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Abstract

Despite recent successes in machine learning, artificial intelligence is still far from
matching human intelligence in many ways. Two important aspects are transferabil-
ity and amount of supervision required. Take speech recognition for example: while
humans can easily adapt to a new accent without explicit supervision (i.e., ground
truth transcripts for speech of a new accent), current machine learning techniques still
struggle with such a scenario. We argue that an essential component of human learn-
ing is unsupervised or weakly supervised representation learning, which transforms
input signals to low dimensional representations that facilitate subsequent structured
learning and knowledge acquisition.

In this thesis, we develop unsupervised representation learning frameworks for
speech data. We start with investigating an existing variational autoencoder (VAE)
model for learning latent representations, and derive novel latent space operations
for speech transformation. The transformation method is applied to unsupervised
domain adaptation problems, which addresses the transferability issues of super-
vised machine learning framework. We then extend the VAE models, and propose a
novel factorized hierarchical variational autoencoder (FHVAE), which better models
a generative process of sequential data, and learns not only disentangled, but also
interpretable latent representations without any supervision. By leveraging the in-
terpretability, we demonstrate that such representations can be applied to a wide
range of tasks, including but not limited to: voice conversion, denoising, speaker ver-
ification, speaker invariant phonetic feature extraction, and noise invariant phonetic
feature extraction. In the last part of this thesis, we examine scalability issues re-
garding the original FHVAE training algorithm in terms of runtime, memory, and
optimization stability. Based on our analysis, we propose a hierarchical sampling
algorithm for training, which enables training of FHVAE models on arbitrarily large
datasets.

Thesis Supervisor: James R. Glass
Title: Senior Research Scientist

3



Computer Science and Artificial Intelligence Laboratory

4



Acknowledgments

I was extremely lucky to be admitted to MIT and provided the opportunities to meet

all these amazing people here. Doing research is never easy without the support from

the others. There are too many people I would like to thank to for being part of this

journey, witnessing my struggle as well as my growth. First and foremost, I would

like to thank my advisor, Jim Glass. He gave me great freedom to explore whatever I

found interesting, and also guided me at a higher level so I did not lose my direction.

I still remebered our conversation during our trip to Shanghai, where Jim mentioned

that mentoring students is not just about producing research papers, but also about

helping the student to grow in every other aspect. I was very lucky to have Jim as

my thesis advisor, and was grateful to his education.

I would also like to thank my lab mates in the Spoken Language System group,

who are not only very talented, but also very easy to get along with. As an inter-

national student, language was a huge barrier for me to become social, which made

me somewhat nervous when first coming to the group. However, I found our group

was extremely welcoming and helpful. I soon felt like being part of it. Particulary, I

would also like to thank Yu Zhang. He has been my main collaborator since I joined

the group, and got me up to speed from knowing nothing about neural networks. He

is very knowledgeable and I enjoyed our collaboration a lot.

To my roommates, friends in ROCSA, band members in JAM-soul, thank you for

enriching my life. I have always believed that better life can lead to better work. My

part of life outside of doing research is just as important as my research.

I would like to thank my family, they are the every reason that I can be here

today. My grandparents, My parents, Chi-Hung (Thomas) and Tse-Fen (Connie),

and my brother Shao-Ning, have unconditionally supported me through my entire life.

Instead of ever asking me to follow the order and complete any task mechanically, my

parents have always encouraged me to think more and make decisions myself, which

is basically what the mindset of a researcher is supposed to be. My gratitude to my

parents’ love and education is beyond words.

5



To Chien-Yu (Charlotte), thank you for keeping me company all these years and

putting up my with emotion when things were not going well. You know I am not

good at expressing myself, but I am glad to have you with me.

This work was sponsored by the TUSA fellowship and PingAn.

6



Bibliographic Note

Portions of this thesis are based on peer-reviewed publications. Chapter 2 was pub-

lished in Hsu et al. (2017a). Chapter 3 was published in Hsu et al. (2017c). Chapter 4

and Chapter 5 was published in Hsu et al. (2017b) and Hsu and Glass (2018a). Chap-

ter 6 was published in Hsu and Glass (2018b).

Part of the code in this thesis is available at https://github.com/wnhsu.

7

https://github.com/wnhsu


8



Contents

1 Introduction 23

1.1 On the Importance of Representation Learning . . . . . . . . . . . . . 23

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Learning Representations with Variational Autoencoders 27

2.1 Variational Autoencoders for Speech . . . . . . . . . . . . . . . . . . 28

2.1.1 Introduction to Variational Autoencoders . . . . . . . . . . . . 28

2.1.2 A Convolutional Model Architecture . . . . . . . . . . . . . . 29

2.2 Interpreting Learned Representations . . . . . . . . . . . . . . . . . . 31

2.2.1 Latent Attribute Representations and Derivation . . . . . . . 31

2.2.2 Arithmetic Operations to Modify Speech Attributes . . . . . . 32

2.3 Data, Experiments, and Discussion . . . . . . . . . . . . . . . . . . . 32

2.3.1 Data and Preprocessing . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Experiment Setups . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.3 Sampling from the Learned Generative Process . . . . . . . . 33

2.3.4 Decoding Latent Phoneme Representation . . . . . . . . . . . 35

2.3.5 Speech Transformation and Voice Conversion . . . . . . . . . 35

2.3.6 Speech Interpolation . . . . . . . . . . . . . . . . . . . . . . . 38

3 Unsupervised Adaptation via VAE-Based Data Augmentation 41

3.1 A Sequence-to-Sequence Recurrent VAE . . . . . . . . . . . . . . . . 42

3.2 VAE-Based Data Augmentation . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Latent Nuisance Representations . . . . . . . . . . . . . . . . 43

9



3.2.2 Data Augmentation Pipeline Overview . . . . . . . . . . . . . 44

3.2.3 Type I: Nuisance Factor Replacement . . . . . . . . . . . . . . 44

3.2.4 Type II: Latent Nuisance Subspace Perturbation . . . . . . . . 45

3.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 VAE Setup and Training . . . . . . . . . . . . . . . . . . . . . 49

3.3.3 ASR Setup and Training . . . . . . . . . . . . . . . . . . . . . 49

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Replacing Nuisance Attributes . . . . . . . . . . . . . . . . . . 52

3.4.3 Correctness of Soft Latent Nuisance Subspace Perturbation . . 53

3.4.4 Effect of Perturbation Ratios . . . . . . . . . . . . . . . . . . 54

3.4.5 Effect of Augmented Dataset Size . . . . . . . . . . . . . . . . 54

3.4.6 Comparing with DDA on Aurora-4 . . . . . . . . . . . . . . . 55

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Learning Disentangled and Interpretable Representations 57

4.1 Factorized Hierarchical Variational Autoencoder . . . . . . . . . . . . 58

4.1.1 A Factorized Hierarchical Generative Process . . . . . . . . . 58

4.1.2 An Inference Model . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.3 An Unsupervised Discriminative Objective . . . . . . . . . . . 63

4.1.4 Inferring S-Vectors During Testing . . . . . . . . . . . . . . . 64

4.1.5 Sequence-to-Sequence Autoencoder Model Architecture . . . . 64

4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Datasets and Surface Representations . . . . . . . . . . . . . . 66

4.2.2 FHVAE Model and Training Configurations . . . . . . . . . . 66

4.3 Comparison of FHVAE Model Architectures . . . . . . . . . . . . . . 67

4.4 Visualizing Latent Space Factorization . . . . . . . . . . . . . . . . . 68

4.4.1 Re-combining Latent Segment and Sequence Variables . . . . 68

4.4.2 Walking in the Latent Space . . . . . . . . . . . . . . . . . . . 70

10



4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Applications of Disentangled and Interpretable Representations 79

5.1 Speech Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.1 Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.2 Voice Conversion . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Speaker Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Extracting Domain Invariant Features . . . . . . . . . . . . . . . . . 84

5.3.1 Robustness to Speaker Variation . . . . . . . . . . . . . . . . . 86

5.3.2 Robustness to Noise and Channel Variation . . . . . . . . . . 87

5.4 Study of FHVAE Architecture for ASR Feature Extraction . . . . . . 88

5.4.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.2 Comparing Model Architectures . . . . . . . . . . . . . . . . . 90

5.4.3 Effect of FHVAE Discriminative Training . . . . . . . . . . . . 90

5.4.4 Choice of Sequence Label . . . . . . . . . . . . . . . . . . . . 91

5.4.5 Use of S-Vector . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.6 Verifying Results on CHiME4 . . . . . . . . . . . . . . . . . . 92

6 Scalable Factorized Hierarchical Variational Autoencoder Training 93

6.1 Limitations of the Original FHVAE training . . . . . . . . . . . . . . 94

6.1.1 Original FHVAE Training . . . . . . . . . . . . . . . . . . . . 94

6.1.2 Scalability Issues . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Training with Hierarchical Sampling . . . . . . . . . . . . . . . . . . 98

6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.2 Training and Model Configurations . . . . . . . . . . . . . . . 100

6.4 Results and and Discussion . . . . . . . . . . . . . . . . . . . . . . . 102

6.4.1 Time and Memory Complexity . . . . . . . . . . . . . . . . . 102

6.4.2 Evaluating Disentanglement Performance . . . . . . . . . . . . 102

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11



7 Conclusion and Future Work 109

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A Derivation of Sequence Variational Lower Bound 115

B Derivation of the Inferred S-Vector 119

12



List of Figures

2-1 Illustration of the convolutional VAE architecture. . . . . . . . . . . . 30

2-2 Random samples drawn from models trained with syllable-level and

word-level dataset. The segments in (a) are 200ms, and the segment

in (b) is 1s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2-3 Comparison of sum of off-diagonal covariance scales for each dimension

for the syllable and word-level dataset. . . . . . . . . . . . . . . . . . 34

2-4 Comparison between VAE, AE and Fbank on averaging representations

of /ae/, /th/, and /n/ from left to right. Each segment is 200ms long. 35

2-5 Cosine similarities of latent attribute representations. . . . . . . . . . 36

2-6 Modify the phone from /aa/ (top) to /ae/ (bottom). Each segment is

200ms long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2-7 Modify from a female (top) to a male (bottom). Each segment is 200ms

long. We can observe that the vertical spacing between horizontal

stripes are denser in the examples on the bottom, indicating that the

pitch is lower in those examples. However the conversion is not perfect,

because harmonics are not uniformly spread. . . . . . . . . . . . . . . 37

2-8 Interpolation in the latent space using VAE and AE. Each segment is

200ms long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3-1 Illustration of the Sequence-to-Sequence LSTM VAE architecture. . . 43

3-2 Flowchart of generating transformed labeled data. . . . . . . . . . . . 45

3-3 Two examples of replacing the nuisance attributes. . . . . . . . . . . . 46

13



3-4 Eigenvalues of PCA analysis on latent nuisance representations in de-

scending order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3-5 An example of perturbing latent nuisance attributes. In this example,

the transformed utterance contains more background noise and is of a

higher pitch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4-1 Graphical explanation of sequence-level and segment-level attributes

distribution for two different utterances. Each dot denotes the value

of a particular attribute of a segment. Distributions of some attributes

of a segment, such as the phonetic content, do not vary between ut-

terances, as shown on the lower left of the figure. On the other hand,

distributions of other attributes of a segment, such as the fundamen-

tal frequency, have sequence-dependent distributions, as shown on the

lower right of the figure. We want to encode the first type of attributes

into one set of latent variables (𝑧1), and the second type of attributes

into the other set of latent variables (𝑧2). . . . . . . . . . . . . . . . . 59

4-2 Graphical illustration of the proposed generative model. Grey nodes

denote the observed variables, and white nodes are the hidden variables. 59

4-3 Graphical illustration of the proposed inference model. Grey nodes

denote the observed variables, and white nodes are the hidden variables. 61

4-4 Sequence-to-sequence factorized hierarchical variational autoencoder.

Dashed lines indicate the sampling process using the reparameteriza-

tion trick (Kingma and Welling, 2013). The encoders for 𝑧1 and 𝑧2 are

pink and amber, respectively, while the decoder for 𝑥 is blue. Darker

colors denote the recurrent neural networks, while lighter colors denote

the fully-connected layers predicting the mean and log variance. . . . 65

14



4-5 Three examples from different speakers. Within each example, from

left to right are 1) the original segment, 2) FC reconstructed segment,

and 3) LSTM reconstructed segment. The leftmost images show ex-

panded views of the higher frequency harmonic structure (horizontal

dark bands) of the spectrogram suggesting that the LSTM reconstruc-

tion is superior to the FC model. . . . . . . . . . . . . . . . . . . . . 68

4-6 (left) Examples generated by varying different latent variables of a

FHVAE model trained with 𝛼 = 10 on TIMIT dataset. The green

block ‘A’ contains four reconstructed examples. The red block ‘B’

contains ten original examples on the first row and the corresponding

reconstructed examples on the second row. The entry on the 𝑖-th row

and the 𝑗-th column in the blue block ‘C’ is the reconstructed example

using the latent segment variable 𝑧1 of the 𝑖-th row from the block ‘A’

and the latent sequence variable 𝑧2 of the 𝑗-th column from the block

‘B.’ (right) An illustration of harmonics and formants in filter bank

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4-7 Examples generated by varying 𝑧1 and 𝑧2 of an FHVAE model trained

with 𝛼 = 0 on Aurora-4 dataset. The green block ‘A’ and the red

block ‘B’ contain the same eight examples from the test set. In block

‘B,’ original examples are shown in the first row and the corresponding

reconstructed examples are shown in the second row. The entry on the

𝑖-th row and the 𝑗-th column in the blue block ‘C’ is the reconstructed

example using the latent segment variable 𝑧1 of the 𝑖-th row from the

block ‘A’ and the latent sequence variable 𝑧2 of the 𝑗-th column from

the block ‘B.’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

15



4-8 Examples generated by varying 𝑧1 and 𝑧2 of an FHVAE model trained

with 𝛼 = 10 on Aurora-4 dataset. The green block ‘A’ and the red

block ‘B’ contain the same eight examples from the test set. In block

‘B,’ original examples are shown in the first row and the corresponding

reconstructed examples are shown in the second row. The entry on the

𝑖-th row and the 𝑗-th column in the blue block ‘C’ is the reconstructed

example using the latent segment variable 𝑧1 of the 𝑖-th row from the

block ‘A’ and the latent sequence variable 𝑧2 of the 𝑗-th column from

the block ‘B.’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4-9 Traversing two different dimensions in the space of latent segment

variables with five seed segments from the TIMIT test set using an

FHVAE model trained on TIMIT with 𝛼 = 0. . . . . . . . . . . . . . 74

4-10 Traversing another two different dimensions in the space of latent seg-

ment variables with five seed segments from the TIMIT test set using

an FHVAE model trained on TIMIT with 𝛼 = 0. . . . . . . . . . . . 75

4-11 Traversing two different dimensions in the space of latent sequence

variables 𝑧2 with five seed segments from the TIMIT test set using an

FHVAE model trained on TIMIT with 𝛼 = 0. . . . . . . . . . . . . . 76

4-12 Traversing another two different dimensions in the space of latent se-

quence variables 𝑧2 with five seed segments from the TIMIT test set

using an FHVAE model trained on TIMIT with 𝛼 = 0. . . . . . . . . 77

5-1 Graphical illustration of speech transformation by manipulating latent

sequence variable of the target sequence. . . . . . . . . . . . . . . . . 80

16



5-2 FHVAE (𝛼 = 0) decoding results of three combinations of latent seg-

ment variables 𝑧1 and latent sequence variables 𝑧2 from two utterances

in Aurora-4: a clean one (top-left) and a noisy one (bottom-left). FH-

VAEs learn to encode local attributes, such as linguistic content, into

𝑧1, and encode global attributes, such as noise level, into 𝑧2. There-

fore, by replacing 𝑧2 of a noisy utterance with 𝑧2 of a clean utterance,

an FHVAE decodes a denoised utterance (middle-right) that preserves

the linguistic content. Reconstruction results of the clean and noisy

utterances are also shown on the right. Audio samples are available at

https://youtu.be/naJZITvCfI4. . . . . . . . . . . . . . . . . . . . . 81

5-3 FHVAE (𝛼 = 0) decoding results of three combinations of latent seg-

ment variables 𝑧1 and latent sequence variables 𝑧2 from one clean ut-

terance (top-left) and one utterance with car noise (bottom-left) in

Aurora-4. By replacing 𝑧2 of a noisy utterance with 𝑧2 of a clean

utterance, an FHVAE decodes a denoised utterance (middle-right)

that preserves the linguistic content. Audio samples are available at

https://youtu.be/pOP2DVZWRjM. . . . . . . . . . . . . . . . . . . . . 82

5-4 FHVAE (𝛼 = 0) decoding results of three combinations of latent seg-

ment variables 𝑧1 and latent sequence variables 𝑧2 from one male-

speaker utterance (top-left) and one female-speaker utterance (bottom-

left) in Aurora-4. By replacing 𝑧2 of a male-speaker utterance with 𝑧2

of a female-speaker utterance, an FHVAE decodes a voice-converted

utterance (middle-right) that preserves the linguistic content. Audio

samples are available at https://youtu.be/VMX3IZYWYdg. . . . . . . 83

17

https://youtu.be/naJZITvCfI4
https://youtu.be/pOP2DVZWRjM
https://youtu.be/VMX3IZYWYdg


5-5 FHVAE (𝛼 = 0) decoding results of three combinations of latent seg-

ment variables 𝑧1 and latent sequence variables 𝑧2 from one female-

speaker utterance (top-left) and one male-speaker utterance (bottom-

left) in Aurora-4. By replacing 𝑧2 of a female-speaker utterance with

𝑧2 of a male-speaker utterance, an FHVAE decodes a voice-converted

utterance (middle-right) that preserves the linguistic content. Audio

samples are available at https://youtu.be/Rurj2ByNRs8. . . . . . . 84

6-1 Histogram of log
∑︀𝑀

𝑖=1 𝑝(𝑧
(𝑖,𝑛)
2 |𝜇̄(𝑗)

2 ) with respect to different𝑀 ∈ {101, 102, 103, 104, 105}.

Distributions shift by roughly a constant when𝑀 increases by 10 times,

implying the denominator scales proportionally to 𝑀 . . . . . . . . . . 97

6-2 The proposed FHVAE architecture consists of two encoders (orange

and green) and one decoder (blue). 𝑥 = [𝑥1, · · · , 𝑥20] is a segment of 20

frames. Dotted lines in the encoders denote sampling from parametric

distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6-3 Scatter plots of t-SNE projected 𝑧1 and 𝑧2 with models trained on

TIMIT. Each point represents one segment. Different colors are used

to code segments of different labels with respect to the generating factor

shown at the title of each plot. . . . . . . . . . . . . . . . . . . . . . . 104

6-4 Scatter plots of t-SNE projected 𝑧1 and 𝑧2 with models trained on

Aurora-4. Each point represents one segment. Different colors are

used to code segments of different labels with respect to the generating

factor shown at the title of each plot. . . . . . . . . . . . . . . . . . . 105

6-5 Scatter plots of t-SNE projected 𝑧1 and 𝑧2 with models trained on

AMI. Each point represents one segment. Different colors are used to

code segments of different labels with respect to the generating factor

shown at the title of each plot. . . . . . . . . . . . . . . . . . . . . . . 106

18

https://youtu.be/Rurj2ByNRs8


6-6 Scatter plots of t-SNE projected 𝑧1 and 𝑧2 with models trained on

LibriSpeech. Each point represents one segment. Different colors are

used to code segments of different labels with respect to the generating

factor shown at the title of each plot. . . . . . . . . . . . . . . . . . . 107

6-7 Results of decoding re-combined latent variables. A segment in the

𝑥𝐶 block is generated conditioned on the latent segment variable of a

segment in the block 𝑥𝐴 of the same column, and conditioned on the

latent sequence variable of a red-box highlighted segment in the block

𝑥𝐵 of the same row. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

19



20



List of Tables

2.1 Inference model architecture. Conv refers to convolutional layers, Re-

shape convert a 3-D tensor of shape (1, 𝑇/4, 256) to a vector, Fc refers

to fully connected layers, and Gauss refers to the Gaussian parametric

layer predicting mean and log variance of 𝑞(𝑧|𝑥) . . . . . . . . . . . . 30

2.2 Generative model architecture. Fc refers to fully connected layers,

Reshape converts a vector to a 3-D tensor of shape (1, 𝑇/4, 256), T-

Conv refers to transposed convolutional layers, and Gauss refers to the

Gaussian parametric layer predicting mean and log variance of 𝑝(𝑥|𝑧) 30

2.3 Average posteriors over 10 instances of source, target, and fixed at-

tributes before and after modification. . . . . . . . . . . . . . . . . . 38

3.1 CHiME-4 development set word error rate of acoustic models trained

on different augmented sets. . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Aurora-4 test_eval92 set word error rate of acoustic models trained on

different augmented sets. . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 TIMIT test set segment variational lower bound results on different

model architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Comparison of speaker verification equal error rate (EER) on the TIMIT

test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 TIMIT test phone error rate of acoustic models trained on different

features and sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

21



5.3 Aurora-4 test word error rate of acoustic models trained on different

features and sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Aurora-4 test_eval92 set word error rate of acoustic models trained on

different features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 CHiME-4 development set word error rate of acoustic models trained

on different features. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1 Family of distributions adopted for FHVAE generative and inference

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Processing time of the optimization step with different sequence batch

size 𝐾. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

22



Chapter 1

Introduction

1.1 On the Importance of Representation Learning

To measure how close artificial intelligence is to human intelligence, one often com-

pares how well machines can do on a certain set of tasks with human performance.

Thanks to the recent advances in machine learning, and especially deep learning, to-

day’s state-of-the-art machine learning models can achieve human-level performance

on quite a few challenging recognition tasks, such as speech recognition (Erdogan

et al., 2016; Xiong et al., 2016; Saon et al., 2017) and image recognition (Simonyan

and Zisserman, 2014; He et al., 2016). With such achievements, can we say that the

gap between artificial intelligence and human intelligence is closed? The answer is

definitely “No!”

These state-of-the-art models are built within a supervised learning framework,

which often requires a significant amount of labeled data for training. Compared to

human learning, these models are extremely data inefficient, and vulnerable to domain

change. Take automatic speech recognition (ASR) systems for example: commercial

systems are often trained on tens of thousands of hours of annotated data (Li et al.,

2017; Chiu et al., 2017). In addition, if we take a model trained on only clean

speech, and evaluate its performance on noisy data, the performance often degrades

significantly (Sun et al., 2017; Meng et al., 2017; Hsu et al., 2017c; Hsu and Glass,

2018a). Apparently, there is considerable differences between how humans learn and
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the current supervised ASR learning framework.

Here we highlight two differences, which are transferability and level of supervi-

sion. Transferability refers to the ability of leveraging the knowledge acquired from

learning one task to facilitate the learning of a new task. On the other hand, for the

scenario of recognition or classification tasks, level of supervision indicates how much

information about the prediction target is provided during the learning process. Take

machine translation for example: an analogous task for humans is second language

acquisition. Instead of learning by reading millions of pairs of parallel sentences in

two different symbolic systems, which is how current machine translation systems are

trained (Wu et al., 2016), what people do to acquire a second language is to build con-

nections between a symbol in the new symbolic system with some previously learned

concept. The abstract space of concepts serves as a bridge to connect different sym-

bolic systems, and translation between languages can therefore be achieved.

The above process can also be regarded as representation learning, where elements

in a new symbolic system are represented using learned concepts. In other words,

suppose the set of learned concepts forms an abstract space, then the process can also

be viewed as encoding a symbol to a point in that space. With that being achieved,

knowledge previously learned about the abstract concept space can be transferred to

the new symbolic system. For example, a learned relationship between two concepts

can apply to the two symbols associated with those two concepts.

An important aspect of human learning is to create abstractions of what we per-

ceive, and to build our knowledge upon those abstractions. We believe that to make

machines learn like humans do, it is essential to design frameworks and algorithms

for representation learning by utilizing unsupervised or weakly supervised data, such

as paired raw visual and raw audio data. In this thesis, we work toward this goal by

focusing on representation learning from one of the most information-rich and natural

raw sensory input: speech. Speech waveforms have complex distributions that exhibit

high variance due to factors that include linguistic content, speaking style, dialect,

speaker identity, emotional state, environment, channel effects, etc. Understanding

the influence of these factors on the speech signal is an important problem, which can
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be used for a wide variety of applications, including, but not limited to adaptation

and data augmentation for speech recognition (Jaitly and Hinton, 2013; Cui et al.,

2015), voice conversion (Kain and Macon, 1998; Stylianou, 2009; Toda et al., 2006),

and speech compression (Wong et al., 1983). However, most previous research has

focused on handcrafting features to capture these factors, unsupervised learning of

these factors is rather unexplored or else is task-oriented.

1.2 Contributions

In this thesis, we propose an unsupervised representation learning framework for

speech data. To start with, in Chapter 2, we adopt a simple yet expressive neural

network-based latent variable model to discover latent generating factors of speech,

and use those generating factors as a representation of speech. A simple and effective

method is proposed for connecting physical attributes with learned latent represen-

tations. We apply the learned representations derived from this method for unsuper-

vised voice conversion, and data augmentation for unsupervised domain adaptation

in Chapter 3.

In the second part of this thesis, we propose a novel factorized hierarchical latent

variable model in Chapter 4, which better captures the nature of the hierarchical

generative process of sequential data. The proposed model is capable of learning

disentangled and interpretable representations of speech data, by encoding sequence-

level generating factors, such as speaker and channel, and segment-level generating

factors, such as phonetic content, into different sets of latent variables. We then ap-

ply the learned disentangled representations to a number of speech processing tasks

in Chapter 5, including voice conversion, denoising, robust speech recognition, and

speaker verification. On all these tasks, we demonstrate very strong results compared

to the baselines that adopt traditional features, showing the importance of represen-

tation learning and the transferability of knowledge from unsupervised learning tasks

to supervised learning tasks.

The last part of this thesis addresses the scalability issues of the original training
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algorithms for the proposed factorized hierarchical latent variable model. In Chap-

ter 6, a hierarchical sampling algorithm for training is proposed to solve memory,

runtime, and optimization issue, and is verified on a wide spectrum of datasets, rang-

ing from three hours to 1,000 hours. Lastly, we conclude this thesis and discuss about

future work in Chapter 7.
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Chapter 2

Learning Representations with

Variational Autoencoders

Recently, there has been significant interest in deep probabilistic generative models,

such as Variational Autoencoders (VAEs) (Kingma and Welling, 2013; Mnih and

Gregor, 2014) and Generative Adversarial Nets (GANs) (Goodfellow et al., 2014).

These models are extremely expressive latent variable models, which often utilize

neural networks to capture the complex nonlinear relationship between variables.

However, due to such complexity, an exact posterior inference of latent variables is

often intractable. Variational Bayes is a widely applied technique that addresses

the intractability issue by introducing an alternative inference model, which aims to

approximate the true posterior distribution. Variational autoencoders leverage this

method to carry out parametric and amortized variational inference in an encoder-

decoder framework.

In this chapter, we adopt the VAE framework and propose a convolutional archi-

tecture to model the probabilistic generative process of speech for learning latent rep-

resentations. We present simple arithmetic operations in the latent space to demon-

strate that such operations can decompose the latent representation into subspaces

modeling different physical generating factors, such as speaker identity and linguistic

content. By manipulating the latent representation, we also demonstrate an ability to

perturb some aspect of the surface speech segment, for example the speaker identity,
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while keeping the remaining attributes fixed (e.g., linguistic content). To quantify

the behavior of the latent representation modifications, an experiment is conducted

to measure our ability to modify speaker characteristics without changing linguistic

content, and vice versa. In addition, we perform an analysis to evaluate the model’s

ability to generate speech segments of different durations. Part of the content in this

chapter was published in Hsu et al. (2017a).

2.1 Variational Autoencoders for Speech

2.1.1 Introduction to Variational Autoencoders

Variational autoencoders (Kingma and Welling, 2013) define a probabilistic generative

process between observation 𝑥 and latent variable 𝑧 as follows: (1) a latent variable

𝑧 is drawn from the prior distribution 𝑝(𝑧). (2) an observed variable 𝑥 is then

drawn from a conditional distribution 𝑝(𝑥|𝑧). The prior 𝑝(𝑧) and the conditional

distribution 𝑝(𝑥|𝑧) are assumed to be in some parametric probability distribution

family, whose parameters are collectively denoted by 𝜃. In an unsupervised setting,

we are only given a dataset 𝑥 = {𝑥(𝑛)}𝑁𝑛=1 of 𝑁 i.i.d. samples. The true value of 𝜃,

as well as the latent variable 𝑧 associated with each observation 𝑥 in this process are

unknown.

We are often interested in knowing the marginal likelihood of the data 𝑝(𝑥),

or the posterior 𝑝(𝑧|𝑥); however, both require computing the intractable integral∫︀
𝑝(𝑧)𝑝(𝑥|𝑧)𝑑𝑧. To address this problem, the VAE framework introduces an amor-

tized inference model 𝑞(𝑧|𝑥), which is in some parametric probabilistic distribution

family and approximates the true posterior 𝑝(𝑧|𝑥). The parameters of 𝑞(𝑧|𝑥) are

denoted by 𝜑. We can therefore rewrite the marginal likelihood as:

log 𝑝(𝑥) = 𝐷𝐾𝐿(𝑞(𝑧|𝑥)||𝑝(𝑧|𝑥)) + ℒ(𝜃,𝜑;𝑥)

≥ ℒ(𝜃,𝜑;𝑥)

= −𝐷𝐾𝐿(𝑞(𝑧|𝑥)||𝑝(𝑧)) + E𝑞(𝑧|𝑥)[log 𝑝(𝑥|𝑧)], (2.1)
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where ℒ(𝜃,𝜑;𝑥) is the variational lower bound of the marginal likelihood that we

want to optimize with respect to 𝜃 and 𝜑.

In the VAE framework we consider here, both the recognition model 𝑞(𝑧|𝑥) and

the generative model 𝑝(𝑥|𝑧) are parameterized using diagonal Gaussian distributions,

of which the mean and the covariance are computed with a neural network. The prior

is assumed to be a centered isotropic multivariate Gaussian 𝑝(𝑧) = 𝒩 (𝑧;0, 𝐼), that

has no free parameters.

In practice, the expectation in the second term of Eq. 2.1 is approximated with

the Monte Carlo estimation, by first drawing 𝐿 samples from 𝑧𝑙 ∼ 𝑞(𝑧|𝑥), and then

computing E𝑞(𝑧|𝑥)[log 𝑝(𝑥|𝑧)] ≃ 1
𝐿

∑︀𝐿
𝑙=1 log 𝑝(𝑥|𝑧𝑙). To yield a differentiable network

after sampling, the reparameterization trick (Kingma and Welling, 2013) is used.

Suppose 𝑧 ∼ 𝒩 (𝑧;𝜇𝑧,𝜎
2
𝑧𝐼), after reparameterizing we have 𝑧 = 𝜇𝑧 + 𝜎𝑧 ⊙ 𝜖, where

⊙ denotes an element-wise product, and vector 𝜖 is sampled from 𝒩 (0, 𝐼) and treated

as an additional input.

2.1.2 A Convolutional Model Architecture

Our goal is to learn latent representations of speech segments to model the generation

process. We let the observed data 𝑥 be a sequence of frames of fixed length. The

learned latent variable 𝑧 is therefore supposed to encode the factors that result in

the variability of speech segments, such as the content being spoken, speaker identity,

and channel effect.

As mentioned in the previous section, a VAE is composed of an inference model

and a generative model. The inference model takes a speech segment as input and

predicts the mean 𝜇𝑧 and the log-variance log𝜎2
𝑧 that parameterize the posterior

distribution 𝑞(𝑧|𝑥). A speech segment is treated as a 𝑇 -by-𝐹 tensor, similar to an

image of height 𝑇 and width 𝐹 ; however, unlike images, speech segments are only

translational invariant in the time axis. Therefore, similar to Harwath and Glass

(2017), 1-by-𝐹 filters are applied at the first convolutional layer, and 𝑤-by-1 filters

at following layers. As suggested in Radford et al. (2015), instead of pooling, we

use a stride size > 1 for down-sampling along the time axis. The output from the
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last convolutional layer is flattened and fed into fully connected layers before going

to the Gaussian parameter layer modeling the latent variable 𝑧. See Table 2.1 for a

summary, and Figure 2-1 for graphical illustration.

Table 2.1: Inference model architecture. Conv refers to convolutional layers, Reshape
convert a 3-D tensor of shape (1, 𝑇/4, 256) to a vector, Fc refers to fully connected
layers, and Gauss refers to the Gaussian parametric layer predicting mean and log
variance of 𝑞(𝑧|𝑥)

Conv1 Conv2 Conv3 Reshape Fc1 Gauss
#filters/units 64 128 256 - 512 128

filter size 1x𝐹 3x1 3x1 - - -
stride (1,1) (2,1) (2,1) - - -

The generative network takes sampled 𝑧 as input, and predicts the mean 𝜇𝑥 as well

as the log-variance log𝜎2
𝑥 of the observed data. Here we use symmetric architectures

to the corresponding recognition network. See Table 2.2 for a summary. Figure 2-1

illustrates the encoder-decoder architecture.

Table 2.2: Generative model architecture. Fc refers to fully connected layers, Reshape
converts a vector to a 3-D tensor of shape (1, 𝑇/4, 256), T-Conv refers to transposed
convolutional layers, and Gauss refers to the Gaussian parametric layer predicting
mean and log variance of 𝑝(𝑥|𝑧)

Fc1 Fc2 Reshape T-Conv1 T-Conv2 Gauss
#filters/units 512 256 * (T/4) - 128 64 1

filter size - - - 3x1 3x1 1x𝐹
stride - - - (2,1) (2,1) (1,1)

Figure 2-1: Illustration of the convolutional VAE architecture.
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Different choices for the activation function were investigated. No activation is

applied to Gaussian parameter layers, since the mean and the log-variance are un-

bounded for both 𝑥 and 𝑧. For other layers, we use tanh, which leads to a higher

variational lower bound compared to using rectified linear units. Batch normalization

is applied to every layer except for the Gaussian parameter layer.

2.2 Interpreting Learned Representations

In this section, we discuss methods for interpreting learned latent representations.

Specifically, we propose the idea of latent attribute representations that capture the

signature representation of a specific physical attribute, and derive simple arithmetic

operations for modifying attributes of speech segments. We will use 𝑎 to denote the

attribute, such as a phoneme, and 𝑟 to denote the value of some attribute, such as

/ae/.

2.2.1 Latent Attribute Representations and Derivation

The first assumption we make is that conditioning on some attribute 𝑎 being 𝑟, such

as the phone being /ae/, the prior distribution of 𝑧 is also a Gaussian; in other words,

𝑝(𝑧; 𝑟) = 𝑁(𝑧;𝜇𝑟,Σ𝑟). We therefore define 𝜇𝑟 as the latent attribute representation

for 𝑟. Let 𝑋𝑟 = {𝑥(𝑖)
𝑟 }𝑁𝑟

𝑖=1 be a subset of 𝑥 where the attribute 𝑎 of each instance is

𝑟. We can then estimate 𝜇𝑟 as follows:

𝜇𝑟 = E𝑝(𝑧;𝑟)[𝑧] =

∫︁
𝑧

𝑧𝑝(𝑧; 𝑟)𝑑𝑧

=

∫︁
𝑧

∫︁
𝑥

𝑧𝑝(𝑧|𝑥; 𝑟)𝑝(𝑥; 𝑟)𝑑𝑥𝑑𝑧

≈
∫︁
𝑥

𝑝(𝑥; 𝑟)

∫︁
𝑧

𝑧𝑞(𝑧|𝑥; 𝑟)𝑑𝑧𝑑𝑥

≈ 1

𝑁𝑟

𝑁𝑟∑︁
𝑖=1

∫︁
𝑧

𝑧𝑞(𝑧|𝑥(𝑖)
𝑟 )

=
1

𝑁𝑟

𝑁𝑟∑︁
𝑖=1

𝜇̃(𝑖)
𝑟 , (2.2)
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where 𝜇̃
(𝑖)
𝑟 is the variational posterior mean of 𝑥(𝑖)

𝑟 , predicted by the inference model.

This results in averaging the posterior mean of each instance in 𝑋𝑟.

2.2.2 Arithmetic Operations to Modify Speech Attributes

Here we make the second assumption: let there be 𝐾 independent attributes that

affect the realization of speech, each attribute 𝑎𝑘 is then modeled using a subspace

Z𝑎𝑘 , where Z = ∪𝐾𝑘=1Zak and Z𝑎𝑘 ⊥ Z𝑎𝑘′
if 𝑘 ̸= 𝑘′. Hence, the latent representation can

be decomposed into 𝐾 orthogonal latent attribute representations 𝑧𝑎1 , 𝑧𝑎2 , · · · , 𝑧𝑎𝑘 ,

where 𝑧𝑎𝑘 ∈ Z𝑎𝑘 and 𝑧 =
∑︀𝐾

𝑘=1 𝑧𝑎𝑘 . Combining the aforementioned assumption of

the conditioned prior of 𝑧, we can next derive the latent space arithmetic operations

to modify the speech attributes.

Suppose we want to modify the attribute 𝑎𝑘, for example the speaker identity, of

a speech segment 𝑥(𝑖), from being speaker 𝑟𝑠 to being speaker 𝑟𝑡. Given the latent

attribute representations 𝜇𝑟𝑠 and 𝜇𝑟𝑡 for speaker 𝑟𝑠 and 𝑟𝑡 respectively, the latent

speaker shift 𝑣𝑟𝑠→𝑟𝑡 is computed as: 𝑣𝑟𝑠→𝑟𝑡 = 𝜇𝑟𝑡−𝜇𝑟𝑠 . We can then modify a speech

segment 𝑥(𝑖) of speaker 𝑟𝑠 as follows:

𝑧(𝑖) ∼ 𝑞(𝑧|𝑥(𝑖)) (2.3)

𝑧
(𝑖)
𝑚𝑜𝑑 = 𝑧(𝑖) + 𝑣𝑟𝑠→𝑟𝑡 (2.4)

𝑥
(𝑖)
𝑚𝑜𝑑 ∼ 𝑝(𝑥|𝑧(𝑖)

𝑚𝑜𝑑), (2.5)

which does not modify latent attribute representations other than 𝑧
(𝑖)
𝑎𝑘 , because 𝑣𝑟𝑠→𝑟𝑡 ⊥

𝑧
(𝑖)
𝑎𝑘′ for 𝑘′ ̸= 𝑘.

2.3 Data, Experiments, and Discussion

2.3.1 Data and Preprocessing

The TIMIT acoustic-phonetic corpus (Garofolo et al., 1993; Zue et al., 1990) con-

tains broadband recordings of phonetically-balanced read speech. A total of 6300
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utterances (5.4 hours) are presented with 10 sentences from each of 630 speakers, of

which approximately 70% are male and 30% are female. Each utterance comes with

manually time-aligned phonetic and word transcriptions, as well as a 16-bit, 16kHz

speech waveform file. We follow Kaldi’s TIMIT recipe to split train/dev/test sets

and exclude dialect sentences (SA), with 462/50/24 non-overlapping speakers in each

set respectively. Phonetic transcriptions are based on 58 phones, excluding silence

phones.

We consider two types of frame representations: magnitude spectrum in dB (Spec)

and filter banks (FBank). For both features, we first apply a 25ms Hanning window

with 10ms shift, and then compute the short time Fourier transform coefficients with

flooring at -20dB. For FBank features, 80 Mel-scale filter banks that match human

perceptual sensitivity are applied, which preserves more detail at lower frequency

regions. We investigate two different segment lengths: 200ms and 1s, which corre-

spond to 20 frames and 100 frames, and are referred to as syllable-level and word-level

datasets, respectively.

2.3.2 Experiment Setups

All models were trained with stochastic gradient descent using a mini-batch size of

128 without clipping to minimize the negative variational lower bound plus an 𝐿2-

regularization with weight 10−4. The Adam (Kingma and Ba, 2014) optimizer is used

with 𝛽1 = 0.95, 𝛽2 = 0.999, 𝜖 = 10−8, and initial learning rate of 10−3. Training is

terminated if the lower bound on the development set does not improve for 10 epochs.

To compare with VAE, we also train an autoencoder (AE) with the same proposed

model architecture except for the Gaussian latent variable layer, which is replaced

with a fully-connected layer of 128 hidden units.

2.3.3 Sampling from the Learned Generative Process

One of the advantages of VAEs is that the prior 𝑝𝜃(𝑧) is assumed to be a centered

isotropic Gaussian, which enables us to sample latent vectors and reconstruct speech-
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like segments. Here, we investigate the syllable-level and word-level datasets.

(a) Syllable-level (b) Word-level

Figure 2-2: Random samples drawn from models trained with syllable-level and word-
level dataset. The segments in (a) are 200ms, and the segment in (b) is 1s.

Figure 2-2 (a) shows five random samples from the syllable-level model, which

look and sound reasonable; however, we observe that random samples drawn from

the word-level model are less natural because of excessive closures (vertical stripes),

as shown in Figure 2-2 (b). The failure of drawing random samples implies that there

is discrepancy between the assumed prior and the true prior. We hypothesize that

because per-dimension KL-divergence values are computed, and correlations among

dimensions are not penalized, the covariance matrix of the true prior may not be

diagonal. We estimate the covariance matrix of the true prior by sampling the latent

representations of the entire test set and compute the full covariance matrix. Figure

2-3 compares the syllable model and the word model on the sum of off-diagonal

covariance scale for each dimension. We can observe that the word-level model has

higher correlations between different dimensions than the syllable-level model.

Figure 2-3: Comparison of sum of off-diagonal covariance scales for each dimension
for the syllable and word-level dataset.
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2.3.4 Decoding Latent Phoneme Representation

In Figure 2-4, we show the results of reconstructing from latent attribute represen-

tations of three phones, /ae/, /th/, and /n/, using VAE and AE respectively. As a

baseline, we also show the results of averaging filter bank features. The VAE pre-

serves more harmonic structure and clearer spectral envelope, while the AE and the

FBank are more blurred. It is worth noting that AE also shows unnatural frequent

vertical stripe artifacts.

(a) VAE (b) AE (c) Fbank

Figure 2-4: Comparison between VAE, AE and Fbank on averaging representations
of /ae/, /th/, and /n/ from left to right. Each segment is 200ms long.

To assess the orthogonality-between-attributes assumption, we sampled six speak-

ers, three males and three females, denoted by {m,f}_spk[i], and ten phones, including

vowels, stops, fricatives, and nasals, to compute three latent speaker representations

and ten latent phone representations. Figure 2-5 plots the cosine similarities between

these representations. From the figure, we can observe that off-diagonal blocks have

low cosine similarities, which indicates that latent speaker representations and latent

phone representations reside in orthogonal latent subspaces. Second, different latent

phone representations also cluster according to the phonetic characteristics, which

suggests the latent phone subspace may be further divided.

2.3.5 Speech Transformation and Voice Conversion

We next explored modifying the phone and speaker attributes using the derived op-

erations in Section 2.2.2. Figure 2-6 shows an example of drawing 10 instances of the

phone /aa/ (top) and transforming them to /ae/ (bottom) using the latent attribute
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Figure 2-5: Cosine similarities of latent attribute representations.

shift 𝑣𝑎𝑎→𝑎𝑒. We can observe that the second formant 𝐹2, marked with red boxes,1

of each instance goes up after modification, because it is being changed from a back

vowel to a front vowel. On the other hand, the harmonics of each instance, which are

closely related to the speaker identity, maintain roughly the same.

Figure 2-7 illustrates modifying 10 instances from a female speaker falk0 to a male

speaker madc0 with the latent attribute shift 𝑣𝑓𝑎𝑙𝑘0→𝑚𝑎𝑑𝑐0. The harmonics (horizontal

stripes) decrease after modification, while the spectrum envelope remains the same,

indicating that the phonetic content is not changed.

In an attempt to quantify our latent attribute perturbation, we trained convolu-

tional phonetic and speaker classifiers so that we could measure the difference of the

posterior of each attribute before and after modification. The 58-class phone classifier

achieves a test accuracy of 72.2%, while the 462-class speaker classifier achieves a test

accuracy of 44.2%.

The shifts in posterior distributions of the phone and speaker classifications on the

modified data are shown in Table 2.3. The upper half of the table contains results for

speech segments that were transformed from /aa/ to /ae/. The first row shows that

the average /aa/ posterior was 34% while the average correct speaker posterior was

51%. The second row shows that after modification to an /ae/, the average phone

1Best viewed in color.
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Figure 2-6: Modify the phone from /aa/ (top) to /ae/ (bottom). Each segment is
200ms long.

Figure 2-7: Modify from a female (top) to a male (bottom). Each segment is 200ms
long. We can observe that the vertical spacing between horizontal stripes are denser
in the examples on the bottom, indicating that the pitch is lower in those examples.
However the conversion is not perfect, because harmonics are not uniformly spread.

posteriors shift dramatically to be 30% /ae/, while slightly degrading the average

correct speaker posterior.
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The lower part of the table shows the results of speech segments that had speaker

identity modified from speaker ‘falk0’ to ‘madc0’. The third row shows an average

speaker posterior of 44% for ‘falk0’ in the unmodified samples, while the average

correct phone posterior was 55%. After modification we see that the average speaker

posterior has shifted to be 29% ‘madc0’ while slightly degrading the average correct

phone posterior.

Modify Phone
/aa/ /ae/ ori. spk.

before 34.06% 0.45% 50.78%
after 0.24% 29.73% 41.66%

Modify Speaker
falk0 madc0 ori. phone

before 44.48% 0.02% 54.61%
after 3.11% 28.71% 48.71%

Table 2.3: Average posteriors over 10 instances of source, target, and fixed attributes
before and after modification.

2.3.6 Speech Interpolation

Finally, we explore the operation of interpolation in the latent space between speech

segments. Since 𝑝(𝑧) is log-concave, the interpolated 𝑧𝑖𝑛𝑡 = 𝛼𝑧𝑎 + (1 − 𝛼)𝑧𝑏, where

𝛼 ∈ [0, 1], would have 𝑝(𝑧𝑖𝑛𝑡) ≥ min(𝑝(𝑧𝑎), 𝑝(𝑧𝑏)). Therefore it should also generate

reasonable speech-like segments. Figure 2-8 shows the transition between a male /ey/

to a female /ay/ using VAE and AE respectively. For VAE, we can clearly observe

the pitch shifting and the formant contour transforming; however for AE it is more

akin to interpolation in the raw feature space, where the magnitude of one segment

goes down as the other goes up.
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(a) VAE (b) AE

Figure 2-8: Interpolation in the latent space using VAE and AE. Each segment is
200ms long.
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Chapter 3

Unsupervised Adaptation via

VAE-Based Data Augmentation

Domain mismatch between training and testing can lead to significant degradation

in performance in many machine learning scenarios. Unfortunately, this is not a rare

situation for automatic speech recognition deployments in real-world applications.

Research on robust speech recognition can be regarded as trying to overcome this

domain mismatch issue.

Some robust ASR research focuses on enhancing speech, by applying beam-forming

techniques (Anguera et al., 2007; Erdogan et al., 2016), estimating noise masks

(Narayanan and Wang, 2013; Isik et al., 2016), or training denoising models (Maas

et al., 2012; Feng et al., 2014), etc. Other research extracts robust acoustic features

(Kingsbury et al., 1998; Stern and Morgan, 2012; Vinyals and Ravuri, 2011; Sainath

et al., 2012; Fredes et al., 2017) that are intended to be invariant for ASR even in

adverse environments. Another line of research investigates modeling techniques,

including, but not limited to, model adaptation (Gales, 1998; Yu et al., 2013), multi-

condition training (Seltzer et al., 2013), and adversarial training (Sun et al., 2017;

Meng et al., 2017). Over the past decade, neural network-based acoustic models have

come to dominate the ASR field. To utilize the full capacity of neural network-based

acoustic models, it is often a good strategy to train a model with as much, and as

diverse, a dataset as possible (Li et al., 2012).
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In this chapter, we consider a highly adverse scenario, where both source and

target domain speech are available, but word transcripts are only available for the

source domain data. We present novel augmentation-based methods that transform

speech, but, do not require altering existing transcripts. Specifically, we first train

an unsupervised sequence-to-sequence recurrent variational autoencoder (VAE) on

both source and target domain data to learn a latent representation of speech. We

then transform “nuisance” attributes of speech, such as speaker identities and noise

types, that do not contain linguistic information, and are thus irrelevant to ASR,

by modifying the latent representation with the operations proposed in the previous

chapter, in order to create additional labeled training data whose distribution is more

similar to the target domain. The proposed method is evaluated on the CHiME-4

and Aurora-4 dataset, reducing the absolute word error rate (WER) by as much as

35% and 40% compared to the non-adapted baseline. This chapter was published in

Hsu et al. (2017c).

3.1 A Sequence-to-Sequence Recurrent VAE

Similar to the previous chapter, we use Mel-scale filter bank coefficients (FBank) of

80 dimensions as the frame-level representation of speech, which are extracted every

10ms using a 25ms Hamming window. Observed data 𝑥 = {𝑥1, · · · , 𝑥20} are speech

segments of 20 frames, roughly at the scale of a syllable. VAEs are applied to learn the

generative process of syllable-level speech segments. Likewise, both the conditional

distribution 𝑝(𝑥|𝑧) and the approximate posterior distribution 𝑞(𝑧|𝑥) are assumed to

be diagonal Gaussian distributions, whose mean and log variance are parameterized

by neural networks with 𝑧 and 𝑥 as inputs respectively. The prior 𝑝(𝑧) is considered

a centered isotropic multivariate Gaussian of 64 dimensions.

To better model the temporal relationship within speech segments, we apply a

sequence-to-sequence long short-term memory (Seq2Seq-LSTM) architecture as illus-

trated in Figure 3-1. The encoder is a two layer LSTM with 512 hidden units, which

inputs the speech segment frame by frame. The outputs from both layers are then
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concatenated and fed into a fully connected Gaussian parameter layer that predicts

the mean and the log variance of the latent variable 𝑧. The reparameterization trick

is applied for differentiable sampling.

The decoder is also a two layer LSTM with 512 hidden units that takes the sampled

latent variable as the input and generates a sequence of outputs. Each output is used

as the input to a fully-connected Gaussian parameter layer shared across different

time steps that predicts the mean and the log variance for one frame of 𝑥. The entire

model can be seen as a stochastic sequence-to-sequence autoencoder that encodes a

frame sequence stochastically to the latent space, and then decodes statistically from

a sampled latent variable to a sequence of frames.

x1

p(x1|z)
…

z

En
co

de
r D

ecoder

x2 x20

x1 x2

p(x2|z) p(x20|z)q(z|x)

x20

…

…

…

Figure 3-1: Illustration of the Sequence-to-Sequence LSTM VAE architecture.

3.2 VAE-Based Data Augmentation

Here we extend the idea of latent attribute representations in Section 2.2.1, in order

to discover the latent subspace that models non-linguistic generating factors. We

then propose two augmentation methods that transform a speech utterance without

altering its associated transcripts by perturbing the latent space.

3.2.1 Latent Nuisance Representations

We define nuisance factors to be those that affect the surface form of a speech utter-

ance but not the linguistic content, such as speaker identity, channel, and background

noise, etc. These factors, unlike phonetic attributes, are generally consistent among

segments within an utterance, which implies that we can assume the labels for these
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factors are the same for all the segments within an utterance. Therefore, we can esti-

mate one latent nuisance representation for each utterance by averaging the posterior

mean of latent variables for each segment in that utterance, according to Eq. 2.2. We

denote the latent nuisance representation of the 𝑗-th utterance with 𝜇𝑢𝑡𝑡𝑗 .

3.2.2 Data Augmentation Pipeline Overview

By transforming nuisance factors of the labeled source data, we can generate la-

beled training data (i.e. with transcripts) for automatic speech recognition systems.

The newly generated data can still use the original transcript for training but dif-

fer in some aspect, such as speaker quality and background noise, from the original

speech. Figure 3-2 shows the flowchart of generating transformed labeled data. Let

({𝑥(𝑖)
𝑢𝑡𝑡𝑗}

𝑁𝑗

𝑖=1, 𝑡𝑟𝑎𝑢𝑡𝑡𝑗) be the source utterance of 𝑁𝑗 segments with the transcript 𝑡𝑟𝑎𝑢𝑡𝑡𝑗
that we want to modify. We first encode and sample each segment 𝑥

(𝑖)
𝑢𝑡𝑡𝑗 to gener-

ate 𝑧
(𝑖)
𝑢𝑡𝑡𝑗 using a trained VAE encoder. Then the same transformation operation is

applied to each latent variable in {𝑧(𝑖)
𝑢𝑡𝑡𝑗}

𝑁𝑗

𝑖=1 to produce {𝑧(𝑖)
𝑢𝑡𝑡𝑗}

𝑁𝑗

𝑖=1. Finally, we de-

code {𝑧(𝑖)
𝑢𝑡𝑡𝑗}

𝑁𝑗

𝑖=1 using the same trained VAE decoder to obtain the modified utterance

{𝑥̃(𝑖)
𝑢𝑡𝑡𝑗}

𝑁𝑗

𝑖=1 that shares the same transcript 𝑡𝑟𝑎𝑢𝑡𝑡𝑗 with the original utterance. In other

words, we create new labeled training data: ({𝑥̃(𝑖)
𝑢𝑡𝑡𝑗}

𝑁𝑗

𝑖=1, 𝑡𝑟𝑎𝑢𝑡𝑡𝑗). We next introduce

two types of modification operations in Section 3.2.3 and 3.2.4 respectively.

3.2.3 Type I: Nuisance Factor Replacement

The first type of modification operation we consider is to replace the nuisance factors

of one utterance with those of another utterance. We assume VAEs use orthogonal

subspaces to model linguistic and nuisance factors, and apply the operation derived in

Section 2.2.2. Let {𝑧(𝑖)
𝑢𝑡𝑡𝑠𝑟𝑐}

𝑁𝑗

𝑖=1 be the encoded latent variables of the source utterance

segments we want to modify from, 𝜇𝑢𝑡𝑡𝑠𝑟𝑐 be the latent nuisance representation from

the source utterance, and 𝜇𝑢𝑡𝑡𝑡𝑎𝑟 be the latent nuisance representation from the target
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Figure 3-2: Flowchart of generating transformed labeled data.

utterance. Then we modify 𝑧
(𝑖)
𝑢𝑡𝑡𝑠𝑟𝑐 as follows:

𝑧
(𝑖)
𝑢𝑡𝑡𝑠𝑟𝑐 = 𝑧

(𝑖)
𝑢𝑡𝑡𝑠𝑟𝑐 − 𝜇𝑢𝑡𝑡𝑠𝑟𝑐 + 𝜇𝑢𝑡𝑡𝑡𝑎𝑟 .

Figure 3-3 shows two examples of modifying the nuisance factors, where the first

row is the original utterance and the second row is the modified utterance. In Figure 3-

3(a), a clean utterance is modified by replacing its nuisance factors with those from

a noisy utterance. Conversely, Figure 3-3(b) illustrates an example of modifying a

noisy utterance by replacing its nuisance factors with those estimated from a clean

utterance. In the figure, segments within an utterance are separated by vertical black

lines. From both examples we can observe that while the spacing between harmonics

and the level of noise changes, the linguistic content does not seem to change after

replacing the nuisance attributes.

3.2.4 Type II: Latent Nuisance Subspace Perturbation

The fundamental assumption for such a transformation operation is that VAEs learn

to use orthogonal subspaces to model linguistic factors and nuisance factors respec-
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(a) modifying a clean utterance to be like a noisy utterance

(b) modifying a noisy utterance to be like a clean utterance

Figure 3-3: Two examples of replacing the nuisance attributes.

tively. Hence, we are able to modify the nuisance factors without changing the origi-

nal linguistic attribute by only modifying factors in the latent nuisance subspace, and

keeping factors in the latent linguistic subspace intact. While the operation in Sec-

tion 3.2.3 bypasses the search for the latent nuisance subspace, we can alternatively

discover this subspace, and then sample or perturb the factors in it to change the

nuisance factors of an utterance.

Determining the latent nuisance subspace with PCA

Given a dataset of 𝑀 utterances, we can compute 𝑀 latent nuisance representations

{𝜇𝑢𝑡𝑡𝑗}𝑀𝑗=1, with one for each utterance. The latent nuisance subspace is composed

of a set of bases, which captures the variations among these latent nuisance repre-

sentations. We apply principle component analysis (PCA) on the 𝑀 latent nuisance
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representations to obtain a list of eigenvectors {𝑒𝑑}𝐷𝑑=1, sorted in descending order by

their associated eigenvalues {𝜎2
𝑑}𝐷𝑑=1, where 𝐷 is the dimension of the latent variable

𝑧. Each eigenvalue interprets the variance of latent nuisance representations along

the direction of its associated eigenvector. We plot the eigenvalues in Figure 3-4 in

descending order, where we can observe that most of the variation is captured by the

first few dimensions.

Figure 3-4: Eigenvalues of PCA analysis on latent nuisance representations in de-
scending order.

Soft latent nuisance subspace perturbation

An intuitive way to determine and perturb the latent nuisance subspace is to select

the first few eigenvectors and only perturb in those directions. We refer to this as hard

latent nuisance subspace perturbation, since it demands a hard decision on the rank

of the subspace. Alternatively, we propose an approach called soft latent nuisance

subspace perturbation, which generates a perturbation vector 𝑝 as follows:

𝑝 = 𝛾

𝐷∑︁
𝑑=1

𝜓𝑑𝜎𝑑𝑒𝑑, 𝜓𝑑 ∼ 𝒩 (0, 1),

where 𝜓𝑑 is drawn from a normal distribution, 𝜎𝑑 and 𝑒𝑑 are the square root of the 𝑑-th

largest eigenvalue and its associated eigenvector, and 𝛾 is a hyper-parameter, referred

to as the perturbation ratio. It can be observed that the expected scale we perturb

along an eigenvector 𝑒𝑑 is proportional to the standard deviation of latent nuisance

representations along that eigenvector, which is the square root of its eigenvalue

𝜎2
𝑑. This approach thus automatically adapts to different distributions of eigenvalues,
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regardless how many dimensions a VAE learns to use to model the nuisance attributes.

Figure 3-5: An example of perturbing latent nuisance attributes. In this example,
the transformed utterance contains more background noise and is of a higher pitch.

Let {𝑧(𝑖)
𝑢𝑡𝑡𝑠𝑟𝑐}

𝑁𝑗

𝑖=1 be the encoded latent variables of the source utterance segments

we want to perturb. We modify each latent variable as follows:

𝑧
(𝑖)
𝑢𝑡𝑡𝑠𝑟𝑐 = 𝑧

(𝑖)
𝑢𝑡𝑡𝑠𝑟𝑐 + 𝑝,

which adds the same perturbation vector 𝑝 to each segment in an utterance such that

the nuisance factor change is consistent for all segments within an utterance. Figure 3-

5 shows an example of perturbing the latent nuisance attributes with 𝛾 = 1.0, where

the first row is the original utterance and the second row is the perturbed utterance.

3.3 Setup

3.3.1 Dataset

Our dataset is based on the CHiME-4 challenge (Vincent et al., 2016), which targets

distant-talking ASR and whose setup is based on the speaker-independent medium

(5K) vocabulary subset of the Wall Street Journal (WSJ0) corpus (Garofalo et al.,

2007). The training set of the CHiME-4 dataset consists of 1,600 utterances recorded

in four noisy environments from four speakers, and 7,138 simulated noisy utterances

based on the clean utterances in the WSJ0 SI-84 training set. We use the original
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7,138 clean utterances as the labeled source-domain data, and the 1,600 single channel

real noisy utterances as the unlabeled target-domain data for unsupervised domain

adaptation. Performance is evaluated on both the real noisy utterances and the

original clean utterances in the development partition of the CHiME-4 dataset in

terms of the word error rate (WER).

In addition, we also repeat our experiments on Aurora-4 (Pearce, 2002) to com-

pare with the results reported in Sun et al. (2017). Aurora-4 is a broadband corpus

designed for noisy speech recognition tasks based on WSJ0 as well. Two microphone

types, clean/channel are included, and six noise types are artificially added to both

microphone types, which results in four conditions: clean(A), channel(B), noisy(C),

and channel+noisy(D). We use the clean training set as the labeled source-domain

data, and the multi-condition development set as the unlabeled target-domain data.

The multi-condition test_eval92 set is used for evaluation.

3.3.2 VAE Setup and Training

All the original clean utterances and the real noisy utterances are mixed and split

into training and development sets with the ratio of 90-10 for training the Seq2Seq

LSTM VAE. The VAE is trained with stochastic gradient descent using a mini-batch

size of 128 without clipping to minimize the negative variational lower bound plus an

𝐿2-regularization with weight 10−4. The Adam (Kingma and Ba, 2014) optimizer is

used with 𝛽1 = 0.95, 𝛽2 = 0.999, 𝜖 = 10−8, and initial learning rate of 10−3. Training

is terminated if the lower bound on the development set does not improve for 50

epochs.

3.3.3 ASR Setup and Training

Kaldi (Povey et al., 2011) is used for feature extraction, decoding, forced alignment,

and training of an initial HMM-GMM model on the original clean utterances. The

recipe provided by the CHiME-4 challenge (run_gmm.sh) and the Kaldi Aurora-4

recipe are adapted by only changing the training data being used. The Computational
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Network Toolkit (CNTK) (Yu et al., 2014) is used for neural network-based acoustic

model training. For all CHiME-4 experiments, the same LSTM acoustic model (Sak

et al., 2014) with the architecture proposed in Zhang et al. (2016) is applied, which has

1,024 memory cells and a 512-node projection layer for each LSTM layer, and 3 LSTM

layers in total. Following the training setup in Hsu et al. (2016b), LSTM acoustic

models are trained with a cross-entropy criterion, using truncated backpropagation-

through-time (BPTT) (Williams and Peng, 1990) for optimization. Each BPTT

segment contains 20 frames, and each mini-batch contains 80 utterances, since we

find empirically parallelizing 80 utterances has similar performance to 40 utterances

(Hsu et al., 2016a).

For all Aurora-4 experiments, the same 6 layer fully-connected deep neural network

(DNN) acoustic model with 2,048 hidden units at each layer is applied, which is the

same architecture as the one in Sun et al. (2017), except that the number of hidden

units are doubled. The input to the DNN is a context window of 11 frames, with

five frames of left context and five frames of right context. Each frame is represented

using filter bank features with delta and delta-delta coefficients as proposed in Sun

et al. (2017). DNN acoustic models are trained with the cross-entropy criterion, with

a mini-batch size of 256. For both LSTM and DNN training, a momentum of 0.9 is

used starting from the second epoch (Zhang et al., 2015). Ten percent of the training

data is held out as a validation set to control the learning rate. The learning rate is

halved when no gain is observed after an epoch.

We assume for both nuisance attribute replacement and latent nuisance subspace

perturbation, the time alignment of senones does not change. Therefore, the same

forced alignment is used to train the acoustic models.

3.4 Results and Discussion

In this section, we verify the effectiveness of the proposed VAE-based data augmen-

tation methods for unsupervised domain adaptation. On each dataset, the same

acoustic model architectures and training procedures, as well as the same language
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models are used for all the experiments. For the CHiME-4 dataset, besides reporting

the WER on the clean and the noisy development sets respectively, we also show

the WER for the noisy set by the four recording locations: bus (BUS), cafe (CAF),

pedestrian area (PED), and street junction (STR). All the CHiME-4 results are listed

in Table 3.1. For the Aurora-4 dataset, we report the average WER as well as the

WER in four conditions in Table 3.2. Different sets of experiments are separated by

double horizontal lines and indexed by the Exp. ID on the first column. The second

column, Aug. Method, explains the augmentation method and the hyper-parameter

being used. The ratio of the new training set to the original clean training set is listed

on the third column, referred to as the Fold.

3.4.1 Baselines

We first establish baselines by training models on two sets. The first set, Orig., refers

to the original clean training set that does not involve VAE. The second set, Recon.,

refers to the reconstructed clean training set that is generated by using the VAE

to first encode and then decode. Note that this does not involve the modification

methods mentioned in Sections 3.2.3 and 3.2.4.

The results are listed in Table 3.1, Exp. ID 1. The fourth column shows the

results on the matched domain (clean), and the fifth column shows the results on

the mismatched domain (noisy). It can be observed that the performance degrades

significantly when the models are tested on the mismatched domain. The WER

increases from 19.04% to 87.08% for Orig., and from 19.61% to 90.72% for Recon.

respectively. In addition, since the reconstruction from the VAE is not perfect, part of

the information may be lost during this process. Hence, the model trained on Recon.

is slightly worse than the one trained on Orig. for all testing conditions. Lastly, the

relative WERs of the four locations are consistent on both training sets. BUS appears

to be the most difficult one, while PED is the easiest one among the four locations.
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Setting WER (%) WER (%) by Noise Type
Exp. ID Aug. Method Fold Clean Noisy BUS CAF PED STR

1 Orig. 1 19.04 87.80 96.16 92.35 78.46 84.24
Recon. 1 19.61 90.72 98.95 93.45 81.52 88.97

2 Repl. Clean 1 20.03 67.12 71.99 76.84 55.32 64.33
Repl. Noisy 1 26.31 57.66 62.12 69.25 46.89 52.38

3
Pert., 𝛾 = 1.0 1 20.01 53.06 55.66 66.12 41.94 48.50
Uni-Pert., 𝛾 = 1.0 1 19.70 65.07 69.27 75.28 53.65 62.06
Rev-Pert., 𝛾 = 1.0 1 19.75 87.98 95.13 90.58 76.71 89.50

4

Pert., 𝛾 = 0.5 1 19.55 65.61 67.87 77.37 54.54 62.66
Pert., 𝛾 = 1.0 1 20.01 53.06 55.66 66.12 41.94 48.50
Pert., 𝛾 = 1.5 1 19.99 53.59 57.09 64.91 42.23 50.11
Pert., 𝛾 = 2.0 1 20.39 58.10 64.35 69.12 45.39 53.55

5
Orig. + Repl. Noisy 2 19.88 55.72 60.72 66.46 45.08 50.63
Repl. Noisy 2 25.26 55.59 59.24 67.85 44.65 50.63
Pert., 𝛾 = 1.0 2 19.82 52.49 55.52 65.04 41.17 48.24

Table 3.1: CHiME-4 development set word error rate of acoustic models trained on
different augmented sets.

3.4.2 Replacing Nuisance Attributes

We evaluate the effectiveness of augmenting data by replacing the nuisance attributes

as mentioned in Section 3.2.3. Let 𝒰𝑠𝑟𝑐 = {𝜇𝑢𝑡𝑡𝑗}𝑀𝑠𝑟𝑐
𝑗=1 be the set of latent nuisance

representations of the source domain utterances, and 𝒰𝑡𝑎𝑟 = {𝜇𝑢𝑡𝑡𝑗}𝑀𝑗=𝑀𝑠𝑟𝑐
be the

set of latent nuisance representations of the target domain utterances. 𝑀𝑠𝑟𝑐 is the

number of source domain utterances, and 𝑀𝑡𝑎𝑟 = 𝑀 −𝑀𝑠𝑟𝑐 is the number of target

domain utterances. We create the augmented set Repl. Clean by replacing the latent

nuisance representation of each source domain utterance with one drawn from 𝒰𝑠𝑟𝑐.

The Repl. Noisy is generated similarly but is replaced with one drawn from 𝒰𝑡𝑎𝑟.

The results are shown in Table 3.1, Exp. ID 2. For both augmented methods,

we observe at least 20% absolute WER reduction on the target domain compared to

the baselines (Exp. ID 1 ). We observe an additional 10% absolute WER reduction

when replacing the latent nuisance representations with those taken from the target

domain instead of the source domain. We also observe that Repl. Noisy shows 6%

worse WER on the source domain than Repl. Clean. The relative strength of Repl.
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Clean and Repl. Noisy on different domains verifies the effectiveness of our proposed

method at shifting the distribution from one domain to another.

3.4.3 Correctness of Soft Latent Nuisance Subspace Pertur-

bation

We first examine the correctness of our proposed soft latent nuisance subspace pertur-

bation by proposing two alternative perturbation methods. To eliminate the effect of

the perturbation scale on the performance, we consider two alternative methods sub-

ject to the constraint that the expected squared Euclidean norm of the perturbation

vector 𝑝 is the same as the proposed method.

Recall that 𝑝 = 𝛾
∑︀𝐷

𝑑=1 𝜓𝑑𝜎𝑑𝑒𝑑 for our proposed method. We then have:

E
[︀
||𝑝||22

]︀
= 𝛾2

𝐷∑︁
𝑑=1

𝜎2
𝑑 E

[︀
𝜓2
𝑑

]︀
= 𝛾2

𝐷∑︁
𝑑=1

𝜎2
𝑑.

We first consider uniform perturbation to be a method that perturbs each direc-

tion with the same expected scale, controlled by the same perturbation ratio hyper-

parameter 𝛾. The perturbation vector 𝑝𝑢𝑛𝑖 derived from this method can be formu-

lated as:

𝑝𝑢𝑛𝑖 = 𝛾
𝐷∑︁

𝑑=1

𝜓𝑑𝜎𝑢𝑛𝑖𝑒𝑑, (3.1)

where 𝜎𝑢𝑛𝑖 =
√︁∑︀𝐷

𝑑=1 𝜎
2
𝑑/𝐷. In addition, we design another method that reverses the

expected perturbation scales from the proposed soft latent nuisance subspace per-

turbation method, named the reverse soft latent nuisance subspace perturbing. This

method perturbs a direction with the scale inversely correlated with the eigenvalue

computed from the PCA analysis. The perturbation vector 𝑝𝑟𝑒𝑣 can be formulated

as:

𝑝𝑟𝑒𝑣 = 𝛾
𝐷∑︁

𝑑=1

𝜓𝑑𝜎𝐷−𝑑𝑒𝑑. (3.2)

Both methods have the same expected squared Euclidean norm of the perturbation

vector as the original proposed method when using the same perturbation ratio pa-
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rameter 𝛾.

We show the results of soft latent nuisance subspace perturbation (Pert.), uniform

perturbation (Uni-Pert.), and reverse soft latent nuisance subspace perturbation (Rev-

Pert.) in Table 3.1, Exp. ID 3, which all use the same perturbation ratio 𝛾 = 1.0. We

can clearly observe the superiority of the proposed method among the three methods

applied on the target domain. Pert. reduces the absolute WER by almost 35% from

the baseline and outperforms Uni-Pert. by 12%, while Rev-Pert. achieves almost no

improvement. This experiment verifies the importance of determining an appropriate

way to perturb the latent space and the correctness of our method.

3.4.4 Effect of Perturbation Ratios

We next examine the effect on the hyper-parameter 𝛾 by choosing four scales: 0.5,

1.0, 1.5, 2.0, and list the results in Table 3.1, Exp. ID 4. We observe different WER

trends for different perturbation ratios for the two testing conditions. First, regarding

the target domain WER, we notice that 𝛾 = 1.0 reaches the best performance among

the four scales. The smaller the perturbation ratio is, the more similar to the original

clean data the augmented perturbed data would be. Hence, when we decrease the

perturbation ratio, the performance would asymptotically approach those of the orig-

inal clean data. On the other hand, as we increase the perturbation ratio, the chance

of the perturbed utterances becoming linguistically different increases. This may hurt

the performance and cancel out the benefit of having more diverse data by perturbing

the nuisance attributes. As for the source domain WER, we observe degradation when

increasing the perturbation ratio, because the perturbed data distribution becomes

less similar to the original clean data distribution.

3.4.5 Effect of Augmented Dataset Size

In this section, we study the effect of the size by combining different sets of augmented

data or the original data. Specifically, three cases are considered: (1) combining Repl.

Noisy with the original data, (2) combining Repl. Noisy with another copy of Repl.
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Noisy, and (3) combining Pert., 𝛾 = 1.0 with another copy of Pert., 𝛾 = 1.0.

The results are listed in Table 3.1, Exp. ID 5. In the first two cases, both source

and target domain WERs are improved from the one-fold Repl. Noisy. While adding

another copy of Repl. Noisy shows slightly better (0.13%) WER in the target domain

of the first two cases, adding the original clean data significantly reduces (6.43%)

WER in the source domain. This suggests that the second case addresses the issue

of Repl. Noisy on shifting the data distribution entirely to the target domain. In

the third case, a slight but consistent 0.19% and 0.57% WER reductions from the

one-fold Pert., 𝛾 = 1.0 in the source and target domain are observed. In summary,

all three cases show improvement by increasing the size.

3.4.6 Comparing with DDA on Aurora-4

In this section, we repeat the experiments on the Aurora-4 dataset and compare with

deep domain adaptation (Sun et al., 2017). Table 5.4 listed our Aurora-4 results

and the reference results. DNN-PP (Du et al., 2014) is a method compared in Sun

et al. (2017) that requires parallel clean-noisy data for training a speech enhancement

model as a preprocessor.

Baseline results are established in Table 5.4, Exp. ID 1, where the models are

trained with the original clean features (Orig.), and the VAE-reconstructed clean

features (Recon.), respectively. Here we can observe significant degradation on mis-

matched domains (B, C, and D) from the matched domain (A). Results of nuisance

attribute replacement and soft latent nuisance subspace perturbation with different

perturbation ratios are shown in Table 5.4, Exp. ID 2 and Exp. ID 3. Both augmen-

tation methods achieve roughly 30% absolute WER reduction, and the soft latent

nuisance subspace perturbation reaches the best performance when using a perturba-

tion ratio 𝛾 = 2.0. By increasing the dataset size, we observe further WER reduction

from two-fold to 16-fold.

Since the detailed training recipe is not provided in Sun et al. (2017), we could

not reproduce exactly the same baseline results. However, despite the fact that our

baseline is worse than that in Sun et al. (2017) by 17.76% absolute WER, our best

55



Setting WER (%) WER (%) by Condition
Exp. ID Aug. Method/Baselines Fold Avg. A B C D

0 Clean-DNN-HMM (Sun et al., 2017) - 36.22 3.36 29.74 21.02 50.73
DDA-DNN-HMM (Sun et al., 2017) - 22.53 3.24 14.52 17.82 34.55
DNN-PP (Du et al., 2014) - 18.7 5.1 12.0 10.5 29.0

1 Orig. 1 53.98 3.38 50.56 42.67 67.70
Recon. 1 66.29 4.58 65.44 51.02 79.97

2 Repl. Noisy 1 22.53 4.80 16.31 14.72 32.99

3

Pert., 𝛾 = 0.5 1 35.37 4.11 27.73 33.51 48.52
Pert., 𝛾 = 1.0 1 24.82 4.35 17.11 22.38 36.36
Pert., 𝛾 = 1.5 1 21.98 4.24 15.08 16.87 32.69
Pert., 𝛾 = 2.0 1 20.68 4.45 14.33 14.74 30.72
Pert., 𝛾 = 2.5 1 20.99 4.99 15.35 15.54 30.22
Pert., 𝛾 = 3.0 1 21.18 5.29 15.47 15.71 30.45
Pert., 𝛾 = 3.5 1 21.33 5.45 16.13 14.70 30.29
Pert., 𝛾 = 4.0 1 22.00 6.43 17.15 15.00 30.62

4

Pert., 𝛾 = 2.0 2 20.06 4.13 13.85 14.96 29.77
Pert., 𝛾 = 2.0 4 19.42 4.09 13.34 14.14 28.92
Pert., 𝛾 = 2.0 8 18.86 4.28 12.89 13.51 28.16
Pert., 𝛾 = 2.0 16 18.76 4.04 12.84 13.54 28.01

Table 3.2: Aurora-4 test_eval92 set word error rate of acoustic models trained on
different augmented sets.

system (18.76%) still achieves better performance than the result of DDA (22.53%)

that was reported in Sun et al. (2017), and matches the results of DNN-PP (Du et al.,

2014) without the need for parallel data.

3.5 Conclusions

In this chapter, we presented two VAE-based data augmentation methods for un-

supervised domain adaptation for robust ASR. In particular, we studied the latent

representations obtained from VAEs, which enabled us to transform nuisance at-

tributes of speech through modifying the latent variables. Our proposed methods

were evaluated on two datasets, and achieved about 35% absolute WER reduction on

both sets.
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Chapter 4

Learning Disentangled and

Interpretable Representations

Despite successes with VAEs, understanding the underlying factors represented by

latent variables is a major challenge. Some research focuses on the supervised or semi-

supervised setting using VAEs (Kingma et al., 2014; Hu et al., 2017). Another line

of research attempts to develop weakly supervised or unsupervised methods to learn

disentangled representations, such as DC-IGN (Kulkarni et al., 2015), InfoGAN (Chen

et al., 2016), and 𝛽-VAE (Higgins et al., 2016). In the previous chapters, we proposed

post-training analysis to associate physical attributes with learned representations.

This is a step toward unsupervised learning of interpretable representations; however,

such an approach is not satisfactory as we still need labeled data for analysis.

While there has been much research investigating learning from static data (e.g.,

images), there is relatively little research on learning from sequential data (Fabius and

van Amersfoort, 2014; Chung et al., 2015b, 2016; Fraccaro et al., 2016; Edwards and

Storkey, 2016; Johnson et al., 2016; Serban et al., 2017). Moreover, to the best of our

knowledge, there has not been any attempt to learn disentangled and interpretable

representations without supervision from sequential data. The information encoded in

sequential data, such as speech, video, and text, is naturally multi-scaled; in speech for

example, information about the channel, speaker, and linguistic content is encoded in

the statistics at the session, utterance, and segment levels, respectively. By leveraging
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this source of constraint, we can learn disentangled and interpretable factors in an

unsupervised manner.

In this chapter, we propose a novel factorized hierarchical variational autoencoder

(FHVAE), which learns disentangled and interpretable latent representations from se-

quential data without supervision by explicitly modeling the multi-scaled information

with a factorized hierarchical graphical model. The inference model is designed such

that the model can be optimized at the segment level, instead of at the sequence level,

which may cause scalability issues when sequences become too long. A sequence-to-

sequence neural network architecture is applied to better capture temporal relation-

ships. We evaluate the proposed model on two speech datasets. Qualitatively, the

model demonstrates an ability to factorize sequence-level and segment-level attributes

into different sets of latent variables. Quantitatively, the model achieves 2.38% and

1.34% equal error rate on unsupervised and supervised speaker verification tasks re-

spectively, which outperforms an i-vector baseline. On speech recognition tasks, it

reduces the word error rate in mismatched train/test scenarios by up to 35%. This

chapter includes partial content published in Hsu et al. (2017b).

4.1 Factorized Hierarchical Variational Autoencoder

4.1.1 A Factorized Hierarchical Generative Process

Generation of sequential data, such as speech, often involves multiple independent

factors operating at different time scales. For instance, the speaker identity affects

fundamental frequency (F0) and volume at the sequence level, while phonetic content

only affects spectral contour and durations of formants at the segmental level. This

multi-scale behavior results in the fact that some attributes, such as F0 and volume,

tend to have a smaller amount of variation within an utterance, compared to between

utterances; however, other attributes, such as phonetic content, tend to have a similar

amount of variation within and between utterances.

We refer to the first type of attributes as sequence-level attributes, and the other as
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z1 z2

utterance1 utterance2

Figure 4-1: Graphical explanation of sequence-level and segment-level attributes dis-
tribution for two different utterances. Each dot denotes the value of a particular
attribute of a segment. Distributions of some attributes of a segment, such as the
phonetic content, do not vary between utterances, as shown on the lower left of the
figure. On the other hand, distributions of other attributes of a segment, such as
the fundamental frequency, have sequence-dependent distributions, as shown on the
lower right of the figure. We want to encode the first type of attributes into one set
of latent variables (𝑧1), and the second type of attributes into the other set of latent
variables (𝑧2).

segment-level attributes. We aim to achieve disentanglement and interpretability by

encoding the two types of attributes into latent sequence variables and latent segment

variables respectively, where the former is regularized by a sequence-dependent prior

and the latter by a sequence-independent prior. Figure 4-1 illustrates our assumptions

on the distribution of the sequence-level and segment-level attributes of different

utterances.
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Figure 4-2: Graphical illustration of the proposed generative model. Grey nodes
denote the observed variables, and white nodes are the hidden variables.

We now formulate a generative process for sequential data and propose our Fac-

torized Hierarchical Variational Autoencoder (FHVAE). Consider some dataset 𝒟 =
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{𝑋(𝑖)}𝑀𝑖=1 consisting of 𝑀 i.i.d. sequences, where 𝑋(𝑖) = {𝑥(𝑖,𝑛)}𝑁(𝑖)

𝑛=1 is a sequence

of 𝑁 (𝑖) observed variables. 𝑁 (𝑖) is referred to as the number of segments for the 𝑖-th

sequence, and 𝑥(𝑖,𝑛) is referred to as the 𝑛-th segment of the 𝑖-th sequence. Note

that here a “segment” refers to a variable of smaller temporal scale compared to the

“sequence”, which is in fact a sub-sequence. We will drop the index 𝑖 whenever it is

clear that we are referring to terms associated with a single sequence. We assume

that each sequence 𝑋 is generated from some random process involving the latent

variables 𝑍1 = {𝑧(𝑛)
1 }𝑁𝑛=1, 𝑍2 = {𝑧(𝑛)

2 }𝑁𝑛=1, and 𝜇2. The following generation process

as illustrated in Figure 4-2 is considered:

(1) an s-vector 𝜇2 is drawn from a prior distribution 𝑝(𝜇2);

(2) 𝑁 i.i.d. latent sequence variables {𝑧(𝑛)
2 }𝑁𝑛=1 are drawn from a sequence-dependent

prior distribution 𝑝(𝑧2|𝜇2);

(3) 𝑁 i.i.d. latent segment variables {𝑧(𝑛)
1 }𝑁𝑛=1 are drawn from a sequence-independent

prior distribution 𝑝(𝑧1);

(4) 𝑁 i.i.d. observed variables {𝑥(𝑛)}𝑁𝑛=1 are drawn from a conditional distribution

𝑝(𝑥|𝑧1, 𝑧2), where 𝑥(𝑛) is conditioned on 𝑧
(𝑛)
1 and 𝑧

(𝑛)
2 .

The joint probability for a sequence is formulated in Eq. 4.1:

𝑝(𝑥, 𝑧1, 𝑧2,𝜇2) = 𝑝(𝜇2)
𝑁∏︁

𝑛=1

𝑝(𝑥(𝑛)|𝑧(𝑛)
1 , 𝑧

(𝑛)
2 )𝑝(𝑧

(𝑛)
1 )𝑝(𝑧

(𝑛)
2 |𝜇2). (4.1)

Specifically, we formulate each of the RHS term as follows:

𝑝(𝑥|𝑧1, 𝑧2) = 𝒩 (𝑥|𝑓𝜇𝑥(𝑧1, 𝑧2), 𝑑𝑖𝑎𝑔(𝑓𝜎2
𝑥
(𝑧1, 𝑧2))) (4.2)

𝑝(𝑧1) = 𝒩 (𝑧1|0, 𝜎2
𝑧1
𝐼), (4.3)

𝑝(𝑧2|𝜇2) = 𝒩 (𝑧2|𝜇2, 𝜎
2
𝑧2
𝐼), (4.4)

𝑝(𝜇2) = 𝒩 (𝜇2|0, 𝜎2
𝜇2
𝐼), (4.5)

where the priors over the s-vectors 𝜇2 and the latent segment variables 𝑧1 are centered
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isotropic multivariate Gaussian distributions. The prior over the latent sequence vari-

able 𝑧2 conditioned on 𝜇2 is an isotropic multivariate Gaussian centered at 𝜇2. The

conditional distribution of the observed variable 𝑥 is the multivariate Gaussian with

a diagonal covariance matrix, whose mean and diagonal variance are parameterized

by neural networks 𝑓𝜇𝑥(·, ·) and 𝑓𝜎2
𝑥
(·, ·) with input 𝑧1 and 𝑧2. We use 𝜃 to denote the

set of parameters in the generative model.

This generative model is factorized in a way such that the latent sequence vari-

ables 𝑧2 within a sequence are forced to be close to 𝜇2 as well as to each other in

Euclidean distance, and therefore are encouraged to encode sequence-level attributes

that may have larger variance across sequences, but smaller variance within sequences.

The constraint on the latent segment variables 𝑧1 is imposed globally, and therefore

encourages encoding of residual attributes whose variation is not distinguishable be-

tween and within sequences.

4.1.2 An Inference Model
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Figure 4-3: Graphical illustration of the proposed inference model. Grey nodes denote
the observed variables, and white nodes are the hidden variables.

In the variational autoencoder framework, since the exact posterior inference is in-

tractable, an inference model, 𝑞(𝑧(𝑖)
1 , 𝑧

(𝑖)
2 ,𝜇

(𝑖)
2 |𝑋(𝑖)), that approximates the true poste-

rior, 𝑝(𝑧(𝑖)
1 , 𝑧

(𝑖)
2 ,𝜇

(𝑖)
2 |𝑋(𝑖)), for variational inference (Jordan et al., 1999) is introduced.
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We consider the following inference model as Figure 4-3:

𝑞(𝑧
(𝑖)
1 , 𝑧

(𝑖)
2 ,𝜇

(𝑖)
2 |𝑋(𝑖)) = 𝑞(𝜇

(𝑖)
2 )

𝑁(𝑖)∏︁
𝑛=1

𝑞(𝑧
(𝑖,𝑛)
1 |𝑥(𝑖,𝑛), 𝑧

(𝑖,𝑛)
2 )𝑞(𝑧

(𝑖,𝑛)
2 |𝑥(𝑖,𝑛)) (4.6)

𝑞(𝜇
(𝑖)
2 ) = 𝒩 (𝜇

(𝑖)
2 |ℎ𝜇𝜇2

(𝑖), 𝜎2
𝜇̃2
𝐼) (4.7)

𝑞(𝑧2|𝑥) = 𝒩 (𝑧2|𝑔𝜇𝑧2
(𝑥), 𝑑𝑖𝑎𝑔(𝑔𝜎2

𝑧2
(𝑥))) (4.8)

𝑞(𝑧1|𝑥, 𝑧2) = 𝒩 (𝑧1|𝑔𝜇𝑧1
(𝑥, 𝑧2), 𝑑𝑖𝑎𝑔(𝑔𝜎2

𝑧1
(𝑥, 𝑧2))), (4.9)

where the posteriors over 𝜇2, 𝑧1, and 𝑧2 are all multivariate diagonal Gaussian

distributions. Note that the mean of the posterior distribution of 𝜇2 is not directly

inferred from 𝑋, but instead is regarded as part of the inference model parameters,

with one for each utterance, which would be optimized during training. Therefore,

ℎ𝜇𝜇2
(·) can be seen as a lookup table, and we use 𝜇̃(𝑖)

2 = ℎ𝜇𝜇2
(𝑖) to denote the posterior

mean of 𝜇2 for the 𝑖-th sequence; we fix the posterior covariance matrix of 𝜇2 for all

sequences. Similar to the generative model, 𝑔𝜇𝑧2
(·), 𝑔𝜎2

𝑧2
(·), 𝑔𝜇𝑧1

(·, ·), and 𝑔𝜎2
𝑧1

(·, ·) are

also neural networks whose parameters along with ℎ𝜇𝜇2
(·) are denoted collectively by

𝜑. The variational lower bound for this inference model on the marginal likelihood of

a sequence 𝑋 is derived as follows:

ℒ(𝜃, 𝜑;𝑋) =
𝑁∑︁

𝑛=1

ℒ(𝜃, 𝜑;𝑥(𝑛)|𝜇̃2) + log 𝑝(𝜇̃2) + 𝑐𝑜𝑛𝑠𝑡

ℒ(𝜃, 𝜑;𝑥(𝑛)|𝜇̃2) =E
𝑞(𝑧

(𝑛)
1 ,𝑧

(𝑛)
2 |𝑥(𝑛))

[︀
log 𝑝(𝑥(𝑛)|𝑧(𝑛)

1 , 𝑧
(𝑛)
2 )

]︀
− E

𝑞(𝑧
(𝑛)
2 |𝑥(𝑛))

[︀
𝐷𝐾𝐿(𝑞(𝑧

(𝑛)
1 |𝑥(𝑛), 𝑧

(𝑛)
2 )||𝑝(𝑧(𝑛)

1 ))
]︀

−𝐷𝐾𝐿(𝑞(𝑧
(𝑛)
2 |𝑥(𝑛))||𝑝(𝑧(𝑛)

2 |𝜇̃2)).

The detailed derivation can be found in Appendix A. Because the approximated

posterior of 𝜇2 does not depend on the sequence 𝑋, the sequence variational lower

bound ℒ(𝜃, 𝜑;𝑋) can be decomposed into the sum of ℒ(𝜃, 𝜑;𝑥(𝑛)|𝜇̃2), the conditional

segment variational lower bounds, over segments, plus the log prior probability of

𝜇̃2 and a constant. Therefore, instead of sampling a batch at the sequence level to
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maximize the sequence variational lower bound, we can sample a batch at the segment

level to maximize the segment variational lower bound :

ℒ(𝜃, 𝜑;𝑥(𝑛)) = ℒ(𝜃, 𝜑;𝑥(𝑛)|𝜇̃2) +
1

𝑁
log 𝑝(𝜇̃2) + 𝑐𝑜𝑛𝑠𝑡. (4.10)

This approach provides better scalability when the sequences are extremely long,

such that computing an entire sequence for a batched update is too computationally

expensive.

Here we only introduce two scales of attributes; however, one can easily extend

this model to more scales by simply introducing 𝜇𝑘 for 𝑘 = 2, 3, · · · 1 that constrains

the prior distribution of latent variables at more scales, such as having a session-

dependent prior or dataset-dependent prior.

4.1.3 An Unsupervised Discriminative Objective

The idea of having sequence-specific priors for each sequence is to encourage the

model to encode the sequence-level attributes and the segment-level attributes into

different sets of latent variables. However, when 𝜇2 is the same for all sequences,

the prior probability is maximized, and the KL-divergence of the inferred posterior of

𝑧2 is measured from the same conditional prior for all sequences. This would result

in trivial s-vectors 𝜇2, and therefore 𝑧1 and 𝑧2 would not be factorized to encode

sequence and segment attributes respectively.

To encourage 𝑧2 to encode sequence-level attributes, we use 𝑧(𝑖,𝑛)
2 , which is inferred

from 𝑥(𝑖,𝑛), to infer the sequence index 𝑖 of 𝑥(𝑖,𝑛). We formulate the discriminative

objective as:

log 𝑝(𝑖|𝑧(𝑖,𝑛)
2 ) = log 𝑝(𝑧

(𝑖,𝑛)
2 |𝑖)− log

𝑀∑︁
𝑗=1

𝑝(𝑧
(𝑖,𝑛)
2 |𝑗) (𝑝(𝑖) is assumed uniform)

:= log 𝑝(𝑧
(𝑖,𝑛)
2 |𝜇̃(𝑖)

2 )− log
(︀ 𝑀∑︁

𝑗=1

𝑝(𝑧
(𝑖,𝑛)
2 |𝜇̃(𝑗)

2 )
)︀
,

1The index starts from 2 because we do not introduce the hierarchy to 𝑧1.
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Combining the discriminative objective using a weighting parameter 𝛼 with the

segment variational lower bound, the objective function to maximize then becomes:

ℒ𝑑𝑖𝑠(𝜃, 𝜑;𝑥(𝑖,𝑛)) = ℒ(𝜃, 𝜑;𝑥(𝑖,𝑛)) + 𝛼 log 𝑝(𝑖|𝑧(𝑖,𝑛)
2 ), (4.11)

which we refer to as the discriminative segment variational lower bound.

4.1.4 Inferring S-Vectors During Testing

During testing, we may want to use the s-vector 𝜇2 of an unseen sequence 𝑋 =

{𝑥(𝑛)}𝑁𝑛=1 as the sequence-level attribute representation for tasks such as speaker

verification. Since the exact maximum a posterior estimation of 𝜇2 is intractable, we

approximate the estimation using the conditional segment variational lower bound as

follows:

𝜇*
2 = argmax

𝜇2

log 𝑝(𝜇2|𝑋) = argmax
𝜇2

log 𝑝(𝑋,𝜇2)

= argmax
𝜇2

(︀ 𝑁∑︁
𝑛=1

log 𝑝(𝑥(𝑛)|𝜇2)
)︀

+ log 𝑝(𝜇2)

≈ argmax
𝜇2

𝑁∑︁
𝑛=1

ℒ(𝜃, 𝜑;𝑥(𝑛)|𝜇2) + log 𝑝(𝜇2). (4.12)

The closed form solution of 𝜇*
2 can be derived by differentiating Eq. 4.12 w.r.t. 𝜇2

(see Appendix B):

𝜇*
2 =

∑︀𝑁
𝑛=1 𝑔𝜇𝑧2

(𝑥(𝑛))

𝑁 + 𝜎2
𝑧2/𝜎2

𝜇2

. (4.13)

4.1.5 Sequence-to-Sequence Autoencoder Model Architecture

In this section, we introduce the detailed neural network architectures for our pro-

posed FHVAE. Let a segment 𝑥 = 𝑥1:𝑇 be a sub-sequence of 𝑋 that contains 𝑇 time

steps, and 𝑥𝑡 denotes the 𝑡-th time step of 𝑥. We use recurrent network architectures

for encoders that capture the temporal relationship among time steps, and generate
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a summarized fixed-dimension vector after consuming an entire sub-sequence. Like-

wise, we adopt a recurrent network architecture that generates a frame step by step

conditioned on the latent variables 𝑧1 and 𝑧2. The complete network can be seen as

a stochastic sequence-to-sequence autoencoder that encodes 𝑥1:𝑇 stochastically into

𝑧1, 𝑧2, and stochastically decodes from them back to 𝑥1:𝑇 .

x1
p(x1|z1, z2)

…

z2

q(z1|x1:T, z2)… z1

En
co

de
r D

ecoder

x2 x3 xT

x1 x2

p(x2|z1, z2) p(xT|z1, z2)
q(z2|x1:T) xT

…

Figure 4-4: Sequence-to-sequence factorized hierarchical variational autoencoder.
Dashed lines indicate the sampling process using the reparameterization trick
(Kingma and Welling, 2013). The encoders for 𝑧1 and 𝑧2 are pink and amber, re-
spectively, while the decoder for 𝑥 is blue. Darker colors denote the recurrent neural
networks, while lighter colors denote the fully-connected layers predicting the mean
and log variance.

Figure 4-4 shows our proposed Seq2Seq-FHVAE architecture.2 Here we show the

detailed formulation:

(ℎ𝑧2,𝑡, 𝑐𝑧2,𝑡) = LSTM(𝑥𝑡−1,ℎ𝑧2,𝑡−1, 𝑐𝑧2,𝑡−1;𝜑LSTM,𝑧2)

𝑞(𝑧2|𝑥1:𝑇 ) = 𝒩 (𝑧2|MLP(ℎ𝑧2,𝑇 ;𝜑MLP𝜇,𝑧2), diag(exp(MLP(ℎ𝑧2,𝑇 ;𝜑MLP𝜎2 ,𝑧2))))

(ℎ𝑧1,𝑡, 𝑐𝑧1,𝑡) = LSTM([𝑥𝑡−1; 𝑧2],ℎ𝑧1,𝑡−1, 𝑐𝑧1,𝑡−1;𝜑𝑧1)

𝑞(𝑧1|𝑥1:𝑇 , 𝑧2) = 𝒩 (𝑧1|MLP(ℎ𝑧1,𝑇 ;𝜑MLP𝜇,𝑧1), diag(exp(MLP(ℎ𝑧1,𝑇 ;𝜑MLP𝜎2 ,𝑧1))))

(ℎ𝑥,𝑡, 𝑐𝑥,𝑡) = LSTM([𝑧1; 𝑧2],ℎ𝑥,𝑡−1, 𝑐𝑥,𝑡−1;𝜑𝑥)

𝑝(𝑥𝑡|𝑧1, 𝑧2) = 𝒩 (𝑥𝑡|MLP(ℎ𝑥,𝑡;𝜑MLP𝜇,𝑥), diag(exp(MLP(ℎ𝑥,𝑡;𝜑MLP𝜎2 ,𝑥)))),

where LSTM refers to a long short-term memory recurrent neural network (Hochreiter

and Schmidhuber, 1997), and MLP refers to a multi-layer perceptron, 𝜑* are the

related weight matrices. None of the neural network parameters are shared. We refer

to this model as Seq2Seq-FHVAE.

2Best viewed in color.
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4.2 Experimental Setup

4.2.1 Datasets and Surface Representations

The following two corpora are used for our experiments: (1) TIMIT (Garofolo

et al., 1993), which contains broadband 16kHz recordings of phonetically-balanced

read speech. A total of 6300 utterances (5.4 hours) are presented with 10 sentences

from each of 630 speakers, of which approximately 70% are male and 30% are fe-

male. (2) Aurora-4 (Pearce, 2002), a broadband corpus designed for noisy speech

recognition tasks based on the Wall Street Journal corpus (WSJ0) (Paul and Baker,

1992). Two microphone types, clean/channel are included, and six noise types are

artificially added to both microphone types, which results in four conditions: clean,

channel, noisy, and channel+noisy. Two 14 hour training sets are used, where

one is clean and the other is a mix of all four conditions. The same noise types and

microphones are used to generate the development and test sets, which both consist

of 330 utterances from all four conditions, resulting in 4,620 utterances in total for

each set.

All speech is represented as a sequence of 80 dimensional Mel-scale filter bank

(FBank) features or 200 dimensional log-magnitude spectrum (only for audio recon-

struction), computed every 10ms. Mel-scale features are a popular auditory approx-

imation for many speech applications (Mogran et al., 2004). We consider a sample

𝑥 to be a 200ms sub-sequence, which is on the order of the length of a syllable, and

implies 𝑇 = 20 for each 𝑥.

4.2.2 FHVAE Model and Training Configurations

For the Seq2Seq-FHVAE model, each 𝐿𝑆𝑇𝑀 network consists of one layer with 256

hidden units, while each 𝑀𝐿𝑃 network is one layer with the output dimension equal

to the variable whose mean or log variance the 𝑀𝐿𝑃 parameterizes, and variances

𝜎2
𝑧1

= 𝜎2
𝜇2

= 1, 𝜎2
𝑧2

= 0.25. We experiment with various dimensions for the latent

variable 𝑧1 and 𝑧2. All models were trained with stochastic gradient descent using
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a mini-batch size of 256 to minimize the negative discriminative segment variational

lower bound plus an 𝐿2-regularization with weight 10−4. The Adam (Kingma and Ba,

2014) optimizer is used with 𝛽1 = 0.95, 𝛽2 = 0.999, 𝜖 = 10−8, and initial learning rate

of 10−3. Training continues for 100 epochs unless the segment variational lower bound

on the development set does not improve for 10 epochs. The 𝜇2 for the sequences in

the development set and the test set is estimated using the closed form solution in

Section 4.1.4.

4.3 Comparison of FHVAE Model Architectures

Here we study the performance of our proposed architecture by replacing the LSTM

module with three baseline architectures: a fully-connected feed-forward network

(FC), a vanilla recurrent neural network (RNN), and a gated recurrent neural network

(GRU) (Chung et al., 2015a). All the models have one hidden layer with 16 dimensions

for both 𝑧1 and 𝑧2, and are trained with 𝛼 = 0. For the FC model, the entire segment

is flattened and fed to the fully-connected layers; therefore the temporal structure is

simply ignored.

Table 4.1 shows the segment variational lower bound on the TIMIT test set. We

can see that the recurrent models (RNN, GRU, LSTM) outperform the feed-forward

model using fewer parameters, which demonstrates the importance of considering the

temporal structure within a segment. Figure 4-5 shows the reconstruction results

using the FC model and the LSTM model. The LSTM model reconstructs sharper

images that preserves more speech detail, and, in particular, presents superior high

frequency harmonic structure that does the FC model, as highlighted in the red boxes.

Table 4.1: TIMIT test set segment variational lower bound results on different model
architectures.

Models #Hidden Units #Params ℒ(𝜃, 𝜑;𝑥(𝑛))
FC 512 3.3M -348.63
RNN 256 0.3M -261.19
GRU 256 0.8M -158.42
LSTM 256 1.1M -143.80
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Figure 4-5: Three examples from different speakers. Within each example, from left
to right are 1) the original segment, 2) FC reconstructed segment, and 3) LSTM
reconstructed segment. The leftmost images show expanded views of the higher
frequency harmonic structure (horizontal dark bands) of the spectrogram suggesting
that the LSTM reconstruction is superior to the FC model.

4.4 Visualizing Latent Space Factorization

4.4.1 Re-combining Latent Segment and Sequence Variables

To qualitatively study the factorization of information between the latent segment

variable 𝑧1 and the latent sequence variable 𝑧2, we generate examples 𝑥 by varying

each of them respectively. Figure 4-6 shows 40 examples in block ‘C’ of all the

combinations of the 4 latent segment variables extracted from block ‘A’ and the 10

latent sequence variables extracted from block ‘B.’ The top two examples from block

‘A’ and the five leftmost examples from block ‘B’ are from male speakers, while

the rest are from female speakers, which show higher fundamental frequencies and

harmonics.3

We can observe that along each row in block ‘C,’ the linguistic phonetic-level con-

tent, which manifests itself in the form of the spectral contour and temporal position

of formants, as well as the relative position between formants, is very similar between

elements; the speaker identity however changes (e.g., harmonic structure). On the

other hand, for each column we see that the speaker identity remains consistent,

despite the change of linguistic content. The factorization of the sequence-level at-

tributes and the segment-level attributes of our proposed Seq2Seq-FHVAE is clearly

evident.

3The harmonics corresponds to horizontal dark stripes in the figure; the more widely these stripes
are spaced vertically, the higher the fundamental frequency of the speaker is.
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Figure 4-6: (left) Examples generated by varying different latent variables of a FHVAE
model trained with 𝛼 = 10 on TIMIT dataset. The green block ‘A’ contains four
reconstructed examples. The red block ‘B’ contains ten original examples on the first
row and the corresponding reconstructed examples on the second row. The entry on
the 𝑖-th row and the 𝑗-th column in the blue block ‘C’ is the reconstructed example
using the latent segment variable 𝑧1 of the 𝑖-th row from the block ‘A’ and the latent
sequence variable 𝑧2 of the 𝑗-th column from the block ‘B.’ (right) An illustration of
harmonics and formants in filter bank images.

In Figures 4-7 and 4-8, we illustrate the results of the same experiments, but

use the model trained on the Aurora-4 corpus instead. In particular, we sample two

speakers, 441 and 443, from the test set and choose four noise conditions: clean, car,

babble, and restaurant, without the microphone channel effect. Furthermore, since

the noise is artificially added to each clean utterance in the test set, we can actually

choose the corresponding segment in different noise conditions for a given speaker.

The same eight examples are used in both block ‘A’ and block ‘B,’ which results in

64 combinations of latent segment variables and latent sequence variables in total.

It can be observed that the latent sequence variables capture not only the speaker

information, but also the noise information, which are both sequence-level attributes.

Therefore, when modifying the latent sequence variables, we can not only transform

speaker identities, but also carry out denoising or noise corruption. Moreover, the
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disentanglement is evident for both the model trained without discriminative training

(𝛼 = 0) and the model trained with discriminative training (𝛼 = 10).

4.4.2 Walking in the Latent Space

In this section, we present a qualitative analysis of traversing a single dimension

of latent sequence variable or latent segment variable over the range [−3, 3], while

keeping the remaining latent variables fixed. In Figures 4-9, 4-10, 4-11 and 4-12, each

row corresponds to a different seed (𝑧1, 𝑧2) pair, inferred from some seed segment

randomly drawn from the test set. The leftmost column in each figure shows the seed

segments for each row. We use the same five seed segments for traversing each latent

variable. The FHVAE model is trained on TIMIT with 𝛼 = 0, and a 200 dimensional

log-magnitude spectrum is used for frame feature representations.

Figures 4-9 and 4-10 show examples of traversing five different dimensions of

latent segment variable 𝑧1, while keeping the latent sequence variables fixed. It can

be observed that these latent segment variables encode the information of segment-

level attributes in speech data, such as rising/falling F2, back vowel/front vowel,

vowel/fricative, and closure/non-closure.

In contrast, Figures 4-11 and 4-12 illustrate examples for traversing five different

dimensions of latent sequence variable 𝑧2, while keeping the latent segment vari-

ables fixed. It can be seen that the spectral contour, temporal position, and relative

frequency-axis position of formants remain almost intact when traversing these la-

tent sequence variables. The attributes being changed when traversing these latent

sequence variables are more related to sequence-level attributes, such as harmonic pat-

terns (F0), volume, and offsets of formant frequencies. The results again demonstrate

the ability of our proposed FHVAE to not only learn disentangled representations,

but also to enable interpretation of the information captured by different sets of latent

variables.

70



4.5 Conclusions

In this chapter, we introduce the factorized hierarchical variational autoencoder,

which learns disentangled and interpretable representations for sequence-level and

segment-level attributes without any supervision. We verify the disentangling ability

by two qualitative methods. We first re-combine latent segment and latent sequence

variables to examine if the corresponding attributes are exhibited in the generated

segment, Next, we also explore the learned latent space by traversing one dimension

at a time to discover the associated physical attributes being modeled.
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Figure 4-7: Examples generated by varying 𝑧1 and 𝑧2 of an FHVAE model trained
with 𝛼 = 0 on Aurora-4 dataset. The green block ‘A’ and the red block ‘B’ contain the
same eight examples from the test set. In block ‘B,’ original examples are shown in
the first row and the corresponding reconstructed examples are shown in the second
row. The entry on the 𝑖-th row and the 𝑗-th column in the blue block ‘C’ is the
reconstructed example using the latent segment variable 𝑧1 of the 𝑖-th row from the
block ‘A’ and the latent sequence variable 𝑧2 of the 𝑗-th column from the block ‘B.’
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Figure 4-8: Examples generated by varying 𝑧1 and 𝑧2 of an FHVAE model trained
with 𝛼 = 10 on Aurora-4 dataset. The green block ‘A’ and the red block ‘B’ contain
the same eight examples from the test set. In block ‘B,’ original examples are shown in
the first row and the corresponding reconstructed examples are shown in the second
row. The entry on the 𝑖-th row and the 𝑗-th column in the blue block ‘C’ is the
reconstructed example using the latent segment variable 𝑧1 of the 𝑖-th row from the
block ‘A’ and the latent sequence variable 𝑧2 of the 𝑗-th column from the block ‘B.’
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Figure 4-9: Traversing two different dimensions in the space of latent segment vari-
ables with five seed segments from the TIMIT test set using an FHVAE model trained
on TIMIT with 𝛼 = 0.

74



Figure 4-10: Traversing another two different dimensions in the space of latent seg-
ment variables with five seed segments from the TIMIT test set using an FHVAE
model trained on TIMIT with 𝛼 = 0.
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Figure 4-11: Traversing two different dimensions in the space of latent sequence
variables 𝑧2 with five seed segments from the TIMIT test set using an FHVAE model
trained on TIMIT with 𝛼 = 0.
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Figure 4-12: Traversing another two different dimensions in the space of latent se-
quence variables 𝑧2 with five seed segments from the TIMIT test set using an FHVAE
model trained on TIMIT with 𝛼 = 0.
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Chapter 5

Applications of Disentangled and

Interpretable Representations

Since the learned latent representations are disentangled and interpretable, depending

on the application, we can utilize different latent variables accordingly as a new feature

representation. In addition, by manipulating different sets of latent variables, we can

also synthesize new speech segments with desired attributes. In this chapter, we

investigate applications of disentangled and interpretable representations to speech

transformation, speaker verification, and robust automatic speech recognition. The

results of the first three sections in this chapter were published in Hsu et al. (2017b),

and the last section was published in Hsu and Glass (2018a).

5.1 Speech Transformation

In Section 4.4.1, we re-recombined latent segment variable 𝑧1 and latent sequence

variable 𝑧2 from different segments, in order to generate a new speech segment that

exhibits certain attributes from each of the segments. In addition to transforming a

single segment, one may also be interested in transforming a target utterance 𝑋𝑡𝑎𝑟 =

{𝑥(𝑛)
𝑡𝑎𝑟}𝑁𝑡𝑎𝑟

𝑛=1 to be of a different speaker or a different noise condition from a reference

utterance 𝑋𝑟𝑒𝑓 = {𝑥(𝑛)
𝑟𝑒𝑓}

𝑁𝑟𝑒𝑓

𝑛=1 . Mathematically, it means mapping the distribution

of the latent sequence variable from that of 𝑋𝑡𝑎𝑟 to that of 𝑋𝑟𝑒𝑓 . Since the prior
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Source Utterance
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Target z2
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Figure 5-1: Graphical illustration of speech transformation by manipulating latent
sequence variable of the target sequence.

distributions of 𝑧2 for both utterances are both assumed Gaussian with the same

covariance matrices, centered at their own s-vectors 𝜇2,𝑟𝑒𝑓 and 𝜇2,𝑡𝑎𝑟, a simple solution

for mapping the two distributions is to shift each latent sequence variable in the target

utterance by the s-vector difference:

∆𝜇2 = 𝜇2,𝑟𝑒𝑓 − 𝜇2,𝑡𝑎𝑟. (5.1)

Therefore, we first transform a target utterance given a reference utterance by shifting

the 𝑧2 of each segment from the target utterance by ∆𝜇2 as follows:

𝑧2 = 𝑧2 + ∆𝜇2. (5.2)

Then, we decode each segment using the unmodified 𝑧1 and the modified 𝑧2, and

concatenate those segments to form a sequence. This procedure is illustrated in

Figure 5-1.

5.1.1 Denoising

Figures 5-2 and 5-3 show two examples of speech transformation for removing back-

ground noise. In these examples, both the target and the reference utterances are

from the same speaker, but are recorded in different noise conditions. While the

reference utterances are recorded in noiseless environments, the target utterances are
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Figure 5-2: FHVAE (𝛼 = 0) decoding results of three combinations of latent segment
variables 𝑧1 and latent sequence variables 𝑧2 from two utterances in Aurora-4: a clean
one (top-left) and a noisy one (bottom-left). FHVAEs learn to encode local attributes,
such as linguistic content, into 𝑧1, and encode global attributes, such as noise level,
into 𝑧2. Therefore, by replacing 𝑧2 of a noisy utterance with 𝑧2 of a clean utterance,
an FHVAE decodes a denoised utterance (middle-right) that preserves the linguistic
content. Reconstruction results of the clean and noisy utterances are also shown on
the right. Audio samples are available at https://youtu.be/naJZITvCfI4.

corrupted with restaurant noise in the first example and with car noise in the second

example. Note that the textual content is different between the reference utterance

and the target utterance. It can be observed that after replacing the s-vector with

that of a clean utterance, the noise in the target utterances is removed, without

changing the speaker identity or the linguistic content. However, there are still cer-

tain limits regarding noise removal using the FHVAE model. Since the s-vector only

captures the generating factors that are consistent within a sequence, noises that are

non-stationary cannot be removed using the proposed speech transformation method.

For example, in the first example, which contains restaurant noise, we can hear that

the sound of silverware hitting each other is not removed.

5.1.2 Voice Conversion

Next we show two more examples in Figures 5-4, and 5-5. In these examples, speakers

of the reference and the source utterances are of a different gender. It can be seen
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Figure 5-3: FHVAE (𝛼 = 0) decoding results of three combinations of latent segment
variables 𝑧1 and latent sequence variables 𝑧2 from one clean utterance (top-left) and
one utterance with car noise (bottom-left) in Aurora-4. By replacing 𝑧2 of a noisy
utterance with 𝑧2 of a clean utterance, an FHVAE decodes a denoised utterance
(middle-right) that preserves the linguistic content. Audio samples are available at
https://youtu.be/pOP2DVZWRjM.

that the harmonic patterns change after the transformation, which resemble those of

the reference utterance. By shifting the latent segment variable distribution of the

target utterance, we can also modify the speaker identity accordingly, and achieve

voice conversion with the FHVAE model.

5.2 Speaker Verification

We next present experiments on a speaker verification task on the TIMIT corpus to

evaluate how well the estimated 𝜇2 encodes speaker-level information.1 As a sanity

check, we modify Eq. 4.13 to estimate an alternative s-vector based on latent segment

variables 𝑧1 as follows: 𝜇1 =
∑︀𝑁

𝑛=1 𝑔𝜇𝑧1
(𝑥(𝑛))/(𝑁 +𝜎2

𝑧1
). We use the i-vector method

(Dehak et al., 2011) as the baseline, which is the representation used in most state-

of-the-art speaker verification systems. They are in a low dimensional subspace of

1TIMIT is not a standard corpus for speaker verification, but it is a good corpus to show the
utterance-level attribute we learned via this task, because the main attribute that is consistent
within an utterance is speaker identity, while in Aurora-4 both speaker identity and the background
noise are consistent within an utterance.
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Figure 5-4: FHVAE (𝛼 = 0) decoding results of three combinations of latent segment
variables 𝑧1 and latent sequence variables 𝑧2 from one male-speaker utterance (top-
left) and one female-speaker utterance (bottom-left) in Aurora-4. By replacing 𝑧2 of
a male-speaker utterance with 𝑧2 of a female-speaker utterance, an FHVAE decodes a
voice-converted utterance (middle-right) that preserves the linguistic content. Audio
samples are available at https://youtu.be/VMX3IZYWYdg.

the Gaussian mixture model (GMM) mean supervector space, where the GMM is the

universal background model (UBM) that models the generative process of speech.

I-vectors, 𝜇1, and 𝜇2 can all be extracted without supervision; when speaker labels

are available during training, techniques such as linear discriminative analysis (LDA)

can be applied to further improve the linear separability of the representation.

For all experiments, we use the fast scoring approach in Dehak et al. (2009) that

uses cosine similarity as the similarity metric. Verification performance is reported

in terms of equal error rate (EER), where the false rejection rate equals the false

acceptance rate. For our baseline system, we use the i-vectors (Dehak et al., 2011)

provided by Kaldi (Povey et al., 2011), which are extracted using Mel-frequency

cepstral coefficients (MFCCs), plus delta and delta-delta after voice activity detection

(VAD). A full-covariance gender-independent UBM with 2,048 mixtures was trained

on the training set and the i-vector dimensionality is tuned on the development set.

The verification pairs were created from the test set as target/non-target. There are

in total 24 speakers and 18,336 pairs for testing. For all the Seq2Seq-FHVAE model,

𝑧1 and 𝑧2 have the same dimension.
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Figure 5-5: FHVAE (𝛼 = 0) decoding results of three combinations of latent segment
variables 𝑧1 and latent sequence variables 𝑧2 from one female-speaker utterance (top-
left) and one male-speaker utterance (bottom-left) in Aurora-4. By replacing 𝑧2 of a
female-speaker utterance with 𝑧2 of a male-speaker utterance, an FHVAE decodes a
voice-converted utterance (middle-right) that preserves the linguistic content. Audio
samples are available at https://youtu.be/Rurj2ByNRs8.

We compare different dimensions for both features as well as different 𝛼’s in Eq.

4.11 for training FHVAE models. The results in Table 5.1 show that the 16 dimen-

sional s-vectors 𝜇2 outperform i-vector baselines in both unsupervised (Raw) and

supervised (LDA) settings for all 𝛼’s as shown in the fourth column; the more dis-

criminatively the FHVAE model is trained (i.e., with larger 𝛼), the better speaker

verification results it achieves. Moreover, with the appropriately chosen dimension,

a 32 dimensional 𝜇2 reaches an even lower EER at 1.34%. On the other hand, the

negative results of using 𝜇1 also validate the success in disentangling utterance and

segment level attributes.

5.3 Extracting Domain Invariant Features

Speaker adaptation and robust speech recognition in automatic speech recognition

(ASR) can often be seen as domain adaptation problems, where available labeled

data is limited and hence the data distributions during training and testing are mis-

matched. One approach to reduce the severity of this issue is to extract speaker/channel
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Table 5.1: Comparison of speaker verification equal error rate (EER) on the TIMIT
test set

EER (%)
Features Dimension 𝛼 Raw LDA (12 dim) LDA (24 dim)

i-vector
16 - 11.90 7.29 -
48 - 10.12 6.25 5.95
100 - 9.52 6.10 5.50
200 - 9.82 6.54 6.10

𝜇2

16 0 5.06 4.02 -
16 10−1 4.91 4.61 -
16 100 3.87 3.86 -
16 101 2.38 2.08 -
32 101 2.38 2.08 1.34

𝜇1

16 100 22.77 15.62 -
16 101 27.68 22.17 -
32 101 22.47 16.82 17.26

invariant features for the tasks.

As demonstrated in Section 5.2, the s-vector contains information about domains.

Here we evaluate whether the latent segment variables contain domain invariant lin-

guistic information by evaluating on an ASR task:

1. train our proposed Seq2Seq-FHVAE using FBank feature on a set that covers

different domains.

2. train an LSTM acoustic model (Graves et al., 2013; Sak et al., 2014; Zhang et al.,

2016) on the set that only covers partial domains using mean and log variance

of the latent segment variable 𝑧1 extracted from the trained Seq2Seq-FHVAE.

3. test the ASR system on all domains.

As a baseline, we also train the same ASR models, but use the FBank features alone.

Here we detail the pipeline for building an ASR system. The Gaussian mixture

model-hidden Markov model (GMM-HMM) systems are built first to generate the

senone (tied triphone HMM state) alignments for the later neural network acoustic

model training, which replaces the GMM acoustic model. In all tasks, the GMM-

HMM system is built with Kaldi (Povey et al., 2011) using standard recipes. We

85



use the LSTM Graves et al. (2013) for the acoustic model in our hybrid DNN-HMM

system, which are implemented using the CNTK Yu et al. (2014) toolkit. Our training

recipe follows Zhang et al. (2016). The baseline uses 80-dimensional FBank features

as input. The model has 3 LSTM-projection layers (Sak et al., 2014), where each layer

has 1024 cells and the output is projected to a 512 dimensional space. The truncated

BPTT is used to train the LSTM that unrolls 20 frames; 40 utterances are processed

in parallel to form a mini-batch. For the Seq2Seq-FHVAE model, we use the same

configuration as the one that achieved the best result on the speaker verification task:

both 𝑧1 and 𝑧2 are 32 dimensional, and the weight 𝛼 = 10 for discriminative training.

For the VAE model, the dimension of the latent variable 𝑧 is 64, and the number

of hidden units of the LSTM encoder is 512. We doubled both the latent variable

dimension and the number of hidden units for the encoder compared to the FHVAE

model because the VAE model only has one set of latent variables and one encoder.

Therefore, both the FHVAE and VAE models would have a comparable number of

parameters as well as latent space dimensionality.

5.3.1 Robustness to Speaker Variation

For TIMIT we assume that male and female speakers constitute different domains,

and show the results in Table 5.2. The first row of results shows that the ASR

model trained on all domains (speakers) using FBank features as the upper bound.

When trained on only male speakers, the phone error rate (PER) on female speakers

increases by 16.1% for FBank features; however, for 𝑧1, despite the slight degradation

on male speakers, the PER on the unseen domain, which are female speakers, improves

by 6.6% compared to FBank features.

Table 5.2: TIMIT test phone error rate of acoustic models trained on different features
and sets

Train Set and Configuration Test PER (%) by Set
ASR FHVAE Features Male Female All
Train All - FBank 20.1 16.7 19.1

Train Male - FBank 21.0 32.8 25.2
Train All, 𝛼 = 10 𝑧1 22.0 26.2 23.5
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5.3.2 Robustness to Noise and Channel Variation

On Aurora-4, four domains are considered: clean, noisy, channel, and noisy+channel

(NC for short). We train the FHVAE on the development set for two purposes: (1) the

FHVAE can be considered a general feature extractor, which can be trained on an

arbitrary collection of data that does not necessarily include the data for subsequent

applications. (2) the dev set of Aurora-4 contains the domain label for each utterance

so it is possible to control which domain has been observed by the FHVAE.

Table 5.3: Aurora-4 test word error rate of acoustic models trained on different fea-
tures and sets

Train Set and Configuration Test WER (%) by Set
ASR {FH-,𝛽-}VAE Features Clean Noisy Channel NC All
Train All - FBank 3.60 7.06 8.24 18.49 11.80

Train Clean

- FBank 3.47 50.97 36.99 71.80 55.51
Dev, 𝛽 = 1 𝑧 (𝛽-VAE) 4.95 23.54 31.12 46.21 32.47
Dev, 𝛽 = 2 𝑧 (𝛽-VAE) 3.57 27.24 30.56 48.17 34.75
Dev, 𝛽 = 4 𝑧 (𝛽-VAE) 3.89 24.40 29.80 47.87 33.38
Dev, 𝛽 = 8 𝑧 (𝛽-VAE) 5.32 34.84 36.13 58.02 42.76
Dev, 𝛼 = 10 𝑧1 (FHVAE) 5.01 16.42 20.29 36.33 24.41
Dev, 𝛼 = 10 𝑧2 (FHVAE) 41.08 68.73 61.89 86.36 72.53
Dev\NC, 𝛼 = 10 𝑧1 (FHVAE) 5.25 16.52 19.30 40.59 26.23

Table 5.3 shows the word error rate (WER) results on Aurora-4, from which

we can observe that the FBank representation suffers from severe domain mismatch

problems; specifically, the WER increases by 53.3% when noise is presented in mis-

matched microphone recordings (NC). In contrast, when the FHVAE is trained on

data from all domains, using the latent segment variables as features reduces WER

from 16% to 35% compared to baseline on mismatched domains, with less than 2%

WER degradation on the matched domain.

In addition, 𝛽-VAEs (Higgins et al., 2016) are trained on the same data as the

FHVAE to serve as the baseline feature extractor, from which we extract the latent

variables 𝑧 as the ASR feature and show the result in the third to the sixth rows.

The 𝛽-VAE features outperform FBank in all mismatched domains, but are inferior

to the latent segment variable 𝑧1 from the FHVAE in those domains.

The results demonstrate the importance of learning not only disentangled, but
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also interpretable representations, which can be achieved by our proposed FHVAE

models. As a sanity check, we replace 𝑧1 with 𝑧2, the latent sequence variable and

train an ASR, which results in terrible WER performance as shown in the eighth row

as expected.

Finally, we train another FHVAE on all domains excluding the combinatory NC

domain, and shows the results in the last row in Table 5.3. It can be observed that the

latent segment variable still outperforms the baseline feature with 30% lower WER

on noise and channel combined data, even though the FHAVE has only seen noise

and channel variation independently.

5.4 Study of FHVAE Architecture for ASR Feature

Extraction

In this section, we extend the previous section, and study how the model architecture,

training objective, and generative model assumption of factorized hierarchical varia-

tional autoencoders can affect the robustness of extracted ASR features. The same

architecture as well as the same training procedure of the acoustic model are used

across different experiments, in order to isolate other plausible factors from affecting

the comparison of robustness between different features extracted from FHVAEs. In

addition, except for global mean and variance normalization, we omit all the fea-

ture preprocessing steps, such as per-utterance cepstral mean variance normalization

(CMVN) (Liu et al., 1993).

Since the noise in the Aurora-4 dataset is added artificially, we would also like to

verify the effectiveness of the proposed feature on a non-artificial noisy dataset. The

CHiME-4 (Vincent et al., 2016) dataset contains real distant-talking recordings in

noisy environments. We use the original 7,138 clean utterances and the 1,600 single

channel real noisy utterances in the training partition to train the VAE and FHVAE

models. The ASR system is trained on the original clean training set and evaluated

on the CHiME-4 development set.

88



Table 5.4: Aurora-4 test_eval92 set word error rate of acoustic models trained on
different features.

Setting WER (%) WER (%) by Condition
Exp. Index Feature #Layers #Units 𝛼 Seq. Label Avg. A B C D

1

FBank - - - - 65.64 3.21 61.61 51.78 82.39
𝑧 1/1 256/256 - - 44.79 4.22 38.16 36.11 59.63
𝑧 1/1 512/256 - - 40.31 4.35 33.83 34.43 53.77
𝑧1 1/1 256/256 10 uttid 26.58 4.54 19.28 20.85 38.50

2
𝑧1 1/1 256/256 10 uttid 26.58 4.54 19.28 20.85 38.50
𝑧1 2/2 256/256 10 uttid 25.54 4.11 16.90 20.62 38.58
𝑧1 3/3 256/256 10 uttid 24.30 4.91 15.44 22.83 36.63

3
𝑧1 1/1 128/128 10 uttid 34.66 5.06 26.70 25.39 49.09
𝑧1 1/1 256/256 10 uttid 26.58 4.54 19.28 20.85 38.50
𝑧1 1/1 512/512 10 uttid 26.97 5.32 18.18 23.13 40.01

4

𝑧1 1/1 256/256 0 uttid 33.30 4.86 25.67 25.46 46.97
𝑧1 1/1 256/256 5 uttid 30.55 4.63 22.66 23.33 43.96
𝑧1 1/1 256/256 10 uttid 26.58 4.54 19.28 20.85 38.50
𝑧1 1/1 256/256 15 uttid 29.92 5.01 20.82 24.79 44.03
𝑧1 1/1 256/256 20 uttid 32.64 5.57 25.48 24.53 45.66

5
𝑧1 1/1 256/256 10 uttid 26.58 4.54 19.28 20.85 38.50
𝑧1 1/1 256/256 10 noise 32.27 4.33 23.89 28.96 45.86
𝑧1 1/1 256/256 10 speaker 34.95 4.39 27.27 32.22 48.20

6 𝑧1 1/1 256/256 10 uttid 26.58 4.54 19.28 20.85 38.50
𝑧1-𝜇2 1/1 256/256 10 uttid 43.61 5.08 42.47 27.55 53.85

Tables 5.4 and 5.5 summarize the results on Aurora-4 and CHiME-4 respectively.

For both tables, different experiments are separated by double horizontal lines and

indexed by the Exp. Index on the first column. The second column, Feature, refers

to the frame representations used for training ASR models. The third to the sixth

column explains the model configuration and the discriminative training weight for

VAE or FHVAE models. We separate the encoder and decoder parameters by “/” in

the third and the fourth column. Averaged and by-condition word error rate (WER)

are shown in the rest of the columns.

5.4.1 Baseline

We start with establishing Aurora-4 baseline results trained on different types of

feature representations, including (1) FBank, (2) latent variable, 𝑧, extracted from

the VAE, and (3) latent segment variable, 𝑧1, extracted from the FHVAE. Because

each FHVAE model has two encoders, to have a fair comparison between VAE and

FHVAE models, we also consider a VAE model with 512 hidden units at each encoder
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layer. The results are shown in Table 5.4 Exp. Index 1. As mentioned, condition A

is the matched domain, while conditions B, C, and D are all mismatched domains.

FBank degrades significantly in the mismatched conditions, producing between

49% to 79% absolute WER increase. On the other hand, both VAE and FHVAE

models improve the performance in the mismatched domains by a large margin, with

only a slight degradation in the matched domain. In particular, the features learned

by the FHVAE consistently outperform the VAE features in all mismatched conditions

by 14% absolute WER reduction.

We believe that this experiment verifies that FHVAEs can successfully retain

domain invariant linguistic features in 𝑧1, while encoding domain related information

into 𝑧2. In contrast, as the results suggest, VAEs encode all the information into a

single set of latent variables, 𝑧, which still contain domain related information that

can hurt ASR performance on the mismatched domains.

5.4.2 Comparing Model Architectures

We next explore the optimal FHVAE architectures for extracting domain invariant

features. In particular, we study the effect of the number of hidden units at each

layer and the number of layers. Results of each variant are listed in Table 5.4 Exp.

Index 2 and Exp. Index 3 respectively. Regarding the averaged WER, the model

with 256 hidden units at each layer and in total three layers achieves the lowest

WER (24.30%). Interestingly, if we break down the WER by condition, it can be

observed that increasing the FHVAE model capacity (i.e. increasing number of layers

or hidden units) helps reducing the WER in the noisy condition (B), but deteriorates

in the channel-mismatching condition (C) above 256 hidden units and 2 layers.

5.4.3 Effect of FHVAE Discriminative Training

Speaker verification experiments in Hsu et al. (2017b) suggest that discriminative

training facilitates factorizing segment-level attributes and sequence-level attributes

into two sets of latent variables. Here we study the effect of discriminative training on
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learning robust ASR features, and show the results in Table 5.4 Exp. Index 4. When

𝛼 = 0, the model is not trained with the discriminative object. While increasing

the discriminative weight from 0 to 10, we observe consistent improvement in all 4

conditions due to better factorization of segment and sequence information; however,

when further increasing the weight to 20, the performance starts to degrade. This

is because the discriminative object can inversely affect the modeling capacity by

constraining the expressibility of the latent sequence variables.

5.4.4 Choice of Sequence Label

A core idea of FHVAE is to learn sequence-specific priors to model the generation of

sequence-level attributes, which have a smaller amount of variation within a sequence.

Suppose we treat each utterance as one sequence, then both speaker and noise in-

formation belongs to sequence-level attributes, because they are consistent within an

utterance. Alternatively, we consider two FHVAE models that learn speaker-specific

priors and noise-specific priors respectively. This can be easily achieved by concate-

nating sequences of the same speaker label or noise label, and treating it as one

sequence used for FHVAE training. We report the results in Table 5.4 Exp. Index 5.

It may at first seem surprising that utilizing supervised information in this fashion

does not improve performance. We believe that concatenating utterances actually

discards some useful information with respect to learning domain invariant features.

FHVAEs use latent segment variables to encode attributes that are not consistent

within a sequence. By concatenating speaker utterances, noise information is no

longer consistent within sequences, and would thus be encoded into latent segment

variables; similarly, latent segment variables would not be speaker invariant in the

other case.

5.4.5 Use of S-Vector

Lastly, we study the use of s-vectors, 𝜇2, derived from the FHVAE model, which can

be seen as a summarization of sequence-level attributes of an utterance. We apply
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the same procedure as i-vector based speaker adaptation (Saon et al., 2013): For

each utterance, we first estimate its s-vector, and then concatenate s-vectors with the

feature representation of each frame to generate the new feature sequence.

Results are shown in Table 5.4 Exp. Index 6, from which we observe a significant

degradation of WER that is similar to those of the VAE models. This is reasonable

because 𝑧1 and 𝜇2 in combination actually contains similar information as the latent

variable 𝑧 in VAE models, and the degradation is due to the mismatch between the

distributions of 𝜇2 in the training and testing sets.

Setting WER (%) WER (%) by Noise Type
Exp. Index ASR Feature #Layers #Units 𝛼 Seq. Label Clean Noisy BUS CAF PED STR

1
FBank - - - - 19.37 87.69 95.56 92.05 78.77 84.37
𝑧 1/1 512/256 - - 19.47 73.95 70.10 91.45 64.26 69.99
𝑧1 1/1 256/256 10 uttid 19.57 67.94 71.96 79.37 59.32 61.11

2
𝑧1 1/1 256/256 10 uttid 19.57 67.94 71.96 79.37 59.32 61.11
𝑧1 2/2 256/256 10 uttid 19.73 62.44 71.28 71.86 52.46 54.18
𝑧1 3/3 256/256 10 uttid 19.52 60.39 69.13 66.24 51.22 54.96

Table 5.5: CHiME-4 development set word error rate of acoustic models trained on
different features.

5.4.6 Verifying Results on CHiME4

In this section, we repeat the baseline and the layer experiments on the CHiME-4

dataset, in order to verify the effectiveness of the FHVAE and the optimality of the

FHVAE architecture on a non-artificial dataset. The results are shown in Table 5.5.

From Exp. Index 1, we see that the same trend applies to the CHiME-4 dataset, where

the latent segment variables from the FHVAE outperform those from the VAE, and

both latent variable representations outperform FBank features. For the FHVAE

architectures, a 7% absolute WER decrease is achieved by increasing the number of

encoder/decoder layers from 1 to 3, which is also consistent with the trends we saw

on Aurora-4.
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Chapter 6

Scalable Factorized Hierarchical

Variational Autoencoder Training

In previous chapters, we introduced a factorized hierarchical variational autoencoder

(FHVAE), which is a variational inference-based deep generative model that learns

interpretable and disentangled latent representations from sequential data without su-

pervision by modeling a hierarchical generative process. In particular, we demonstrate

that an FHVAE trained on speech data learns to encode sequence-level generating

factors, such as speaker and channel condition, into one set of latent variables, while

encoding segment-level generating factors, such as phonetic content, into another set

of latent variables. The ability to disentangle latent factors has been beneficial for

a wide range of tasks, including conditional data augmentation (Chapter 3), speaker

verification (Section 5.2), domain adaptation (Section 5.3), and voice conversion (Sec-

tion 5.1).

However, the original FHVAE training algorithm does not easily scale to datasets

of over hundreds of thousands of utterances, making it less applicable to real world

settings, where an unlabeled dataset of such size is common. This limitation is mainly

due to the following issues: (1) the inference model of the sequence-level latent vari-

able, and (2) the design of the discriminative objective. To be more specific, the

original training algorithm reduces the complexity of inferring sequence-level latent

variables by maintaining a lookup table, whose number of entries equals the number
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of training sequences. In addition, the discriminative object, which encourages dis-

entanglement, requires computing a partition function that sums over a function of

each entry in that lookup table. The two facts combined lead to significant scalability

issues.

In this chapter, we propose a hierarchical sampling algorithm to address these is-

sues. In addition, a new method for qualitatively evaluating disentanglement perfor-

mance based on a t-Distribution Stochastic Neighbor Embedding (Van Der Maaten,

2014) is also presented. The proposed training algorithm is evaluated on a wide vari-

ety of datasets, ranging from 3 to 1,000 hours and involving many different types of

generating factors, such as recording conditions and noise types. Experimental results

verify that the proposed algorithm is effective on all sizes of datasets and universally

achieves desirable disentanglement performance.

6.1 Limitations of the Original FHVAE training

In this section, we briefly review the original FHVAE training algorithm and discuss

its scalability issues.

6.1.1 Original FHVAE Training

Table 6.1: Family of distributions adopted for FHVAE generative and inference mod-
els.

generative model
𝑝(𝜇2) 𝒩 (0, 𝐼)
𝑝(𝑧1) 𝒩 (0, 𝐼)
𝑝(𝑧2|𝜇2) 𝒩 (𝜇2, 𝜎

2
𝑧2
𝐼)

𝑝(𝑥|𝑧1, 𝑧2) 𝒩 (𝑓𝜇𝑥(𝑧1, 𝑧2), 𝑑𝑖𝑎𝑔(𝑓𝜎2
𝑥
(𝑧1, 𝑧2)))

inference model
𝑞(𝜇2|𝑋) 𝒩 (

∑︀𝑁
𝑛=1 𝑔𝜇𝑧2

(𝑥(𝑛))/(𝑁 + 𝜎2
𝑧2

), 𝐼)
𝑞(𝑧1|𝑥, 𝑧2) 𝒩 (𝑔𝜇𝑧1

(𝑥, 𝑧2), 𝑑𝑖𝑎𝑔(𝑔𝜎2
𝑧1

(𝑥, 𝑧2)))

𝑞(𝑧2|𝑥) 𝒩 (𝑔𝜇𝑧2
(𝑥), 𝑑𝑖𝑎𝑔(𝑔𝜎2

𝑧2
(𝑥)))

In the variational inference framework, since the marginal likelihood of observed

data is intractable, we optimize a lower bound of it instead, named the variational
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lower bound. We summarize in Table 6.1 the family of distributions an FHVAE

adopts for the generative model and the inference model. All the functions, 𝑓𝜇𝑥(·, ·),

𝑓𝜎2
𝑥
(·, ·), 𝑔𝜇𝑧1

(·, ·), 𝑔𝜎2
𝑧1

(·, ·), and 𝑔𝜇𝑧2
(·), 𝑔𝜎2

𝑧2
(·), are neural networks that parameterize

the mean and variance of Gaussian distributions. We use 𝜃 to denote the set of

parameters in the generative model, and 𝜑 to denote the set of parameters in the

inference model. We can formulate the variational lower bound of a sequence 𝑋,

ℒ(𝜃, 𝜑;𝑋), based on Table 6.1 as follows:

ℒ(𝜃, 𝜑;𝑋) =
𝑁∑︁

𝑛=1

E𝑞(𝑧1,𝑧2|𝑥(𝑛))[log 𝑝(𝑥(𝑛)|𝑧1, 𝑧2)]

−
𝑁∑︁

𝑛=1

E𝑞(𝑧2|𝑥(𝑛))[𝐷𝐾𝐿(𝑞(𝑧1|𝑥(𝑛), 𝑧2)||𝑝(𝑧1))]

−
𝑁∑︁

𝑛=1

E𝑞(𝜇2|𝑋)[𝐷𝐾𝐿(𝑞(𝑧2|𝑥(𝑛))||𝑝(𝑧2|𝜇2))]

−𝐷𝐾𝐿(𝑞(𝜇2|𝑋)||𝑝(𝜇2)).

However, this lower bound can only be optimized at the sequence level, because

inferring 𝜇2 depends on an entire sequence, and would become infeasible if 𝑋 is

extremely long.

Instead, in the previous chapter we proposed replacing the maximum a posterior

(MAP) estimation of 𝜇2’s posterior mean for training sequences with a lookup table

ℎ𝜇𝜇2
(𝑖), where 𝑖 indexes training sequences. In other words, the inference model for 𝜇2

becomes 𝑞(𝜇2|𝑋(𝑖)) = 𝒩 (ℎ𝜇𝜇2
(𝑖), 𝐼). Therefore, the lower bound can be re-written

as:

ℒ(𝜃, 𝜑;𝑋(𝑖)) =
𝑁(𝑖)∑︁
𝑛=1

ℒ(𝜃, 𝜑;𝑥(𝑖,𝑛)|ℎ𝜇𝜇2
(𝑖)) + log 𝑝(ℎ𝜇𝜇2

(𝑖)) (6.1)

ℒ(𝜃, 𝜑;𝑥(𝑖,𝑛)|ℎ𝜇𝜇2
(𝑖)) = E𝑞(𝑧1,𝑧2|𝑥(𝑖,𝑛))[log 𝑝(𝑥(𝑖,𝑛)|𝑧1, 𝑧2)]

− E𝑞(𝑧2|𝑥(𝑖,𝑛))[𝐷𝐾𝐿(𝑞(𝑧1|𝑥(𝑖,𝑛), 𝑧2)||𝑝(𝑧1))]

−𝐷𝐾𝐿(𝑞(𝑧2|𝑥(𝑖,𝑛))||𝑝(𝑧2|ℎ𝜇𝜇2
(𝑖))). (6.2)
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We can now sample a batch at the segment level to optimize the following segment

variational lower bound :

ℒ(𝜃, 𝜑;𝑥(𝑖,𝑛)) = ℒ(𝜃, 𝜑;𝑥(𝑖,𝑛)|ℎ𝜇𝜇2
(𝑖)) +

1

𝑁 (𝑖)
log 𝑝(ℎ𝜇𝜇2

(𝑖)). (6.3)

Furthermore, to obtain meaningful disentanglement between 𝑧1 and 𝑧2, it is not

desirable to have constant 𝜇2 for all sequences, which would result in interchangeable

𝑧1 and 𝑧2. To avoid such a condition, the following objective is added to encourage

𝜇2 to be discriminative between sequences:

log 𝑝(𝑖|𝑧(𝑖,𝑛)
2 ) := log

𝑝(𝑧
(𝑖,𝑛)
2 |𝜇̄(𝑖)

2 )∑︀𝑀
𝑗=1 𝑝(𝑧

(𝑖,𝑛)
2 |𝜇̄(𝑗)

2 )
, (6.4)

where 𝑀 is the total number of training sequences, 𝑧(𝑖,𝑛)
2 denotes the posterior mean

of 𝑧2, 𝑔𝜇𝑧2
(𝑥(𝑖,𝑛)), and 𝜇̄

(𝑖)
2 denotes the posterior mean of 𝜇2, ℎ𝜇𝜇2

(𝑖). This additional

discriminative objective encourages 𝑧2 from the 𝑖-th sequence to be not only close

to 𝜇2 of the 𝑖-th sequence, but also far from 𝜇2 of other sequences. Combining this

discriminative objective and the segment variational lower bound with a weighting

parameter, 𝛼, the objective function that an FHVAE maximizes then becomes:

ℒ𝑑𝑖𝑠(𝜃, 𝜑;𝑥(𝑖,𝑛)) = ℒ(𝜃, 𝜑;𝑥(𝑖,𝑛)) + 𝛼 log 𝑝(𝑖|𝑧(𝑖,𝑛)
2 ), (6.5)

referred to as the discriminative segment variational lower bound.

6.1.2 Scalability Issues

The original FHVAE training addressed the scalability issue with respect to sequence

length by decomposing a sequence variational lower bound into a sum of segmental

variational lower bounds over segments. However, here we will show that this training

objective is not scalable with respect to the number of training sequences.

First of all, the original FHVAE training maintains a lookup table, ℎ𝜇𝜇2
(·), that

stores the posterior mean of 𝜇2 for each training sequence. The size of this table grows
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Figure 6-1: Histogram of log
∑︀𝑀

𝑖=1 𝑝(𝑧
(𝑖,𝑛)
2 |𝜇̄(𝑗)

2 ) with respect to different 𝑀 ∈
{101, 102, 103, 104, 105}. Distributions shift by roughly a constant when 𝑀 increases
by 10 times, implying the denominator scales proportionally to 𝑀 .

proportionally to the number of training sequences. However, this is less problematic,

unless the number of our training sequences is on the order of 108, which can make

the lookup table size grow to 10 GB (suppose 𝑧2 are 32-dimensional 32-bit floating

point vectors). The main limitation here is the computation of the discriminative

objective. The denominator,
∑︀𝑀

𝑖=1 𝑝(𝑧
(𝑖,𝑛)
2 |𝜇̄(𝑗)

2 ), marginalizes over a function of the

posterior mean of 𝜇2 for all training sequences, which increases the computation

time proportionally to the number of sequences. Furthermore, when computing the

gradient given a batch of training segments, we need to maintain a tensor of size

(𝑏𝑠, |𝜃|), where 𝑏𝑠 is the batch size, and |𝜃| is the total number of trainable parameters

involved in the computation of the objective function. Since the computation of the

discriminative objective involves the entire lookup table, ℎ𝜇𝜇2
(·), the gradient tensor

is of size at least 𝑏𝑠 times larger than the lookup table. With a batch size of 256, a

dataset with 105 sequences can exhaust the memory of a single GPU during training.

In addition, from the hyperparameter optimization point of view, it can be ob-

served that the distribution of the denominator,
∑︀𝑀

𝑖=1 𝑝(𝑧
(𝑖,𝑛)
2 |𝜇̄(𝑗)

2 ), also changes with

respect to the number of training sequences. Specifically, the expected value of this

terms scales proportionally to 𝑀 asymptotically, as shown in Figure 6-1. Such be-

havior is not desirable, because the 𝛼 parameter that balances the variational lower

bound and the discriminative objective would need to be adjusted according to 𝑀 .
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6.2 Training with Hierarchical Sampling

In order to utilize the discriminative objective, while eliminating the memory, com-

putation, and optimization issues induced by a large training set, we need to control

the size of the lookup table as well as the denominator summation in the discrimi-

native objective. Both of these can be achieved jointly with a hierarchical sampling

algorithm.

Given a dataset of 𝑀 training sequences, we maintain a lookup table of only 𝐾

entries, where 𝐾 is a dataset independent hyperparameter, and optimize an FHVAE

model with the following procedure:

(1) A batch of 𝐾 sequences, {𝑋̃(𝑘)}𝐾𝑘=1, is sampled from the entire training set,

where 𝑘 ∈ [1, 𝐾] indexes the sampled training sequences.

(2) The 𝑘-th entry of the lookup table, ℎ𝜇𝜇2
(𝑘), is updated with the MAP estimation

of the 𝑘-th sequence in the batch,
∑︀𝑁(𝑘)

𝑛=1 𝑔𝜇𝑧2
(𝑥̃(𝑘,𝑛))/(𝑁 + 𝜎2

𝑧2
).

(3) 𝑁𝐵𝑠𝑒𝑞 batches of segments are drawn from the 𝐾 sequences.

(4) Each segment batch is used iteratively to estimate the discriminative segmental

variational lower bound for optimizing the parameters of 𝑓*, 𝑔*, and ℎ𝜇𝜇2
as

before. The only difference is that the denominator of the discriminative object

now sums over the 𝐾 sampled training sequences, instead of the entire set of

𝑀 training sequences.

(5) repeat the above steps until convergence.

We list the pseudo code in Algorithm 1.

We refer to the proposed algorithm as a hierarchical sampling algorithm, because

we first sample at the sequence level, and then at the segment level, in order to

reduce the effective number of training sequences from 𝑀 to 𝐾 for each segment

batch. Compared with the proposed algorithm, the original training algorithm can

be regarded as using a “flat” sampling algorithm, where we sample segments from the

entire pool, so it is therefore necessary to maintain a lookup table of 𝑀 entries. The
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Algorithm 1 Training with Hierarchical Sampling
Input: {𝑋(𝑖)}𝑀𝑖=1: training set; 𝐾: sequence batch size; 𝑏𝑠: segment batch size;
𝑁𝐵𝑠𝑒𝑔: number of segment batches; 𝑓*/𝑔*: decoders/encoders; ℎ𝜇𝜇2

: lookup table of
𝐾 entries; 𝑂𝑝𝑡: gradient descent-based optimizer
1: while not converged do
2: sample a batch of 𝐾 training sequences, {𝑋̃(𝑘)}𝐾𝑘=1

3: for 𝑘 = 1 . . . 𝐾 do
4: ℎ𝜇𝜇2

(𝑘)←
∑︀𝑁(𝑘)

𝑛=1 𝑔𝜇𝑧2
(𝑥̃(𝑘,𝑛))/(𝑁 + 𝜎2

𝑧2
)

5: end for
6: for 1 . . . 𝑁𝐵𝑠𝑒𝑔 do
7: sample segments {𝑥̃(𝑘𝑏,𝑛𝑏)}𝑏𝑠𝑏=1 from {𝑋̃(𝑘)}𝐾𝑘=1

8: 𝑙𝑜𝑠𝑠𝑑𝑖𝑠(𝑏)← log
𝑝(𝑔𝜇𝑧2

(𝑥̃(𝑘𝑏,𝑛𝑏))|ℎ𝜇𝜇2
(𝑘𝑏))∑︀𝐾

𝑘=1 𝑝(𝑔𝜇𝑧2
(𝑥̃(𝑘𝑏,𝑛𝑏))|ℎ𝜇𝜇2

(𝑘))

9: 𝑙𝑜𝑠𝑠𝑔𝑒𝑛(𝑏)← ℒ(𝜃, 𝜑; 𝑥̃(𝑘𝑏,𝑛𝑏))

10: 𝑙𝑜𝑠𝑠← −
∑︀𝑏𝑠

𝑏=1(𝑙𝑜𝑠𝑠𝑔𝑒𝑛(𝑏) + 𝛼 * 𝑙𝑜𝑠𝑠𝑑𝑖𝑠(𝑏))/𝑏𝑠
11: 𝑓*, 𝑔*, ℎ𝜇𝜇2

← 𝑂𝑝𝑡(𝑙𝑜𝑠𝑠, {𝑓*, 𝑔*, ℎ𝜇𝜇2
})

12: end for
13: end while
14: return 𝑓*, 𝑔*

proposed algorithm introduces overhead associated with updating the lookup table

whenever a new batch of sequences is sampled. However, this cost can be amortized

by increasing the number of segment batches, 𝑁𝐵𝑠𝑒𝑔, for each batch of sequences.

6.3 Experimental Setup

We evaluate our training algorithm on a wide variety of datasets, ranging from 3 to

1,000 hours, including both clean and noisy, close-talking and distant speech. In this

section, we describe the datasets, and introduce FHAVE models and their training

configurations.

6.3.1 Datasets

Four different corpora are used for our experiments: TIMIT (Garofolo et al., 1993),

Aurora-4 (Pearce, 2002), AMI (Carletta, 2007), and LibriSpeech (Panayotov et al.,

2015), the former two of which were introduced in the previous chapters. In this
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chapter, we use TIMIT to study the disentanglement performance between phonetic

and speaker information, because it contains manually annotated time-aligned pho-

netic transcripts. For aurora4, we use it to study how speaker and noise information

are represented in the space of the latent sequence variables.

The AMI corpus consists of 100 hours of meeting recordings, recorded in three

different meeting rooms with different acoustic properties, and with multiple atten-

dants. Multiple microphones are used for each session, including individual headset

microphones (IHM), and far-field microphone arrays. IHM and single distant micro-

phone (SDM) recordings from the training set are mixed to form a training set for

the FHVAE models, including over 200,000 utterances according to the segmentation

provided in the corpus.

The largest corpus we evaluate on is the LibriSpeech corpus, which contains 1,000

hours of read speech sampled at 16kHz. This corpus is based on the LibriVox’s

project, where world-wide volunteers record public domain texts to create free public

domain audio books.

6.3.2 Training and Model Configurations

Speech segments of 20 frames, represented with 80-dimensional log Mel-scale filter

bank coefficients (FBank), are used as inputs to FHVAE models. We denote each

segment with 𝑥 = [𝑥1, · · · , 𝑥20]. The variance of 𝑧2’s prior is set to 𝜎2
𝑧2

= 0.25, and

the dimension of 𝑧1 and 𝑧2 are both 32. The conditional mean and variance predictor

for each variable (i.e., 𝑧1, 𝑧2, and 𝑥) shares a common stacked LSTM pre-network,

followed by two different single-layer affine transform networks, 𝜇* and 𝜎2
*, predicting

the conditional mean and variance respectively. Specifically, a stacked LSTM with 2

layers and 256 memory cells are used for all three pre-networks, illustrated in Figure 6-

2 with blocks filled with dark colors. Affine transform networks of 𝑧1 and 𝑧2 encoders

take as input the output from the last time step of both layers, which sums to 512

dimension. As for the 𝑥 decoder, the affine transform network takes as input the

LSTM output of the last layer from each time step 𝑡, and predicts the probability

distribution of the corresponding frame 𝑝(𝑥𝑡|𝑧1, 𝑧2). The same sampled 𝑧1 and 𝑧2
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Figure 6-2: The proposed FHVAE architecture consists of two encoders (orange and
green) and one decoder (blue). 𝑥 = [𝑥1, · · · , 𝑥20] is a segment of 20 frames. Dotted
lines in the encoders denote sampling from parametric distributions.

from the posterior distributions are concatenated and used as input for the LSTM

decoder at each step. Sampling is done by introducing auxiliary input variables for

the reparameterization trick (Kingma and Welling, 2013), in order to keep the entire

network differentiable with respect to the objective.

FHVAE models are trained to optimize the discriminative segment variational

lower bound with 𝛼 = 10. We set sequence batch size 𝐾 =2,000 for TIMIT and

Aurora-4, and 𝐾 =5,000 for the others. Adam (Kingma and Ba, 2014) with 𝛽1 = 0.95

and 𝛽2 = 0.999 is used to optimize all models. Tensorflow (Abadi et al., 2016) is

used for implementation. Training is done for 500,000 steps, terminating early if the

segmental variational lower bound on a held-out validation set is not improved for

50,000 steps.
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6.4 Results and and Discussion

6.4.1 Time and Memory Complexity

One feature of our proposed training algorithm is the ability to control memory

complexity. We found that a training set with over 100,000 sequences would exhaust

a single 8GB GPU memory when using the original training algorithm. Hence, it was

not feasible for the AMI and the LibriSpeech corpus, while the proposed algorithm

does not suffer from the same problem. Another feature of hierarchical sampling is

to control the time complexity of computing the discriminative loss. To study how

sequence batch size affects the optimization step (line 8 in Algorithm 1), we evaluate

the processing time of that step by varying 𝐾 from 20 to 20,000 and show the results

in Table 6.2.

We can observe that when 𝐾 ≤ 2,000, the time complexity of computing the

discriminative loss is fractional compared to computing the variational lower bound.

However, when 𝐾 >2,000, the increased computation time grows proportional to the

sequence batch size, so that computation of the discriminative loss starts to dominate

the time complexity. In practice, given a new encoder/decoder architecture, we can

investigate the computation overhead resulting from the discriminative loss using such

a method, and it is possible to determine some 𝐾 that introduces negligible overhead

for optimization.

Table 6.2: Processing time of the optimization step with different sequence batch size
𝐾.

𝐾 10 100 1000 2000 5000 10000 20000
Time (ms) 84 84 86 87 103 147 230

6.4.2 Evaluating Disentanglement Performance

To examine whether an FHVAE is successfully trained, we need to inspect its per-

formance at disentangling sequence-level generating factors (e.g. speaker identity,

noise condition, and channel condition) from segment-level generating factors (e.g.
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phonetic content) in the latent space. For quantitative evaluation, we reproduce the

speaker verification experiments in Hsu et al. (2017b). The FHVAE model trained

with hierarchical sampling achieves 1.64% equal error rate on TIMIT, matching the

performance of the original training algorithm (1.34%). In the following sections, we

proceed with two qualitative evaluation methods.

t-SNE Visualization of Latent Variables

We start with selecting a batch of labeled segments (𝑥, 𝑦), where 𝑦 denotes the values

of the associated generating factors, for example 𝑦 = (phone-id, speaker-id). We then

infer 𝑧1 and 𝑧2 of these segments, and project them separately to a two-dimensional

space using t-Distributed Stochastic Neighbor Embedding (t-SNE) (Van Der Maaten,

2014). Each generating factor is used to color-code both projected 𝑧1 and 𝑧2. Success-

ful disentanglement would result in segments of the same sequence-level generating

factors forming clusters in the projected 𝑧2 space but not in the projected 𝑧1 space,

and vice versa.

For all four datasets, speaker label, a sequence-level generating factor, is available

for each segment. Since time-aligned phonetic transcripts are available for TIMIT,

it is also possible to derive phone labels, which is a segment-level generating factor.

Following Halberstadt (1999), we further reduce the 61 phonemes to three phonetic

subsets: sonorant (SON), obstruent (OBS), and silence (SIL) for better color-coding.

In addition, noise types can be obtained for Aurora-4, and microphone types can be

obtained for AMI, which are both sequence-level generating factors.

Results of t-SNE projections for models trained on each dataset are shown in

Figures 6-3, 6-4, 6-5, and 6-6, where each point represents one segment. It can be

observed that in each of the projected 𝑧2 spaces, segments of the same sequence-level

generating factors (speaker/noise/channel) always form clusters. When segments are

generated conditioned on multiple sequence-level generating factors, as in Aurora-4

and AMI, the segments actually cluster hierarchically. In contrast, the distribution

of projected 𝑧1’s does not vary between different values of these generating factors,

which implies that 𝑧1 does not contain much information about them. The opposite
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Figure 6-3: Scatter plots of t-SNE projected 𝑧1 and 𝑧2 with models trained on TIMIT.
Each point represents one segment. Different colors are used to code segments of
different labels with respect to the generating factor shown at the title of each plot.

phenomenon can be observed from the phone category-coded plots, where segments

belonging to the same phonetic subset cluster in the projected 𝑧1 space, but not in

the projected 𝑧2 space. These results suggest that FHVAEs trained with hierarchical

sampling can achieve desirable disentanglement for these conditions.

Reconstructing Re-combined Latent Variables

Given two segments, 𝑥𝐴 and 𝑥𝐵, we sample a segment 𝑥𝐶 ∼ 𝑝(𝑥|𝑧𝐴
1 , 𝑧

𝐵
2 ), where 𝑧𝐴

1

is a sampled latent segment variable conditioned on 𝑥𝐴, and 𝑧𝐵
2 is a sampled latent

sequence variable conditioned on 𝑥𝐵. With a successfully trained FHVAE, 𝑥𝐶 should

exhibit the segment-level attributes of 𝑥𝐴, and the sequence-level attributes of 𝑥𝐵.

Here we show results of the model trained on the AMI corpus in Figure 6-7. Eight

segments are sampled for 𝑥𝐴, as shown in the upper right corner of the figure. Among

these segments, the four leftmost ones are close-talking while the rest are far-field,
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Figure 6-4: Scatter plots of t-SNE projected 𝑧1 and 𝑧2 with models trained on Aurora-
4. Each point represents one segment. Different colors are used to code segments of
different labels with respect to the generating factor shown at the title of each plot.

and the first, second, fifth, and sixth from left are female speakers while the rest

are males. For 𝑥𝐵, three segments of different sequence-level generating factors are

sampled, as shown on the left half of the figure. The segments used to infer 𝑧𝐵
2 are

highlighted in red boxes; we show the surrounding frames of those segments to better

illustrate how sequence-level generating factors affect realization of observations.

Samples of 𝑥𝐶 generated by re-combining latent variables are shown in the lower

right corner of the figure. It can be clearly observed that 𝑥𝐶 presents the same

sequence-level generating factors as 𝑥𝐵,1 whose latent sequence variable 𝑥𝐶 conditions

on. Meanwhile, the phonetic content of 𝑥𝐶 stays consistent with 𝑥𝐴,2 whose latent

segment variable 𝑥𝐶 conditions on. The clear differentiation of generating factors

encoded in each sets of latent variables again corroborates the success of our proposed

1In these images, harmonic spacing is the clearest cue for fundamental frequency differences.
Far-field recordings tend to have lower signal-to-noise ratios, which results in blurrier images.

2Phonetic content can usually be determined by the spectral envelope, and relative position of
formants.
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Figure 6-5: Scatter plots of t-SNE projected 𝑧1 and 𝑧2 with models trained on AMI.
Each point represents one segment. Different colors are used to code segments of
different labels with respect to the generating factor shown at the title of each plot.

algorithm in training FHVAE models.

6.5 Conclusions

In this chapter, we discussed the scalability limitations of the original FHVAE train-

ing algorithm in terms of runtime, memory, and hyperparameter optimization, and

proposed a hierarchical sampling algorithm to address this problem. Comprehensive

study of the memory and time complexity, as well as disentanglement performance,

verified the effectiveness of the proposed algorithm on all scales of datasets, ranging

from 3 to 1,000 hours.
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Figure 6-6: Scatter plots of t-SNE projected 𝑧1 and 𝑧2 with models trained on Lib-
riSpeech. Each point represents one segment. Different colors are used to code
segments of different labels with respect to the generating factor shown at the title
of each plot.
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Figure 6-7: Results of decoding re-combined latent variables. A segment in the 𝑥𝐶

block is generated conditioned on the latent segment variable of a segment in the
block 𝑥𝐴 of the same column, and conditioned on the latent sequence variable of a
red-box highlighted segment in the block 𝑥𝐵 of the same row.
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Chapter 7

Conclusion and Future Work

7.1 Summary of Contributions

In this thesis, we investigate neural variational inference models for learning under-

lying explanatory factors of speech, such as speaker identity, phonetic content, and

background noise type. Specifically, we:

1. Apply an existing VAE model to learn a representation for speech, and derive

operations in the latent space to transform attributes of speech.

2. Propose an unsupervised domain adaptation technique for robust automatic

speech recognition via data augmentation using VAE-based speech attribute

transformation.

3. Present a novel FHVAE model that learns a disentangled and interpretable

representation from sequential data without supervision.

4. Demonstrate that the learned disentangled representations from FHVAEs can

be utilized in a wide variety of learning scenarios, including zero-shot learning,

supervised learning, and domain adaptation.

5. Identify scalability issues in the original FHVAE training algorithm with respect

to the dataset size, and propose a hierarchical sampling algorithm to scale FH-

VAE training to datasets of over a thousand hours of speech.
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In Chapter 2, we apply a convolutional VAE model to learn a representation from

short speech segments. We demonstrate that a VAE learns a smooth mapping from

the latent space to the generated speech segment, such that by interpolating two latent

variables, we can obtain a generated speech segment with interpolated attributes,

for example, a segment with the fundamental frequency in between that of the two

speech segments whose latent variables are inferred from. In addition, we derive

operations for modifying attributes of a speech segment based on the assumption

that independent attributes are modeled by orthogonal subspaces in the latent space,

which we also verify empirically.

In Chapter 3, we first make an observation that nuisance attributes that are in-

dependent of the linguistic content are mostly consistent among segments within

an utterance. By combining this observation with the latent space operations pro-

posed in the previous chapter, we propose two unsupervised data augmentation tech-

niques: nuisance factor replacement and latent nuisance subspace perturbation, which

transform nuisance attributes of an utterance without altering the linguistic content.

We apply these techniques to address the unsupervised domain adaptation scenario,

where the distribution of the nuisance attributes of the annotated training data is

mismatched from the testing data, by transforming the nuisance attributes of the

training data such that they resemble those of the testing data.

In Chapter 4, we present a novel FHVAE model, which combines the neural varia-

tional inference framework with a hierarchical generative model that better describes

sequential data generation. The proposed FHVAE model is capable of learning dis-

entangled and interpretable representations, which separate sequence-level attributes

(e.g. speaker identity, background noise type) and segment-level attributes (e.g. pho-

netic content) into separate latent variables.

In Chapter 5, we study the applications of the disentangled representations learned

using FHVAE models in different learning scenarios. As a generative model, the FH-

VAE model is also capable of transforming attributes of an utterance, similar to

what VAE models can do; furthermore, due to the explicit factorization assumption

between the variables modeling sequence-level and segment-level attributes in the
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graphical model, the FHVAE model achieves better speech transformation perfor-

mance compared to the VAE model. We demonstrate that such an ability through

voice conversion and de-noising using FHVAE models. In addition to speech gen-

eration, we also apply the disentangled representations to speaker verification and

robust ASR tasks, where the sequence-level latent variable is used as a representation

for speaker information, and the segment-level latent segment variable is used as a

domain-invariant acoustic feature representation for ASR.

In Chapter 6, we analyze the original training algorithm for FHVAE models pro-

posed in Chapter 4, and determine that the algorithm is not scalable with respect

to dataset size and requires additional hyperparameter tuning for different sizes of

datasets. To address this issue, we propose a hierarchical algorithm for training FH-

VAE models, which can scale to arbitrarily large datasets with a fixed run-time and

memory cost per training step.

7.2 Future Work

This thesis work can be extended in three different directions:

1. Increase the capacity of the neural network modules to parameterize the distri-

butions of the generative network and the inference network.

2. Explore a wider variety of speech applications based on our proposed models,

and apply our framework to model different types of sequential data.

3. Utilize synchronized multimodal data and propose better graphical models to

capture the generative process of such data.

From the modeling perspective, each neural network module used in our VAE

or FHVAE models can be replaced with more powerful ones. To parameterize the

generative networks, we adopt simple convolutional networks and non-autoregressive

recurrent networks in this thesis. These models assume conditional independence

between different observed frames in a sequence, which is actually an overly simpli-

fied assumption, because there exist strong correlations between consecutive speech
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frames. To address such issues, conditional autoregressive models (Mehri et al., 2016;

van den Oord et al., 2016) can be applied instead, which take not only the latent vari-

able as input, but also the output from the previous step, to predict the distribution

over the current frame.

As for the variational inference network, we assume a factorized Gaussian posterior

distribution for both VAE and FHVAE, with its mean and variance parameterized

by convolutional or recurrent networks. This module can also be improved by in-

corporating recently developed normalizing flow (Rezende and Mohamed, 2015) or

inverse autoregressive flow (Kingma et al., 2016) techniques to include a larger family

of posterior distributions that the variational inference model can characterize.

From the application point of view, besides the applications we explore in this

thesis, many other speech applications can benefit from utilizing a representation that

disentangles linguistic factors from speaker and noise-related factors. For example, to

discover the set of acoustic units for under-resourced languages (Jansen et al., 2010;

Lee and Glass, 2012) or to obtain semantically-rich speech embeddings (Harwath and

Glass, 2017; Chung and Glass, 2018), it is desirable to remove non-linguistic factors

from the acoustic features. On the other hand, to compute sequence-level statistics

for speaker adaptation (Saon et al., 2013) or environment adaptation (Feng et al.,

2017), the sequence-level latent variables (i.e., s-vectors) extracted from our FHVAE

model can be exploited to replace i-vectors (Dehak et al., 2011).

In addition to modeling a generative process for speech, our FHVAE model can

potentially be applied to model a generative process of texts, images, or videos, which

all involve certain forms of hierarchy during generation, for learning disentangled

representations. Take a video of a person walking for example, the subject and the

scene are the sequence-level attributes that are consistent within a video clip, while

the posture of the person is a frame-level attribute that changes from frame to frame.

Last but not least, in this thesis, we have only explored representation learning

from unimodal data; however, such data is still very different from the form of data

perceived by humans during their learning process, which are parallel multimodal

data, such as parallel video and audio streams. To computational simulate a human-
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like learning process and to learn representations disentangled at the semantic level,

we should also extend our framework to model the generation of multimodal data,

the synchronization of which can provide additional information for disentangling

underlying generating factors (Harwath et al., 2016).
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Appendix A

Derivation of Sequence Variational

Lower Bound

The variational lower bound for the marginal probability of a sequence 𝑋 can be

derived as follows:

log 𝑝(𝑋) ≥ℒ(𝜃, 𝜑;𝑋)

=E𝑞(𝑧1,𝑧2,𝜇2|𝑋)

[︀
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(A.1)

−𝐷𝐾𝐿(𝑞(𝜇2)||𝑝(𝜇2)). (A.2)

The expected KL-divergence in Eq. A.1 of two Gaussian distributions, 𝑞(𝑧(𝑛)
2 |𝑥(𝑛))

and 𝑝(𝑧
(𝑛)
2 |𝜇2), over a Gaussian 𝑞(𝜇2) = 𝒩 (𝜇2|𝜇̃2, 𝜎

2
𝜇̃2
𝐼) can be computed analyti-

cally. Let 𝐽 be the dimensionality of 𝑧2. Let 𝜇̂𝑧2 and 𝜎̂𝑧2 denote the variational mean

and standard deviation evaluated at 𝑥(𝑛), and let 𝜇2,𝑗, 𝜇̃2,𝑗, 𝜇̂𝑧2,𝑗 and 𝜎̂𝑧2,𝑗 denote the
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𝑗-th element of these vectors. We have:
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(A.3)

The KL-divergence in Eq. A.2 can also be computed analytically and rewritten as

follows:

𝐷𝐾𝐿(𝑞(𝜇2)||𝑝(𝜇2))

= 𝐷𝐾𝐿(𝒩 (𝜇̃2, 𝜎
2
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2
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2
log 2𝜋 − log 𝑝(𝜇̃2) (A.4)

By replacing Eq. A.1 and A.2 with Eq. A.3 and A.4 respectively, we rewrite the
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variational lower bound for a sequence 𝑋 as follows:
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Appendix B

Derivation of the Inferred S-Vector

As described in Section 2.2, inference of the s-vector 𝜇2 of an unseen utterance 𝑋 =

{𝑥(𝑛)}𝑁𝑛=1 is cast as an approximated maximum a posterior estimation problem, which

uses the conditional segment variational lower bound, ℒ(𝜃, 𝜑;𝑥(𝑛)|𝜇2), to approximate

the conditional likelihood of a segment, log 𝑝𝜃(𝑥
(𝑛)|𝜇2). Let 𝐽 be the dimensionality

of 𝑧2. Let 𝜇̂
(𝑛)
𝑧2 denote the variational mean of 𝑧2 evaluated at 𝑥(𝑛), and let 𝜇2,𝑗 and

𝜇̂
(𝑛)
𝑧2,𝑗

denote the 𝑗-th element of these vectors. The optimal 𝜇*
2 can be derived as

follows:

𝜇*
2 = argmax

𝜇2

𝑁∑︁
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𝜎2
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𝑓(𝜇2),
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where 𝑓(·) is a concave quadratic function that has only one maximum point. We

then have:

𝜕𝑓(𝜇2)

𝜕𝜇2

⃒⃒⃒
𝜇2=𝜇̃*

2

= 0

𝜇*
2 =

∑︀𝑁
𝑛=1 𝜇̂

(𝑛)
𝑧2

𝑁 + 𝜎2
𝑧2/𝜎2

𝜇2
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