feature extraction: the short-term FFT bins signal energy by band, and the long-term FFT bins signal energy by MF.

classifying based on labeled training data. However, represen-
tations that work well for speech recognition are not ideal for
VAD. MFCCs capture the short-term spectral characteristics
of a sound, which can guide HMM search and, over time,
discriminate between words. Given the VAD’s lack of temporal
context, the brute force solution would be to concatenate
several MFCCs, an approach that has been used for low-power
keyword detection [26].

The modulation frequencies (MFs) representation is shown
in Fig. 10. The history of energy within each frequency band
is analyzed by a long-term FFT to obtain a power spectrum of
temporal modulation. This can be viewed as a matrix where
the rows represent different audio bands, and the columns
represent MFs. MF features are very effective at resolving
common temporal characteristics of speech, even at 0-dB SNR
(see Fig. 11). In [27] (on which this paper is based), MF
features were fed into a group of SVM classifiers whose
outputs were fused. Instead, we use an NN classifier, which
performs nearly as well with many fewer parameters. The
resulting networks are much smaller than those used for ASR:
two to four layers of 32–64 nodes, small enough to fit entirely
in our 24-kB on-chip memory.

Each MF feature is sent to the NN evaluator for classifi-
cation as speech/non-speech; the difference between the two

last layer outputs is used as a score. The model is trained
using Kaldi on disjoint speech and non-speech segments
(no overlap), which improves accuracy even though the audio
stream contains overlapped frames.

C. Comparisons
We constructed two sets of performance tests for comparing

the VADs’ detection performance. Fig. 12 (left) shows the
receiver operating characteristic (ROC) of each algorithm at
10-dB average SNR on the Aurora2 [28] task.2 In Fig. 12
(right), we use our simple system model to transform the ROC
into a plot of power consumption versus miss rate. At low miss
rates (which are desirable for good ASR performance), average
power is dominated by the downstream portion of the system.
This is true even if we make conservative (high) estimates for
the power used by the VADs, and an aggressive (low) estimate
of the power used by the downstream system.

A more challenging and realistic scenario was con-
structed using noise waveforms collected for a robotic forklift

2We count frame-level errors by comparing with a reference segmenta-
tion (CTM) from a speech recognizer. This method results in higher error rates
than other studies, but is necessary in order to estimate power consumption.
False alarm and miss rates up to about 5% can be explained by minor
differences in the start and end times of speech segments, even if they are
detected correctly.

72 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 53, NO. 1, JANUARY 2018

Fig. 11. Examples demonstrating the separability of MF features in noisy
conditions: mean MF matrix for speech and non-speech (top), and 4-Hz MF
spectra (bottom), at 0-dB SNR. Dashed vertical lines: speech segments.

Fig. 12. Left: ROC of each VAD on Aurora2 task at 10-dB average SNR.
Right: estimated system power derived from ROC at 5% speech duty cycle.
This plot uses early (conservative) estimates of VAD power for each algorithm,
as shown in the inset and dashed lines, and 1-mW downstream system power.

Fig. 13. EER versus average SNR on Aurora2 task (left) and
Forklift/Switchboard task (right).

project [29], and conversational speech waveforms from the
Switchboard data set [30]. Fig. 13 shows the EERs over a
range of average SNR from +30 to −5 dB on both tasks.
On the Aurora2 task, the HM and MF algorithms offer
similar performance, both handling 5–10-dB lower SNR than
the EB algorithm. On the Forklift/Switchboard task, the MF
performance improves significantly, with little change in EER
down to 5-dB SNR.

Fig. 14. Clock gating hierarchy: VAD clock domain (top) and ASR clock
domain (bottom). The impacts of explicit clock gating are shown at left.

Fig. 15. Die photograph of ASR/VAD chip.

VI. IC IMPLEMENTATION

In this section, we present a test chip with the ASR and
VAD functionality described earlier. The chip was designed
for the TSMC 65-nm low-power logic process, using third-
party IP libraries for standard cells, I/O, and memory
compilers.

A. Clock Gating: Explicit and Implicit

To save power in the clock tree, we inserted latch-based
clock gates at 76 locations in the design as shown in Fig. 14.
Modules that employ clock gating generate a synchronous
enable signal for each of their child clock domains. The clock
gating is used both at high levels (enabling the front end,
acoustic model, and search only when needed) and lower
levels (enabling a subset of NN EUs, or arithmetic blocks
in the VAD). These clock gates complement those that are
automatically inserted at the lower levels of the clock tree by
the synthesis tool.

B. Test Procedures

The test chip is shown in Fig. 15. Outer dimensions are
3.63 × 3.63 mm2, with a core size of 3.1 × 3.1 mm2. There
are 132 I/O and supply pads, intended for wire bonding in
an 88-pin QFN package with two pads per supply pin and all
grounds downbonded to an exposed pad.

PRICE et al.: LOW-POWER SPEECH RECOGNIZER AND VOICE ACTIVITY DETECTOR USING DNNs 73

Fig. 16. Block diagram (top) and photograph (bottom) of test PCB stack
integrating power supplies and functional test interfaces.

Our test setup is shown in Fig. 16. Through an SPI interface,
the host computer has control over clocks and power supplies,
and can measure the current draw of each supply in real time.
A MEMS microphone connects to the chip directly via the
I2S protocol. An FPGA is used to translate the chip’s generic
host and memory interfaces to USB and DDR3, respectively.

C. Measured Performance

The chip performs VAD from audio samples to time-labeled
decisions, and all stages of ASR transcription from audio
samples to text. ASR is functional with logic supply voltages
from 0.60 V (10.2 MHz) to 1.20 V (86.8 MHz), and VAD is
functional from 0.50 V (1.68 MHz) to 0.90 V (47.8 MHz).
For best performance, we operate the SRAM at 0.15–0.20 V
above the logic supply (up to a limit of 1.20 V). Explicit clock
gating resulted in a 30%–40% reduction in power when the
core was saturated, and reduced ASR clock tree overhead from
157 to 14 pJ per cycle when running faster than real time.

An example time series of current measurements is
shown in Fig. 17. The large pulses are NN evaluations
(every 32 frames); between those pulses, search proceeds at a
varying rate, since it evaluates different numbers of hypothe-
ses for each frame. The search workload is more memory-
intensive (blue trace) due to the large on-chip data structures,
whereas acoustic modeling is more logic-intensive (red trace).
Occasional WL snapshots cause peaks in I/O current as the
data structure is written to external memory.

The acoustic model requires 16–56 pJ per non-zero neuron
weight, depending on supply voltages. Search efficiency varies
from 2.5 to 6.3 nJ per hypothesis, compared with 16 nJ in [4].
We expect these results to improve with CMOS scaling, with
the caveat that search efficiency depends mostly on SRAM and
acoustic model efficiency depends mostly on standard cells.

Fig. 17. Current measurement of each power supply during ASR decoding
of an utterance from the food diary data set. Variations in search workload
are visible as different lengths of decoding time between acoustic model
evaluations (periodic spikes), which occur after every 32 frames (320 ms)
of input.

TABLE II

SUMMARY OF MEASURED ASR AND VAD PERFORMANCE. ASR POWER

SCALES BY 45× BETWEEN TASKS; VAD POWER IS RELATIVELY
SIMILAR DESPITE LARGE DIFFERENCES IN NOISE ROBUSTNESS

BETWEEN THE THREE ALGORITHMS

A summary of ASR and VAD performance is shown
in Table II. A variety of ASR tasks, with vocabularies ranging
from 11 words to 145k words, can be run in real time
on this chip. Different models and configuration parameters,
such as the search beam width, can be selected at runtime,
allowing host software to trade between accuracy and power
consumption. With the representative configurations that we
used, core power scales by 45× from the easiest to the hardest
task, and memory bandwidth scales by 136×. On the Wall
Street Journal eval92-5k task that was demonstrated by [4],
we achieved 4.1× fewer word errors (3.12% versus 13.0%),
3.3× lower core power (1.78 versus 6.0 mW), and 12.7×
lower memory bandwidth (4.84 versus 61.6 MB/s).

The power breakdown between search and acoustic mod-
eling varies by task; neither appears as a consistent bot-
tleneck. To illustrate this, we used our efficiency estimates
(in conjunction with workload statistics collected by the chip)
to roughly identify the proportions of core power used by
each subsystem. On the weather query task, with a rela-
tively low search workload (301k hypotheses/s) and moder-
ately sized acoustic model (six hidden layers of 512 nodes
each), we estimate that the acoustic model is using about
4.1× as much power as search. On the food diary task,
with a search workload of 844k hypotheses/s and a smaller

74 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 53, NO. 1, JANUARY 2018

acoustic model (six layers of 256 nodes), the situation is
reversed: the acoustic model uses about 0.35× as much power
as search. Hence, it is important to optimize both portions of
the decoder in hardware designs and, ideally, consider these
issues when training models.

The HM algorithm for VAD has slightly higher power
consumption (24.4 μW) than the MF algorithm (22.3 μW).
This is because the HM algorithm requires running two FFTs
per frame in order to compute autocorrelation. While the
MF algorithm is more complex, the long-term Fourier trans-
form (LTFT) and NN operations are not as energy-intensive as
the more frequent short-term Fourier transform (STFT). In our
opinion, the additional power required by the MF algorithm
is worthwhile in exchange for improved accuracy and noise
robustness over EB approaches.

VII. CONCLUSION

A. Summary

In a portable or embedded system, the entire speech decod-
ing chain from audio to text can be performed on a single chip
without a general-purpose processor. To achieve good energy
efficiency and scalability, our ASR approach draws techniques
from the disciplines of algorithms, architectures, and circuits:

1) Algorithm Techniques: These techniques include
acoustic model selection, quantization and sparse
weight storage, the WL, and predictive beam search.

2) Architectural Techniques: These techniques include
WFST caching, resizable hash tables, parallel NN eval-
uation, and a two-frame state list.

3) Circuit Techniques: These techniques include multi-
voltage design, explicit clock gating, and variation-
tolerant timing.

We explored the idea of using a VAD to power gate the
ASR, and designed interfaces allowing the subsystems to work
together on a single chip. We evaluated VAD performance in a
broader context—considering its impact on system power and
user experience—with more realistic (non-stationary) noise
environments than previous hardware VAD studies.

B. Future Work

We envision a single-chip solution to a variety of speech
processing problems from question–answering to translation,
with enough scalability to be reused in applications from wear-
ables to servers. Realizing this vision requires expanding and
refining the set of algorithms we implemented and integrating
additional components on-chip [22]. Future work should also
leverage technological changes, such as die stacking and
improved non-volatile memories, which could change the
balance of design priorities (e.g., memory bandwidth versus
logic complexity).

Meanwhile, advances in deep learning have raised the
possibility that the HMM framework for ASR can be replaced
by a single end-to-end model. Recognizers would not need
a specialized front end, and could markedly simplify the
Viterbi search architecture. Most resources would be devoted
to NN evaluation, which could present an even larger memory
bottleneck than we observed with HMM recognizers. This line
of research should be watched carefully.

ACKNOWLEDGMENT

The authors would like to thank the TSMC University
Shuttle Program for providing chip fabrication; Xilinx for
providing FPGA boards; and Mentor Graphics, Synopsys, and
Cadence for providing CAD tools.

REFERENCES

[1] E. C. Lin, K. Yu, R. A. Rutenbar, and T. Chen, “In silico vox:
Towards speech recognition in silicon,” in Proc. HOTCHIPS, Aug. 2006,
pp. 1–27.

[2] L. M. Grupp et al., “Characterizing flash memory: Anomalies, obser-
vations, and applications,” in Proc. 42nd Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Dec. 2009, pp. 24–33.

[3] F. Jelinek, Statistical Methods for Speech Recognition. Cambridge, MA,
USA: MIT Press, 1997.

[4] M. Price, J. Glass, and A. P. Chandrakasan, “A 6 mW, 5,000-word
real-time speech recognizer using WFST models,” IEEE J. Solid-State
Circuits, vol. 50, no. 1, pp. 102–112, Jan. 2015.

[5] S. B. Davis and P. Mermelstein, “Comparison of parametric repre-
sentations for monosyllabic word recognition in continuously spo-
ken sentences,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-28, no. 4, pp. 357–366, Aug. 1980.

[6] M. Mohri, F. Pereira, and M. Riley, “Speech recognition with weighted
finite-state transducers,” in Springer Handbook of Speech Processing
(Speech Communication). Berlin, Germany: Springer-Verlag, 2008.

[7] R. Leonard, “A database for speaker-independent digit recognition,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), vol. 9.
Mar. 1984, pp. 328–331.

[8] V. Zue et al., “JUPlTER: A telephone-based conversational interface for
weather information,” IEEE Trans. Speech Audio Process., vol. 8, no. 1,
pp. 85–96, Jan. 2000.

[9] M. Korpusik, C. Huang, M. Price, and J. Glass, “Distributional semantics
for understanding spoken meal descriptions,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Mar. 2016, pp. 6070–6074.

[10] D. B. Paul and J. M. Baker, “The design for the Wall Street Journal-
based CSR corpus,” in Proc. Workshop Speech Natural Lang. (HLT),
Stroudsburg, PA, USA, 1992, pp. 357–362. [Online]. Available: http://
dx.doi.org/10.3115/1075527.1075614

[11] X. Huang, A. Acero, H.-W. Hon, and R. Reddy, Spoken Language
Processing: A Guide to Theory, Algorithm, and System Development.
Englewood Cliffs, NJ, USA: Prentice-Hall, 2001.

[12] J. Johnston and R. Rutenbar, “A high-rate, low-power, ASIC speech
decoder using finite state transducers,” in Proc. IEEE 23rd Int. Conf.
Appl.-Specific Syst., Archit. Process. (ASAP), Jul. 2012, pp. 77–85.

[13] G. He, Y. Miyamoto, K. Matsuda, S. Izumi, H. Kawaguchi, and
M. Yoshimoto, “A 40-NM 54-MW 3×-real-time VLSI processor for
60-kWord continuous speech recognition,” in Proc. IEEE Workshop
Signal Process. Syst. (SiPS), Oct. 2013, pp. 147–152.

[14] G. Hinton et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.

[15] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional, long
short-term memory, fully connected deep neural networks,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2015,
pp. 4580–4584.

[16] Y. H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural
networks,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Jan. 2016, pp. 262–263.

[17] O. A. Bapat, P. D. Franzon, and R. M. Fastow, “A generic and scalable
architecture for a large acoustic model and large vocabulary speech
recognition accelerator using logic on memory,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 22, no. 12, pp. 2701–2712, Dec. 2014.

[18] Y. Lee, D. Sheffield, A. Waterman, M. Anderson, K. Keutzer, and
K. Asanovic, “Measuring the gap between programmable and fixed-
function accelerators: A case study on speech recognition,” in Proc.
IEEE Hot Chips 25 Symp., Aug. 2013, pp. 1–2.

[19] A. Raychowdhury, C. Tokunaga, W. Beltman, M. Deisher, J. W. Tschanz,
and V. De, “A 2.3 nJ/frame voice activity detector-based audio front-end
for context-aware system-on-chip applications in 32-nm CMOS,” IEEE
J. Solid-State Circuits, vol. 48, no. 8, pp. 1963–1969, Aug. 2013.

PRICE et al.: LOW-POWER SPEECH RECOGNIZER AND VOICE ACTIVITY DETECTOR USING DNNs 75

[20] K. M. H. Badami, S. Lauwereins, W. Meert, and M. Verhelst,
“A 90 nm CMOS, 6μW power-proportional acoustic sensing frontend
for voice activity detection,” IEEE J. Solid-State Circuits, vol. 51, no. 1,
pp. 291–302, Jan. 2016.

[21] M. Price, J. Glass, and A. P. Chandrakasan, “A scalable speech recog-
nizer with deep-neural-network acoustic models and voice-activated
power gating,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2017, pp. 244–245.

[22] M. Price, “Energy-scalable speech recognition circuits,”
Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts
Inst. Technol., Cambridge, MA, USA, 2016.

[23] M. Price, A. Chandrakasan, and J. R. Glass, “Memory-efficient
modeling and search techniques for hardware ASR decoders,” in
Proc. INTERSPEECH, 2016, pp. 1893–1897.

[24] Z.-H. Tan and B. Lindberg, “Low-complexity variable frame rate analy-
sis for speech recognition and voice activity detection,” IEEE J. Sel.
Topics Signal Process., vol. 4, no. 5, pp. 798–807, Oct. 2010.

[25] P. Boersma, “Accurate short-term analysis of the fundamental frequency
and the harmonics-to-noise ratio of a sampled sound,” Proc. Inst.
Phonetic Sci., vol. 17, no. 1193, pp. 97–110, 1993.

[26] M. Shah, J. Wang, D. Blaauw, D. Sylvester, H.-S. Kim, and
C. Chakrabarti, “A fixed-point neural network for keyword detection on
resource constrained hardware,” in Proc. IEEE Workshop Signal Process.
Syst. (SiPS), Oct. 2015, pp. 1–6.

[27] E. Chuangsuwanich and J. Glass, “Robust voice activity detector for
real world applications using harmonicity and modulation frequency,”
in Proc. INTERSPEECH, 2011, pp. 2645–2648.

[28] H.-G. Hirsch and D. Pearce, “The Aurora experimental framework for
the performance evaluation of speech recognition systems under noisy
conditions,” in Proc. ASR-Autom. Speech Recognit., Challenges New
Millenium ISCA Tutorial Res. Workshop (ITRW), 2000, pp. 181–188.

[29] S. Teller et al., “A voice-commandable robotic forklift working alongside
humans in minimally-prepared outdoor environments,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2010, pp. 526–533.

[30] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “SWITCHBOARD:
Telephone speech corpus for research and development,” in Proc.
IEEE Int. Acoust., Speech, Signal Process. (ICASSP), vol. 1. Mar. 1992,
pp. 517–520.

Michael Price (M’15) received the M.Eng. degree
from the Massachusetts Institute of Technol-
ogy (MIT), Cambridge, MA, USA, in 2009,
with a focus on high-speed serial links, and the
Ph.D. degree from MIT in 2016, focusing on the
work described in this paper.

From 2009 to 2011, he was an Electrical Engi-
neer with Aurora Flight Sciences, Cambridge, MA,
where he was involved in developing electronics and
control systems for unmanned aerial vehicles and
satellites. He is currently a Digital Design Engineer

with Analog Devices, Cambridge, MA.
Dr. Price received the David Adler Thesis Award in 2009 and an MIT

Presidential Fellowship in 2011.

James Glass (F’14) received the B.Eng. degree from
Carleton University, Ottawa, ON, USA, in 1982, and
the S.M. and Ph.D. degrees in electrical engineering
and computer science from the Massachusetts Insti-
tute of Technology (MIT), Cambridge, MA, USA,
in 1985 and 1988, respectively.

He is currently a Senior Research Scientist with
MIT, where he heads the Computer Science and
Artificial Intelligence Laboratory, Spoken Language
Systems Group. His current research interests
include the area of automatic speech recognition,

unsupervised speech processing, and spoken language understanding. He has
supervised over 60 student theses and published approximately 200 papers in
these areas.

Dr. Glass is a member of the Editorial Board of Computer, Speech, and
Language. He is an Associate Editor of the IEEE TRANSACTIONS ON AUDIO,
SPEECH AND LANGUAGE PROCESSING.

Anantha P. Chandrakasan (F’04) received the
B.S., M.S., and Ph.D. degrees from the University of
California at Berkeley, Berkeley, CA, USA, in 1989,
1990, and 1994, respectively, all in electrical engi-
neering and computer sciences.

He was the Director of Microsystems Technology
Laboratories, Massachusetts Institute of Technol-
ogy (MIT), Cambridge, MA, USA, from 2006 to
2011, and the Head of the Electrical Engineering and
Computer Science Department, MIT, from 2011 to
2017. Since 1994, he has been with MIT, where

he is currently the Dean of Engineering. His current research interests
include micropower digital and mixed-signal integrated circuit design, wireless
microsensor system design, portable multimedia devices, energy efficient
radios, and emerging technologies.

Dr. Chandrakasan received the 2009 Semiconductor Industry Association
University Researcher Award and the 2013 IEEE Donald O. Pederson Award
in Solid-State Circuits. He has been the ISSCC Conference Chair since 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

