
A Study of Adaptive Enhancement Methods for
Improved Distant Speech Recognition

by
Andrew Richard Titus

S.B., Massachusetts Institute of Technology (2017)
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2018

c○Massachusetts Institute of Technology, 2018. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole and in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

May 10, 2018
Certified by. .

James Glass
Senior Research Scientist

Thesis Supervisor
Certified by. .

Hao Tang
Postdoctoral Associate

Thesis Supervisor
Accepted by .

Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

A Study of Adaptive Enhancement Methods for Improved

Distant Speech Recognition

by

Andrew Richard Titus

Submitted to the Department of Electrical Engineering and Computer Science
on May 10, 2018, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Automatic speech recognition systems trained on speech data recorded by micro-
phones placed close to the speaker tend to perform poorly on speech recorded by
microphones placed farther away from the speaker due to reverberation effects and
background noise. I designed and implemented a variety of machine learning models
to improve distant speech recognition performance by adaptively enhancing incoming
speech to appear as if it was recorded in a close-talking environment, regardless of
whether it was originally recorded in a close-talking or distant environment. These
were evaluated by passing the enhanced speech to acoustic models trained on only
close-talking speech and comparing error rates to those achieved without speech en-
hancement. Experiments conducted on the AMI, TIMIT and TED-LIUM datasets
indicate that decreases in error rate on distant speech of up to 33% relative can be
achieved by these with only minor increases (1% relative) on clean speech.

Thesis Supervisor: James Glass
Title: Senior Research Scientist

Thesis Supervisor: Hao Tang
Title: Postdoctoral Associate

3

4

Acknowledgments

I am extremely grateful to my advisor, Jim Glass, for providing me with the resources

and guidance necessary to complete this thesis in the fast-paced M.Eng. program.

Thank you for the opportunity to work with you in Spoken Language Systems.

I am also very grateful to my co-advisor, Hao Tang, who helped me numerous

times with debugging my code, providing suggestions and new ideas, and editing my

thesis. Thank you for taking such an interest in my work and making time to meet

with me on a regular basis.

I also thank everyone who has helped me to improve my skills in software develop-

ment and machine learning over the course of my studies, including my labmates in

Spoken Language Systems and coworkers and fellow interns at Lawrence Livermore

National Laboratory, Bloomberg LP and Apple, Inc. Thank you for teaching me both

technical and non-technical skills in both the academic and corporate worlds.

Thank you to Tony Eng and the rest of the 6.UAT course staff for financially

supporting me through my M.Eng. studies as a Teaching Assistant. I am very thankful

for the opportunity to not only help improve the communication skills of my students,

but also my own.

Last but certainly not least, thank you to Miranda, my friends and my family

for providing me with love and support throughout my studies. Thank you for being

there for me in both good times and bad times. I couldn’t have done it without you.

5

6

Contents

1 Introduction 15

2 Related Work 19

2.1 Autoencoder Models . 20

2.1.1 Variational Autoencoders (VAEs) 21

2.1.2 Denoising Autoencoders (DAEs) 22

2.2 Domain Adversarial Neural Networks (DANNs) 22

2.3 Generative Adversarial Networks (GANs) 24

2.3.1 CycleGAN . 24

3 Initial Attempts at Data Augmentation via Unsupervised Domain

Adaptation with Multidecoders 27

3.1 Multidecoder . 28

3.1.1 Architecture . 29

3.1.2 Nuisance attribute transformations for multidecoders 31

3.2 Experiments . 32

3.2.1 AMI Meeting Corpus . 32

3.2.2 Training . 33

3.2.3 Results . 34

4 Adaptive Enhancement Models 37

4.1 Modular network components . 38

4.2 Model descriptions . 40

7

4.2.1 Baseline acoustic model . 40

4.2.2 Enhancement network . 41

4.2.3 Enhancement multidecoder 42

4.2.4 Multitask network . 42

4.2.5 Multitask multidecoder . 43

5 Experimental Setup and Outcomes 45

5.1 Simulating distant speech data . 46

5.2 TIMIT Acoustic-Phonetic Continuous Speech Corpus 47

5.2.1 Experimental setup . 50

5.3 TED-LIUM Corpus Release 2 . 53

5.3.1 Experimental setup . 53

6 Conclusion 61

6.1 Summary of contributions . 61

6.2 Future Work . 62

6.3 Parting Thoughts . 63

8

List of Tables

3.1 AMI 10% Subset: Unsupervised Domain Adaptation Results 35

5.1 TIMIT Speech Enhancement Results 51

5.2 TED-LIUM (10% Subset) Speech Enhancement Results. 56

5.3 TED-LIUM Speech Enhancement Results. 56

9

10

List of Figures

2-1 Sample image outputs from CycleGAN image-to-image translation model

(Zhu et al., 2017) . 25

3-1 An example single layer CNN-based encoder for AMI multidecoder

experiments . 30

3-2 Optimal multidecoder architecture for AMI experiments. Convolu-

tional layer parameters shown as “Conv⟨Receptive field size⟩-⟨Number

of channels⟩-⟨Pool size⟩”. ReLU not shown for simplicity. 35

4-1 Sample encoder architecture for adaptive speech enhancement experi-

ments. Convolutional layer parameters shown as “Conv⟨Receptive field

size⟩-⟨Number of channels⟩-⟨Pool size⟩”. ReLU and BatchNorm layers

not shown for simplicity. 39

4-2 Sample decoder architecture for adaptive speech enhancement experi-

ments (symmetric to the encoder in Figure 4-1). Convolutional layer

parameters shown as “Conv⟨Receptive field size⟩-⟨Number of channels⟩-

⟨Pool size⟩”. ReLU and BatchNorm layers not shown for simplicity. . 39

4-3 Sample frame classifier architecture for adaptive speech enhancement

experiments. Fully-connected layer parameters shown as “FC⟨Hidden

unit count⟩”. ReLU and BatchNorm layers not shown for simplicity. . 40

4-4 Sample baseline acoustic model architecture for adaptive speech en-

hancement experiments. 41

4-5 Sample enhancement network architecture for adaptive speech enhance-

ment experiments. 41

11

4-6 Sample enhancement multidecoder architecture for adaptive speech en-

hancement experiments. The encoder 𝐸 is shared for reconstructing

both close and distant log-Mel outputs. 42

4-7 Sample multitask network architecture for adaptive speech enhance-

ment experiments. The encoder 𝐸 is shared for both speech enhance-

ment and frame classification. 43

4-8 Sample multitask multidecoder architecture for adaptive speech en-

hancement experiments. The encoder 𝐸 is shared for frame classifica-

tion and reconstructing both close and distant log-Mel outputs. . . . 44

5-1 Convolution steps for creating distant speech data. Utterance shown

is from TIMIT with ID: SX126, Speaker FELC0 48

5-2 A sample TIMIT sentence pair and associated room impulse response.

Utterance ID: SX126, Speaker FELC0 49

5-3 TIMIT ℓ2 distances between encoded close-talking and distant speech

latent vectors, pre- and post-enhancement. Plots are shown for the

enhancement network, enhancement multidecoder, multitask network

and multitask multidecoder models with the best performance in the

TIMIT experiments. 52

5-4 A sample TED-LIUM sentence pair and associated room impulse re-

sponse. Utterance ID: 0001586-0001998, Speaker Bill Gates 54

5-5 TED-LIUM (10% subset) ℓ2 distances between encoded close-talking

and distant speech latent vectors, pre- and post-enhancement. Plots

are shown for the enhancement network, enhancement multidecoder,

multitask network and multitask multidecoder models with the best

performance in the TED-LIUM (10% subset) experiments. 57

12

5-6 TED-LIUM ℓ2 distances between encoded close-talking and distant

speech latent vectors, pre- and post-enhancement. Plots are shown for

the enhancement network, enhancement multidecoder, multitask net-

work and multitask multidecoder models with the best performance as

determined by the TED-LIUM (10% subset) experiments. 58

13

14

Chapter 1

Introduction

Acoustic models for automatic speech recognition (ASR) systems have been signif-

icantly improved by advances in neural networks, including deep neural networks

(Hinton et al., 2012), long short-term memory (LSTM) networks (Hsu et al., 2016;

Graves et al., 2013) and convolutional neural networks (Sainath et al., 2015). Despite

their successes, these models can still perform poorly on speech from domains that

were not well-represented in the data with which they were trained (Yoshioka and

Gales, 2015). As ASR systems become more prevalent in everyday life, it becomes

increasingly important for them to perform well, even in these adverse conditions.

One such set of adverse conditions is referred to as distant speech recognition,

in which the microphone is situated far from the speaker. ASR systems trained

on speech data recorded by microphones placed close (within several inches) to the

speaker tend to perform poorly in the distant speech domain due to reverberation

effects and background noise (Feng et al., 2014), with degradations in word error

rate (WER) above 30% absolute possible in some cases (Swietojanski et al., 2013).

For many systems using speech interfaces, it is often only possible (or at least more

common) for one to interact with the system from a distance. Additionally, because

a significant portion of speech recognition research has historically only focused on

performance in the close-talking domain, there is generally more speech data available

for the close-talking domain than there is for the distant domain.

One technique to address this performance degradation on distant speech data

15

is speech enhancement. Speech enhancement systems have the goal of “enhancing”

incoming speech by transforming distant or otherwise noisy speech to appear as if

it is clean, close-talking speech via filtering, masking or other techniques (Lim and

Oppenheim, 1979). This allows one to use a speech recognizer for distant speech that

has only been trained on a proportionally larger amount of close-talking speech data.

This also replaces the time-intensive task of manually labeling hundreds or thousands

of hours of new data and has the additional benefit of being a useful preprocessing

step in an online system.

A common issue with most speech enhancement systems is that although they

can improve recognition results for systems evaluated on distant or noisy speech,

they tend to have side effects on the spectra for clean, close-talking speech that can

degrade recognition results when the system is evaluated on such speech (Xu et al.,

2014). A common technique for addressing this issue is to train a close-talking speech

detector that uses zero-crossing rate and energy information to determine whether

the speech needs to be enhanced before passing it to a speech recognizer (Xu et al.,

2015). While this method has helped to improve overall results, it does not address

the lack of robustness to clean speech present in current speech enhancement models

themselves.

Therefore, I decided to research and develop a variety of adaptive speech en-

hancement models and explore their abilities to improve distant speech recognition

performance without degrading clean speech recognition performance or requiring

separate detectors to be trained. Some models focus on simply performing adaptive

speech enhancement before passing it to an existing acoustic model trained on only

close-talking speech data, whereas others contain their own acoustic model trained

on close-talking speech data in conjunction with the enhancement model.

The rest of the thesis is organized as follows. I discuss related work and background

information in Chapter 2. I then describe some initial experiments with data augmen-

tation via unsupervised domain adaptation in Chapter 3, whose challenges motivated

the interest in the adaptive speech enhancement models described in Chapter 4. I

discuss experimental setup and outcomes in Chapter 5 before concluding the thesis

16

with a discussion of results and possible future work in Chapter 6.

17

18

Chapter 2

Related Work

Researchers have approached the problem of speech enhancement at various stages of

the feature extraction pipeline for ASR systems. Linear filtering approaches seek to

dereverberate the signal before features are extracted by attempting to find an optimal

filter that cancels out the room impulse response (RIR) by blind deconvolution (Gille-

spie and Atlas, 2003; Hopgood and Rayner, 2003). Spectral enhancement approaches

seek to enhance the speech in the frequency domain after a short-time Fourier trans-

form (STFT) is performed on the signal by directly modifying the STFT coefficients

with moving-average or predictive estimators (Yoshioka et al., 2012). Finally, feature

enhancement approaches have been developed to denoise logarithmically-compressed

feature vectors (for example, Mel-frequency cepstral coefficients (MFCCs) or log Mel-

frequency filter bank features) directly before being passed into the acoustic model

for the speech recognizer (Feng et al., 2014; Xu et al., 2014, 2015).

Regardless of where a given speech enhancement technique is being applied, one

can consider the goal of the technique to be to retain the linguistic components

of the speech signal necessary for speech recognition while filtering out noise and

reverberation components of the signal that do not affect the spoken content of the

signal (referred to by Hsu et al. (2017b) collectively as the “nuisance attribute”). If

close-talking speech is considered to be the “source” domain and distant speech is

considered to be the “target” domain, then speech enhancement can therefore be

viewed as a domain adaptation problem, where the goal is to take a model that

19

performs well on the source domain and adapt it to also generalize well to data

drawn from the target domain by making use of linguistic components while ignoring

the nuisance attribute.

It is therefore of interest to investigate common machine learning models used to

learn data representations encoding these linguistic and non-linguistic components

and consequentially models that can perform domain adaptation based on these com-

ponents. Below I review three generic model families for learning data representations

useful for domain adaptation: autoencoders, domain adversarial neural networks and

generative adversarial networks.

2.1 Autoencoder Models

A common type of model used in machine learning to learn data representations in an

unsupervised fashion (i.e., without explicit labeling of what the representation should

be) is the autoencoder (Bourlard and Kamp, 1988). Autoencoders are machine learn-

ing models that consist of two neural networks: an encoder Φ and a decoder Ψ. The

autoencoder is trained end-to-end by using backpropagation and stochastic gradient

descent to minimize reconstruction loss, a measure of how well the autoencoder recov-

ered the original input after encoding and decoding. Formally, for input data 𝒳 = R𝑑

and latent space ℱ = R𝐽 , define an encoder Φ : 𝒳 → ℱ and decoder Ψ : ℱ → 𝒳 ,

where Φ,Ψ = arg minΦ,Ψ ‖𝑥− (Ψ ∘ Φ)(𝑥)‖2 for 𝑥 ∈ 𝒳 .

A problem that commonly arises when there is insufficient regularization applied

to the learning algorithm being used is when the autoencoder simply learns an iden-

tity function of its input without the encoder learning any salient features of the

underlying data distribution. Another way of stating this is that the reconstruction

loss for any 𝑥 ∈ 𝒳 will be nearly 0, even if 𝑥 is not drawn from the generative process

for the given dataset 𝑆 = {𝑥1, . . . , 𝑥𝑛} where 𝑥𝑖 ∈ 𝒳 .

20

2.1.1 Variational Autoencoders (VAEs)

One way to regularize autoencoders being trained on large datasets with intractable

posterior distributions is to use the Auto-encoding Variational Bayes (AEVB) algo-

rithm to optimize recognition models using a Stochastic Gradient Variational Bayes

(SGVB) estimator. When neural networks are used for the recognition model, the

resulting model is known as a variational autoencoder (VAE) (Kingma and Welling,

2014).

Formally, let the input data be 𝑛 samples of some discrete or continuous variable

𝑥 ∈ 𝒳 . Let 𝜑 be the learned model parameters and 𝜃 be the model parameters for

the process generating 𝑧 ∈ ℱ . Let the prior over the latent variables 𝑧 be a cen-

tered isotropic multivariate Gaussian 𝑝𝜃(𝑧) = 𝒩 (𝑧; 0, 𝐼). Additionally, let 𝑝𝜃(𝑥|𝑧) be

a multivariate Gaussian whose distribution parameters are computed from 𝑧 with a

multilayer perceptron. Because the true latent posterior 𝑝𝜃(𝑧|𝑥) is intractable in this

situation, one can instead approximate the latent posterior with a diagonal multivari-

ate Gaussian log 𝑞𝜑(𝑧|𝑥(𝑖)) = log𝒩 (𝑧;𝜇(𝑖), 𝜎2(𝑖)𝐼), where the mean 𝜇(𝑖) and standard

deviation 𝜎(𝑖) are outputs of the encoder 𝐸 given input datapoint 𝑥(𝑖).

The loss function used for VAEs (see Equation 2.1) then regularizes the model

parameters 𝜑 by adding the negative Kullback-Leiber divergence of the approximated

latent posterior 𝑞𝜑(𝑧|𝑥) to the latent prior 𝑝𝜃(𝑧) = 𝒩 (𝑧; 0, 𝐼). This allows VAEs to

efficiently perform approximate inference of the true posterior log 𝑝𝜃(𝑥|𝑧) given 𝐿

samples of 𝑧 (using the reparametrization trick described in Kingma and Welling

(2014)) and model parameters 𝜃.

ℒ(𝜃, 𝜑;𝑥(𝑖)) ≃ −𝐷𝐾𝐿(𝑞𝜑(𝑧|𝑥)||𝑝𝜃(𝑧)) +
1

𝐿

𝐿∑︁
𝑙=1

log 𝑝𝜃(𝑥
(𝑖)|𝑧(𝑖,𝑙))

≃ 1

2

𝐽∑︁
𝑗=1

(︁
1 + log((𝜎

(𝑖)
𝑗)2) − (𝜇

(𝑖)
𝑗)2 − (𝜎

(𝑖)
𝑗)2

)︁
+

1

𝐿

𝐿∑︁
𝑙=1

log 𝑝𝜃(𝑥
(𝑖)|𝑧(𝑖,𝑙))

where 𝑧(𝑖,𝑙) = 𝜇(𝑖) + 𝜎(𝑖) ⊙ 𝜖(𝑙) and 𝜖(𝑙) ∼ 𝒩 (0, 𝐼)

(2.1)

21

A variation of the variational autoencoder, the factorized hierarchical variational

autoencoder (FHVAE), was developed by Hsu et al. and has been shown to suc-

cessfully disentangle sequence-level attributes (for example, speaker volume, noise

environment, etc.) from segment-level attributes (linguistic content) in the latent

space (Hsu et al., 2017a). These segment-level attributes were shown to improve

recognition results for noisy speech recognition tasks on the Aurora-4 database when

used as features.

2.1.2 Denoising Autoencoders (DAEs)

Another way to prevent autoencoders from learning identity functions is to corrupt

the input to the model. Vincent et al. (2008) proposed the Denoising Autoencoder

(DAE), where the learning criterion is modified so as to not just learn an accurate

reconstruction of the input with the model, but to also be robust to partial destruction

of the input by learning to map partially destroyed inputs to almost the same latent

representation as the corresponding clean inputs. Formally stated, for clean input

dataset 𝑆𝑐 = {𝑥1, . . . , 𝑥𝑛} where 𝑥𝑖 ∈ 𝒳 and its corresponding dirty version 𝑆𝑑 =

{𝑓𝑑(𝑥1), . . . , 𝑓𝑑(𝑥𝑛)} = {̃︀𝑥1, . . . , ̃︀𝑥𝑛} for 𝑥𝑖 ∈ 𝑆𝑐 and some noising function 𝑓𝑑 : 𝒳 →

𝒳 , redefine the encoder Φ and decoder Ψ originally defined at the beginning of Section

2.1 to be Φ,Ψ = arg minΦ,Ψ ‖𝑥𝑖 − (Ψ ∘ Φ)(̃︀𝑥𝑖)‖2 for corresponding datapoints 𝑥𝑖 ∈

𝑆𝑐, ̃︀𝑥𝑖 ∈ 𝑆𝑑. DAEs are then trained with similar optimization methods as standard

autoencoders. Results indicate that DAEs can in fact learn better representations of

input data suitable for learning tasks such as speech enhancement (Feng et al., 2014;

Lu et al., 2013; Ishii et al., 2013) and image denoising (Xie et al., 2012). Additionally,

multiple layers of DAEs can be stacked together to make deep learning models that

learn useful higher-level representations for various problems (Vincent et al., 2010).

2.2 Domain Adversarial Neural Networks (DANNs)

Consider a setup similar to the one described for DAEs in Section 2.1.2, where both

an annotated speech corpus and unannotated speech corpus are available, but no

22

correspondence between their datapoints is known. Formally, data 𝑆1 = {𝑥1, . . . , 𝑥𝑛}

where 𝑥𝑖 ∈ 𝒳 from one domain (for example, close-talking speech) are available in

addition to data 𝑆2 = {𝑦1, . . . , 𝑦𝑚} where 𝑦𝑖 ∈ 𝒳 from a different domain (for example,

noisy speech), but no correspondence between the datapoints 𝑥𝑖 ∈ 𝑆1 and 𝑦𝑖 ∈ 𝑆2 is

known. Additionally, define a set of 𝐿 possible labels 𝒴 = {0, 1, . . . , 𝐿− 1}. Assume

that corresponding labels 𝑇1 = {ℓ1, . . . , ℓ𝑛} where ℓ𝑖 ∈ 𝒴 are available for data 𝑆1

(i.e., labeled pairs (𝑥𝑖, ℓ𝑖) are available), but no such labels are known for 𝑆2.

In such a situation, it can be difficult to build models that predict labels with

high accuracy for both data in 𝑆1 and 𝑆2. One way to build models that perform

well on one domain and generalize to the other is to try to ensure that the learned

representation of input data contains little to no information about the domain from

which it originated while preserving enough information to predict labels. Domain

Adversarial Neural Networks (DANNs), originally proposed by Ganin et al. (2016),

implement this idea by adding a domain regressor component to an existing neural

network predictive model.

Formally, let this predictive neural network be the composition of a feature extrac-

tor 𝐺𝑓 (·; 𝜃𝑓) and a label predictor 𝐺ℓ(·; 𝜃ℓ). The domain regressor 𝐺𝑑(·; 𝜃𝑑) therefore

takes the feature outputs of 𝐺𝑓 and predicts a value in [0, 1] where a prediction of

0 indicates a belief that the features originated from data in 𝑆1 and a prediction

of 1 indicates a belief that the features originated from data in 𝑆2. The predictive

neural network and domain regressor can therefore be viewed as playing a two-player

minimax game with the following value function 𝑉 (𝐺𝑓 , 𝐺ℓ, 𝐺𝑑), where 𝜆 is a tunable

regularization parameter:

min
𝐺𝑓 ,𝐺ℓ

max
𝐺𝑑

𝑉 (𝐺𝑓 , 𝐺ℓ, 𝐺𝑑) =
1

𝑛

𝑛∑︁
𝑖=1

ℒℓ(𝑥𝑖, ℓ𝑖) − 𝜆

(︃
1

𝑛

𝑛∑︁
𝑖=1

ℒ𝑑(𝑥𝑖, 0) +
1

𝑚

𝑚∑︁
𝑗=1

ℒ𝑑(𝑦𝑗, 1)

)︃

where ℒℓ(𝑧, ℓ) = log
1

𝐺ℓ(𝐺𝑓 (𝑧)) ℓ

and ℒ𝑑(𝑧, 𝑐) = 𝑐 log
1

𝐺𝑑(𝐺𝑓 (𝑧))
+ (1 − 𝑐) log

1

1 −𝐺𝑑(𝐺𝑓 (𝑧))
, 𝑐 = {0, 1}

(2.2)

23

2.3 Generative Adversarial Networks (GANs)

In addition to learning representations from existing data, it is also possible to train

models to generate new data that accurately resemble real data drawn from the

unknown underlying probability distribution generating the real data. One such type

of model that has enjoyed recent success is the Generative Adversarial Network (GAN)

(Goodfellow et al., 2014). GANs consist of two models, a generator 𝐺 that seeks to

capture the underlying probability distribution of the real data and a discriminator

𝐷 that seeks to determine whether a given sample originates from the real dataset

or from 𝐺. 𝐷 therefore acts as an “adversary” to 𝐺 by challenging it to generate

convincingly real-looking data.

As with other adversarial problems, these models are trained in a minimax fash-

ion. First, define data distribution 𝑝data on dataset 𝑆 = {𝑥1, . . . , 𝑥𝑛} where 𝑥𝑖 ∈ 𝒳

and noise prior 𝑝𝑧(𝑧). Then, define a mapping 𝐺(𝑧; 𝜃𝑔) from noise 𝑧 to data space

𝒳 , where generator 𝐺 is a differentiable function represented by a multilayer percep-

tron with parameters 𝜃𝑔. 𝑝𝑔 is therefore the distribution over data 𝑥 learned by 𝐺.

Define another multilayer perceptron 𝐷(𝑥; 𝜃𝑑) that outputs a scalar representing the

probability 𝑥 came from 𝑝data rather than 𝐺. The optimizer then alternates between

training 𝐷 by maximizing the probability of 𝐷 assigning correct labels to both data

from 𝑆 and samples drawn from 𝐺, and training 𝐺 by minimizing the probability that

𝐷 correctly classifies samples produced by 𝐺 as coming from 𝐺. This can be written

as a two-player minimax game with value function 𝑉 (𝐺,𝐷) (see Equation 2.3).

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = E𝑥∼𝑝data(𝑥)[log𝐷(𝑥)] + E𝑧∼𝑝𝑧(𝑧)[log(1 −𝐷(𝐺(𝑧)))] (2.3)

2.3.1 CycleGAN

It is possible to train systems that learn data representations that allow for transform-

ing datapoints from one dataset to appear to have been generated from the generating

distribution of a different dataset, even when no correspondence between datapoints

24

Figure 2-1: Sample image outputs from CycleGAN image-to-image translation model
(Zhu et al., 2017)

in the two datasets is known (in contrast to Section 2.1.2). Formally, define datasets

𝑆1 = {𝑥1, . . . , 𝑥𝑛} where 𝑥𝑖 ∈ 𝒳 and 𝑆2 = {𝑦1, . . . , 𝑦𝑚} where 𝑦𝑖 ∈ 𝒳 , where no cor-

respondence between the data points in 𝑆1 and 𝑆2 is known. Additionally, define two

models 𝐴 : 𝒳 → 𝒳 and 𝐵 : 𝒳 → 𝒳 . The forward cycle consistency condition is then

𝐵(𝐴(𝑥)) ≈ 𝑥 for 𝑥 ∈ 𝑆1 and the backward cycle consistency condition is 𝐴(𝐵(𝑦)) ≈ 𝑦

for 𝑦 ∈ 𝑆2. These conditions were incentivized by Zhu et al. (2017) by using a cycle

consistency loss based on the L1 norm (see Equation 2.4).

ℒcyc(𝐴,𝐵) = ‖𝐵(𝐴(𝑥)) − 𝑥‖1 + ‖𝐴(𝐵(𝑦)) − 𝑦‖1 for 𝑥 ∈ 𝑆1, 𝑦 ∈ 𝑆2 (2.4)

Results by Zhu et al. (2017) indicate that cycle consistency loss, when combined

with GAN-style adversarial losses for discriminators 𝐷1 (where 𝑆1 is the real data and

𝐵(𝑦) for 𝑦 ∈ 𝑆2 is the simulated data) and 𝐷2 (where 𝑆2 is the real data and 𝐴(𝑥)

for 𝑥 ∈ 𝑆1 is the simulated data), can be used to train image-to-image translation

models that produce compelling results using unpaired data alone (see Figure 2-1).

25

26

Chapter 3

Initial Attempts at Data

Augmentation via Unsupervised

Domain Adaptation with

Multidecoders

As a preliminary step in my thesis work, I investigated the setup described in Section

2.2, where speech data from both a close-talking (source domain) and distant record-

ing environment (target domain) are available, but the data are not parallel (i.e.,

there is no known correspondence between close-talking and distant utterances) and

word transcriptions are only available for the close-talking speech data. In this setup,

one can only train acoustic models with the close-talking speech data, unless there is

a way to label the distant speech data or use the labeled close-talking data to produce

simulated, labeled distant speech data. As speech datasets can often exceed hundreds

or even thousands of hours of audio, manually labeling additional data can quickly

become unscalable. Therefore, I researched models that achieve better performance

for the second option: data augmentation via unsupervised domain adaptation.

Attributes of speech data that are not correlated with linguistic changes can be

referred to collectively as the nuisance attribute (Hsu et al., 2017b). Because the

27

speech data being considered for this setup have primarily non-linguistic changes (i.e.,

distance between microphone and speaker) between the two domains being examined,

one might expect to see changes in the nuisance attribute across different domains,

but relatively constant values across utterances from the same domain. One can

therefore augment the data for the target domain by encoding labeled source domain

data, transforming its nuisance attribute to that of the target domain, and decoding

it to get simulated, labeled data that appears to have been generated by the target

data distribution.

There are several such nuisance attribute transformations described by Hsu et al.

(2017b) for performing data augmentation in an unsupervised domain adaptation

setting with variational autoencoders (VAEs) that have been performed with encour-

aging results. However, they all require some form of estimation of the nuisance

attribute (or the nuisance attribute subspace, assuming latent variables learned by a

VAE are mapped to orthogonal subspaces). Therefore, I decided to investigate the

possibility of a model that can implicitly estimate the nuisance attribute in the model

itself without needing external estimation methods like these.

3.1 Multidecoder

I developed a new autoencoder-based domain adaptation architecture, the Multide-

coder, which uses multiple decoders jointly trained end-to-end with a single encoder

to allow one to decode a single encoded latent vector 𝑧 ∈ ℱ = R𝐽 into various do-

mains. At a high level, a multidecoder is an autoencoder model where there is a single

encoder function Φ followed by multiple decoder functions (Ψ𝑠𝑟𝑐 for the source do-

main and Ψ
(1)
𝑡𝑎𝑟, · · · ,Ψ

(𝑇)
𝑡𝑎𝑟 for 𝑇 target domains). In most situations, there is only one

target domain to which one is seeking to adapt the source domain data. Therefore, I

consider 𝑇 to be equal to 1 for the following description and analysis, although the

model can be extended to values of 𝑇 greater than 1.

A multidecoder that seeks to solve the domain adaptation problem can therefore

be formally defined as one that achieves low reconstruction loss for both datapoints

28

drawn i.i.d. from the source distribution and the target distribution. In this setup,

the source distribution 𝑝𝑠𝑟𝑐 is defined on the source dataset 𝑆𝑠𝑟𝑐 = {𝑥1, . . . , 𝑥𝑛} where

𝑥𝑖 ∈ 𝒳 and the target distribution 𝑝𝑡𝑎𝑟 is defined on the distant dataset 𝑆𝑡𝑎𝑟 =

{𝑦1, . . . , 𝑦𝑚} where 𝑦𝑖 ∈ 𝒳 . A multidecoder that successfully solves this problem

would therefore have learned an encoder Φ that maps data from both domains into

a common representation space (also referred to as an embedding or latent space),

in addition to decoders Ψ𝑠𝑟𝑐 and Ψ𝑡𝑎𝑟 that can faithfully reconstruct data from both

domains using this common representation space.

Therefore, if the source domain data 𝑆𝑠𝑟𝑐 = {𝑥1, . . . , 𝑥𝑛} where 𝑥𝑖 ∈ 𝒳 are close-

talking speech and the target domain data 𝑆𝑡𝑎𝑟 = {𝑦1, . . . , 𝑦𝑚} where 𝑦𝑖 ∈ 𝒳 are

distant speech, optimize the sum of the following two losses:

∙ Close-talking reconstruction: ℒ𝑟𝑒𝑐𝑜𝑛
𝑐 = ‖𝑥𝑖 − (Ψ𝑠𝑟𝑐 ∘ Φ)(𝑥𝑖)‖2 for 𝑥𝑖 ∈ 𝑆𝑠𝑟𝑐

∙ Distant reconstruction: ℒ𝑟𝑒𝑐𝑜𝑛
𝑑 = ‖𝑦𝑖 − (Ψ𝑡𝑎𝑟 ∘ Φ)(𝑦𝑖)‖2 for 𝑦𝑖 ∈ 𝑆𝑡𝑎𝑟

3.1.1 Architecture

Rather than processing speech data as raw waveforms, most ASR systems extract

“frames” of features by sliding a window over the short-time Fourier transform (STFT)

of the waveform (Mogran et al., 2004). As speech data is inherently sequential in time,

it is useful for a multidecoder to take temporal context frames into consideration

for reconstruction, rather than just using a single frame. In lieu of using recurrent

connections (as with Hsu et al. (2016) and Graves et al. (2013), for example), I splice in

𝑓𝐿 frames of features from the frames directly before the current frame and 𝑓𝑅 frames

from the frames directly after the current frame in time to get a feature vector that

is a concatenation of (𝑓𝐿 +𝑓𝑅 +1) frames of features. For a frame with 𝑑-dimensional

features, this results in a 2-dimensional feature matrix of size ((𝑓𝐿 + 𝑓𝑅 + 1) × 𝑑).

An architecture especially well-suited for processing 2-dimensional data is the

convolutional neural network (CNN) (LeCun et al., 1995), known primarily for its

successes in image processing (Simonyan and Zisserman, 2014). In a multidecoder,

the encoder is a typical multilayer convolutional neural network, where each layer

29

Input 2D Convolution
Frequency max-pooling ReLU

1D Flatten

𝑧 ∈ ℱ

Figure 3-1: An example single layer CNN-based encoder for AMI multidecoder ex-
periments

consists of several convolution filters that are convolved with its input features to

yield feature maps as output. These feature maps are then passed through a rectified

linear unit (ReLU) activation function (Glorot et al., 2011) before being downsampled

by a max-pooling layer in the feature dimension only (Sainath et al., 2015). The

encoder then flattens the last output to one dimension before passing it through a

fully-connected layer to yield the latent vector 𝑧. This is depicted in Figure 3-1.

Because the decoders need to reconstruct 𝑧 back to the original dimensionality of

the input data, one approach is to make the decoder symmetric to the encoder. To do

so with the multidecoder, each decoder first has a fully-connected layer that the latent

vector 𝑧 is passed through to yield the flattened input to the convolutional stages.

Zero-padding is applied to the inputs of convolutional layers in the decoders so that

the output is resized to the original input size to the corresponding convolutional layer

in the encoder without requiring deconvolutional layers (Zeiler et al., 2010) or similar

techniques. Additionally, instead of max-pooling layers, decoders use max-unpooling

layers that make use of saved indices of the maximal values in the corresponding

max-pooling layer in the encoder to upsample the input in the feature dimension and

set all non-maximal values to zero (Zeiler and Fergus, 2014).

To prevent learning identity functions, experiments were conducted with using

the following regularization techniques:

∙ Variational autoencoder (VAE): instead of using a single latent vector, use

two latent vectors 𝑧𝜇 ∈ ℱ and 𝑧𝜎 ∈ ℱ for mean and log-variance, respectively,

30

and add Kullback-Leibler divergence into the loss function as described in Sec-

tion 2.1.1.

∙ Denoising autoencoder (DAE): corrupt the input feature matrices by ze-

roing out input elements randomly with probability 𝑝 as described by Vincent

et al. (2008).

∙ Generative Adversarial Network (GAN)-style loss: train a discriminator

𝐷 to detect real versus fake output features in a minimax fashion with the

multidecoder representing generator 𝐺 as described in Section 2.3.

∙ Domain adversarial loss: as described in Section 2.2, train the multidecoder

in a minimax fashion simulataneously with a discriminator 𝐷 to detect whether

latent vector 𝑧 belongs to the close-talking or distant speech domain with the

encoder representing generator 𝐺.

∙ Cycle consistency loss: without loss of generality over domains, for data in

domain 𝑖, train with not only reconstruction loss, but also with reconstruction

loss between the original data and the data passed through the decoder Ψ𝑗 for

the other domain 𝑗 followed by Ψ𝑖. This resembles training with parallel data

by using simulated data for domain 𝑗 as described in Section 2.3.1, but I used

L2 norm rather than L1 norm to be consistent with the reconstruction losses

used elsewhere during training.

3.1.2 Nuisance attribute transformations for multidecoders

Fortunately, multidecoders are models that do not need to use a nuisance attribute

transformation as described at the beginning of the chapter. While the methods de-

scribed by Hsu et al. (2017b) involve changing the latent encoding itself before passing

it through the decoder, multidecoders seek to learn a data representation that rep-

resents enough variance in the data for each of the decoders to reconstruct input

data from its domain because the training regimen forces the encoder to minimize

reconstruction losses incurred for both decoders. This allows each of the decoders

31

to not only preserve linguistic information, but also learn a function on the nui-

sance attribute to reconstruct speech attributes for its domain that are not related

to linguistic information. Therefore, data augmentation for target domain 𝑇 can be

performed with a multidecoder simply by encoding labeled data from source domain

𝑆 and decoding with the decoder corresponding to domain 𝑇 . The quality of this

learned transformation, however, is not guaranteed without using parallel data, so

I conducted experiments to determine how effectively it creates simulated data for

improving acoustic models.

3.2 Experiments

3.2.1 AMI Meeting Corpus

The dataset used for these initial multidecoder experiments was the AMI meeting cor-

pus, a dataset that contains 100 hours of recordings of meetings between professionals

in research and design workplace scenarios (Carletta et al., 2005). Multiple recording

setups were used to get parallel recordings of the same dialogue, including individual

headset microphones (the “IHM” setting), a single distance microphone (the “SDM1”

setting) and eight distance microphones placed in an array (the “MDM8” setting).

For these experiments, I only made use of the IHM and SDM1 (henceforth referred

to as “SDM” for simplicity) data, with the IHM data modeling a close-talking speech

scenario and the SDM data modeling a distant speech scenario. Word transcriptions

are available for both of these setups, as they follow the same dialogue recorded in

parallel, but in order to be consistent with the setup described at the beginning of this

chapter, I only made use of the labels for the IHM data when training multidecoders

and did not assume any utterances to be parallel. Additionally, to allow for rapid

prototyping, I made use of a balanced subset of AMI that consisted of 10% of the

original data (about 10 hours of speech).

32

3.2.2 Training

For feature extraction, I used the Kaldi speech recognition toolkit (Povey et al., 2011).

80 dimensional Mel-scale filter bank features were extracted with a 25 ms window

and 10 ms frame shift, a common auditory approximation used in speech recognition

(Mogran et al., 2004). Five frames of left context and five frames of right context are

spliced into the feature vector for a resulting feature matrix size of 11 × 80. Batch

size was fixed to 256 samples to balance memory and performance considerations with

diversity of data, although multiple experiments were conducted to determine other

hyperparameters.

Model development was performed using the PyTorch deep learning framework

(Paszke et al., 2017). Weights in the network were initialized using Xavier initial-

ization (Glorot and Bengio, 2010) and the models were optimized using the Adam

optimizer with the parameters set to the defaults suggested by Kingma and Ba (2015)

(𝛽1 = 0.9, 𝛽2 = 0.99 and 𝜖 = 10−8) with the exception of the initial learning rate,

which was determined to be optimal at 0.0001 rather than 0.001 in these experiments.

To train a given decoder Ψ𝑖, the reconstruction loss ℒ𝑟𝑒𝑐𝑜𝑛
𝑖 for a given minibatch

passed through the shared encoder Φ and the given decoder Ψ𝑖 was computed and

then backpropagated to update their weights without modifying the weights of the

other decoder. Minibatches for the two domains were passed through in an alternating

fashion so that the model saw a balanced amount of data for the two decoders over

the course of each epoch of training. The models were trained for 25 epochs or until 5

consecutive epochs of no improvement in the reconstruction loss on the development

set were observed, whichever occurred first.

Kaldi was then used to train frame-level tri3 hidden Markov models (HMMs)

(see Guglani and Mishra (2018) for a thorough description of the tri3 model), whose

states were used as targets to train time-delay neural network (TDNN)-based HMM

state recognizers (Povey et al., 2011; Cheng et al., 2017). The TDNN used contained 7

hidden layers with 450 units each and the same layer-wise context frames as described

by Peddinti et al. (2018) that fed into a final layer consisting of a softmax over

33

each of the 3,984 HMM states. The model was then trained on the data described

below in Section 3.2.3 for 20 epochs with a step size of 0.05. These frame-level state

predictions can then be decoded into word-level predictions using trained transition

and language models; however, this step was not taken for these experiments due to

the disappointing frame-level results discussed below.

3.2.3 Results

I evaluated the frame-level classifiers based on Frame Error Rate (FER), a measure

of how often the classifier predicts the correct frame-level state labels. The DAE

variation of the multidecoder architecture was the only regularization technique used

that actually led to any improvement in FER beyond the non-regularized multide-

coder, so for brevity, I only report results for the best network setup (see Figure 3-2),

which used 25% input noising. I used the following training setups for the frame-level

classifiers:

∙ Baseline IHM: trained on only original IHM data 𝑆𝑠𝑟𝑐

∙ Baseline SDM: trained on only original SDM data 𝑆𝑡𝑎𝑟

∙ IHM→IHM: trained on Ψ𝑠𝑟𝑐(Φ(𝑥𝑖)) for 𝑥𝑖 ∈ 𝑆𝑠𝑟𝑐

∙ IHM→SDM: trained on Ψ𝑡𝑎𝑟(Φ(𝑥𝑖)) for 𝑥𝑖 ∈ 𝑆𝑠𝑟𝑐

∙ SDM→IHM: trained on Ψ𝑠𝑟𝑐(Φ(𝑦𝑖)) for 𝑦𝑖 ∈ 𝑆𝑡𝑎𝑟

∙ SDM→SDM: trained on Ψ𝑡𝑎𝑟(Φ(𝑦𝑖)) for 𝑦𝑖 ∈ 𝑆𝑡𝑎𝑟

∙ IHM + IHM→SDM: trained on original IHM data 𝑆𝑠𝑟𝑐 in addition to Ψ𝑡𝑎𝑟(Ψ(𝑥𝑖))

for 𝑥𝑖 ∈ 𝑆𝑠𝑟𝑐

These frame-level classifiers are then evaluated on the IHM development set and

SDM development set; results are shown in Table 3.1. Although some of the classi-

fiers were able to nearly match the FER of the IHM baseline classifier on the IHM

development set, none were able to make any substantial improvement towards the

34

Input Conv3-256-3
Conv3-256-3

𝑧 ∈ R512

Conv3-256-3

Conv3-256-3

Conv3-256-3

Conv3-256-3

Ψ𝑠𝑟𝑐 output

Ψ𝑡𝑎𝑟 output

Figure 3-2: Optimal multidecoder architecture for AMI experiments. Convolutional
layer parameters shown as “Conv⟨Receptive field size⟩-⟨Number of channels⟩-⟨Pool
size⟩”. ReLU not shown for simplicity.

Table 3.1: AMI 10% Subset: Unsupervised Domain Adaptation Results

Model IHM Dev FER SDM Dev FER
Baseline IHM 57.9% 86.7%
Baseline SDM 80.9% 77.3%

IHM→IHM 59.3% 87.0%
IHM→SDM 59.9% 85.9%
SDM→IHM 78.0% 82.1%
SDM→SDM 79.6% 80.9%

IHM + IHM→SDM 58.1% 85.8%

performance of the baseline SDM classifier on the SDM development set without also

significantly degrading performance on the IHM development set. This indicates that

despite the best efforts of the regularization techniques, the multidecoder in this spe-

cific training setup was unable to learn an encoder function and decoder functions that

allowed the model to perform domain adaptation to a degree that improved results

on a distant speech recognition task. It may still be possible to make architecture

and/or dataset changes that allow a multidecoder to perform unsupervised domain

adaptation, but these were not found in these preliminary experiments.

These disappointments motivated a desire to see how much better the perfor-

mance could be if the domain adaptation were conducted in a supervised manner,

where I instead assume that I have parallel recordings of speech in both close-talking

and distant environments. This new setup and associated model architectures are

35

described in the following chapter.

36

Chapter 4

Adaptive Enhancement Models

After the difficulties in training unsupervised domain adaptation models, I decided

to instead run experiments to determine the efficacy of supervised domain adaptation

models, where recordings of the same speech are available for both a close-talking and

distant speech setup. Although parallel recordings were assumed to be available in this

new setup, I still made the assumption that I only have word-level transcriptions for

the close-talking data. The reasoning for this is twofold: first, to model the scenario

where a large amount of parallel recordings that have not yet been transcribed is added

to an existing labeled close-talking dataset, and second, to evaluate the performance

of acoustic models not trained on multiple conditions (as with Xu et al. (2014), for

example).

Because this setup now assumes a large amount of close-talking and distant

speech data available but still only acoustic models trained on close-talking data,

I developed models to perform speech enhancement rather than data augmentation.

As described in Chapter 1, speech enhancement is a technique used to transform

distant or otherwise noisy speech data to clean, close-talking data. Formally, for

close-talking data 𝑆𝑐 = {𝑥1, . . . , 𝑥𝑛} where 𝑥𝑖 ∈ 𝒳 and corresponding distant data

𝑆𝑑 = {𝑓𝑑(𝑥1), . . . , 𝑓𝑑(𝑥𝑛)} = {̃︀𝑥1, . . . , ̃︀𝑥𝑛} where 𝑥𝑖 ∈ 𝑆𝑐 and 𝑓𝑑 : 𝒳 → 𝒳 is some

noising function, speech enhancement systems seek to reduce the distance between

corresponding data points 𝑥𝑖 ∈ 𝑆𝑐, ̃︀𝑥𝑖 ∈ 𝑆𝑑 after passing ̃︀𝑥𝑖 through the model by

some metric (for example, ℓ2 norm).

37

An adaptive speech enhancement system is one that not only seeks to reduce

this distance between distant speech and close-talking speech, but also to accurately

reconstruct the close-talking speech (i.e., keep the distance near 0). This is a desirable

property because it prevents one from needing to train a separate close-talking speech

detector (see Chapter 1) or otherwise handle close-talking speech separately to avoid

degradations in performance on close-talking speech.

4.1 Modular network components

I developed a variety of models to perform adaptive speech enhancement on both

close-talking and distant speech before passing the enhanced speech to an acoustic

model trained on only close-talking speech. To have a set of control experiments to

show the effect of speech enhancement in various model setups, I first defined the

following networks as building blocks to the models:

∙ Encoder 𝐸: define 𝐸 to be a multilayer convolutional neural network. As with

the encoder portion of the multidecoders described in Section 3.1.1, each layer

consists of several convolution filters that are convolved with its input features

to yield feature maps as output. These feature maps are passed through the

rectified linear unit (ReLU) activation function, with some layers (not necessar-

ily all, as was the case in Chapter 3) also being downsampled by a max-pooling

layer in the feature dimension only. The output of the convolutional stage is

then flattened to one dimension before being passing through a fully-connected

layer to yield the latent vector 𝑧 ∈ ℱ = R𝐽 . A depiction of this component

with sample layer parameters is shown in Figure 4-1.

∙ Decoder 𝐷: define 𝐷 to be a multilayer convolutional neural network whose

layers are symmetric to 𝐸 (using zero-padding and max-unpooling in the same

way as described in Section 3.1.1) and in reverse order. The input to 𝐷 is a

latent vector 𝑧 produced by 𝐸 and the output is a reconstructed feature matrix

with the same dimensions as the input data to 𝐸. A depiction of this component

38

log-Mel Conv5-128-2
Conv3-256-0 Conv3-256-2

𝑧 ∈ ℱ

Figure 4-1: Sample encoder architecture for adaptive speech enhancement experi-
ments. Convolutional layer parameters shown as “Conv⟨Receptive field size⟩-⟨Number
of channels⟩-⟨Pool size⟩”. ReLU and BatchNorm layers not shown for simplicity.

𝑧 ∈ ℱ Conv3-256-2 Conv3-256-0
Conv5-128-2 log-Mel

Figure 4-2: Sample decoder architecture for adaptive speech enhancement experi-
ments (symmetric to the encoder in Figure 4-1). Convolutional layer parameters
shown as “Conv⟨Receptive field size⟩-⟨Number of channels⟩-⟨Pool size⟩”. ReLU and
BatchNorm layers not shown for simplicity.

with sample layer parameters is shown in Figure 4-2.

∙ Frame Classifier 𝐶: define 𝐶 to be a multilayer fully-connected neural net-

work. 𝐶 takes a latent vector 𝑧 ∈ ℱ as input and then passes it through multiple

fully-connected layers, each using the aforementioned ReLU activation function

with the exception of the final layer. The final layer uses a log-softmax func-

tion over all of the HMM states (see Section 3.2.2) to yield log probabilities for

predicting the states at each frame. A depiction of this component with sample

layer parameters is shown in Figure 4-3.

39

𝑧 ∈ ℱ
FC2048 FC2048 HMM States

Figure 4-3: Sample frame classifier architecture for adaptive speech enhancement
experiments. Fully-connected layer parameters shown as “FC⟨Hidden unit count⟩”.
ReLU and BatchNorm layers not shown for simplicity.

4.2 Model descriptions

Using these modular components, I then developed the following network configura-

tions:

4.2.1 Baseline acoustic model

To first get baseline error rates without any form of speech enhancement, I trained

baseline acoustic models that operate directly on the raw log-Mel filter bank features.

Formally, a baseline acoustic model 𝐴𝑀 consists of the composition of an encoder

and a frame classifier (i.e., 𝐴𝑀 = 𝐶 ∘ 𝐸) as depicted in Figure 4-4. The model is

trained by minimizing the cross-entropy loss between the ground truth HMM states

and the predicted states arg max𝐴𝑀(·). Two baseline acoustic models are trained

for each set of experiments: a close-talking acoustic model 𝐴𝑀𝑐 trained on just the

close-talking speech and a distant acoustic model 𝐴𝑀𝑑 trained on just the distant

speech. Note that 𝐴𝑀𝑑 is only used as an oracle to determine what the error rate

would be for an acoustic model if there were in fact word transcriptions available for

the distant speech.

40

log-Mel Encoder 𝐸

𝑧 ∈ ℱ
Frame Classifier 𝐶

HMM States

Figure 4-4: Sample baseline acoustic model architecture for adaptive speech enhance-
ment experiments.

log-Mel Encoder 𝐸

𝑧 ∈ ℱ
Decoder 𝐷

Enhanced log-Mel

Figure 4-5: Sample enhancement network architecture for adaptive speech enhance-
ment experiments.

4.2.2 Enhancement network

The first (and simplest) adaptive speech enhancement model is the enhancement

network. An enhancement network 𝑁 consists of the composition of an encoder

and a decoder for close-talking speech (i.e., 𝑁 = 𝐷𝑐 ∘ 𝐸) as depicted in Figure 4-

5. Although 𝑁 appears to be a simple autoencoder, it is distinguished by how it is

trained. For close-talking data 𝑥 ∈ 𝑆𝑐, the objective is to minimize reconstruction

loss ‖𝑥−𝑁(𝑥)‖2 as with normal autoencoders, but for distant data 𝑦 ∈ 𝑆𝑑, minimize

transformation loss ‖𝑥−𝑁(𝑦)‖2 as well. Once speech has been processed by 𝑁 , the

resulting enhanced speech is passed to the baseline close-talking acoustic model 𝐴𝑀𝑐

for evaluation.

41

log-Mel Encoder 𝐸

𝑧 ∈ ℱ

Close Decoder 𝐷𝑐 Close log-Mel

Distant Decoder 𝐷𝑑 Distant log-Mel

Figure 4-6: Sample enhancement multidecoder architecture for adaptive speech en-
hancement experiments. The encoder 𝐸 is shared for reconstructing both close and
distant log-Mel outputs.

4.2.3 Enhancement multidecoder

An enhancement multidecoder 𝑁𝑀𝐷 is the same model as an enhancement network

𝑁 , but with an additional decoder 𝐷𝑑 for distant speech data (see Figure 4-6). 𝑁𝑀𝐷

is trained in a similar fashion to 𝑁 , where for close-talking data 𝑥 ∈ 𝑆𝑐 and distant

data 𝑦 ∈ 𝑆𝑑, the objective is to minimize both reconstruction loss ‖𝑥−𝐷𝑐(𝐸(𝑥))‖2 and

transformation loss ‖𝑥−𝐷𝑐(𝐸(𝑦))‖2. However, for this model, I additionally minimize

reconstruction loss ‖𝑦−𝐷𝑑(𝐸(𝑦))‖2 and transformation loss ‖𝑦−𝐷𝑑(𝐸(𝑥))‖2. During

evaluation, speech data is passed through the encoder 𝐸 and the close-talking decoder

𝐷𝑐 to enhance it before passing it to the baseline close-talking acoustic model 𝐴𝑀𝑐.

Training the distant decoder 𝐷𝑑 can therefore be seen as an extra regularization step

for the encoder 𝐸 because it encourages 𝐸 to encode enough information in the latent

vector 𝑧 to also reconstruct a distant version of the input speech.

4.2.4 Multitask network

Instead of just training the adaptive enhancement model and acoustic model sepa-

rately, I decided to also investigate using a shared encoder for both models to see if

the learned representation can be used for both speech recognition and speech en-

hancement. The first variant of such a model, the multitask network 𝑀 , consists of an

enhancement network 𝑁 and an acoustic model 𝐴𝑀 that share a single encoder 𝐸 as

42

log-Mel Encoder 𝐸

𝑧 ∈ ℱ

Decoder 𝐷 Enhanced log-Mel

Frame classifier 𝐶
HMM States

Figure 4-7: Sample multitask network architecture for adaptive speech enhancement
experiments. The encoder 𝐸 is shared for both speech enhancement and frame clas-
sification.

depicted in Figure 4-7. During training, the optimizer alternates between minimizing

cross-entropy loss between the ground truth HMM states and the predicted states

arg max𝐴𝑀(·) and the reconstruction and enhancement losses for 𝑁 as described

in Section 4.2.2. This encourages the encoder to preserve linguistic information well

enough for speech recognition while simultaneously encoding enough information to

reconstruct or transform input speech. During evaluation, speech is first enhanced by

𝑁 before classifying HMM states with 𝐴𝑀 .

4.2.5 Multitask multidecoder

Similar to a multitask network, a multitask multidecoder 𝑀𝑀𝐷 consists of an enhance-

ment multidecoder 𝑁𝑀𝐷 and an acoustic model 𝐴𝑀 that share a single encoder 𝐸 as

depicted in Figure 4-8. During training, the optimizer alternates between minimizing

cross-entropy loss between the ground truth HMM states and the predicted states

arg max𝐴𝑀(·) and the reconstruction and enhancement losses for 𝑁𝑀𝐷 as described

in Section 4.2.3. This encourages the encoder to preserve linguistic information well

enough for speech recognition while simultaneously encoding enough information to

reconstruct or transform input speech in either the close-talking or distant speech do-

mains. During evaluation, speech is first enhanced by the encoder 𝐸 and close-talking

decoder 𝐷𝑐 before classifying HMM states with 𝐴𝑀 .

I then ran experiments by fixing the architectures for 𝐸, 𝐷 and 𝐶, building these

43

log-Mel Encoder 𝐸

𝑧 ∈ ℱ

Close Decoder 𝐷𝑐 Close log-Mel

Distant Decoder 𝐷𝑑 Distant log-Mel

Frame classifier 𝐶
HMM States

Figure 4-8: Sample multitask multidecoder architecture for adaptive speech enhance-
ment experiments. The encoder 𝐸 is shared for frame classification and reconstructing
both close and distant log-Mel outputs.

models with these components and training them in parallel. The details of these

experiments are described in detail in the following chapter.

44

Chapter 5

Experimental Setup and Outcomes

For feature extraction, I again used the Kaldi speech recognition toolkit (Povey et al.,

2011). 80 log Mel-scale filter bank features were extracted with the same 25 ms

window and 10 ms frame shift and context frames are still spliced into the feature

vector as described in Section 3.2.2, but seven context frames (instead of five) were

used, as this led to better recognition results without significantly changing training

time or memory usage. Batch size was fixed to 256 samples for all datasets, a value

that balanced memory and data diversity concerns regardless of dataset in these

experiments.

Model development was again performed using the PyTorch deep learning frame-

work. Weights in the network were initialized using Xavier initialization and the

models were optimized using the Adam optimizer with the parameters set to the

defaults suggested by Kingma and Ba (2015) (𝛽1 = 0.9, 𝛽2 = 0.99 and 𝜖 = 10−8)

with the exception of the initial learning rate. Experiments were conducted on initial

learning rate, learning rate update schedule and number of epochs for each dataset

and are described below.

Because the acoustic models being trained here already predict tri3 HMM states,

Kaldi was not needed to train TDNN models as in Chapter 3. However, these frame-

level state predictions were in fact used to generate word-level predictions by decoding

with trained transition and language models. I used NIST’s sclite tool (NIS) to get

recognition results in terms of word error rate (WER; see Equation 5.1).

45

𝑊𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁

⎧⎪⎨⎪⎩𝑆, 𝐷 and 𝐼 are substitution, deletion and insertion errors;

𝑁 is the total number of ground truth word labels
(5.1)

5.1 Simulating distant speech data

Because both of the datasets used for experiments only contain close-talking record-

ings, I needed to create parallel distant speech data. Rather than record large amounts

of new audio in a variety of room and microphone setups, I simulated distant speech

by convolving the original recording with simulated room impulse responses (RIRs)

(Neely and Allen, 1979). RIRs were generated using the image method (Allen and

Berkley, 1979) with a variety of speaker positions, rectangular room sizes and micro-

phone positions as proposed by Ko et al. (2017). Three different sets of rooms 𝒮1, 𝒮2

and 𝒮3 were generated by sampling the following uniform distributions for width 𝐿𝑥,

length 𝐿𝑦 and height 𝐿𝑧 (in meters), where 𝒰(𝑎, 𝑏) stands for a uniform distribution

between 𝑎 and 𝑏:

𝒮1 : 𝐿𝑥 ∼ 𝒰(1, 10), 𝐿𝑦 ∼ 𝒰(1, 10), 𝐿𝑧 ∼ 𝒰(2, 5)

𝒮2 : 𝐿𝑥 ∼ 𝒰(10, 30), 𝐿𝑦 ∼ 𝒰(10, 30), 𝐿𝑧 ∼ 𝒰(2, 5)

𝒮3 : 𝐿𝑥 ∼ 𝒰(30, 50), 𝐿𝑦 ∼ 𝒰(30, 50), 𝐿𝑧 ∼ 𝒰(2, 5)

(5.2)

The speed of sound was fixed to 343 meters per second for each room, a common

value used for when the propagation medium is dry air at a temperature of 20∘C

(Allen and Berkley, 1979). The wall, ceiling and floor reflection coefficents were

sampled from 𝒰(0.2, 0.8) for each room. For each set, 200 rooms were sampled and

then for each room, 100 RIRs were generated for a random source and microphone

placement within the room, resulting in a total of 60, 000 simulated RIRs. A subset

of 600 RIRs were used for experiments by selecting a random RIR for each room.

To create the distant speech data, each utterance in the close-talking dataset was

46

convolved with a random RIR from the subset. To keep the distant utterances in a

reasonable volume range while staying aligned with the close-talking utterance and

at the same length, I performed the following steps (depicted in Figure 5-1), where

the speech signal 𝑠𝑐 is of length 𝑁 and the RIR is of length 𝑀 < 𝑁 :

1. Perform a “full” convolution on the signal by padding with (𝑀 − 1) zeroes on

both sides of the speech signal. This yields a value at every point of signal

overlap (including partial overlaps) to get a sequence of length 𝑁 + 2(𝑀 − 1).

2. Remove the padding on the left side of the signal to recover a signal 𝑠𝑑 of length

𝑁 + 𝑀 − 1.

3. Choose start index 𝑖 in 𝑠𝑑 to be the index of the maximum value in the RIR.

The intuition behind this choice is that there is a gap between the first sound

being produced by the speaker and it reaching the microphone placed in the

room due to the speed of sound. Therefore, the time at which the original sound

reaches the microphone before any dampening occurs will be the loudest peak

in the RIR. Because the distance between the speaker and the microphone can

differ depending on the RIR, the speech is aligned based on when it reaches the

microphone using this shift. Trim distant speech signal to length 𝑁 with the

following slice: 𝑠𝑡𝑟𝑖𝑚𝑑 = 𝑠𝑑[𝑖 : 𝑖 + 𝑁].

4. Normalize volume of the distant speech to be similar to that of the original

close-talking speech by multiplying distant speech by 𝛾 * max|𝑠𝑐|
max|𝑠𝑡𝑟𝑖𝑚𝑑 | , where 𝛾 is a

value in [0, 1] to reduce clipping. 𝛾 = 0.95 was used in my experiments.

5.2 TIMIT Acoustic-Phonetic Continuous Speech Cor-

pus

The first dataset that I investigated in these experiments was the TIMIT Acoustic-

Phonetic Continuous Corpus (Lamel et al., 1989). The corpus contains 6,300 phonetically-

balanced sentences from 630 different speakers. I used a 462 speaker set with all SA

47

Figure 5-1: Convolution steps for creating distant speech data. Utterance shown is
from TIMIT with ID: SX126, Speaker FELC0

48

Figure 5-2: A sample TIMIT sentence pair and associated room impulse response.
Utterance ID: SX126, Speaker FELC0

records (dialect-specific sentences) removed for training, a held-out 50 speaker set

for early stopping and a 24 speaker test set, a standard setup used for comparing

TIMIT results (Lopes and Perdigão, 2011). To conform to CMU/MIT standards, I

used 48 phone labels during training, 39 of which were used during testing by not

counting confusions between phones within five separate groups (Lee and Hon, 1989).

Waveforms and associated filter bank features for an example pair of utterances, as

well as the waveform for the associated RIR, are shown in Figure 5-2.

Because TIMIT is labeled at the phone level, researchers commonly train phone

recognizers (rather than speech recognizers, which operate at the word level) and

49

report results in terms of Phone Error Rate (PER). PER is computed using the same

formula as WER (Equation 5.1), but by measuring the number of phone substitution,

deletion and insertion errors and total number of ground truth phone labels (Lopes

and Perdigão, 2011).

5.2.1 Experimental setup

I conducted experiments to determine an effective initial learning rate and learning

rate update schedule for TIMIT and determined that starting with a learning rate of

0.0001 and decaying it to 10% of the previous rate every time more than one epoch

of training completed without an improvement in the loss on the development set

worked reasonably well. With this schedule, it was determined that 35 epochs of

training were sufficient to reach a good convergence point.

Experiments were also conducted to determine optimal architecture choices for 𝐸,

𝐷 and 𝑃 . Because TIMIT is a fairly small dataset, overfitting was observed on very

deep architectures, as well as “wide” architectures (i.e., high number of hidden units

per layer). Additionally, reconstruction error was observed to be higher when using

convolutional units with larger receptive fields (7×7, for example), presumably due to

a greater degree of upsampling in the padded convolutions performed in the decoder.

Interestingly, this trend towards smaller receptive fields has also led to improvements

in computer vision tasks as observed by Simonyan and Zisserman (2014).

The best performing architectures for the modular components on TIMIT were

the following. Results for the close-talking and distant test sets by these architectures

are shown in Table 5.1.

∙ Encoder 𝐸: 3 convolutional layers in the following order:

– 64 channels with 5×5 receptive fields; followed by 1×2 max-pooling layer

– 128 channels with 3 × 3 receptive fields; no max-pooling

– 128 channels with 3 × 3 receptive fields; followed by 1 × 2 max-pooling

layer

50

Table 5.1: TIMIT Speech Enhancement Results

Model Close-talking Test PER Distant Test PER
Baseline close-talking 20.3% 44.8%

Baseline distant 22.8% 30.5%
Enhancement Net 20.5% 29.9%

Enhancement Multidecoder 20.8% 30.5%
Multitask Net 20.4% 32.4%

Multitask Multidecoder 20.3% 32.3%

– 512-dimension latent space

Decoder 𝐷 is symmetrical to this and in reverse order.

∙ Frame Classifier 𝐶: 3 fully-connected layers with 512 hidden units each

Several interesting results are to be seen here. First, the enhancement network

and enhancement multidecoder models both improved the performance on distant

speech to match or outperform both the close-talking and distant baseline acoustic

models, while only suffering degradations on the order of tenths of a percentage

point on PER for the close-talking test data when compared to the close-talking

baseline. Despite these improvements, no major difference is seen between the results

of the enhancement network and enhancement multidecoder in these experiments,

suggesting that the added decoder for distant speech provided no useful regularization

on the encoder and/or added enough parameters (and therefore complexity) to the

training process such that one would need to train it with different hyperparameters or

architecture choices to improve performance beyond that of the enhancement network.

Another interesting result is that the multitask network and multitask multide-

coder have consistently worse performance on the distant data when compared to the

enhancement network and enhancement multidecoder, despite performing slightly

better on the close-talking data. One possible reason for this can be seen in Figure

5-3, which compares histograms of the ℓ2 distances between the encoded latent vec-

tors 𝐸(𝑥𝑖) and 𝐸(̃︀𝑥𝑖) for all pairs of parallel data points 𝑥𝑖 ∈ 𝑆𝑐, ̃︀𝑥𝑖 ∈ 𝑆𝑑 with those

of the encoded latent vectors for all pairs of parallel data points that have already

51

Figure 5-3: TIMIT ℓ2 distances between encoded close-talking and distant speech
latent vectors, pre- and post-enhancement. Plots are shown for the enhancement
network, enhancement multidecoder, multitask network and multitask multidecoder
models with the best performance in the TIMIT experiments.

52

been passed through the enhancement portion of the model once. The figure shows

that the enhancement models more effectively reduce the mean and variance of the ℓ2

distances after enhancement than the multitask models. The interpretation of this is

that the enhancement models more effectively bring parallel data points close together

in latent space after enhancement than the multitask models do, signifying that they

learn a data representation that makes distant speech look similar to close-talking

speech.

Code for the TIMIT experiments is available on GitHub at https://github.com/

atitus5/meng-timit.

5.3 TED-LIUM Corpus Release 2

I also conducted experiments with a significantly larger speech corpus. The second

release of the TED-LIUM corpus contains 207 hours of clean, close-talking recordings

from TED (Technology, Entertainment, Design) talks with associated word transcrip-

tions (Rousseau et al., 2014). The recordings come from 1,495 TED talks across a

variety of topics from 1,242 unique speakers (68% male, 32% female). The dataset

also contains 19 TED talks, 8 of which are used as a development set for validation

and 11 of which are used as a held-out test set. Unlike TIMIT, TED-LIUM is la-

beled at the word level, so results are reported for the test set in terms of word error

rates (WER; see Equation 5.1) achieved by speech recognizers rather than phone rec-

ognizers. The waveforms and associated filter bank features for an example pair of

utterances for TED-LIUM, as well as the waveform for the associated RIR, are shown

in Figure 5-4.

5.3.1 Experimental setup

Because TED-LIUM is a much larger dataset, I conducted experiments on a 10%

subset of randomly selected utterances from the train and development sets (results

are still reported on the full test set, however) before moving on to the full dataset.

Experiments to determine an effective initial learning rate and learning rate up-

53

https://github.com/atitus5/meng-timit
https://github.com/atitus5/meng-timit

Figure 5-4: A sample TED-LIUM sentence pair and associated room impulse re-
sponse. Utterance ID: 0001586-0001998, Speaker Bill Gates

54

date schedule for TED-LIUM determined that starting with a learning rate of 0.0001

and decaying it to 10% of the previous rate every time an epoch of training completed

without an improvement in the loss on the development set. Additionally, to both

speed up training and improve generalization on the development and test sets, I uti-

lized batch normalization (Ioffe and Szegedy, 2015) with running mean and variance

computations (momentum set to 0.1) and learnable affine parameters 𝛾 and 𝛽 before

each ReLU activation in the model, in addition to Dropout with 𝑝 = 0.5 (Srivastava

et al., 2014) after each fully-connected layer activation in 𝑃 .

With this setup on the 10% subset, I determined that 10 epochs of training on

all models except the baseline acoustic models (where 25 epochs were used) were

sufficient to reach a reasonable convergence point without requiring several hours of

training per epoch. On the full dataset, however, 5 epochs of training were used on

all models except the baseline acoustic models (where 10 epochs were used) in order

to reach a sufficient convergence without requiring many days of training or more

advanced distributed training methods.

Experiments were conducted to determine optimal architecture choices for 𝐸, 𝐷

and 𝑃 for the 10% subset before running experiments with these choices on the full

dataset. Because TED-LIUM is a much larger dataset than TIMIT (even with just a

10% subset), deeper and wider architectures were necessary to prevent overfitting. As

with TIMIT, reconstruction error was observed to be higher when using convolutional

units with larger receptive fields (7 × 7, for example), so smaller values were used

instead.

The best performing architectures for the modular components on the 10% were

the following. Results for the close-talking and distant test sets by these architectures

are shown in Table 5.2. When trained on the full dataset, results improved to those

shown in Table 5.3.

∙ Encoder 𝐸: 3 convolutional layers in the following order:

– 64 channels with 5×5 receptive fields; followed by 1×2 max-pooling layer

– 128 channels with 3 × 3 receptive fields; no max-pooling

55

Table 5.2: TED-LIUM (10% Subset) Speech Enhancement Results.

Model Close-talking Test WER Distant Test WER
Baseline close-talking 20.5% 36.9%

Baseline distant 22.7% 32.8%
Enhancement Net 20.9% 33.4%

Enhancement Multidecoder 21.3% 38.1%
Multitask Net 23.1% 38.3%

Multitask Multidecoder 23.3% 41.6%

Table 5.3: TED-LIUM Speech Enhancement Results.

Model Close-talking Test WER Distant Test WER
Baseline close-talking 17.7% 35.3%

Baseline distant 18.2% 26.9%
Enhancement Net 18.4% 30.9%

Enhancement Multidecoder 18.0% 35.6%
Multitask Net 19.9% 33.5%

Multitask Multidecoder 20.2% 40.6%

– 128 channels with 3 × 3 receptive fields; followed by 1 × 2 max-pooling

layer

– 1024-dimension latent space

Decoder 𝐷 is symmetrical to this and in reverse order.

∙ Frame Classifier 𝐶: 2 fully-connected layers with 2048 hidden units each

In contrast to TIMIT, only the enhancement network model seemed to achieve any

substantial improvement on distant speech for TED-LIUM. This may be explained

by the histograms comparing the ℓ2 distances between 𝐸(𝑥𝑖) and 𝐸(̃︀𝑥𝑖) for all pairs

of parallel data points 𝑥𝑖 ∈ 𝑆𝑐, ̃︀𝑥𝑖 ∈ 𝑆𝑑 with those of the encoded latent vectors for all

pairs of parallel data points that have already been passed through the enhancement

portion of the model once (see Figures 5.3.1 and 5-6). The enhancement network

is the only model that reduces the mean and variance of these distances in these

experiments, whereas the other models keep these quantities roughly the same as

56

Figure 5-5: TED-LIUM (10% subset) ℓ2 distances between encoded close-talking and
distant speech latent vectors, pre- and post-enhancement. Plots are shown for the
enhancement network, enhancement multidecoder, multitask network and multitask
multidecoder models with the best performance in the TED-LIUM (10% subset)
experiments.

57

Figure 5-6: TED-LIUM ℓ2 distances between encoded close-talking and distant speech
latent vectors, pre- and post-enhancement. Plots are shown for the enhancement
network, enhancement multidecoder, multitask network and multitask multidecoder
models with the best performance as determined by the TED-LIUM (10% subset)
experiments.

58

before. This suggests that the other models may be learning identity functions that

fail to actually enhance distant speech, a problem discussed in Section 2.1 that may

be solved with additional regularization. Another difference between TED-LIUM

and TIMIT is that the gap in close-talking WER between the close-talking baseline

acoustic model and the distant baseline model was only 0.5%, suggesting that it may

be better to simply train the acoustic model on distant data, rather than training

speech enhancement models, if labels were indeed available for the distant data in

this setup.

Despite these differences with TIMIT, similar behavior was observed in a few

instances. For example, WER did not improve for either close-talking or distant

speech when a distant speech decoder 𝐷𝑑 was added to the enhancement network

or multitask network models to create the enhancement multidecoder and multitask

multidecoder models, respectively. Not only did training take substantially longer

to complete (roughly twice as long due to two times as many forward and backward

passes through an encoder-decoder composition), the WER increased for both do-

mains in most cases as well. Additionally, with the exception of a slight improvement

in distant WER for the multitask network on the full TED-LIUM dataset (see Ta-

ble 5.3), the WER for both domains is strictly worse for the multitask models than

the enhancement models in these experiments despite having similar reconstruction

and transformation losses and similar histograms in Figures 5.3.1 and 5-6. This sug-

gests that it may be necessary to train the acoustic model portion of the model for

proportionally longer than the enhancement portion and/or weight the HMM state

classification cross-entropy more heavily than the reconstruction and transformation

losses in the combined loss function in order to have similar acoustic model perfor-

mance to the baselines.

Code for the TED-LIUM experiments is available on GitHub at https://github.

com/atitus5/meng-tedlium.

59

https://github.com/atitus5/meng-tedlium
https://github.com/atitus5/meng-tedlium

60

Chapter 6

Conclusion

6.1 Summary of contributions

In Chapter 1, I described the problem of distant speech recognition and briefly dis-

cussed speech enhancement, a common technique used to improve distant speech

recognition performance. I then discussed the lack of robustness of most speech

enhancement systems to close-talking speech and motivated the desire to research

adaptive speech enhancement models in this thesis that are robust to both distant

and close-talking speech. In Chapter 2, I discussed existing speech enhancement sys-

tems in more detail and outlined several families of recent machine learning models

that seek to learn data representations that can be useful for speech enhancement.

In Chapter 3, I introduced the multidecoder model and summarized preliminary ex-

periments with unsupervised domain adaptation on the AMI Meeting corpus whose

challenges motivated the later, more successful experiments of this thesis.

The main contributions were described in Chapter 4 and 5. Chapter 4 introduced

the problem of supervised domain adaptation and described the various adaptive

speech enhancement models that I investigated over the course of the thesis. Chapter

5 then described the experiments conducted on both the TIMIT and TED-LIUM

speech corpora, including a discussion of the process used to artificially simulate

realistic distant speech data from existing close-talking speech data. I demonstrated

that it is indeed possible to build adaptive speech enhancement systems that can

61

significantly improve recognition performance on distant data without substantially

degrading recognition performance on close-talking data. Furthermore, I showed that

the models not only bring close-talking and distant speech data closer in feature space,

but also in the internal representation space learned by the models.

6.2 Future Work

Only a relatively small subset of possible model architectures for adaptive speech en-

hancement models were investigated in this thesis and only a relatively small space

of possible model parameters and training hyperparameters was searched for each of

these models. It is worth running a wider variety of experiments on this problem to

see what other approaches can achieve better performance, both in terms of speech

recognition and computational efficiency. One possible approach is to experiment

with different weights for losses in the combined loss functions for the models inves-

tigated here. For example, in the multitask network, it may be beneficial to place

more weight on the HMM state classification cross-entropy than the reconstruction

and transformation losses because the enhancement models tended to converge more

quickly than the baseline acoustic models.

Another area to improve is computational efficiency. The relatively high parameter

count of these models (especially the multidecoder-based architectures) and multiple

forward and backward passes through different encoder and decoder branches meant

that it was impractical to train larger models without requiring many days of training.

If these speech enhancement systems were to be deployed as a front-end processing

step in online speech recognition systems, they would need to be reasonably efficient

to keep latency as low as possible. The use of 10% subsets and smaller architectures

for prototyping helped to alleviate these problems, but still required multiple days on

larger datasets like the TED-LIUM corpus.

It is also worth looking at other datasets beyond the ones investigated here. In

Section 5.1, I described a process for creating artificially reverberated data that could

hypothetically be applied to other speech datasets with different characteristics than

62

AMI, TIMIT and TED-LIUM. Example characteristics include other languages (the

datasets I investigated consist solely of English utterances), other spoken content,

and other speaking styles. It would also be interesting to run more experiments on

other noise environments, including non-stationary noise or channel noise in lossy

environments (such as wireless communications).

In addition to running new experiments on different setups, it would also be

insightful to evaluate the performance of these models in real applications with distant

microphone setups. An example of such an application would be smart speakers that

may be operated from distances anywhere from a few centimeters to tens of meters.

Analyzing the features output by the speech enhancement model would be especially

interesting to analyze in the situation where the speaker is moving in order to evaluate

how well the system adjusts its output as the room impulse response changes over

time.

6.3 Parting Thoughts

In order for speech recognition systems to become truly useful in today’s society, they

need to become more robust to a variety of noise environments. It is relatively rare

that humans find themselves in nearly noise-free environments in their daily lives, but

we still manage to understand each other in many noisy environments where speech

recognition systems currently fail. In this thesis, I outlined a few techniques that can

help to bridge this gap for one such noisy environment, distant speech recognition. I

am glad to have contributed to one of the many efforts in speech recognition research

to make machines understand us as well as humans, and look forward to a future

where such interaction is commonplace.

63

64

Bibliography

NIST sclite scoring toolkit. http://www.itl.nist.gov/iad/mig/tools/.

Jont Allen and David Berkley. Image method for efficiently simulating small-room
acoustics. The Journal of the Acoustical Society of America, 65(4):943–950, 1979.

Hervé Bourlard and Yves Kamp. Auto-association by multilayer perceptrons and
singular value decomposition. Biological Cybernetics, 59:291–294, 1988.

Jean Carletta et al. The AMI meeting corpus: A pre-announcement. In International
Conference on Machine Learning for Multimodal Interaction, pages 28–39, 2005.

Gaofeng Cheng et al. An exploration of dropout with LSTMs. In INTERSPEECH-
2017, pages 1586–1590, 2017.

Xue Feng, Yaodong Zhang, and James Glass. Speech feature denoising and derever-
beration via deep autoencoders for noisy reverberant speech recognition. In IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 1759 – 1763, 2014.

Yaroslav Ganin et al. Domain-adversarial training of neural networks. The Journal
of Machine Learning Research, 17(1):2096–2030, 2016.

Bradford Gillespie and Les Atlas. Strategies for improving audible quality and speech
recognition accuracy of reverberant speech. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 676–679, 2003.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In International Conference on Artificial Intelligence
and Statistics, pages 249–256, 2010.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural net-
works. In International Conference on Artificial Intelligence and Statistics, pages
315–323, 2011.

Ian Goodfellow et al. Generative adversarial nets. In International Conference on
Neural Information Processing Systems (NIPS), pages 2672–2680, 2014.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with
deep recurrent neural networks. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6645–6649, 2013.

65

http://www.itl.nist.gov/iad/mig/tools/

Jyoti Guglani and AN Mishra. Continuous Punjabi speech recognition model based
on Kaldi ASR toolkit. International Journal of Speech Technology, pages 1–6, 2018.

Geoffrey Hinton et al. Deep neural networks for acoustic modeling in speech recogni-
tion. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

James Hopgood and Peter Rayner. Blind single channel deconvolution using nonsta-
tionary signal processing. IEEE Transactions on Speech and Audio Processing, 11
(5):476–488, 2003.

Wei-Ning Hsu, Yu Zhang, and James Glass. A prioritized grid long short-term memory
RNN for speech recognition. In Spoken Language Technology Workshop (SLT),
pages 467–473, 2016.

Wei-Ning Hsu, Yu Zhang, and James Glass. Unsupervised learning of disentangled
and interpretable representations from sequential data. In International Conference
on Neural Information Processing Systems (NIPS), pages 1876–1887, 2017a.

Wei-Ning Hsu, Yu Zhang, and James R. Glass. Unsupervised domain adaptation for
robust speech recognition via variational autoencoder-based data augmentation.
arXiv preprint arXiv:1707.06265, 2017b.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In International Conference on
Machine Learning (ICML), pages 448–456, 2015.

Takaaki Ishii et al. Reverberant speech recognition based on denoising autoencoder.
In INTERSPEECH-2013, pages 3512 – 3516, 2013.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations (ICLR), 2015.

Diederik Kingma and Max Welling. Auto-encoding variational Bayes. In International
Conference on Learning Representations (ICLR), 2014.

Tom Ko et al. A study on data augmentation of reverberant speech for robust speech
recognition. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5220–5224, 2017.

Lori Lamel, Robert Kassel, and Stephanie Seneff. Speech database development: De-
sign and analysis of the acoustic-phonetic corpus. In ESCA Tutorial and Research
Workshop on Speech Input/Output Assessment and Speech Databases, 1989.

Yann LeCun et al. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10), 1995.

Kai-Fu Lee and Hsiao-Wuen Hon. Speaker-independent phone recognition using hid-
den Markov models. IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, 37(11):1641–1648, 1989.

66

Jae Lim and Alan Oppenheim. Enhancement and bandwidth compression of noisy
speech. Proceedings of the IEEE, 67(12):1586–1604, 1979.

Carla Lopes and Fernando Perdigão. Phoneme recognition on the TIMIT database.
In Speech Technologies. 2011.

Xugang Lu et al. Speech enhancement based on deep denoising autoencoder. In
INTERSPEECH-2013, pages 436–440, 2013.

Nelson Mogran, Hervé Bourlard, and Hynek Hermansky. Automatic speech recogni-
tion: An auditory perspective. Speech Processing in the Auditory System, pages
309–338, 2004.

Stephen Neely and Jont Allen. Invertibility of a room impulse response. The Journal
of the Acoustical Society of America, 66(1):165–169, 1979.

Adam Paszke et al. Automatic differentiation in PyTorch. In International Conference
on Neural Information Processing Systems (NIPS), 2017.

Vijayaditya Peddinti et al. Low latency acoustic modeling using temporal convolution
and LSTMs. IEEE Signal Processing Letters, 25(3):373–377, 2018.

Daniel Povey et al. The Kaldi speech recognition toolkit. In IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU), 2011.

Anthony Rousseau, Paul Deléglise, and Yannick Estève. Enhancing the TED-LIUM
corpus with selected data for language modeling and more TED talks. In Interna-
tional Conference of Language Resources and Evaluation (LREC), pages 3935–3939,
2014.

Tara Sainath et al. Deep convolutional neural networks for large-scale speech tasks.
Neural Networks, 64:39–48, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Nitish Srivastava et al. Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research (JMLR), 15(1):1929–1958,
2014.

Pawel Swietojanski, Arnab Ghoshal, and Steve Renals. Hybrid acoustic models for
distant and multichannel large vocabulary speech recognition. In IEEE Workshop
on Automatic Speech Recognition and Understanding (ASRU), pages 285–290, 2013.

Pascal Vincent et al. Extracting and composing robust features with denoising au-
toencoders. In International Conference on Machine Learning (ICML), 2008.

Pascal Vincent et al. Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion. The Journal of Machine Learning
Research (JMLR), 11:3371–3408, 2010.

67

Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising and inpainting with deep
neural networks. In International Conference on Neural Information Processing
Systems (NIPS), pages 341–349, 2012.

Yong Xu et al. An experimental study on speech enhancement based on deep neural
networks. IEEE Signal Processing Letters, 21(1):65–68, 2014.

Yong Xu et al. A regression approach to speech enhancement based on deep neural
networks. IEEE/ACM Transactions on Audio, Speech and Language Processing,
23(1):7–19, 2015.

Takuya Yoshioka and Mark Gales. Environmentally robust ASR front-end for deep
neural network acoustic models. Computer Speech and Language, 31(1):65–86, 2015.

Takuya Yoshioka et al. Making machines understand us in reverberant rooms: Ro-
bustness against reverberation for automatic speech recognition. IEEE Signal Pro-
cessing Magazine, 29(6):114–126, 2012.

Matthew Zeiler and Rob Fergus. Visualizing and understanding convolutional net-
works. In European Conference on Computer Vision (ECCV), pages 818–833, 2014.

Matthew Zeiler et al. Deconvolutional networks. In Computer Vision and Pattern
Recognition (CVPR), pages 2528–2535, 2010.

Jun-Yan Zhu et al. Unpaired image-to-image translation using cycle-consistent ad-
versarial networks. arXiv preprint arXiv:1703.10593, 2017.

68

	Introduction
	Related Work
	Autoencoder Models
	Variational Autoencoders (VAEs)
	Denoising Autoencoders (DAEs)

	Domain Adversarial Neural Networks (DANNs)
	Generative Adversarial Networks (GANs)
	CycleGAN

	Initial Attempts at Data Augmentation via Unsupervised Domain Adaptation with Multidecoders
	Multidecoder
	Architecture
	Nuisance attribute transformations for multidecoders

	Experiments
	AMI Meeting Corpus
	Training
	Results

	Adaptive Enhancement Models
	Modular network components
	Model descriptions
	Baseline acoustic model
	Enhancement network
	Enhancement multidecoder
	Multitask network
	Multitask multidecoder

	Experimental Setup and Outcomes
	Simulating distant speech data
	TIMIT Acoustic-Phonetic Continuous Speech Corpus
	Experimental setup

	TED-LIUM Corpus Release 2
	Experimental setup

	Conclusion
	Summary of contributions
	Future Work
	Parting Thoughts

