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Abstract

In this thesis, I demonstrate an approach for text-independent speaker identification,
targeting evaluation on low-cost, low-resource FPGAs. In the first half of this work,
we contribute a set of of speaker ID models that build on prior existing small-model
state-of-art, and reduce bytesize by >85%, with a ±3% accuracy change tolerance.
We employ model quantization and pruning to achieve this size reduction. To the
best of our knowledge, this is the first speaker identification model sized to fit in the
on-chip memory of commodity FPGAs, allowing us to reduce power consumption.
Our experiments allow us to illustrate the accuracy/memory-footprint trade-off for
baseline and compressed speaker identification models. Second, I build an RTL de-
sign for efficient evaluation of a subset of our speaker ID models. In particular, I
design, implement, and benchmark architectures for low-precision fixed point neural
network evaluation and ternary network evaluation. Compared to a baseline full-
precision network accelerator with the same timing constraints based on designs from
prior work, our low-precision, sparsity-cognizant design decreases LUT/FF resource
utilization by 27% and power consumption by 12% in simulation [Chen et al., 2017].
This work has applications to the growing number of speech systems run on consumer
devices and data centers. A demonstration video and testing logs illustrating results
are available at https://skoppula.github.io/thesis.html.
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Chapter 1

Introduction

Consumer devices using speech interfaces are growing in number and complexity.

Small devices such as wearables, personal assistants, robots, and phones boast ex-

tensive voice-controlled interfaces that transact identity-specific data and are linked

to personal profiles. Increased reliance on such speech-driven devices presents a few

challenges:

∙ Concerns about the authenticity of overheard speech commands. Relying on

a hands-free interface like speech eliminates the possibility of secure, typed

passwords, and anyone within speaking distance of the device has the ability to

deliver potentially malicious commands, as has been demonstrated before BBC

[2017].

∙ Concerns about the increased computational burden of the signal processing and

machine learning required for accurate speech processing. The increased load

manifests itself as higher energy costs, beefier processors, and larger memories.

This thesis investigates a solution to both these challenges, presenting an approach

for energy-scalable speaker identification (SID). Speaker recognition is the task of

identifying the speaker identity given an audio sample of the speaker’s voice. This

work focuses on optimizations to the speaker ID model structure and representation

in memory, and then corresponding design of hardware to efficiently evaluate the pro-

posed model. All work in the experiments and designs that follow are currently avail-
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able at https://github.com/skoppula/speaker-id-thesis and https://github.

com/skoppula/speaker-auth-demo for reference. A corresponding demonstration of

the final system is available for viewing at https://youtu.be/n1wdkIRCnrU.

1.1 Outline of Work

In this first chapter, we introduce speaker identification and its relevance (Section 1.2),

speaker ID modeling overview (Section 1.3.2), and feature pre-processing (Section

1.3.1). In the second chapter, we introduce our experiments building on prior work

to reduce model size by one to two orders of magnitude. We detail benchmarks on

candidate baseline architectures in Section 2.1 and procedures to excise normalization

operations from the models in Section 2.2.

In the second half of chapter two, we explore further compression of SID models

using new methods of quantization and methods used previously in computer vision:

linear and logarithmic quantization (Section 2.3.1), DoReFa-quantization (Section

2.3.2), ternary weight quantization (Section 2.4), and another new contribution to

SID, pruning and student-teacher based quantization (Section 2.5). With our opti-

mized SID model, we then propose FPGA designs for evaluation of our speaker ID

models (baseline in Section 3.2 and new design in Section 3.3). We discuss our final

completed system setup in Section 3.5. Finally, we conclude and outline directions

for future work in Sections 4.1 and 4.2.

1.2 Speaker Identification and its Applications

In this work, we focus on closed-set text-independent speaker identification, a variant

of the speaker authentication task, in which the objective is to identify the correct

speaker among a set of 𝑛-possible pre-enrolled speaker identities (as opposed to the

more specific binary objective of recognizing a single specific authenticated identity).

In this setup, each of the 𝑛 speakers has a set of enrollment (training) utterances

and test utterances. Closed-set speaker ID is also a good proxy for the measure

20



of our model’s ability to capture channel variability. Text-dependent SID refers to

models trained to recognize persons speaking a specific keyword (e.g. ‘OK Alexa’).

In contrast, text-independent models are able to distinguish a speaker for any spoken

input (or a range of 𝑛 commands).

Speaker identification systems have real-world applications:

∙ Securing consumer voice assistants on mobile phones and Internet-of-Things

devices with speech interfaces. Voice assistants receive speech commands for

execution (e.g. “Send a text message ‘Launch the Missiles’ to Bob”), and without

speaker ID, attackers can easily execute arbitrary commands. This vulnerability

has been exploited repeatedly [Price, 2016, Feldman, 2016]. In a particularly

egregious example reported by popular press, a crafted TV commercial was able

to activate voice-controlled personal assistants and deliver a voice command to

execute an online purchase [BBC, 2017].

∙ Automatic speaker labeling of media: for purposes of categorization and video

labeling, SID is often applied on high-content media sites such as YouTube and

SoundCloud to identify the particular speaker or artist present in the audio-

video clip. Another popular application is automatic speaker labeling while

transcribing video conferences.

∙ Remote biometric authentication: SID has been used for 2nd-factor verification

of identity over phone (e.g. to modify to a caller’s credit card account). Speaker

identity is unique in that the biometric can be verified over the phone, without

co-location.

1.3 Speaker Identification: Overview

In our complete SID system, there are two consecutive phases: feature extraction

(Section 1.3.1) and model evaluation (Section 1.3.2). An overalls system block dia-

gram detailing processing steps and data flow of the system is shown in Figure 1-1
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Figure 1-1: Procedure and Data Flow in the Speaker Identification System.

1.3.1 Feature Extraction: MFCC-generation and VAD

As is common in most speech systems, we apply a sequence of signal processing

front-end steps to extract what is approximately the envelope of the short-time power

spectrum of the input speech sample. We calculate a characterization of this envelope,

called Mel-Frequency Cepstral Coefficients (MFCCs), using the following standard

steps Prahallad [2011]:

1. We cut the signal into overlapping millisecond-length frames,

2. For each frame, we estimate the power spectrum and apply a Mel filterbank,1

3. We integrate to find the energy in each of the filters in the Mel filterbank,

4. We calculate the logarithm of each filterbank energy,

5. We calculate the Discrete Cosine Transform (DCT) of the log energies, and use

DCT coefficients as a representation of the frame’s power spectrum.

We find that performing this audio pre-processing adds sub-second latency to

the system, while significantly reducing the learning burden on the neural network.

Preliminary experiments in training networks to operate on raw 8 KHz audio samples

1The Mel filterbank translates the actual measured frequency to a human perceived frequency in
units of ‘mel’, given by the formula 𝑚 = 2595 log10(1 +

𝑓
700 ).
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from the RSR2015 corpus did not yield networks that converged. This audio pre-

processing reduces our network size and complexity. In contrast, neural networks

designed to operate on raw audio samples are recurrent, very deep, and on the order

of hundreds of megabytes for various speech tasks [Chan et al., 2016].

In this work, we use 25 ms frames with a 10 ms inter-frame step size. We use the

first 20 DCT coefficients, so each MFCC frame is 20-dimensional. The power spectrum

is calculated using a 512-point Discrete Fourier Transform (DFT), retaining the first

257 coefficients that we multiply with our 26 Mel filters. These values were used

to match prior work for fair comparison [Povey, 2017]. The Kaldi signal processing

toolkit was used for extraction of these features. In prior work, the first and second

order directions of change for the MFCCs are appended to the feature vector, but

remove this step in our final software and FPGA implementations. Our experiments

we found a less than 1% improvement in speaker identification accuracy, at the cost

of doubling or tripling the input size (and hence first layer network footprint). We

discuss implementation of MFCC extraction on our target the Zync-7000 FPGA SoC

in the final chapter of this thesis.

Speaker identification models work on the assumption that input is a human voice

recording: the speaker identity classification given an input of a dog bark or rustling

paper is understandably not interpretable. For this reason, prior to being fed into the

speaker identification pipeline, all audio frames are filtered through a Voice Activity

Detector (VAD). In this work, we use a simple mean-normalized power-based VAD

to filter frames for training of our SID model and during testing time in our final

working system [Ekapol Chuangsuwanich and James Glass, 2011].

In particular, we feed calculate the mean value 𝑚 across all 20-dimensional MFCC

frames in an utterance. We then set a fixed signal energy threshold (𝑡 = 5.5) and

mean-scaling factor (𝑠 = 0.5), and filter audio frames that have mean value less than

𝑠𝑚+ 𝑡. This simple non-adaptive VAD filter is both used in practice and inexpensive

to compute.

More recent work explores use of a Deep Neural Network-based VAD filter as the

front-end of their ASR hardware [Prahallad, 2011, Tashev and Mirsamadi, 2016]. In
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the last chapter of this thesis, we explore training and deployment of a DNN-based

VAD front-end by re-using the fixed-point network accelerator that we implement on

the Zybo SoC. Due to time constraints, we did not re-train our SID models on DNN-

based VAD-filtered utterances, which could offer system level accuracy improvements.

1.3.2 Model Representation and Training

In this work, we target a model representation that will fit within the fabric of our

commodity FPGA, a Xilinx Zybo Zync-7000 FPGA. This imposes a constraint on

our model size roughly 0.75 MB, a strong driving factor in our choice of model. This

constraint has the added advantage of avoiding costly off-chip DRAM access by fitting

within Zybo’s BRAM.

Traditionally, state-of-art SID systems use a low-dimensional representation of

Gaussian Mixture Models (GMMs) called i-vectors. In this setup, a speaker model is

formed by shifting a Universal Background Model (‘UBM’, a GMM modeling thou-

sands of speakers) to fit the speaker’s data. A common choice is a 2048-mixture GMM

of 60 dimensions, yielding a 2048 × 60 = 122880 dimensional representation of the

speaker (vector of Gaussian means) [Povey et al., 2008, Reynolds, 2015]. This shift-

ing is done using a few iterations of the Expectation-Maximization algorithm. The

supervector is transformed into a low-dimensional intermediate representation called

the i-vector which captures the differences between the UBM and a speaker-specific

model2. Finally, a cosine distance threshold is commonly used to compare and test

a stored i-vector with a test utterance’s i-vector3. Most prior attempts at embedded

speaker identification have used some variant of this GMM-based backend (see prior

work, Section 1.5).

In our memory constrained setting, however, we find that a i-vector/GMM-based

approach is not particularly suitable. Because of the large supervector dimensionality

2We leave a complete description of i-vector training, using sufficient statistics, to Shum [2011]
for the interested reader.

3An alternative approach to train i-vectors is to use sufficient statistics of neural network poste-
riors instead of GMM statistics. This has been shown to result in modest accuracy gains. We leave
the details to Lei et al. [2014].
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(92160) and i-vector dimensionality (200), the i-vector extraction transformation ma-

trix alone requires on the upwards of 70 MB of storage; our target FPGA development

board (Section 3.1) has roughly 0.6MB of on-chip memory. The exploding memory

requirements was confirmed on models we trained using the default recipes in Kaldi,

available in the linked Github code repository ie. Even reducing the precision from

32-bit float to 8-bit (at an 8% cost in recognition accuracy), the model size drops to

18 MB, too large to fit in our FPGA accelerator’s BRAM blocks.

Instead, we turn to recent work in the last two years that has investigated use of

deep neural networks (DNNs) for speaker identification. Our motivation for pursuing

this approach is two-fold: (1) significant recent work in computer vision has demon-

strated the ability of these networks to compress with insignificant loss of accuracy

Iandola et al. [2016], Han et al. [2015] and (2) unlike Expectation-Maximization and i-

vector based-inference, the core operations in neural network inference are extremely

simple (multiply-and-accumulates and rectification), simplifying FPGA design. In

this work, we explore using variants of DNNs such as Fully-Connected Networks,

Convolutional Networks, and Locally-Connected Networks to improve the accuracy-

size tradeoff. We eschew use of recurrent networks for two reasons: (1) as the time-

dependence within the network increases, overall system latency increases and (2)

sophisticated RNNs like GRUs and LSTMs generally have 2-4x the number of pa-

rameters with negligible benefit to accuracy [Richardson et al., 2015].

1.4 Datasets and Toolchains

We use the RSR2015 corpus for our experiments [Larcher et al., 2014]. This corpus

employs 300 speakers (157 male, 143 female) with 657 utterances per speaker divided

across in 9 recording sessions. The average length of each recording is approximately

2 seconds. There are 73 unique phrase texts used for each speaker’s 657 utterances.

Four different types of recording settings (and channel noise levels) are used during

creation of the corpus. Though the RSR corpus is primarily used for text-dependent

experiments, the corpus has over 255 unique spoken text prompts. Thus, we use the
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RSR corpus because it resembles our target scenario the strongest: a small home

speech device recognizing a finite set of commands for control.

We occasionally use the SRE10 corpora set for additional validation of our model

and quantization methods [Greenberg et al., 2010]. This set has 7062 utterances di-

vided across 446 speakers. The average length of an SRE10 utterance is 117 seconds.

For both corpora, we use a randomly selected 70%/15%/15% training/validation/testing

dataset split across the entire set of corpora utterances. We ensured that each dataset

split contains utterances from all of the dataset’s speakers. Our training, validation,

and testing splits of both corpora can be found in the data_splits folder in our

Github code repository.

We use the speech toolkit Kaldi Audio and the deep learning framework Tensor-

flow/Tensorpack for SID model training and accuracy evaluation [Povey et al., 2011,

Abadi et al., 2015, Wu et al., 2016]. We used Xilinx Vivado and Bluespec Verilog for

RTL development and synthesis.

1.5 Prior Work

A number of works have studied the application of end-to-end neural networks for

SID. For text-dependent SID, Variani et al. [2014], Snyder et al. [2016], and Zhang

et al. [2017] have demonstrated network architectures that achieve comparable accu-

racy to i-vector systems for noise-free, short-utterances. These networks, however,

at minimum exceed 20MB in size, and are not suitable for direct adaptation to our

target setting. Some of these models have been deployed to consumer electronics, in

the Google Home personal assistant and Windows phones. As per documentation,

these devices do not do inference locally; rather, they rely on cloud services for model

storage and forward inference.

Efficient hardware evaluation of neural networks has been the focus of various

research efforts in the past two years. One avenue of research in the field has focused

on building application-specific integrated circuits to efficiently evaluate large pre-

trained neural networks [Chen et al., 2017, Han et al., 2016, Price et al., 2017, 2015,
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2016b,a, Liu et al., 2015]. Another avenue of research has focused on algorithmic-

based model optimization: reducing model complexity by introducing sparsity and

Huffman-encoding parameters [Han et al., 2015], student-teacher models to distill

knowledge to smaller models [Lu et al., 2017], bit-width reduction [Zhu et al., 2016,

Rastegari et al., 2016, Zhou et al., 2016], and kernel-shaping techniques [Howard

et al., 2017, Lebedev et al., 2014]. These works have primarily been used for only

computer vision tasks, with the exception of [Park and Sung, 2016], which is a limited

demonstration of FPGA-based phoneme recognition.

Additionally, a handful of non-DNN based works have studied SID in low-resource

FPGA and embedded settings. Sarkar and Saha [2010] implements a very basic SID

system in FPGA. The core recognition algorithm uses the cosine distance between

downsampled MFCC feature vectors. Accuracy of the system was not benchmarked.

Ramos-Lara et al. [2009] replaces the cosine distance classifier with an Support Vector

Machine, again reporting no accuracy benchmarks. Both works implement their own

DSP front-end. Ehkan et al. [2011], Kan et al. [2010] implement a lossy GMM/UBM

SID system on FPGA.

1.6 Key Contributions of this Work

In particular, the key contributions of this work are as follows:

∙ We demonstrate three methods of compression via model quantization (training-

free linear bucketing, trained ternary quantization, and 0-1 fixed point clipping).

We elucidate the accuracy vs. model size trade-off of each method using speaker

identification models from prior work. Within a ±3% accuracy tolerance, we

reduce the SID baseline model size by 85%.

∙ We demonstrate DNN-based speaker identification on an low-cost, low-resource

FPGA. In particular, we implement and benchmark architectures for (1) low-

precision fixed point neural network evaluation, (2) ternary network evaluation,

and (3) exploiting sparsity in our models. Compared to our baseline network
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full-precision accelerator, with the same timing constraints, our low-precision,

sparsity-cognizant design decreases LUT/FF usage by 27% and estimated power

usage by 12% in simulation. This improvement is compared to a baseline design

inspired by Chen et al. [2017]; as part of future work, we intend to compare

against additional designs from other groups.
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Chapter 2

Creating Robust and Low-Overhead

Speaker ID Models

2.1 Baselines

At the core of an effective speaker ID system is the underlying neural network clas-

sifier. For our baseline models, we build on prior work that tackles DNN-based end-

to-end speaker ID. In the upcoming sections, we demonstrate application of various

compression and distillation techniques. In particular, we choose our model topology

and sizing to improve upon the work of four papers:

1. Snyder et al. [2016] and Bhattacharya et al. [2016] use standard fully-connected

networks for text-dependent and text-independent speaker verification. Their

chosen topologies use four 256-size FC layers (small) and four 504-size FC layers

(large), respectively.

2. Variani et al. [2014] proposes use of a maxout network for text-dependent

speaker identification. The ‘maxout’ architecture replaces the nonlinearity (typ-

ically a ReLU) with a maximum over outputs from replicated, parallel fully-

connected layers. Following the specifications in Variani et al. [2014], we use

networks with four maxout layers of width 1000 and replication factor 4 (for

the large network) and replication factor 2 (for the small network).
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Figure 2-1: Depth-Separable Convolution (DSC) network adapted from Howard et al.
[2017]. We test usage of this kernel in our SID task. In a DSC topology, the 3D
convolution kernel is decomposed into a flat 2D kernel, and a subsequent 1D kernel
to reduce parameter and multiplication count.

3. Chen et al. [2015] proposes an improvement on Variani et al. [2014], using of

locally-connected (LCN) and convolutional network (CNN) topologies for

text-dependent speaker identification. The differences in these topologies are

described in Figure 2-2. Matching Chen et al. [2015], the LCN network uses

a locally-connected first layer with 10 × 10 kernels, followed by three 256-size

fully-connected layers. Similarly, the CNN network uses a 5 × 5 convolutional

kernel, followed by three 256-size fully-connected layers.

4. Torfi et al. [2017] and Howard et al. [2017] use variants of convolutional networks

for speaker ID and vision applications. In particular, these papers use depth-

seperable convolution (Figure 2-1) kernels, followed by three 256-size fully-

connected layers.

All models use full-precision 32-bit floating point weights and activations.

In our full-precision baseline models, we insert batch normalization in between

layers to improve training and decaying L2 regularization on all the network param-

eters. We excise these layers in subsequent full-precision and quantized models, in

order to reduce parameter count and simplify computation.

In order to track multiplications, custom layers were implemented in Python to

exactly track the computations added to the Tensorflow network graph in every layer.

Multiplications, additions, and parameter counts were tracked in our custom batch

normalization, fully/locally connected, and (depth-separable) convolutional layers.

Our following two formulas capture the key metrics of interest, aggregating them
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Figure 2-2: Differences in network topologies used in three of our baseline SID models.
In the fully-connected network (FCN), each layer’s kernel (pattern) covers the entire
area of input. In a locally-connected (LC) topology, each kernel is applied to a local
patch of the input. In a convolutional network (CNN), each kernel slides across the
entire area of input [Chen et al., 2015].

into a simple-to-interpret score:

score = log10(𝑚× 𝑒× 𝑏) (2.1)

where 𝑚 is the number of multiplications required for one evaluation of the network,

𝑒 is the validation error of the model, and 𝑏 is the bytesize of the model. A lower

score is indication of a better model.

Experimental Procedure: As previously mentioned, we use the RSR2015 70%

training set to train the model, the 15% development set to tune last layer dropout

(ranging between 0 to 15% dropout, in 5% increments), and our 15% testing set for

our final assessment of error. We train using simple cross-entropy loss, comparing

the network output with a one-hot vector representing which of 255 speakers the

utterance belongs to (the closed-set speaker ID task). The final error that we report

in the tables that follow is the utterance-level closet-set speaker ID error on the testing

dataset. To calculate this, we take the majority vote among the speaker classifications
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Model Error (%) Mults Params Bytesize Score
Fully Connected, Small 9.39 519K 521K 2.08MB 11.0079
Fully Connected, Large 2.97 1433K 1435K 5.74MB 11.3882
Convolutional 12.574 265K 260K 1.04MB 10.5411
Locally-Connected 11.32 287K 288K 1.15MB 10.5748
Maxout, Large 26.32 2133K 2136K 8.54MB 12.6812
Maxout, Small 36.65 1821K 1826K 7.3MB 12.6881
Depth-Separable Conv., Small 29.56 360K 332K 1.32MB 11.151
Depth-Separable Conv., Large 11.14 1233K 1221K 4.88MB 11.827

Table 2.1: Speaker Identification Error of Baseline Models on RSR2015, using batch
norm and L2 regularization. The cells highlighted in blue correspond to the best
baselines (lowest metric score).

on the sliding window input frames. We repeat this procedure for all models that we

train, in the following experiments.

We implement all networks and training code in Tensorflow, using the Kaldi

toolkit for signal pre-processing. We use the Adam stochastic optimization algorithm

[Kingma and Ba, 2014] and train for a fixed 30 epochs (ensuring manually that the

loss function reaches a reasonable plateau). We use a decaying learning rate schedule

across the epochs starting at 0.1 and reaching below 0.001 by the end of training.

To train this set of models, we use batch normalization and regularization. The

lower scores in Tables A.2 and A.1 (Appendix A) show that both these modifications

are required for optimal performance.

Table 2.1 describes the performance of the baseline models on the RSR2015 cor-

pus. Surprisingly, the simplest set of models – the fully-connected, convolutions, and

locally-connected architectures – report the lowest score, boosted by their compar-

atively low error. Table A.3 in the Appendix details the performance on the SRE

dataset, which confirms the same performance/efficiency trends. Accordingly, in the

subsequent sections, we focus on optimizing these three architectures.
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Model Error (%) Mults Params Size Score Baseline
Fully Connected, Small 9.39 517K 519K 2.07MB 11.0045 11.0079
Fully Connected, Large 2.97 1428K 1431K 5.72MB 11.3858 11.3882
Convolutional 12.60 263K 258K 1.03MB 10.537 10.5411
Locally-Connected 11.41 285K 286K 1.14MB 10.572 10.5748

Table 2.2: Speaker Identification Error of Baseline Models on RSR2015, after nor-
malization excision. Marginal increases in error are offset by model size reductions.
All four models have lower metric scores: an average, very small 0.002 improvement
from baseline.

2.2 Normalization Excision

The first optimization applied on these three models cuts out the normalization during

inference. Batch normalization, while useful for training, adds a number of parameters

to every single layer (proportional to the width of the layer). Instead, we can achieve

the same effect by folding normalization parameters into the next kernel parameters.

In particular, input activations 𝑥 go through a normalization and fully-connected

layer:

𝑥𝑛𝑜𝑟𝑚 = 𝛾
𝑥− 𝜇√

𝜎
+ 𝛽

𝑦 = 𝑓(𝑊𝑥norm + 𝑏)

(2.2)

where 𝛽, 𝛾, 𝜎, 𝜇 are learned batch normalization constants and 𝑊 , 𝑏 are the regular

layer parameters.

This is equivalent to performing the operation with a new, pre-computed 𝑊 ′ and

𝑏′:

𝑊 ′ = 𝛾
𝑊√
𝜎

𝑏′ = 𝑏 + 𝑊
(︀
𝛽 − 𝛾𝜇√

𝜎

)︀
𝑦 = 𝑓(𝑊 ′𝑥 + 𝑏′)

(2.3)

Table 2.2 summarizes the model performance post-normalization folding. We see

marginal increases in error offset by reductions in the number of multiplications and

paremeters. This results in a decrease in score for three of the four models.

Surprisingly, we encountered significant reductions in accuracy if we attempted to
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re-train the networks after folding the batch normalization parameters. We hypoth-

esize that this is because normalization folding induces a ‘fragility’ in the network

parameters: an isolated local minimum, around which small perturbations in the

weights cause large increases in loss.

2.3 Reducing Precision

To take these speaker ID models to hardware, we need fixed precision. In the following

two sections, we discuss our work quantizing parameters to reduce the model size and

simplify the underlying hardware required for evaluation.

2.3.1 Training-Free Linear Quantization

One of the most common approaches for quantization of floating point numbers to a

fixed-precision is uniform linear quantization [Hubara et al., 2016, Jacob et al., 2017,

Xichen, 2017, Lin et al., 2016]. This form of quantization has the advantage that it

is straightforward to implement, and generally does not necessitate post-quantization

training. In linear quantization, the maximum and minimum values 𝑊𝑚𝑎𝑥,𝑊𝑚𝑖𝑛

are recorded for each kernel 𝑊 . To compensate for erroneous overflow/underflow

outliers, usually 𝑊𝑚𝑎𝑥, 𝑊𝑚𝑖𝑛 are selected to be the 99.5th percentile largest and

smallest value. The number of bits required to distinguish numbers in this range is

given by 𝑏 = ⌈log2 |𝑊𝑚𝑎𝑥 −𝑊𝑚𝑖𝑛|⌉.

If we have 𝑘-bit quantization, the quantized values are integers in the range

[−2𝑘−1, 2𝑘−1]. This means that to scale numbers in the original range to the new

range, we must divide parameters by scaling factor 𝛿 = 2𝑘−𝑏−1. Scaling factor 𝛿 can

be intuitively thought of as the range in the floating point world corresponding to one

quantization interval. This means we have our complete k-bit quantization conversion

for kernel 𝑊 , stochastically rounding the scaled value:

𝑊 𝑖𝑗
𝑞 = ⌊𝑊 𝑖𝑗/2𝑘−𝑏−1⌉
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Activations are quantized in a similar fashion. Over the course of floating point train-

ing, the minimum and maximum activations are tracked so that the corresponding

scaling factors can be applied during evaluation on hardware. Note that this divi-

sion by a constant power of two (𝛿) during real-time evaluation is straightfoward to

implement in digital logic.

Note that the scaling factor for the biases 𝛿𝑏,𝑙 of layer 𝑙 are chosen carefully based on

the scaling factors for the weights 𝛿𝑤,𝑙 and activations 𝛿𝑎,𝑙 of that layer: 𝛿𝑏,𝑙 = 𝛿𝑤,𝑙 ·𝛿𝑎,𝑙.

This is to preserve correctness: the original output of a layer would be 𝑊𝑥 + 𝑏. The

new quantized output would be 1
𝛿𝑏,𝑙

(𝑊𝑥 + 𝑏), with the scaling factors accumulated

and factored out by the end of the network. The final quantized network outputs

a constant scaling of the original outputs. In a classification task, like in speaker

ID, multiplying each of the classes by a positive scaling factor does not effect the

classification outcome.

Figure 2-3 shows an example of the distribution of parameters before and after

quantizing the weight kernels in our large fully connected network to 6-bit values.

Prior work has used uniform linear scaling to reasonable success on vision tasks

using very-large, very-deep vision networks (e.g. AlexNet, ResNet-17, or VGG-16),

where there is significant redundancy in the information encoded in the parameters

[Jacob et al., 2017].

However, when implementing this quantization on our speaker ID networks, in-

terestingly, we obtain significantly worse results than baseline (15× increase in clas-

sification error).

To understand why, we examined the behavior quantizing each of the layers in-

dividually. The results are shown in Figures 2-4 and 2-5. Despite deviating from

floating point weight by < 10−4 (less than 0.1% of the original value), the quantized

versions of the first linear (linear0/W) induced a 20.6% increase in classification er-

ror. On the flip side, layer linear2/b deviated from the floating point weight by

a magnitude of 0.3 (4% of the original value), yet increased error by 1.43% when

quantized. We find that some layers are significantly more sensitive to quantization

(particularly, the first few layers). This finding is also true of our other models as
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Figure 2-3: Visualization of the parameter distribution of the large fully-connected
SID network before (left) and after (right) applying 6-bit min-max linear quantization.
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Model Error (%) Mults Params Bytesize Score Baseline
Fully Connected, Large 7.43 1428K 1431K 2.86MB 11.4827 11.3882
Convolutional 20.40 263K 258K 517KB 10.4451 10.5411

Table 2.3: Speaker Identification Error of 16-bit Min-Max Linearly Weight-Quantized
Models on RSR2015. While model size is up to 30% less, scores are not significantly
better (and for the FCN, worse) because of the increase in error.

well; similar results for our convolutional models can be viewed in Appendix Figures

A-1 and A-2. These experiments were performed with full 32-bit activations.

An interesting trend we noticed when scaling the bias for quantization is explosion

of the bias magnitude. As noted before, the bias is divided by the nearest power of

two approximation of 𝛿𝑏,𝑙 = 𝛿𝑤,𝑙 * 𝛿𝑎,𝑙. If 𝛿𝑤,𝑙 and 𝛿𝑎,𝑙 are extremely small, dividing

by 𝛿𝑏,𝑙 will increase the bias significantly, reaching magnitudes on the order of 1012.

Such large values are susceptible to overflow in bit-constrained settings. A concrete

example of this for the large fully-connected network is shown in Table A.4.

Under this quantization scheme, we found that we had to leave the first layer in

32-bit fixed-point during inference, 24 bits for the integer portion, and 8 bits for the

decimal. With this modification, we obtain Table 2.3 showing results with 16-bit

parameter quantization using training-free min-max linear quantization.

Notice that the scores are slightly worse than the original non-quantized models,

because of the drop in accuracy. With even lower precision, the increases in error offset

the improvements because of smaller models. Thus, we seek alternative methods of

quantization that could better preserve the small error of the original models.

2.3.2 [0,1] Fixed Point Quantization

To resolve the exploding bias problem previously highlighted, we switch our quanti-

zation to limit the range of weights, activations, and biases to [−1, 1] represented as

a k-bit fixed point number.

In particular, during training, an underlying floating point weight kernel 𝑥 is

quantized to matrix 𝑥𝑞𝑢𝑎𝑛𝑡 on the fly using the transformation:
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Figure 2-4: Increase in error after quantizing each layer in the large fully-connected
SID network (30-bit min-max linear quantization).

Figure 2-5: Maximum magnitude of discrepency between the quantized and non-
quantized parameters of each layer in the large fully-connected SID network (30-bit
min-max linear quantization).
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𝑥[0,1] = 𝑥
2max |𝑥| + 1

2

𝑥𝑞𝑢𝑎𝑛𝑡 = 2 quant(𝑥[0,1]) − 1
(2.4)

𝑥[0,1] is 𝑥 squashed into the the range [0, 1]. The quant function takes in a real

value 𝑥 ∈ [0, 1] and outputs a k-bit fixed point 𝑥 ∈ [0, 1]:

quant(𝑥) =
1

2𝑘
round(2𝑘 × 𝑥)

Importantly, note two things: (1) during training, the floating point weights are

stored and updated during backpropogation but only the quantized versions are used

to compute loss (2) during inference, we store only 𝑥𝑞𝑢𝑎𝑛𝑡, removing the need to

compute expensive max functions on the fly.

Quantized activations 𝑎 (after the layer computation 𝑎 = 𝑊𝑥 + 𝑏) are limited to

the range [0, 1] through use of a rectifiying non-linearity clipped to a maximum 1.

This quantization scheme is based work from Zhou et al. [2016], with two key

modifications: (1) we remove the original scheme’s use of tanh during quantization,

which we found squashes weights that grow large, losing information capacity and (2)

we replace the squashing non-linearity tanh with the clipped ReLU, which we found

to improve performance and increase transferability to hardware.

Results

While these networks take roughly 1.2x longer to train, we find significantly better

results than with the previous linear quantization scheme:

1. Quantizing Middle Layer Parameters: When we exclude quantization of

the first and last layers, and keep activations in full-precision we obtain the

accuracy results in Figure 2 − 6. We are able to reduce bit precision to 8-bits

on all models without increase in error. With a less than 5% increase in error,

we are also able to reduce the bitwidth to 4-bits.

2. Quantizing All Parameters: Figure 2−7 illustrates the error when we quan-

tize all parameters in a network, keeping activations in full-precision. We are
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able to reduce bit precision to 8-bits on all models (and 4-bits on the large FCN)

without an increase in error. The large FCN and CNN appear to be the most

robust models to bitwidth decrease.

3. Quantizing All Parameters and Intermediate Activations: Figure 2− 7

illustrates the error when we quantize all parameters in a network, and quantize

activations to the same bit-width. Nearly all models diverged to 0% accuracy,

with the exception of the large FCN, which experience a roughly 5-10x in-

crease in error. The difficulty of quantizing activations was also discussed

in the previous Section 2.3.1. This observation, that networks are more sensi-

tive quantizing intermediate activations as compared to quantizing weights is

confirmed by recent literature [Zhou et al., 2016].

The memory for storing intermediate activations is less than 10% of that re-

quired for parameters, and so it is less critical to quantize input features and

activations to fulfill memory constraints. Although quantized activations would

allow for less complex arithmetic units, we find that the accuracy degradations

are too substantial to implement quantized activation networks. As such, in

the models we deploy in our demonstration (Section 3.5), we keep activations

in 32-bit full precision.

In order to achieve the error rates shown, the quantized parameters were initial-

ized at the beginning of training to the values of the baseline models. The activation-

quantized models (Figure 2-8 were initialized using the model from 2-7 and the base-

line models (the former yielded only three diverging networks, while the latter caused

all models, including the large FCN to diverge).

Table 2.4 show our final quantization results. All models improve their score,

because of the 4-8x decrease in model size. In some models, the corresponding increase

in error is less than 1%. As expected, 4-bit models have marginally worse classification

error than their corresponding 8-bit models. Nearly all the models listed here fit in

the maximum BRAM allocation constraints on the target economy FPGA (Xilinx

Zync-7000). Our models constraining activation demonstrated unacceptably high
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Figure 2-6: Speaker ID Error vs. Parameter Bitwidth (using the [0,1] fixed-point
quantization). Parameters for the first and last layers are not quantized. Activations
are 32-bit floating point (see discussion in Section 2.3.2).

Figure 2-7: Speaker ID Error vs. Parameter Bitwidth (using the [0,1] fixed-point
quantization). All parameters in the network are quantized. Activations are in this
set of experiments were set to 32-bit floating point (see discussion in 2.3.2).

Section
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Figure 2-8: Speaker ID Error vs. Parameter Bitwidth (using the [0,1] fixed-point
quantization). All parameters in the network are quantized. Activations are quantized
to fixed point to match the parameter bitwidth.

Model Error (%) Mults Params Bytesize Score Baseline
FCN, Small (4-bit) 23.13 519K 521K 260KB 10.4962 11.0079
FCN, Small (8-bit) 22.78 519K 521K 521KB 10.7905 11.0079
FCN, Large (4-bit) 3.95 1433K 1435K 717KB 10.6096 11.3882
FCN, Large (8-bit) 2.60 1433K 1435K 1.43MB 10.7287 11.3882
CNN (4-bit) 17.48 265K 260K 130KB 9.7811 10.5411
CNN (8-bit) 11.59 265K 260K 260KB 9.9038 10.5411
LCN (4-bit) 26.49 287K 288K 144KB 10.041 10.5748
LCN (8-bit) 24.60 287K 288K 288KB 10.3098 10.5748

Table 2.4: Speaker Identification Error of [0,1]-Fixed Point Quantized Models on
RSR2015. Scores on all models have show improvements compared to their respective
baselines on Table 2.1.
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error.

In this final section of model quantization and compression, we describe our final

efforts reducing model size with ternary parameters.

2.4 Trained Ternary Quantization

We explore trained ternary quantization (TTQ), a method to learn weights in the set

{-1,0,1} [Zhu et al., 2016]. In this work, we demonstrate that TTQ can be used in

text-dependent speaker identification, with modification to the network’s initializa-

tion and operational changes to decompose ternary networks into hardware-amiable

binary operations. Though increasing error, ternary parameters allows for hardware

optimization which we describe in the subsequent section.

In regular fully-connected and convolutional networks, every network layer 𝑙 has

a full-precision kernel 𝑊 𝑙. Under TTQ, 𝑊 𝑙 is maintained, but not used during the

forward pass. Rather, 𝑊 𝑙 is converted to its ternary approximation ̃︁𝑊 𝑙 by bucketing

𝑊 𝑙’s individual values, 𝑊 𝑙
𝑖𝑗𝑘, based on a layer-specific threshold ∆𝑙:

̃︁𝑊 𝑙
𝑖𝑗𝑘 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐾 𝑙

1 if 𝑊 𝑙
𝑖𝑗𝑘 ≥ ∆𝑙

0 if −∆𝑙 < 𝑊 𝑙
𝑖𝑗𝑘 < ∆𝑙

𝐾 𝑙
2 if 𝑊 𝑙

𝑖𝑗𝑘 ≤ −∆𝑙

This formulation is the original TTQ construction from Zhu et al. [2016], which

uses two separate scaling constants 𝐾 𝑙
1 and 𝐾 𝑙

2 for the top and bottom thresholding

regimes. In this work, we explored the simplification 𝐾 𝑙
2 = −𝐾 𝑙

1, so that the full-

precision scalar factors out of the weight matrix, reducing kernel multiplications to

additions and subtractions, substantially decreasing circuit area and latency. The

backward pass is also slightly modified; the gradient updates are applied to both

the 𝐾𝐿 scaling values, and the original 𝑊 𝑙 shadow weights. The threshold ∆𝑙 can

either be learned, but as is used in Zhu et al. [2016] and in our experiments, we

approximate ∆𝑙 = 0.05 × max|ℎ𝑙|, where ℎ𝑙 are the incoming activations to layer-𝑙.
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Figure 2-9: Top Row: floating-point kernels of our fully-connected SID model. Middle
Row: final ternary kernels when initializing training from the floating-point model
of the top row. Bottom Row: final ternary kernels when training from random
initialization.

At validation and test-time, to avoid a costly max-accumulation in hardware, we use

a cached average value for max |ℎ𝑙| of the training set.

An example of the ternary kernels in our fully-connected SID model is shown in

Figure 2-9. For the convolutional networks, pre-loading from floating point networks

was required to avoid diverging training and NaNs.

To avoid full-precision floating-point operations, we can optionally constrain inter-

mediate activations to 32 or 16-bit fixed point. After the multiply-and-accumulates

in every layer, we normalize to [-1,1] (either by way of dynamic re-scaling or batch

normalization) and downscale the activations to fit within 16-bits via bit-shifting and

bit truncation.

Of particular note, in this form of constraining weights, no multiplications are

required during layer evaluation. With weights in the set {-1,0,1}, the parallelized

units in hardware design needs to only support additions and subtractions across each

row. The fixed point multiplication with 𝐾 𝑙 occurs lazily after these activations have

been computed.

A summary of our TTQ models are shown in Table 2.5. The large FCN model

ternarizes all layers, but attempting to ternarize all layers on the CNN results in a

network with <5% accuracy. The CNN result below represents a model with middle

layers ternarized, and first and last layers in full-precision.

Of note, in ternary models, there is significant sparsity, as illustrated in Figure
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Model Error (%) Mults Model Size Score Baseline
FCN, Large (32-Bit Ends) 11.04 648K 2.88MB 11.315 11.3882
FCN, Large (Tern Ends) 12.88 6K 553KB 8.6589 11.3882
CNN (32-Bit Ends) 38.43 73K 341KB 9.9849 10.5411
CNN (Tern Ends) >95 - - - 10.5411
FCN, Small (Both) >95 - - - 11.0079
LCN (Both) >95 - - - 10.5748

Table 2.5: Speaker identification error of ternary quantized SID Models on RSR2015.
The model size is up to 90% smaller, and the scores show improvement compared
to their respective baselines on Table 2.1. They are also better than our [0,1]-FxPt
model scores because of the decrease in multiplications. These mixed-precision and
very low precision models are better suited for FPGA implementation.

Figure 2-10: Composition of a sample ternary kernel in a SID large FCN (left) and
CNN (right) as training progresses: percent of zeroes (sparsity), percent of positive
weight values (𝐾 𝑙

1), and percent of negative weight values (𝐾 𝑙
2)

.

2-10.

2.5 Model Pruning and Distillation

To combine the advantages of highly sparse TTQ kernels and low-error [0,1]-quantization

models, we seek to prune the latter to induce higher levels of sparsity. Blocks of zeroes

enable us to reduce the number non-zero multiplications required during an evaluation

of a model. Interestingly, in stark constrast to our TTQ models, our [0,1]-quantized

SID models parameters have close to zero inherent sparsity.
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Figure 2-11: Speaker ID Error vs. Induced Sparsity into the 32-bit floating point
model. Inducing 5% sparsity increase error by approximately 10%.

In particular, during pruning of our quantized models, we target a particular

sparsity percentage 𝑃 . Then for every weight kernel, we zero the 𝑃% of parameters

that have lowest absolute magnitude. We retrain for 20 iterations, and redo the

selective zeroing. This pruning process is based off the work of Han et al. [2015]. We

tested pruning to the following twelve sparsity levels: 0%, 0.1%, 0.5%, 1%, 2%, 3%,

4%, 5%, 10%, 15%, 25%, and 50%.

Our results inducing sparsity are summarized in Figures 2-11, 2-12, and 2-13. In

the baseline model (Fig. 2-11), we see that inducing 1% sparsity on the four models

has marginal (<0.1%) effect on error. Inducing 5% sparsity or greater increases error

by a roughly linear amount, leveling off at 25% sparsity to an error of about 90%.

Not surprisingly, lower bit-width models are more sensitive to pruning, demonstrating

higher rates of increase in error with increasing sparsity (Fig. 2-12, and 2-13). Figure

A-3 in the Appendix illustrates the error of induced sparsity on 16-bit models; the

trends are the same.

We suspect that we obtain lower levels of error-free pruning than Han et al. [2015]

for two reasons: (1) our baseline model sizes are 10x smaller from the start than

the large vision networks used in Han et al. [2015] (AlexNet/Resnet), resulting in

increased initial network fragility and (2) we retrain less number of times due to

GPU availability constraints.

Another possible way to achieve smaller model memory footprints is to exploit
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Figure 2-12: Speaker ID Error vs. Induced Sparsity into the 4-bit [0,1]-FxPt model.

Figure 2-13: Speaker ID Error vs. Induced Sparsity into the 8-bit [0,1]-FxPt model.
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sparsity, using, for example, row-compressed sparse matrix encoding. A straight-

forward way of doing so that has been attempted in the past would be to store a

bit-vector with the locations of zero and non-zero values alongside a row-major list of

the non-zero values in the matrix [Liu et al., 2013]. We find that this method would

not decrease storage requirements in either our TTQ or fixed-point models.

In particular, the bit-vector representation decreases storage requirements if
(︀
(1−

𝑠) × 𝑝× 𝑏
)︀

+ 𝑝× 1 bit
param < 𝑝× 𝑏, where 𝑠 is the sparsity level, 𝑝 is the total number of

parameters, and 𝑏 is the bits per parameter. This condition does not hold for any of

our models, because of the low sparsity levels.

We leave exploration of the other common sparse matrix representation, such as

row-compressed sparse encoding, for future work. The choice of encoding is non-

trivial: in particular, because of our low sparsity levels, the most common encoding

schemes such as row or column-compressed sparse encoding would both increase the

complexity of model evaluation hardware and actually increase the memory footprint

[Wikipedia contributors, 2018] (such encoding schemes usually decrease memory re-

quirements for sparsity levels >50%).

In constrast, we are able to reduce the number of multiplies and additions because

of increased sparsity. Our hardware design (Section 3.3) for TTQ model evaluation

allows us to skip zero multiplies to evaluate a partially-sparse dot product. In partic-

ular, our controller only feeds in a sequence of multiplies and additions to the matrix

accelerator to execute if the operation is non-zero. This trick is common in designs

like as those demonstrated by Han et al. [2016] and Chen et al. [2017].

Table 2.6 lists the summarized results of our pruning experiments. Out of the

twelve different induced-sparsity levels tested (0% to 50%), we choose the sparsity

level with the best score (thus balancing error, non-zero multiplications, and bytesize).

For most FxPt models, the best model appears to be the one with very low sparsity

level: 0.1%. The TTQ models, without any pruning, exhibit significant sparsity, and

demonstrate better scores than the pruned [-1,1] fixed-point models. Though better

than baseline, our pruned fixed point models are not significantly better than the

original fixed models in Table 2.4.
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Model Error (%) Sparsity (%) NZ Mults Bytesize Score Baseline
FCN, Large (4-bit) 04.13 0.1 1431.654K 717.695KB 10.6284 11.3882
FCN, Large (8-bit) 02.71 0.1 1431.654K 1.43MB 10.7457 11.3882
CNN (4-bit) 16.40 0 265.334K 130.259KB 9.7535 10.5411
CNN (8-bit) 11.69 0.1 265.068K 260.519KB 9.9073 10.5411
FCN, Large (TTQ) 12.88 22.80 4.939K 540.831KB 8.5368 11.3882
CNN (TTQ) 38.43 19.90 58.942K 139.719KB 9.5004 10.5411

Table 2.6: Speaker identification error of sparsity-induced [-1,1]-Fixed Point Quan-
tized Models on RSR2015. ‘NZ Mults’ is the number of non-zero (non-skippable)
multiplications in one network evaluation. For comparison, in the last two rows we
list the unmodified TTQ models. More discussion in text.

2.6 Final Deployed Models and Summary

We describe the motivation for our final shortlist of models in Table 2.7. These mod-

els represent different points and our contributions along the accuracy-size-compute-

sparsity surface for a text-dependent speaker ID challenge. This table lists the can-

didates with best score for each of the four model architecture types. Surprisingly,

inducing sparsity models did not improve scores, so we did not select those models

for our shortlist of final models.

This guides our approach for accelerator design in Section 3.2. Our ternary fully

connected network exhibits the best score across all models. Thus, we build an archi-

tecture for ternary network evaluation (2-bit). We also demonstrate an accelerator

capable of inference on 8-bit fixed-point parameters, to support the CNN, LCN, and

FCN-small models that represent the next three best speaker ID models. Because of

its low metric score, we did not list our most accurate model, the 4-bit FxPt FCN-

Large, in the table, but the same accelerator is able to be used for this network as

well.
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Final Model Type Error (%) Mults Bytesize Score
FCN, Large (Tern Ends) 12.88 6K 553KB 8.6589
CNN (4-bit) 16.40 265K 130KB 9.7811
LCN (4-bit) 26.49 287K 144KB 10.041
FCN, Small (4-bit) 23.13 519K 260KB 10.4962

Table 2.7: Speaker identification error and other results across all experiments: se-
lected from baselines, fixed-point, ternary, and pruned speaker ID models. Each of
the four architecture types are listed, and we chose the best scoring within each type.
Ordered by score.
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Chapter 3

An FPGA-based Accelerator for

Speaker Identification

In this chapter, we describe our work evaluating out trained models on a commodity

FPGA. In particular, we target a low-end Xilinx FPGA briefly described in Section

3.1. We describe two different architectures for evaluation of our variable-width mod-

els: (1) in Section 3.2, we describe our Eyeriss-inspired design for 4-bit evaluation

and results from post-implementation simulation. (2) in Section 3.3, we describe

our architecture for evaluation of our speaker ID ternary network and corresponding

post-simulation simulation in Vivado. In Section 3.4, we briefly describe our work to

extract cepstral features on the Cortex A9 on the Xilinx FPGA. Finally, in Section

3.5, we describe the setup and flow of our final system used perform speaker verifi-

cation with real people. A working demonstration of the system can be viewed at

https://youtu.be/n1wdkIRCnrU.

3.1 Target: Xilinx Zynq-7000 Dev Board

We targeted our model design around the memory constraints of a commodity FPGA.

In particular, in this work, we chose the Digilent Zybo Z7, which features the XC7Z020-

1CLG400C Xilinx SoC [Xilinx, 2018]. This chip possesses the programmable logic

resources given in Table 3.1. It has a 1GB DDR3 off-chip memory and in-built
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Resource Type Count
Look-up Tables (LUTs) 53,200
Flip-flops 106,400
DSP Slices 220
Block RAM 630 KB

Table 3.1: Available resources on the target Zybo Z7 development board (Xilinx Core
XC7Z020-1CLG400C).

Cortex-A9 ARM processor alongside the programmable logic fabric. The full list of

components in the SoC are give in Appendix Figure B-1. We selected this family

of FPGAs because it was the lowest cost family of development boards offered by

Digilent (primary distributor of consumer Xilinx/Altera FPGAs). The actual devel-

opment board is pictured in the Figure 3-1. Both the programmable logic and the

ARM core are clocked at 200MHz that is driven by an external crystal and PLL.

3.2 8-bit Fixed-Point DNN Accelerator

To demonstrate a simple baseline for our hardware design, we implement an Eyeriss-

inspired DNN accelerator on our target FPGA. In particular, we recycle the idea

of using an array of compute ‘Processing Units’ (PUs) to carry out all of the inner

product/non-linearity computations required during inference. To begin, we target

evaluation of our 8-bit 5-layer, width-256, 521KB FCNs (the first two models in

Table 2.4).

The design of our accelerator is best described in Figures 3-2, 3-3, and 3-4. In

particular, Figure 3-2 describes interaction of components on the Zync-7000, and

information flow between the processing core (PS) and programmable logic (PL).

Figure 3-3 describes our design for neural network inference on the PL of the Xilinx

chip. Finally, Figure 3-4 describes the micro-architecture of the individual units the

comprise the inference module.

Our design is a simplification of the Eyeriss accelerator. The following changes

were appropriate given our target model:

∙ We reduce the buffer sizes across the design because of our target model/MFCC
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Figure 3-1: Zync-7000 development board used in our speaker verification demonstra-
tion. Uses a Xilinx XC7Z020-1CLG400C programmable logic core (center of board,
with the black heat sink on top of it).
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Figure 3-2: Macro-architecture of our speaker identification system on the Xilinx
Zync-7020. The two key components available on the PS (ARM Processing System)
for UART communication and feature pre-processing and PL (Programmable Logic),
for model evaluation.

inputs are much smaller than the vision networks/input images targeted by

Eyeriss

∙ We replace the 2D PU array with a small linear PU array that is more suitable

for parallel evaluation of FCN row dot products (description in Section 3.2.2).

∙ A linear PU array means less complicated data routing patterns (e.g. avoiding

the necessity to tile and collect data across the spatial array), allowing for

smaller and less complex network-on-chip modules

∙ Fewer buffers in total by removing the need to buffer off-chip memory read/writes

(which is not used in the design), and because we halve inter-PU connections

by using a linear PU array.

Note that these complexity and area advantages are possible because this design

is specifically optimized to evaluate our top scoring network, the speaker ID FCN

networks. As such, our design requires some input manipulation to also evaluate

convolutional and locally-connected networks (discussed in Section 3.2.2).

Figure 3-2 describes the macro-architecture of the design. In particular, the

Processing Core (Zync PS) interfaces with the outside world via UART (in-built
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Figure 3-3: Architecture of our core model evaluation accelerator. There are three
main data streams: the input feature (blue) and weight stream (red), and the cor-
responding output accumulation stream (green). Each network layer is evaluated
sequentially. The routing unit acts as (1) a controller, orchestrating communication
based on control inputs (2) network routers for the PUs (distributing and collecting
data from the array) and (3) the interface to the BRAM.

FT-232R IC for USB/UART communications). The feature extractor runs on the

core processing the initial data samples received over UART. The extracted features

are sent to BRAM via Xilinx’s AXI4 bus, where they are stored in a 20K segment

(occupying about half the segment), as shown in Figure 3-5. Model evaluation occurs

using our programmable logic low-precision accelerator, and results are stored in Block

RAM. The PS accumulates these results, and returns back a verification decision over

UART.

Figure 3-3, the inference accelerator and focus of this design, centers around a

linear array of Processing Units (PUs) that sequentially compute the dot product

summation. The correct segments of Block RAM are read using logic in a con-

troller module which feeds the layer weight and layer input data simulatenously into

the PU array. Parallel outputs from the PU array are received on the same cycle

and, after serialization, fed back into BRAM, overwriting the old block of interme-
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Figure 3-4: Micro-architecture of each individual processing unit. Each PU computes
the dot-product 𝑤 · 𝑥 by accumulating the terms in the summation in a full-precision
register. After the dot product has been computed, the bias-add line is pulled high
and the bias is added to the accumulation register, and the output is read.

diate activations/layer inputs. The controller is a simple 3-state finite state machine

(sleep/intialize/run) that responds to control signals from the PS. 3-element FIFOs

separate each part of the flow, just like in the original Eyeriss design (e.g. the data

router and input lines to elements of the PU array).

In the first revision of our design, we use 𝑛 PUs. Every cycle, each PU is fed an an

8-bit weight and 32-bit input activation to add the accumulation. On the last cycle,

the "Bias-Add" signal is toggled high and the 32-bit bias is fed in and added to the

accumulation. The output of the array is the set of 𝑛 32-bit accumulation registers.

The reason for 32-bit activations in this design is hashed out in Section 2.3.2.

For models with bigger or smaller layer output sizes, we can scale the size of the

linear array. In this work we tried 𝑛 = 256 and 𝑛 = 512, to fit our small and large

FCNs.

Figure 3-4 describes the core computation block for the multiply-accumulate.

We add a rectification block at the end (comparator and mux) to perform the non-

linear ReLU activation. Additionally, to support models with quantized activations

(like models in Figure 2-8), we added a small quantization block after the rectification

that performed a bit-shift and truncate to bring the activations within range. The
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Figure 3-5: Utilization of available BRAM on the Xilinx development board.

adder is 32-bit fixed-point, with an implicit 4-bit/28-bit integer/decimal fixed point

representation. The adder design is the default chosen by Bluespec compiler/Xilinx

synthesis/mapping tools. The multiplier can afford to be 32-bit by 8-bit, but for

simplicity, in our initial design, we use the default 32-bit multiplier provided by

Xilinx synthesis tools.

3.2.1 Memory Management on Xilinx Zync-7000

Xilinx FPGAs offer I/O to peripherals and memory through their Advanced eXtensible

Interface (AXI) protocol. Xilinx provides the corresponding IP for communication

using AXI [Xilinx, 2018]. We use AXI4 for data communication between the Zync

PS core, the programmable logic, and Block RAM.

In particular, on the 7000-series Xilinx cores, each block is 36 Kbit. We set each

block to use simple-dual port communication, resulting in 72-bit wide read/write

accesses. Each memory block is 512 by 72 bits. In total, our design all available 140

blocks, the capacity of our particular core type, the ZC-7020.

The allocation of Block RAM available for our design is given in Figure 3-5.

Unsurprisingly, majority of space is used for model storage. Our layout of values

within these allocations is rather straightfoward: we store each layer’s weights as a

block, storing the 4/8-bit values continguously in a row-major fashion. To read out

a 512-wide layer weight matrix requires us (512 × 512 + 512) ÷ 72
8

≈ 29200 reads.
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At 200 MHz, this translated to a 291 𝜇S per-layer memory load latency. For our

5-layer, width-512 FCN network, we measured model parameter read time + output

feature write time to be 1.455 ms. These lower bound memory read/write overheads

were benchmarked using the simple Vivado design outlined in Figure B-2. This was

the design we used in November 2017 to test basic functionality of BRAM on the

development board. The design has connected: the Zync Processing Core, BRAM

Controller, all 140 Block RAM units, and a simple controller written in Vivado HLS

used to execute read and writes from BRAM.

3.2.2 Computation Flow on the Accelerator

At a high level, it is useful to quickly understand how computation of each neural

network layer maps to the hardware. At its core, the accelerator repeatedly evaluates

the matrix-vector formula non-lin(𝑊𝑙 · 𝑥 + 𝑏𝑙).

Figure 3-6 describes the evaluation of matrix-vector multiplication 𝑊𝑙 · 𝑥. Every

cycle, two inputs are fed in: a column of weight matrix 𝑊 (light blue highlight on

the left) and a value of input feature vector 𝑥 (beige highlight in the center). Each

PU is passed a different value along the weight matrix column, but the same 𝑥𝑖.

The PUs have accumulation registers, which are represented by the right-most

dark blue vectors in the figure. Each output cell corresponds to a different PU. To

evaluate a 512× 512 matrix multiply, it takes 512 cycles of feeding in each column of

input.

To handle FCN networks of smaller size than the PU array, we under-utilize the

hardware and do not feed any inputs to the number of extra PUs that we have.

This is useful for evaluation of our locally-connected networks, where the first layer

is comprised of many smaller fully-connected subsections. To evaluate FCN networks

of large size (for example, evaluation of a 512-wide network on a 𝑛 = 256 PU array),

we break the multiply into 𝑛× 𝑛 matrix multiplies, and save the partial sums in the

accumulation registers.

To evaluate the CNN matrix, we convert the convolution operation (𝑊 ~𝑥) into a

matrix multiply (𝑊 ·𝑥), using the step of converting the kernel into the corresponding
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Figure 3-6: High-level procedure of how the accelerator computes layer computation
𝑊 × 𝑥. 𝑊 is the light blue matrix to the left, 𝑥 is the center beige vector, and
the output is given by the rightmost vector. Every 32 cycles, another column of the
weight matrix is processed and corresponding terms in the dot product added to the
accumulation output registers.
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Figure 3-7: Example of a 3 by 3 Toeplitz transformation to support convolutional
networks on our design. The transformation allows us to reduce convolution to a
matrix-vector multiply.

Toeplitz matrix. This is described in Example 3-7. By converting the convolution

operation to matrix multiplication, we can use the same design to evaluate convolu-

tional networks. In our convolutional networks, input 𝑥, is folded to be a matrix in

the first layer, and unfolded for the following fully-connected layers. This conversion

can either be done on the fly (which results in no memory storage overhead, but at

the cost of increasing latency and controller complexity), or as a pre-processing step,

which would increase memory overhead. We chose the former approach to imple-

ment. We are still in the process of changing our original kernel to support on the fly

Toeplitz transformation, and this is an avenue for future work.

3.2.3 Evaluation of the Design

We obtain post-synthesis results to characterize our design for 𝑛 = 256 and 𝑛 =

512, as well as for 8 and 32-bit parameter width values. Among the things that

changed between the 8-bit and 32-bit design variants: port widths, buffer widths,

and arithmetic unit input widths, and the deserializer loading logic of 8 vs. 32-bit

values from BRAM.
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In particular, in this section we look at a few of the reports provided by Vi-

vado: FPGA resource utilization, post-routing power consumption estimates, and

slack w.r.t. a 100 MHz target clock. We use a vector-based power estimation: we

create a simulation activity file (SAIF) in Vivado XSIM, that captures switching in

the design, and then import this into the open post-routing implementation in Vivado

Designer to obtain power estimates.

Resource Utilization

Table 3.2 summarizes the FPGA resource utilization, totalled across all registers,

memory cells, muxes, and other programmable logic components in the design. We

divide our usage into the four main categories of available resource types: look-up

tables, flip-flops, block RAM cells, and DSP slices.

n=256, 8-bit n=256, 32-bit n=512, 8-bit n=512, 32-bit Total Available
FF 52,172 71,262 86,224 104,524 106,400
LUT 29,832 33,996 47,021 50,901 53,200
DSP48E 200 200 220 220 220
BRAM 140 140 140 140 140

Table 3.2: Resource utilization for four designs of the fixed-point accelerator: varying
the size of the linear PU array (𝑛 = 256 and 𝑛 = 512), and varying the bitwidth of
the accelerator parameters and multipliers.

Unsurprisingly, reducing the data line widths, buffer sizes, and arithmetic units

to 8-bit reduces resource utilization on the FPGA (in terms of FF/LUT/DSPs). All

designs instantiate a fixed 140 BRAM blocks (all 630KB), and are able to fit our 8-bit

small FCN or 4-bit large FCN. Utilization of BRAM does not decrease in order to

always accomodate the largest model size possible. In our 𝑛 = 512 designs, we maxed

out DSP slice resources on the FPGA.

Latency and Slack

Our designs were synthesized targeting a timing constraint of 10 ns clock period (100

MHz). Here we report the timing slack in the design (given in nanoseconds), and the

latency of one model evaluation obtained during simulation (given in clock cycles).
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n=256, 8-bit n=256, 32-bit n=512, 8-bit n=512, 32-bit
Slack [uncertainty] (ns) 8.18 [1.12] 8.31 [1.09] 8.23 [1.21] 8.61 [1.35]
Latency (cycles) 2,231,834 2,612,050 2,232,864 2,613,080
Throughput (eval/s) 44.806 38.284 44.785 38.269

Table 3.3: Timing characteristics of variants of the fixed-point accelerator design.
We used a target 100MHz clock constraint. Latency is given in cycles, throughput in
model evaluations per second.

Running 50 model evaluations in simulation, we also obtain an estimated evaluations

per second throughput of our designs.

One particularly tricky aspect when comparing these designs is model sizing: 32-

bit designs are only able to fit in the available BRAM only models with fewer param-

eters, meaning there are less overall operations to compute compared to low-precision

parameter designs. Instead, to cross-compare timing for lower-precision designs with

high-precision designs, we keep the model the same across evaluations: a 5-layer,

90-wide ‘small FCN’, that is 522KB for 32-bit parameters and 130KB for 8-bit pa-

rameters. This model is able to fit in BRAM for all parameters widths.

Table 3.3 summarizes the results of the fixed-parameter-count model evaluation of

our designs. All designs were able to meet the timing constraint. The 32-bit designs

had significantly higher cycle latency; we suspect this is because of the larger amount

of data serialized and deserialized from memory. The throughput followed the same

trends as the latency, because of no differences in pipelining between the designs.

We suspect that the differences between the 𝑛 = 512 and 𝑛 = 256 designs for same

bitwidth is because of choices in resource allocation/arithmetic module types by the

Vivado synthesis/PaR compiler.

If we had a model with kernels of size between 256 and 512, we would see the cycle

count between the 𝑛 = 256 and 𝑛 = 512 significantly differ (by a factor of approx-

imately four), because it would require four complete 256 × 256 kernel evaluations

(which can be done in one pass in the 𝑛 = 256 hardware), to evaluate a 512 × 512

kernel. If we instead performed the timing evaluations with a fixed memory footprint

for the model (and different parameter count), we would have encountered a roughly

2 × difference in number of multiply-and-accumulates, and roughly 2 × difference in
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cycle count latency between the 8-bit parameter and 32-bit parameter designs.

This is because for a fixed model bytesize, there would be 4 × as many 8-bit

parameters, instead of 32-bit parameters. A square matrix with 4-times as many

parameters, has 2x the number of multiplies and adds in each row’s dot-product

during the matrix-vector multiply.

Power Consumption

Power estimates were conducted by importing simulation results (SAIF file, a sum-

mary of switching activity) into the Xilinx Power Estimator tool.

For the four variants of the design, we obtain the estimates given in Figures 3-8a,

3-8b, 3-8c, and 3-8d.

For comparison, we benchmarked a sample design (with nearly less than half the

FF/LUT usage of our accelerator). This design performed periodic read/writes to

a DDR3 DRAM module, and gave us an estimate of the power consumption if we

did use model compression or quantization (and if we required off-chip memory).

As expected, the power consumption estimates more than doubles, as shown in the

summary report in Figure 3-9.

The breakdown of power consumption for the 𝑛 = 256, 8-bit parameter design is

shown in Figure 3-10. The logic resources and clock draw the most power, followed

by the BRAM.

3.3 An Accelerator for Ternary Networks

We explored a design for evaluating our fully-connected ternary networks. In par-

ticular, this design exploits the unique fact that in ternary networks, there is only

multiplication with one number per layer. The overall information flow between the

programmable logic and processing core and BRAM is the same as in Figure 3-3.

Figures 3-11 and 3-12 outline our ternary network accelerator design. The key

difference is in the PU design: we delay the multiplication to the serialization block,

multiplying the layer accumulations by the same layer weight constant 𝑊𝑝 and 𝑊𝑛,
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(a) Summary report for power consumption of the 𝑛 = 256, 8-bit parameter design. Notably,
by removing the need for off-chip memory accesses to DRAM we excise the energy costs
associated with that high-frequency memory I/O and power supplied to off-chip devices,
compared to results shown in Figure 3-9.

(b) Summary report for the 𝑛 = 256, 32-bit parameter design. The power consumption is
7% higher compared to the 8-bit design because of the corresponding larger design.

(c) Summary report for the 𝑛 = 512, 8-bit parameter design. The power consumption is
9-16% higher compared to either of the 𝑛 = 256 designs because of the 2 × PU logic.

(d) Summary report for the 𝑛 = 512, 32-bit parameter design. This design has the highest
estimated power consumption of all designs, by up to 24%

as outlined in Section 2.4. This allows us to save having to run the multiply every

cycle in each PU, and correspondingly removes a multiplier from each of the 256/512
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Figure 3-9: Summary report for a sample design with similar FF/LUT usage that
performs reads and writes to DDR3 DRAM.

Figure 3-10: Summary of power consumption breakdown of the 𝑛 = 256, 8-bit pa-
rameter design. This distribution is the same for other design variants, as shown in
Figures B-4, B-5, and B-3.
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Figure 3-11: Modified PU design for the ternary accelerator. Forward evaluation
does not require multiplication with a unique number on every input, so we delay
the multiplication with layer constant until the serialization when we write back into
BRAM.

PU blocks. Adding the bias 𝑏 is added as an extra input 𝑏/𝑊𝑝.

An aspect of this design that were briefly explored, but still warrants future work,

is adding parallel multipliers in the serializer (having only one multiplier working

sequentially reduces area/power, but increases latency). Moving the multiplication

to the serializer allows us to tune where we are in this trade-off curve, by increasing

or decreasing the number of in-parallel multiplies.

We briefly explored skipping zero multiplies, which offer us 20-30% latency im-

provements given the sparsity of ternary models. This was implemented in the dese-

rializer, which checked if the corresponding loaded weight from BRAM was zero, if

so, did not feed the input feature and weight into PU array. Testing this flow, and

verifying improvements currently a work in progress.

We only benchmark the 𝑛 = 512 design because corresponding network size of

width 512 is the only network size that achieves reasonable identification accuracies.
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Figure 3-12: Addition to the serializer for the ternary accelerator.
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3.3.1 Evaluation of the Design

The same Vivado synthesis and simulation tools as were used in the previous section.

The following is a summary of resource, timing, and power estimates for this design.

Resource Utilization

The breakdown of resource utilization is given below in Table 3.4.

n=512, Ternary Total Available
FF 70,712 106,400
LUT 41,619 53,200
DSP48E 200 220
BRAM 140 140

Table 3.4: Resource utilization for ternary accelerator.

Latency and Slack

Adherence to 100 MHz target timing constraints and the average latency for one

model evaluation is given in Table 3.5.

n=512, Ternary
Slack [uncertainty] (ns) 9.07 [0.92]
Latency (cycles) 2,206,090
Throughput (eval/s) 45.329

Table 3.5: Timing characteristics of variants of the ternary accelerator design. We
used a target 100MHz clock constraint. Latency is given in cycles, throughput in
model evaluations per second. Slack is much tighter than in our previous designs.

Power Consumption

Summary reports of estimated power consumption for our ternary models from the

Xilinx Power Estimator tool (post-implementation) are provided below in Figures 3-

13 and 3-14.
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Figure 3-13: Summary report for the ternary design, demonstrating a 6% reduction
in power consumption from the 𝑛 = 512 8-bit designs previously demonstrated.

Figure 3-14: Breakdown of power expenditure for the ternary design. This design
follows roughly the same distribution of power consumption for different resource
types as the original fixed point design.
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3.4 Feature Extraction

We perform feature extraction from audio samples on the ARM core provided by our

Xilinx Zybo development board. This feature extraction was done on the ARM core

(as opposed to custom Verilog) for three key reasons: (1) feature extraction represents

roughly 10% of the total critical path computations in a single speaker evaluation,

and on the 200 MHz ARM core, extraction would not be the bottleneck in the system

throughput (2) a C-based feature extractor can be developed and tested more quickly,

which allowed the author to complete a working demonstration and submit his thesis

in a timely fashion and (3) a firmware implementation is able to easily bootstrap off

the existing C++ source in audio toolkit Kaldi.

As part of future work, we desire to fold this audio sample pre-processing into the

main accelerator design, developing a Verilog module based on the work of Price et al.

[2017] for MFCC extraction. We expect this would offer significant power savings,

eliminating the need to clock, power, and run the ARM core on the Zybo.

Our implementation runs extraction of Mel-frequency cepstral coefficients from

25 ms windows of 8KHz audio samples (the steps outlined in Section 1.3.1). We buffer

400 incoming samples at time from the host in order to compute the windowing and

cepstral calculations.

Unfortunately, porting log-Mel feature extraction to the Xilinx Zync ARM core

was not as straightforward as expected. During training of the network, we used

the Kaldi framework which is written in C++. Re-using sections of Kaldi, as we

discovered, was not possible for a few reasons:

∙ Kaldi depends extensively on the C++ Standard Template Library (STL),

which requires dynamic memory allocation [Povey et al., 2011]. Dynamic mem-

ory allocation requires a heap, and memory allocator, which is usually bundled

into the host kernel. Running on the Xilinx ARM core, on bare metal, means

that we have no dynamic memory allocator, and certainly no kernel [Povey and

Contributors, 2018].

∙ Kaldi has significant tooling and infrastructure code within the project (>30K
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lines of code in total), from which extricating the core log-Mel functionality is

messy.

We ended up writing our own feature extractor in pure C. This implementa-

tion (https://github.com/skoppula/speaker-id-thesis/feature-extraction/

extractor.c) has no external library dependencies, and requires no dynamic mem-

ory allocation. We based our implementation on prior bare-metal C implementations

of spectra calculation [Hills, 2013] and DCT calculation [Sawruk, 2010]. Our feature

extracton implementation was compiled using the 7.2.1 ‘arm-none-eabi-gcc‘ compiler

and successfully run on our Xilinx ARM core.

We noticed slight differences in the Mel-frequency cepstral coefficients output by

the Kaldi implementation and our system implementation. In particular, we no-

ticed what appears to be random deviations from the golden Kaldi standard with

the average deviation magnitude of 0.75 (picture in Fig 3-15). It appeared that our

MFCC calculation was considerably more noisy (though maintaining the same aver-

age trends), possibly because of numerical precision issues. These deviations caused

a 2% increase in speaker ID error for our large ternary FCN model. We were unable

to isolate the reason for the difference, but to accommodate the slight difference,

we retrained our ternary large-FCN model on features extracted using our imple-

mentation. This resulted in a model with identical accuracy to the original feature

extractor/model combination.

3.5 Speaker Verification System: Implementation and

Demo Setup

In our final section, we describe the complete speaker verification system, and the

steps behind the final demonstration available for viewing at https://youtu.be/

n1wdkIRCnrU. Figure 3-16 shows the system setup (host, FPGA, microphone, and

display) and the previously linked video summarizes the system behavior and show-

cases an example of speaker verification with the author.
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Figure 3-15: Subtle feature differences in the Kaldi standard implementation (top)
and our bare metal implementation (bottom) on a sample utterance segment. Re-
training our models using our extractor features resulted in no loss in accuracy, and
allowed us to run feature extraction on the Xilinx development board.

Figure 3-16: The speaker verification demonstration system. A Zync FPGA (right-
most board) communicates over serial to a host (Raspberry Pi, center) which displays
the results and receives audio input.
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On start-up, the system has a basic board and BRAM initialization:

1. Configure the accelerator design onto the FPGA fabric over USB using Vivado.

2. Load into BRAM a hex-file encoding all the layer-wise parameters of our model

(Vivado does this simultaneous to flashing of the main design)

3. Program the ARM core on the development board with the C-based feature

extractor over JTAG.

4. Switch the UART/USB cable from the machine running Vivado to the sys-

tem host (Raspberry Pi), to begin speaker evaluation using the host-connected

microphone. We now have the loop: FPGA to Raspberry Pi to Monitor and

Microphone as shown in Fig 3-1.

After initialization, the system begins its basic run-time evaluation control loop:

∙ If the FPGA receives the ‘Overwrite Model’ UART control signal, the system

begins accepting bytes over UART to overwrite the stored BRAM model pa-

rameters. This feature is only to debug, and adapt the system for new speakers,

and can be disabled. Overwriting the model takes roughly 20-40 seconds.

∙ If the FPGA receives the ’Evaluate’ UART control signal, the FPGA begins ac-

cepting bytes over UART and saving the incoming MFCC frames into BRAM.

When 20 MFCC frames have been received (400 inputs/1.6 KB in total), eval-

uation is triggered and returns back over UART the model response.

Model evaluation is triggered 40 more times (on overlapping MFCC frame col-

lections in the utterance) before the average speaker identification decision is

returned. The total latency for classification, from the time the first audio

samples are received at the Zync Core to the final speaker ID decision is 1.8

seconds. Broken down into roughly 0.2 seconds for feature extraction, and

40ms per model evaluation (this includes time required for communication of

incoming features over UART)
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3.5.1 Terminal Interface to Host and FPGA

The interface to the system is a simple terminal application that runs on the host

and sends serial/UART messages to the Xilinx development board. The application

uses the ‘arecord‘ Linux tool to pipe audio samples from a USB microphone to its

own memory, and standard Linux tooling (‘cat‘, ‘echo‘, and ‘</>‘) to communicate

over serial. Figure 3-17 illustrates the interface in use, and an example of positive

verification and negative verification.
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Figure 3-17: Interface to the speaker verification demonstration system. This front-
end application is used to initiate evaluation, record utterances, and view progress of
the system (both the host and FPGA serial print-outs).
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Chapter 4

Conclusions

4.1 Summary

In this thesis, we demonstrated an approach for text-independent speaker identifi-

cation useful for evaluation on commodity FPGAs and other resource-constrained

hardware.

The first chapter of this work explored techniques that reduced the bytesize of

existing speaker ID models by >85%, tolerating a ±3% accuracy degradation. In par-

ticular, we demonstrated three methods of compression of our SID models via drop-

ping into low-precision: manual linear quantization (Section 2.3.1), 0-1 Fixed Point

Re-Training (Section 2.3.2), and Trained Ternary Quantization (Section 2.4). We

introduced a constructed metric that balances the competing demands in a resource-

constrained setting: (1) memory, (2) operations/evaluation, and (3) accuracy. With

respect to this metric, we find (1) manual linear quantization not particularly effective

compared to baseline, (2) significant improvements to the metric with 0-1 Fixed-Point

Re-Training, and (3) the best results with Trained Ternary Quantization. We also

explore model pruning, which we find to have moderate effectiveness in further re-

ducing the model size. To the best of our knowledge, this is the first set of speaker

identification model sized to fit in the on-chip memory of commodity FPGAs.

In the second chapter of this work, we build an RTL design for evaluation of our

speaker ID models. In particular, we design, implement, and benchmark architectures
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for a low-precision fixed point neural network accelerator (Section 3.1). We present

another design that is specific for ternary network evaluation, that improves on the

fixed-point accelerator in power and area (Section 3.3). Compared to a baseline

network full-precision accelerator with the same timing constraints, our low-precision,

sparsity-cognizant design decreases LUT/FF resource utilization by 27% and power

consumption by 12% in simulation.

We are excited by the possible applications of this work to the growing number of

speech systems run on today’s consumer devices and data centers.

The code, experiment logs, and a demonstration video for this thesis is available

at https://skoppula.github.io/thesis.html.

4.2 Future Directions

Building on the work of this thesis, there are a number of research directions that

would be exciting to explore in the future. The breadth of work in this thesis has

yielded many opportunities that we identify for possible areas for work:

∙ Folding of the feature extraction and UART communication into the programmable

logic/RTL designs. This would remove the need for the Cortex A9 on the Zybo

development board, and by turning off that core, we could achieve pretty drastic

power reductions.

∙ Finish demonstration of evaluation of convolutional models on our accelerator

designs (in particular, on the fly Toeplitz transformation). This is work that

was ongoing at the time of thesis completion, but was abandoned to complete

other experiments.

∙ State-of-art speaker identification models as of 2018 (that are extremely large),

are tending towards recurrent networks, and it would be interesting to explore

applying our quantization approaches to these newer models. It is possible

that new quantization approaches might need to be developed to successfully

quantize the gates inside the recurrent kernels.
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∙ Adding data compression/de-compression modules to the RTL design. This is a

trick used in Eyeriss to reduce off-chip data bandwidth, which we could employ

to reduce on-chip memory usage.

∙ Comparison of our quantization techniques with recent techniques for binarizing

neural networks, and a comparison of performance benchmarks with accelerators

for binary neural accelerator (e.g. YodaNN, TrueNorth) from Andri et al. [2016].

These designs are ASICs, so a fair comparison would require either implementing

our design as an ASIC, or re-implementing their designs on our FPGA.

We chose ternary networks in this work (as compared to binary networks),

because at the time of our experiments, ternary networks had comparable accu-

racy to full-precision networks on computer vision tasks, but state-of-art binary

networks showed a 5-10% accuracy degradation. This likely has changed in the

past year, with new techniques for binarization.
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Appendix A

Additional Experimental Results for

Chapter 2

Tables A.1, A.2, and A.3 describe performance on the baseline network architectures

on the RSR and SRE datasets with various configurations of batch normalization/no

batch normalization, and regularization/no regularization.

Figures A-1 and A-2 describe the accuracy changes and absolute magnitude weight

differences introduced after quantizing each of the layers in our CNN SID model.

Table A.3 describes the bias explosion when using manual fixed point question in

Section 2.3.1.

Finally, Figure A-3 describes speaker identification error as we induce higher levels

of sparsity by pruning the model.
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Model Error (%) Mults Parameters P-Score
Fully Connected, Small 81.93 517K 519K 11.343
Fully Connected, Large 79.77 1394K 1396K 12.191
Convolutional 61.22 263K 258K 10.621
Locally Connected 61.57 274K 286K 10.685
Maxout, Small 74.78 1813K 1818K 12.391
Maxout, Large 92.20 2127K 2130K 12.621
Depth-Seperable Conv., Small 94.86 1233K 1221K 12.155
Depth-Seperable Conv., Large 32.20 360K 332K 10.586

Table A.1: Speaker Identification Error of Baseline Models on RSR2015, using no
batch norm and no regularization. While we were unable to find prior work that has
tried trimming both batch norm and regularization from the basic SID models, for
reference and to provide a comparison point: with batch normalization and regular-
ization, a fully-connected large network from Bhattacharya et al. [2016] is able to
achieve 2.8% error. This matches the results from Table 2.1.

Model Error (%) Mults Parameters P-Score
Fully Connected, Small 10.85 519K 520K 10.466
Fully Connected, Large 03.93 1399K 1399K 10.886
Convolutional 14.53 266K 260K 9.991
Locally Connected 13.10 276K 287K 10.017
Maxout, Small 39.93 1821K 1822K 12.121
Maxout, Large 22.92 2134K 2133K 12.017
Depth-Seperable Conv., Large 14.36 1245K 1227K 11.335
Depth-Seperable Conv., Small 28.48 368K 335K 10.532

Table A.2: Speaker Identification Error of Baseline Models on RSR2015, using batch
norm and no regularization. This roughly matches the referenced performance in
prior work (Tashev and Mirsamadi [2016] for the large FCN), and our own results
with batch normalization and regularized models (Table 2.1)
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Model Error (%) Mults Parameters P-Score
Fully Connected, Small 26.43 519K 520K 10.929
Fully Connected, Large 23.07 1399K 1399K 11.710
Convolutional 27.00 266K 260K 10.413
Locally Connected 26.35 276K 287K 10.321
Maxout, Small 46.97 1821K 1822K 12.213
Maxout, Large 39.85 2134K 2133K 12.295
Depth-Seperable Conv., Large 43.86 1245K 1227K 11.853
Depth-Seperable Conv., Small 97.05 368K 335K 10.532

Table A.3: Speaker Identification Error of Baseline Models on SRE10, using no batch
norm and no regularization. For reference, state of art on the same testing split of
SRE10 is 7.6% equal error rate, using a much larger network (>20MB) Greenberg
et al. [2011]. Note that this number is the SRE10 benchmark on an open-set, not
closed-set, speaker ID task – so is not directly comparable, even though the number
of speakers in the task remain the same.

Figure A-1: Increase in error after quantizing each layer in the convolutional SID
network (30-bit min-max linear quantization).

83



Figure A-2: Maximum magnitude of discrepency between the quantized and non-
quantized parameters of each layer in the convolutional SID network (30-bit min-max
linear quantization).

Layer Max W W Scale Max Act. Act. Scale Max Bias Post-Scale Max Bias
linear0 0.07580 3.814e-06 38.8238 0.0019531 62.347168 8368202349.18437
linear1 0.3336 1.525e-05 21.67454 0.0009765 56.698997 3805248814.53354
linear2 0.3490 1.525e-05 42.9360 0.0019531 48.980305 1643527350.61185
linear3 0.01165 4.768e-07 0.500426 0.000015271 1.4277624 196073261258.909

Table A.4: Factoring out the scale terms to perform arithmetic in 30-bit integers. The
small weight scaling factors (‘W Scale’) and activation scaling factors (‘Act. Scale’)
multiply to create an extremely small inverse scaling factor for the bias, causing
extremely large biases, which are susceptible to overflow
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Figure A-3: Speaker ID Error vs. Induced Sparsity into the 16-bit [0,1]-FxPt model.
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Appendix B

Additional Experimental Results for

Chapter 3

Figure B-1 shows the SoC elements available on the Digilent Zybo Z7 development

board used in this work.

Figures B-3, B-4, and B-5 describe power reports for the variants of the fixed-point

accelerator design.

Finally, Figure B-2 describes our sample Vivado Block Design used to test func-

tionality of BRAM on the Zybo Z7 and acquaintance ourselves with the AXI4 BRAM

interface.
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Figure B-1: Listing of the peripherals on the Xilinx XC7Z020-1CLG400C pro-
grammable logic chip. Diagram is from Xilinx Series-7 datasheets Xilinx [2018]
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Figure B-2: Simple design created in Vivado to develop familiarity with Xilinx’s AXI
communication protocol/BRAM usage, test functionality of BRAM on our develop-
ment board, and make preliminary measurements on the time required to read and
write model parameters/outputs to and from BRAM.

Figure B-3: Breakdown report for the 𝑛 = 256, 32-bit parameter design. It follows
the same distribution as the other design variants.
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Figure B-4: Breakdown report for the 𝑛 = 512, 8-bit parameter design. It follows the
same distribution as the other design variants.

Figure B-5: Summary report for the 𝑛 = 512, 32-bit parameter design. This design
has the highest estimated power consumption of all designs, by up to 24%
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