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ABSTRACT

In this paper, we propose a Convolutional Neural Network
(CNN) based speaker recognition model for extracting ro-
bust speaker embeddings. The embedding can be extracted
efficiently with linear activation in the embedding layer. To
understand how the speaker recognition model operates with
text-independent input, we modify the structure to extract
frame-level speaker embeddings from each hidden layer. We
feed utterances from the TIMIT dataset to the trained network
and use several proxy tasks to study the networks ability to
represent speech input and differentiate voice identity. We
found that the networks are better at discriminating broad
phonetic classes than individual phonemes. In particular,
frame-level embeddings that belong to the same phonetic
classes are similar (based on cosine distance) for the same
speaker. The frame level representation also allows us to ana-
lyze the networks at the frame level, and has the potential for
other analyses to improve speaker recognition.

Index Terms— speaker recognition, embedding, frame-
level representation,text-independent

1. INTRODUCTION

Deep neural networks (DNNs) have been actively used in
speaker recognition to discriminate speakers’ identity. In most
settings, DNNs are used as a replacement for Gaussian mix-
ture models (GMMs) to improve the conventional i-vector
approach [1] by having a more phonetically aware Univer-
sal Background Model (UBM) [2, 3, 4]. Other subsequent
method based on DNN were introduced for noise-robust and
domain-invariant i-vector [5, 6, 7] However, the process of
training the GMM-UBM and extracting i-vectors largely re-
mained the same.

More recently, many studies have begun to explore end-
to-end DNN speaker recognition to extract robust speaker
embeddings using large datasets as well as data augmen-
tation [8, 9]. These end-to-end models directly operate on
spectrograms, log Mel features, or even waveforms [10, 11].
Among the end-to-end approaches, x-vectors have been the
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most effective for text-independent scenarios [8]. Compared
to i-vectors and bottleneck feature-based i-vectors, x-vectors
have achieved better results by taking advantage of data
augmentation with noise and reverberation. Due to neural
networks large learning capacity, data augmentation has been
shown to be a cheap and effective approach to improve per-
formance and robustness. The gap between x-vectors and
i-vectors is expected to widen as the amount of data increases
and end-to-end networks continue to be improved.

The i-vector approach is based on the assumption that
each individual mean vector in a GMM is a shift from a mean
vector of the UBM, and that the shifts of all the means are
controlled by a single vector, the i-vector. The model has been
studied extensively and is well understood [1]. In contrast, it
is difficult to understand why and how speaker embedding
networks work, which hinders the development of better end-
to-end speaker recognition models.

In this paper, we introduce a speaker embedding extracted
from a 1-dimensional convolution and linear activation from
an end-to-end model. The use of linear activation is inspired
by previous studies [12, 13], where reducing non-linearities
has been shown to improve performance. The embeddings are
compared to two strong baselines, x-vectors and an approach
based on the VGG network. We then analyze the networks
behavior by modifying the network structure and extracting
frame-level representations from the hidden layers. We feed
utterances from the TIMIT dataset into the model and mon-
itor the behavior of the representations at different training
epochs. We hypothesize that the networks’ ability to recog-
nize speakers is based on how the phonemes are pronounced
and that the networks pay more attention to certain phonemes
or broad class than others. For text-independent input, since it
is unlikely that the same set of phonemes appeared in both the
enrollment and test utterances, we believe the speakers’ iden-
tity is less likely to be decided at the phonetic level but more
likely at a higher level based on the phonetic classes. Iden-
tifying speakers at the broad-class level allows the networks
to assess the speaker’s voice even without the presence of the
exact same phoneme.
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Table 1: Results on the Voxcelebl test set. ReLU is applied
after every layer.

EER DCFp:(),(n DCFp:ODOl
fcl (LDA+PLDA) | 6.2 0.53 0.70
fc2 (LDA+PLDA) 6.9 0.55 0.65

To verify this hypotheses, we conduct phoneme recogni-
tion and broad-class classification tasks using frame-level rep-
resentation of speaker embeddings, and then we visualize and
analyze the frame-level cosine similarity measurements from
the same and different speaker pairs. From these proxy tasks,
we examine how phonetic information is encoded in the net-
work. We also investigate which phoneme or broad-classes
are more important for text-independent speaker recognition
using frame-level speaker embeddings extracted from TIMIT
data.

2. SPEAKER EMBEDDINGS WITH LINEAR
ACTIVATION

Previous work has shown that the layer immediately follow-
ing the statistics pooling layer performs well in combination
with latent discriminant analysis (LDA) and probabilistic
LDA (PLDA) as backends [8]. It is perhaps not surprising
that the layer closest to the output layer contains the most
discriminative information about the output labels. We fol-
low a similar approach to analyze our end-to-end speaker
recognition model.

Our network structure is similar to the VGG network but
we use 1-dimensional convolutions to consider all frequency
bands at once. The network structure consists of 4 1d-CNN
(i.e., filters of size 40x5, 1000x7, 1000x1, 1000x 1 with
strides 1, 2, 1, and 1 and numbers of filters 1000, 1000, 1000,
and 1500) with two fully connected (FC) layers (of size 1500
and 600) as shown in Figure 1. We use statistics pooling as
in [8]. We use a 1-d CNN instead of a 2-d CNN commonly
used for computer vision, because, unlike images, a spectro-
gram carries different meanings in each axis, namely time ver-
sus frequency. A person’s voice can be shifted in time but it
cannot be shifted in frequency. For this reason, the width of
the 1-d CNN is the entire frequency axis.

We use 40-dimensional Mel-Frequency Cepstral Coef-
ficients (MFCCs) with the standard 25ms window size and
10ms shift to represent the speech signal. The features are
normalized to have zero mean. We use the Voxcelebl de-
velopment dataset, including 1,211 speakers and 147,935
utterances, to train the networks. The Voxcelebl test set has
18,860 verification pairs for each positive and negative test,
i.e., a combination of 4,715 utterances from 40 speakers not
included in the development set. The networks are trained
from random initialization. The SGD learning rate is 0.001,
and is decayed by a factor of 0.98 after every 50,000 updates.

Our first experiments use ReLU nonlinearities after each
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Fig. 1: DNN structure to extract speaker embeddings

Table 2: Results on the Voxcelebl test set. ReLU is applied
after every layer except after fcl.

EER | DCF,—0.01 | DCFp—o.001
fcl (LDA+PLDA) 6.2 0.51 0.69
fc2 (LDA+PLDA) 59 0.50 0.62

layer in the network. Results are shown in Table 1. We find
similar results as in [3] that the vectors from the first fully con-
nected layer (fc1) have better performance than those from the
second fully connected layer (fc2).

We remove the nonlinear activation function before the
last hidden layer (fc2), and the results are shown in Table 2.
From the result, we observe better performance when remov-
ing the activation function, and this observation has also been
made in previous studies [13, 12]. We subsequently use the
vectors from the fc2 layer as speaker embeddings.

The differences between recent speaker embedding ap-
proaches are summarized in Table 3. Using the same setting
as in Table 2, we compare the speaker embeddings with i-
vectors, x-vectors, and the approach based on the VGG net-
work. Results are shown in Table 4. We augment the dataset
as in [8] with reverberation and different noise types, such
as babble noise and background music. The number of ut-
terances is 147,935 and we augment an additional 140,000
utterances. Without data augmentation, the proposed speaker
embedding method is slightly worse than i-vectors but signifi-
cantly outperforms the VGG approach and x-vectors. We find
that the i-vectors in [9] are worse because they use a small
number of Gaussian components for the GMM-UBM. After
using 2,048 components, the i-vectors perform the best. With
data augmentation, the EER improves by 15% for x-vectors
but is still worse than i-vectors. Our embeddings also bene-
fit from data augmentation and is able to match the i-vector
results.
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Table 3: Three recent speaker embedding approaches.

x-vector [3] VGG [9] Ours
.. Spectrogram MFCC
Input for training MFCC with ﬁzed 1er§gth(3sec) with fixed length (2sec)
Input normalization CMN CMVN CMN
Structure TDNN 2d-CNN (VGG-M) 1d-CNN
Parameters 4.4m 64m 13m
Global Pooling Statistics Average Statistics
Embedding layer First fully connected layer | Last fully connected layer | Last fully connected layer
Nonlinearity All layers All layers be f?rlel :r}l,lj:ig?rfgql);yer
Embedding Dimension 512 1024 600
Backend Zero-mean norm.+LDA Euclidean Distance Zero-mean norm.+LDA
Processing +length norm.+PLDA with Siamese network +length norm.+PLDA

Table 4: Results on the Voxcelebl test set. Systems trained
with data augmentation are labeled with *.

EER DCFp=0.01 | DCF;=0.001

i-vector 5.4 0.45 0.63
i-vector* 5.5 0.48 0.61
VGG [9] 7.8 0.71 -

x-vector (Cosine) 11.3 0.75 0.81
x-vector (PLDA) 7.1 0.57 0.75
x-vector* (Cosine) 9.9 0.69 0.85
x-vector® (PLDA) 6.0 0.53 0.75
fc2 (Cosine) 7.3 0.56 0.64
fc2 (PLDA) 5.9 0.50 0.62
fc2* (Cosine) 7.0 0.58 0.68
fc2* (PLDA) 5.3 0.45 0.63

3. FRAME-LEVEL REPRESENTATION OF
SPEAKER EMBEDDING AND ITS ANALYSIS

Conventional speaker recognition approaches, such as i-
vectors, require many steps that are carefully designed for
learning a robust representation of speaker identity from
acoustic features. Representations learned from deep net-
works, however, are optimized for this particular task purely
from data [14]. The output vectors produced by the inter-
mediate layers, the hidden representation, could be the key
to understand what end-to-end speaker recognition model
implicitly learns from voice inputs. We adopt the approach
used in [15, 16] where several proxy tasks are used to analyze
the hidden representations. In speaker recognition, several
studies have assessed which phoneme contributes the most to
discriminating speakers [17], and which phonetic classes are
more important than others [18]. Both papers conclude that
vowels and nasals provide the most useful information for
identifying speakers. However, the experiments are limited to
a single phoneme or a single phonetic class, so it is difficult to
draw similar conclusions when the networks can make use of
an entire utterance. Wang et al. [19] analyze speaker embed-
dings in a text-dependent speaker recognition system, and use
an approach similar to [15]. However, text-dependent speaker

recognition is easier to analyze than the text-independent
case because the enrollment and test utterances always have
the same phoneme statistics. We aim to understand how the
embedding representation encodes phoneme information at
the frame level when text-independent input is given.

In this section, we analyze what phonetic information is
encoded in the end-to-end speaker recognition model and
how they capture and discriminate between talkers given
text-independent input. We use phoneme recognition and
phonetic classification as proxy tasks and monitor the behav-
ior over the course of training to answer these questions. We
also identify phonemes that are critical for text-independent
speaker verification. For the proxy tasks, we assume that the
ability of a classify to predict a certain property depends on
how well the property has been encoded in the representation
(as in previous studies [15, 16, 19]). Poor accuracy does not
necessarily mean the information is not present however.

3.1. Frame-level speaker embeddings

To obtain frame-level representations, we need to modify the
structure of our models. For training, we substitute the statis-
tics pooling layer to be an average pooling layer. After the
modification, the EER increased from 7.0% to 8.4% using
cosine similarity, and from 5.3% to 6.0% with PLDA. Af-
ter training, we moved the average pooling layer to be after
the fc2 layer but just before ReLLU activation function. This
modification does not change the final results, because mul-
tiplying the average with a matrix is the same as the average
of the individual vectors multiplied by the matrix. The out-
put vectors produced by all layers before the average pooling
yields frame-level representations not only for CNN layers
but also for FC layers. Specifically, suppose u is a segment-
level representation (i.e. a speaker embedding extracted at the
fc2 layer in Figure 1). The embedding u can be represented
as the frame-level representation ; which is extracted from
the modified model structure as u = (1/T) Y./ @; where T
is the number of frames in the utterance. We extracted this
frame-level representation at all CNN and FC layers for the
proxy tasks.
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Fig. 2: Phoneme error rates of segmental models on the
TIMIT test set using frame-level representations from differ-
ent layers. Lower is better.
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Fig. 3: Phoneme error rates of segmental models on the
TIMIT test set using frame-level representation from differ-
ent layers over the course of training. Lower is better.

3.2. Phoneme Recognition

Given the trained model with the modified structure, we use
TIMIT utterances to examine the ability of the speaker recog-
nition system at distinguishing phonemes. The first CNN
layer produces an output every 10ms while subsequent layers
produce an output every 20ms because of the second layer
stride by 2 that reduces the effective analysis rate to 20ms.
The stride should not affect the analyses, because previous
work has shown that similar, if not better, results can be
achieved with one-fourth of the original frame rate [20].

We train a phoneme recognizer with the frame-level rep-
resentation extracted from each of the layers and analyze their
performance. We use an end-to-end discriminative segmental
model [20] with a 2-layer LSTM model as our phoneme rec-
ognizer. The input to the LSTM consists of frame-level repre-
sentations from different layers from the end-to-end speaker
recognition model. In each layer, the output vectors of the
LSTM are sub-sampled by half. The final segment scores are
based on the output vectors of the LSTM within the seg-

Table 5: TIMIT broad phonetic classes.

Class Symbol
Affricate jh, ch
Closures bel,dcel,gel,pel,tek kel
Fricative s,sh,z,zh,f,th,v,dh
Nasals m,n,ng,em,en,eng,nx
::g’gﬁ(‘::sh 1, w,y, hh, hv, el
iy, ih, eh, ey, ae, aa, aw,
Vowels ay, ah, ao, oy, ow, uh, uw,
ux, er, ax, ix, axr, ax-h
Stops b, d, g p.t, k, dx, q
others pause(pau), ep.enthetic silence(epi),
start and end silence (h)
Training epoch (System EER)
60% B Epoch 0.2 (38.54%)
B Epoch 0.4 (27.72%)
5% Epoch 0.6 (22.17%)
B Epoch 1(18.31%)
> B Epoch 5 (14.97%)
% 50% B Epoch 10 (11.07%)
< M Epoch 70 ( 8.40%)
S 4su
S
E
O 40%
Al |‘ | H
- LU

Layer1 Layer2 Layer3 Layer4 Layer5 Layer6

Fig. 4: Phonetic class classification accuracy on TIMIT Test
set using features from each layer over the course of training.
Higher is better.

ment and the duration of the segments (the FCB feature set
in [21]). We allow a segment to have a maximum duration of
120 frames. The segmental models are trained with marginal
log loss [22] for 20 epochs with vanilla stochastic gradient
descent (SGD), a step size of 0.1. The batch size is one utter-
ance, and the gradients are clipped to norm 5.

Figure 2 shows the phoneme error rate (PER) for different
layers, and indicates that the embeddings from higher layers
give higher PERs. Judging from the PERs over the course of
training, the training error, in general, stops improving after
epoch five. At layer 6 for example, the PER plateaus at 34%.
From this observation, the frame-level representation contains
less information about phonemes, and the phoneme identify
does not seem to be important for discriminating speakers.

3.3. Broad-Class Phonetic Classification

For broad-class phonetic classification, we collect all phoneme
segments in the TIMIT dataset based on the ground truth seg-
mentation. The broad phonetic classes we use are shown in
Table 5. The segment embedding of each segment is com-
puted by averaging the frame-level embedding obtained
from the trained speaker recognition system. We create a
naive classifier by averaging the embeddings of the same
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affricate [0.05 0.01 0.20 0.04 0.12 0.10 0.08 01"

affricate [0-14 o.ozﬁo 01 0.00 0.03 0.13 0.1
closer {0-00
fricative |0.-01 o,ozo 010.03 0.03 0,03 0.1

nasal [0.00 0.06 0.04 0.25 0.09 0.11 0.02

0.72

closer }0-00 0.33 0.21 0.04 0.19 0.04 0.02 0.17. 0.64 0.15 0.04 0.10 0.05 0.07 0.0!

fricative |0.00 0.040 02 0.02 0.04 0.01 /0.3 0.56
hasal [0.00 0.06 0.03 0.23 0.06 0.07 0.02 0.48
0.40

other [0.00 0.09 0.06 0.08 0.23 0.18 0.08 0.27. other [0.00 0.05 0.08 0.03 [3]0.08 0.04 0.1.

True label
True label

0.32

semi [0.00 0.06 0.10 0.07 0.18 0.30 0.05 0.2 0.24 semi |0-00 0.03 0.05 0.07 0.08 0.33 0.03 0.4
0.16

0.08

stop [0-01 0.02 0.22 0.03 0.05 0.08 0.17 0.01 0.04 0.24 0.04 0.04 0.10 0.30 0.2.

stop

vowel [0.00 0.00 0.04 0.02 0.02 0.06 0.01

vowel [0.00 0.01 0.09 0.02 0.02 0.04 0.02
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(a) Layer 1 (b) Layer 6

Fig. 5: Confusion matrix for broad-class phonetic classifica-
tion comparing the features produced by layer 1 and layer 6
at epoch 70.

affricate
closure
fricative
nasal
other .
semivowel_glide -/
® stop -
vowel

L 2

(a) Layer 1

(b) Layer 6

Fig. 6: Low-dimensional t-SNE projection of speaker embed-
dings from layer 1 and 6 at epoch 70 using utterances from
the TIMIT core test set. The broad-class label is printed in the
figure.

phonetic classes. Specifically, we compute a vector U? =
> icp, Wi/|Py| for phonetic class b, where P, contains the
segments of class b, and u; is the segment embedding of
segment ¢ by averaging the frame embedding in segment
7. Given a new segment j, we compute its segment em-
bedding u; by averaging the frame embeddings computed
from the trained network. Classification can be done with
argmax;, (cos(U%, u;)). As shown in Figure 4, the system at
the early stage of training does not distinguish the phonetic
classes well, and is worst in the higher layer. After train-
ing, the model learns to distinguish phonetic classes well. In
particular, the representation in the higher layers performs
significantly better than the ones in the lower layers.

The confusion matrix of the broad phonetic classes is
shown in Figure 5. The diagonal of the confusion matrix
shows that the accuracy of the embedding from layer 6 per-
forms better the one from layer 1. An interesting observa-
tion is that some categories are still confusable at layer 6.
For example, affricates and stops are predicted as fricatives,
and nasals and semivowels are predicted as vowels. This
suggests that the model might be classifying segments into
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Fig. 7: Stats in terms of phoneme

even broader categories, such as obstruents and sonorants.
This phenomenon is also observed in the t-SNE plots of the
phoneme segments shown in Figure 6'.

3.4. Critical phonemes and phonetic classes

In this section, we analyze cosine similarity at the frame level.
In the TIMIT dataset there are 10 utterances per speaker. We
calculated cosine similarity for all utterances using frame-
level speaker embeddings from the modified structure. For
enrollment, for each speaker nine out of ten utterances are
used by averaging the segment embeddings to create a single
speaker embedding. Figure 7 (a) shows the frame-level co-
sine similarity with the single speaker embedding. In the ex-
ample, the phoneme /ix/ shows the highest cosine similarity
(blue dot) and the phoneme /w/ shows the lowest (red dot).
Figure 7 (b) shows the histogram of phoneme frequency in

GIF animation also Available on https://people.csail. mit.edu/swshon
/supplement/slt18.html



the training set, and (c) shows how often each phonetic class
achieves the highest cosine similarity. From the histogram,
we made similar observation as previous studies [17, 18] that
vowels and nasals are important for discriminating speakers.
These observations suggests that using an attention mecha-
nism at the pooling layer may improve the performance of
speaker recognition.

Figure 8 shows the frame-level similarity matrix between
two utterances from the TIMIT training set. In (a), the two
utterances are spoken by the same speaker and (b) by differ-
ent speakers. For comparison, the same text content is chosen
in both figures. From the figures, the same phoneme shows
relatively high similarity even for different speakers. How-
ever, in the case of (a) which is spoken by the same speaker,
the phonemes that share the same phonetic classes show high
similarity. For example, /s/ and /er/ show high similarity with
/z/ and /aa/, respectively. From this result, we observe that the
network could also potentially measure a speaker’s similarity
across different phonemes. Interestingly, obstruents, such as
fricatives and closures, have relatively high similarity scores
even for different speakers.

3.5. Discussion

Using both frame-level and segment-level representations, we
observe that the representations from higher network layers
corresponds to broader classes, while the representation from
lower layers correspond to classes that are more specific. Par-
ticularly, the representation appears to converge towards ob-
struent and sonorant categories at higher layers. This behav-
ior suggests that the model computes similarity at a more ab-
stract level than that at the phonetic level. It potentially could
provide an advantage when the input is text-independent and
short because the model has fewer phonemes to compare with
the enrollment data. This is consistent with the results found
in the similarity matrix in Figure 8.

4. CONCLUSION

In this paper, we proposed a robust speaker embedding for
speaker verification. Embeddings are extracted without non-
linear activation and are compared to other approaches to ver-
ify their effectiveness. On the Voxcelebl dataset with only
1.2k speakers, the proposed approach shows superior perfor-
mance compared to x-vectors. In this framework, there is still
room for improvement, such as exploring a larger speaker
dataset, a different loss function, such as the angular Softmax
loss, or adding an attention layer. We leave these as future
work.

From the analysis, we attempt to better understand how
the speaker recognition model extracts discriminative embed-
dings. The analysis provides some insight on the model be-
havior, and the frame-level analysis provides an important
tool to assess the quality of the trained models.
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