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Abstract

Multilingual and multidialectal speakers commonly switch between languages and di-
alects while speaking, leading to the linguistic phenomenon known as code-switching.
Most acoustic systems, such as automatic speech recognition systems, are unable to
robustly handle input with unexpected language or dialect switching. Generally, this
results from both a lack of available corpora and an increase in the difficulty of the
task when applied to code-switching data.

This thesis focuses on constructing an acoustic-based model to gather code-switching
information from utterances containing Modern Standard Arabic and dialectal Ara-
bic. We utilize the multidialectal GALE Arabic dataset to classify the code-switching
style of an utterance and later to detect the location of code-switching within an ut-
terance. We discuss the failed classification schemes and detection methods, providing
analysis for why these approaches were unsuccessful. We also present an alignment-
free classification scheme which is able to detect locations within an utterance where
dialectal Arabic is likely being spoken. This method presents a marked improvement
over the proposed baseline in average detection miss rate. By utilizing this informa-
tion, Arabic acoustic systems will be more robust to dialectal shifts within a given
input.
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Chapter 1

Introduction

1.1 Code-switching

Code-switching is a linguistic phenomenon in which a speaker shifts between two or

more languages or dialects while speaking. This type of speech is commonly found in

multilingual societies and areas where dialectal variations of a language are frequently

used, such as India and many Arabic-speaking nations. Switching between codes in

a single conversation can occur for a variety of reasons. Speakers may switch to

a new code due to lexical need or in order to compensate for shortcomings of the

previously used language or dialect. The tone or topic of a conversation may also

shift, provoking a change to a code which better fits the new direction of the dialogue.

In all cases, code-switching is dependent on many situational variables, making it

difficult to speculate when and where it may arise. In recent years, code-switching

has become increasingly more common due to globalization and the widespread use

of social media. These and many other factors have brought about the integration of

lingua francas into native languages, as well as normalized the mixing of colloquial

dialects with standard language.

Language or dialect shifts in day-to-day speech can be grouped into three pri-

mary categories: inter-sentential, code-switching between utterances; intra-sentential,

code-switching within a single utterance; or intra-word, code-switching within a sin-

gle word. Most studies on code-switching focus on intra-sentential switching, due to
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the interesting linguistic elements which commonly emerge during the speech. Ex-

amples of this include alternations, the alternation and combination of two separate

grammars, and insertions, insertion of features from one code into another.

1.2 Code-switching in Arabic

Code-switching is especially common in Arabic-speaking countries. The reasons for

this trace back over a thousand years to the birth of Islam in the 7th century CE.

The spread of Islam led to the unification of many previously divided nations within

the Middle East. Tribes from the Arabian Peninsula headed conquests across the

area, propagating religious teachings to local peoples and causing sweeping political

changes. Linguistically, these conquests introduced an early form of Arabic, known

as Classical Arabic, to many new peoples. The caliphs of the Arab dynasty estab-

lished schools to teach Classical Arabic and Islam by means of the Quran, the central

religious text of Islam written in Classical Arabic. By the 8th century CE, the stan-

dardization of Classical Arabic had reached completion and knowledge of the language

became essential for academics and individuals of the Arab world who wished to im-

prove or maintain high societal positions. However, in everyday life, it was common

for individuals to continue speaking languages native to their nation or combine their

first languages with Classical Arabic, creating a variety of colloquial Arabic dialects.

Roughly a thousand years later, colonization of the Arab world by European

countries further influenced the linguistic history of the area. During the era of

colonization, French and English were often used in schools, rather than Arabic.

The knowledge of such European languages was seen as a badge of sophistication

and necessary for educated individuals. Many countries previously under colonial

occupation still formally learn the languages of their earlier colonial rulers. These

centuries of European influence have brought about the borrowing and integration of

western languages into local Arabic dialects.

Unlike many modern languages, which while containing dialects tend to be more

universally defined, Arabic is more akin to a lingua franca of the Arab World. Tech-
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nically, Arabic is classified as a macrolanguage, encompassing 30 modern varieties as

well as Modern Standard Arabic (MSA). Many of these varieties or dialects are mu-

tually unintelligible and considered completely separate languages by some linguists.

MSA is widely utilized in schools, formal situations, written media, and as a lingua

franca to help speakers of different dialects communicate. Consequently, Arabic has

emerged as a prime example of the linguistic phenomenon diglossia: the normal use

of two separate varieties of a language, typically used in different social situations.

Individuals commonly need to switch between their native dialect and MSA in order

to communicate with speakers of different dialects.

The rise of Islam and subsequent era of western colonization has produced a

unique linguistic situation in the area. Code-switching is a frequent and necessary

phenomenon; making Arabic an excellent language choice for work in this linguistic

area.

1.3 The Problem

In the past decade, the use of acoustic systems, such as Text to Speech (TTS) and

Automatic Speech Recognition (ASR) systems, has greatly increased. Similarly, code-

switching is quickly becoming more widely used and accepted in modes of communica-

tion other than informal speech. Many of the acoustic systems previously mentioned

are trained using data from a single language or dialect. Monolingual and monodi-

alectal speech data is the most widely available and therefore the most commonly

used. However, this leads to the creation and use of acoustic systems which cannot

robustly handle input with unexpected language or dialect switching.

The work in this thesis focuses on constructing an acoustic-based model to gather

code-switching information. Specifically, the model will aim to gather information

pertaining to the location of code-switching points within utterances containing MSA

and various Arabic dialects. The model will be limited to using only features which

can be easily extracted from acoustic data. Ultimately, the information obtained from

this model will be available for use by other acoustic systems in order to improve
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performance on code-switching input data.

1.4 Thesis Outline

The contributions of this work are centered around exploring what type of informa-

tion about code-switching can be automatically gathered by a model, when provided

with only an acoustic representation of an utterance. Although focused on switch-

ing between MSA and dialectal Arabic (DA), the findings of this research should be

applicable to intra-sentential code-switching in different languages and dialects.

The remainder of this thesis is organized as follows: Chapter 2 discusses the

background and related work utilized while conducting this research. Chapter 3

introduces the GALE dataset. Chapter 4 discusses preliminary experiments and their

important findings. Chapter 5 describes the implementation of the current system

and provides an evaluation of said system. Chapter 6 offers concluding remarks and

possible future avenues for this work.
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Chapter 2

Related Work

There has been very little research conducted on acoustic code-switching data and

the potential to integrate this data into other types of acoustic systems. Due to this,

the previous work used for reference in this thesis consists mainly of code-switching

work done in other fields as well as speech-based research which closely relates or can

somehow be applied to this task.

2.1 Code-switching Work

2.1.1 Non-Computational and Linguistic Work

The first recorded observations of code-switching by linguists occurred in the early

20th century. Jules Ronjat, a French linguist, is credited with making the earliest

recorded observation in 1913 (Ronjat, 1913). Ronjat conducted a case study on his

own son during his early years of life. The goal of the study was to successfully

teach the boy French and German simultaneously, as first languages. At the time

learning two languages from infancy was thought to distort the absorption of one or

both of the languages. Ronjat created a technique referred to as one person, one

language. For this technique he only spoke French to his son and his wife only spoke

German. Ronjat strictly adhered to this practice. According to the study, code-

switching between the two languages naturally arose in his son’s speech. However,
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Ronjat and his wife refused to acknowledge any utterance which included mixing of

the two languages, due to the stigma around dual language absorption.

In the following decades linguists continued to neglect code-switching as an inter-

esting, potential area of work. Seeing it instead as a substandard use of language and

the result of imperfect second language learning. Most scholars at the time did not

believe a discernible pattern or logic could be applied to the phenomenon.

In the 1970s the scientific perspective on code-switching began to change. (Blom,

1972) published a survey in which they studied a Norwegian village that spoke two

different dialects. The inhabitants of this village switched between the two dialects

based on the social context of the conversation. After publication of this research,

academic interest in code-switching began to grow. Scholars began searching for sys-

tematic patterns and trying to create accurate models to predict when code-switching

might occur and how language grammars mix.

Two popular models emerged from this early linguistic work. Poplack’s Model

(Poplack, 1978) and the Matrix language-frame model (Myers-Scotton, 1997). Poplack’s

model proposed the equivalence constraint, a rule stating that code-switching occurs

only at points where the structures of the two codes coincide. In other words, where

the general grammar or sentence element ordering match, leading to a smooth transi-

tion between the codes. Figure 2.1 provides an example of this form of code-switching.

The Matrix language-frame model presents the idea of a matrix language (ML) and

an embedded language (EL). In this model the ML represents the dominant language.

The grammar of the sentence adheres to that of the ML and elements of the EL are

inserted into the ML. Figure 2.2 provides an example of this form of code-switching.

2.1.2 Natural Language Processing Work

The first computational approach to code-switching is attributed to (Joshi, 1982).

(Joshi, 1982) developed a grammar-based system focusing on parsing and generating

code-switched data in English and Marathi. Many recent approaches to processing

code-switching data continue to use linguistic features to improve model performance.

New research in computational approaches to detecting and utilizing code-switching
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Language Type Example

Code-switching I like to read porque quiero ser un escritor.

English I like to read because I want to be a writer.

Spanish Me gusta leer porque quiero ser un escritor.

Table 2.1: An example sentence containing code-switching that adheres to the equiva-
lence constraint proposed in Poplack’s Model. The switch occurs in a location within
the utterance where the grammatical structures of both English and Spanish align.
The example is translated to both English and Spanish below the original utterance
for clarity.

Language Type Example

Code-switching Por favor, remember to buy las floras for Lexi’s graduation.

English Please, remember to buy flowers for Lexi’s graduation.

Spanish Por Favor, recuerda comprar las floras para la graduación de Lexi.

Table 2.2: An example sentence containing code-switching that adheres to the Matrix
language-frame model. In this instance English represents matrix language and Span-
ish represents the embedded language. Two Spanish phrases, “por favor” and “las
floras” are inserted into the English-dominated utterance. The example is translated
to both English and Spanish below the original utterance for clarity.

data began to surface in the late 2000s. (Sinha and Thakur, 2005) proposed a system

for machine translation of the commonly occurring Hinglish, code-switching between

Hindi and English, to pure Hindi and pure English. (Solorio and Liu, 2008) published

one of the first approaches to statistical detection of code-switching points for use in

a part-of-speech tagger.

Severe lack of code-switching data and heightened interest in the phenomenon ul-

timately led to the First Workshop on Computational Approaches to Code Switching

in 2014 (Solorio et al., 2014). Team approaches were wide ranging; from a rule-based

system that utilized character n-grams (Shrestha, 2014) to early attempts at inte-

grating machine learning techniques, such as extended Markov Models (King et al.,

2014) and support vector machines (Bar and Dershowitz, 2014).

In the past few years artificial neural networks (NNs) have emerged as the standard

model of choice for natural language processing work. Specifically, the bidirectional

long short-term memory network (bi-LSTM) has become one of the most popular
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and successful NN architectures. During the Third Workshop on Computational Ap-

proaches to Linguistic Code-switching (Aguilar et al., 2018), (Trivedi et al., 2018)

obtained character representations via a convolutional neural network (CNN) and

simultaneously generated word representations using a bi-LSTM. These representa-

tions were passed to a dense conditional random field (CRF), which provided the final

output prediction. (Wang et al., 2018) created a system for name entity recognition

in code-switching data. They utilized a joint CRF-LSTM model with attention at the

embedding layer. This system performed particularly well on noisy dialectical Arabic

data.

2.1.3 Acoustic Work

There is currently a severe lack of code-switching data, especially for speech-based

corpora. Despite the lack of speech data, code-switching has presented itself as an im-

portant aspect of language to consider when creating acoustic systems, such as TTS

and ASR systems. (Liang et al., 2007) proposed a bilingual TTS system that utilized

a single speaker and a shared phone set to increase the quality of mixed-language

synthesis. (Modipa et al., 2013) discussed the challenges of frequent Sepedi-English

code-switching, in South Africa, on the accuracy of ASR systems. Code-switching

data is especially challenging for speech systems to handle as acoustic models, pro-

nunciation models, and language models may need to be redesigned in order to ac-

commodate words from different codes. One common way to avoid this obstacle is

to detect the locations of code-switch points and apply the correct models based on

the detected switch points. (Chan et al., 2004) produced a system that utilized bi-

phone probabilities to detect language boundaries between Cantonese and English.

Similarly, (Lyu and Lyu, 2008) made use of acoustic, prosodic, and phonetic cues to

detect language boundaries in Mandarin-Taiwanese code-switching speech.

More recently, (Yılmaz et al., 2016) utilized the FAME! corpus (Yilmaz et al.,

2016) to engineer an ASR system for Frisian-Dutch code-switched speech. They

initially trained a deep neural network (DNN) on Frisian, Dutch, and English mono-

lingual data. After, they retrained the hidden layers of the DNN on a small amount
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of monolingual Frisian data and a large amount of monolingual Dutch data. The

code-switching data was only used for testing purposes, not in training. (Amazouz

et al., 2019) conducted studies on the FACST corpus (Bougrine et al., 2017), con-

taining French and Algerian Arabic code-switching speech. The majority of the work

was focused on linguistic analysis of the data, followed by an initial attempt to locate

code-switch points using word posteriors from an ASR system trained on the corpus.

(Rallabandi et al., 2018) published one of the few experiments that utilized both code-

switching data and DNN features in order to classify the “style” of code-switching

within an utterance.

2.2 Speech-based Work

Although there is a lack of prior work in acoustic code-switching, there are similarities

between other common tasks in speech-based research and code-switching.

2.2.1 Modeling Unsegmented Data

Many tasks containing sequential, unsegmented data necessitate the prediction of a se-

quence of segmented labels. Common examples of this type of task include handwrit-

ing recognition, optical action labeling, and ASR. In both ASR and code-switching

detection, unsegmented, acoustic data is provided to a system that is expected to

parse this data into a sequence of distinct words or code labelings, respectively. These

are difficult problems because they combine both the task of recognition and the task

of segmentation.

In 2006, (Graves et al., 2006) published the Connectionist Temporal Classification

(CTC) Algorithm. A loss function for training recurrent neural networks (RNNs) to

predict sequences of labels with unsegmented input data. Graves tested his new

algorithm on the temporal classification problem of phonetic labeling. The model,

trained using CTC loss, was able to outperform the baseline as well as a similar model

trained using traditional techniques. Since its initial publication, CTC loss has been

utilized successfully in many unsegmented data tasks.
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2.2.2 Spoken Term Detection

Automated code-switching detection, when viewed through the lens of the Matrix

language-frame model, can be regarded as a spoken term detection task. Words or

segments of the utterance from the EL represent the terms to be detected. Recently,

(Ao and Lee, 2018) utilized an LSTM followed by an attention mechanism to deter-

mine if a specific spoken term query exists in an audio segment. The LSTM was used

as an acoustic encoder, while the attention mechanism was used to place attention on

areas of the audio segment similar to the query. This model was able to outperform

the same network without attention as well as the conventional dynamic time warping

based approach.

2.2.3 Language and Dialect Identification

Many similarities can be drawn between code-switching tasks and language/dialect

recognition tasks. These recognition tasks are popular in the field and have made

effective use of deep learning systems.

Two main approaches to building NN-based systems for language and dialect

identification have emerged over the past few years. The first utilizes a DNN to

extract features from speech data, followed by a separate language or dialect classifier.

(Jiang et al., 2014) created acoustic features, for use in language identification, by

extracting “bottleneck” hidden layers of two separate monolingual-trained DNNs.

The system constructed with these features was able to outperform the baseline. The

second commonly used approach to deep learning systems utilizes a DNN to directly

classify language or dialect. (Richardson et al., 2015) similarly experimented with

mixing classical features/classifiers (Mel-frequency cepstral coefficients and Gaussian

mixture models respectively) and NN-based features/classifiers (bottleneck features

and DNN respectively) to predict the language of an audio segment from six possible

tags.

Specialized DNNs have also proven to be very successful in language and di-

alect identification. (Snyder et al., 2018) constructed a DNN, with a short temporal
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context, for use in mapping acoustic features to fixed-dimension embeddings. The

embeddings, referred to as x-vectors, were tested on identification of 14 different

languages. They achieved good results, outperforming the state-of-the-art i-vector

systems when using the same backend classifier. (Shon et al., 2018) built an end-to-

end dialect identification system for Arabic dialects. They utilized four CNN layers

followed by two fully-connected (FC) layers to create a language embedding vector.

This vector was shown to successfully encode similarities between utterances of the

same dialect and differences between utterances of different dialects. The end-to-

end system outperformed i-vectors paired with cosine distance and Gaussian backend

classifiers.
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Chapter 3

Code-switching Speech Data

There are very few code-switching datasets available for use in acoustic systems.

Moreover, the datasets that are available tend to contain small amounts of usable

code-switching examples. This is partially due to the challenges that arise in the

collection of this type of data. The number of potential speakers for use in data

extraction is much smaller than for standard speech datasets, as code-switching only

occurs in certain geographic areas and with certain multilingual or multidialectal

speakers. Additionally, true code-switching speech must occur naturally; speakers

cannot simply be given a transcript or story to read. The switch must be brought

about by a naturally occurring event, such as the need for word in a different code

or a shift in topic. Furthermore, code-switching still does not commonly occur in

formal situations, making it difficult to quickly scrape the Internet for common speech

sources, such as broadcast data. Some well-known code-switching datasets include the

Miami Bangor corpus (Deuchar et al., 2014), the Mandarin-English Code-switching in

South-East Asia corpus (Lyu et al., 2010), and the Frisian Audio Mining Enterprise

corpus (Yilmaz et al., 2016). The work described in this paper focuses on code-

switching between MSA and DA and makes use of the largest dataset available for

this task: the GALE dataset (Walker et al., 2013a) (Walker et al., 2013b) (Walker

et al., 2014).
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3.1 GALE Dataset

The GALE Arabic dataset was collected over the course of two years, 2006-2007, as

part of the DARPA GALE (Global Autonomous Language Exploitation) Program.

The dataset contains transcribed acoustic broadcast data, featuring code-switching

between MSA and various Arabic dialects. The data consist of a variety of differ-

ent types of broadcast recordings, including interviews, listener call-ins, roundtable

discussions, and report-style speech. Arabic-speaking countries represented in the

dataset include Qatar, Jordan, Lebanon, Egypt, Oman, Saudi Arabia, Syria, the

United Arab Emirates (UAE), Iraq, and Kuwait. Data was also collected from Ara-

bic broadcasts originating in Iran and the United States (US).

The provided data includes audio recordings, presented in flac compressed Wave-

form Audio File format (.flac) 16000 Hz single-channel 16-bit PCM, and transcripts.

Transcript entries are made at the utterance level and were audited by a native

speaker. Entries include the audio file containing the utterance, the start and stop

time of the utterance within the audio file, speaker demographic information, segment

type (e.g. report, conversational, etc.), and the transcription itself. The transcrip-

tions are provided in Arabic script with DA segments marked using the start tag

<non-MSA> and the end tag </non-MSA>.

In total 416 hours of broadcast data are included in the dataset. Of these 416

hours approximately 358 hours are comprised of utterances containing only MSA and

no DA. An initial data cleaning was conducted by colleagues of the Spoken Language

Systems group at the Qatar Computing Research Institute (QCRI). QCRI started

by removing the 358 hours of MSA-only utterances from the dataset. Next, they

created Buckwalter transliteration transcripts, forced word alignments, and phoneme

alignments for the remaining utterances. Utilizing these additional resources provided

by QCRI, we further separated the GALE dataset into two subsets: the full dataset

and the reduced dataset. The full dataset contains all utterances from the GALE

dataset after the initial MSA-only extraction done by QCRI (i.e. all utterances that

are DA-only or contain code-switching). The reduced dataset was further filtered
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by removing the DA-only utterances, leaving only utterances which contain code-

switching.

3.1.1 The Full Dataset

As previously mentioned, the full dataset contains all utterances in the GALE dataset

other than MSA-only utterances. In total this is approximately 58.4 hours of audio

data. Table 3.1 features more detailed statistics about this dataset. Interestingly,

about one-third of this entire dataset consists of DA-only utterances, featuring no

code-switching. The majority of DA data that appears in the dataset, about 82%,

is found in these DA-only utterances. Levantine, Gulf, and Egyptian Arabic dialects

appear in the data, with Levantine making up a large majority of the DA data. The

size breakdown by dialect of the total spoken DA can be seen in Table 3.2. The

most commonly occurring switching order of an utterance is DA-only, followed by:

MSA-DA-MSA and MSA-DA-MSA-DA-MSA.

Total Size (+ silence) (hrs.) 58.4

Total MSA Size (hrs.) 14.5

Total DA Size (hrs.) 20.8

Total DA-only Size (hrs.) 17.1

Avg. Utterance Size (secs.) 9.28

Avg. MSA Segment Size (secs.) 2.51

Avg. DA Segment Size (secs.) 2.35

Avg. Switches per Utterance 1.91

Table 3.1: Size and code-switching statistics for the full dataset. The discrepancy
between Total Size and the breakdown of Total Size by dialect is due to the use of the
forced word alignments in the calculation of Total MSA Size and Total DA Size. The
forced word alignments cut out time containing silence in an utterance. The Total
Size takes into account time due to silence.

3.1.2 The Reduced Dataset

Due to the large percentage of non-code-switching data found in the full dataset, a new

dataset was created by filtering out the DA-only utterance data. Thus, this subset of
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Dialect Size (hrs.)
Levantine 16.3
Gulf 3.16
Egyptian 0.76
Other 0.58

Table 3.2: Total DA size breakdown by dialect for the full dataset. The Levantine
dialect data consists of broadcasts from Jordan, Lebanon, and Syria; the Gulf dialect
data consists of broadcasts from Iraq, Kuwait, Oman, Qatar, Saudi Arabia, and the
UAE; the Egyptian dialect consists of only broadcasts from Egypt; the other category
contains broadcasts collected from the non-Arabic speaking countries of Iran and the
US.

data represents all utterances containing code-switching from the original 416 hours of

GALE data. After the removal of all monodialectal utterances, the dataset is left with

approximately 37.6 hours of audio data. Table 3.3 features detailed statistics about

the dataset. As expected, due to the removal of DA-only utterances, the total amount

of spoken DA significantly decreased and the average number of switches per utterance

increased. The average length of spoken DA segments also drastically decreased from

over two seconds to about half a second; making DA segments, on average, much

shorter than MSA segments. Once again, Levantine, Gulf, and Egyptian Arabic

dialects appear in the data, with a Levantine majority. The size breakdown by dialect

of the total spoken DA can be seen in Table 3.4. The most common utterance

switching orders in the reduced dataset are: MSA-DA-MSA, MSA-DA-MSA-DA-

MSA, and DA-MSA.
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Total Size (+ silence) (hrs.) 37.6

Total MSA Size (hrs.) 14.5

Total DA Size (hrs.) 3.74

Avg. Utterance Size (secs.) 9.15

Avg. MSA Segment Size (secs.) 2.51

Avg. DA Segment Size (secs.) 0.56

Avg. Switches per Utterance 2.93

Table 3.3: Size and code-switching statistics for the reduced dataset. The discrepancy
between Total Size and the breakdown of Total Size by dialect is due to the use of the
forced word alignments in the calculation of Total MSA Size and Total DA Size. The
forced word alignments cut out time containing silence in an utterance. The Total
Size takes into account time due to silence.

Dialect Size (hrs.)
Levantine 2.71
Gulf 0.79
Egyptian 0.12
Other 0.12

Table 3.4: Total DA size breakdown by dialect for the reduced dataset. The Levantine
dialect data consists of broadcasts from Jordan, Lebanon, and Syria; the Gulf dialect
data consists of broadcasts from Iraq, Kuwait, Oman, Qatar, Saudi Arabia, and the
UAE; the Egyptian dialect consists of only broadcasts from Egypt; the other category
contains broadcasts collected from the non-Arabic speaking countries of Iran and the
US.
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Chapter 4

Preliminary Experiments

4.1 Code-Mixing Index

The first approach taken in this work aimed to classify utterances from the dataset

based on their code-mixing style. This classification approach was also used in the

previously mentioned work (Rallabandi et al., 2018).

4.1.1 Data Processing

The code-mixing index experiment utilized the full dataset. The dataset was first

divided into separate train, validation, and test sets using a 70/15/15 percentage

split.

Feature Extraction

Four different types of features were extracted from the data: Mel-frequency cep-

stral coefficients (MFCCs), dialect embeddings, one-hot phoneme embeddings, and

phoneme frequency embeddings. The MFCCs and Mel-scaled spectrograms, used in

the creation of the dialect embeddings, were obtained using the acoustic processing

software Librosa1 (McFee et al., 2015).

60-dimension MFCC features, including deltas and delta-deltas, were generated

1https://librosa.github.io/
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using a 25 ms window and 10 ms stride. The dialect embedding features consisted

of bottleneck features (BNFs) extracted from the end-to-end dialect identification

system presented in (Shon et al., 2018). Two different sets of dialect embeddings

were extracted from the data, varying in dimension. One at the utterance-level, with

no time dimension, and one at intervals with 250 ms windows and 250 ms strides.

For the utterance-level embeddings, a 40-dimension log Mel-scaled spectrogram was

computed from the acoustic utterance data using a 32 ms window and 10 ms stride.

These acoustic features were then used as input to the end-to-end model. A 600-

dimension dialect embedding vector was then extracted from the second FC layer in

the model. A very similar approach was used for the interval-based dialect embedding.

A 40-dimension log Mel-scaled spectrogram was computed for each 250 ms interval of

the utterance, using a 32 ms window and 10 ms stride. These acoustic features were

passed to the model and a 600-dimension dialect embedding vector was extracted

from the second FC layer of the model. The dialect embeddings for each 250 ms

interval were then stacked along a time axis. After extraction both the utterance-

level and interval-based dialect embeddings were normalized. Due to the nature of

the end-to-end dialect identification model, it was thought these BNFs might encode

useful information about the dialects present in an utterance.

The final two types of features extracted from the data were one-hot phoneme em-

beddings and phoneme frequency embeddings. A phoneme recognizer (Schwarz, 2009)

was run in order to label the data based on 60 possible phonemes. The 60-dimension

one-hot phoneme embeddings were generated by simply indicating phonemes that

appeared in a segment of interest. The 60-dimension frequency phoneme embeddings

were generated by recording the frequency with which a phoneme appeared in a seg-

ment of interest. Similar to the dialect embeddings, both types of phoneme features

were extracted at the utterance-level and at 250 ms intervals.

Classification

Mirroring the recent work done by (Rallabandi et al., 2018), we utilized the Code-

Mixing Index (CMI) measure, presented in (Gambäck and Das, 2014), as a classifica-

34



tion scheme. CMI measures the amount of code-switching that occurs within a single

utterance or corpus. The CMI value for an utterance, x, is defined as:

CMI(x) = 100 ∗ 0.5 ∗ (N(x) −M(x)) + 0.5 ∗ P (x)

N(x)
(4.1)

where N(x) is the total number of words in the utterance, M(x) is the number

of words in the most represented language or dialect, and P(x) is the number of

code-switch points in the utterance.

The CMI values for each utterance were calculated and then normalized to fall

within the range [0, 1]. Utterances were then placed into five possible classes ranging

from CMI1 to CMI5; where CMI1 represented a monodialectal utterance and CMI5

represented an utterance with frequent code-switching. Table 4.1 displays statistics

for the data separated out by CMI class. As mentioned in Section 3.1.1, there is a

heavy imbalance in the data. Approximately one-third of the entire dataset falls into

the CMI1 class. Relative to CMI1, there are very few samples in the CMI4 and CMI5

classes.

Class CMI Size (hrs.)
CMI1 0 24.6
CMI2 0-0.15 21.0
CMI3 0.15-0.30 14.6
CMI4 0.30-0.45 5.5
CMI5 0.45-1 2.1

Table 4.1: CMI values and size by CMI classes for the full dataset.

4.1.2 Classifiers

GMM-UBM Classifier

A simple GMM-UBM classifier was used to obtain a baseline result to further build

from. The MFCC features described above were used as input to the model. All

data from the training set was first used to fit a GMM-UBM with 512 components.

Training data from each CMI class was then used for maximum a posteriori adaptation
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of the GMM-UBM µ values. This resulted in five separate GMMs, one fit to each

CMI class.

Neural Network Classifier

After obtaining an initial baseline result from the simple GMM-UBM classifier, ex-

periments began with a more sophisticated NN model. This initial NN model was

based on a previously successful acoustic model presented in (Yu et al., 2018). (Yu

et al., 2018) designed a model for the weakly labelled classification problem presented

by the Audio set dataset (Gemmeke et al., 2017). The objective of this task is to

detect the presence or absence of 527 possible audio events within an audio clip. The

general model is composed of three FC layers, which make up the embedding module,

followed by an attention module (Figure 4-1). This model and all later NN models de-

scribed in this thesis were created using the deep learning software PyTorch2 (Paszke

et al., 2017).

A variety of experiments were conducted using different feature inputs, variations

on the NN model, and altered training procedures. The dialect embedding, one-hot

phoneme, and frequency phoneme features, at both the utterance-level and 250 ms

intervals, were utilized in this experiment. The performance of combinations of these

features, such as utterance-level dialect embeddings concatenated with utterance-level

one-hot phoneme embeddings, was also investigated. Additionally, three variations of

the NN model were tested. These included the use of two different attention modules

as well as the model with the attention module completely removed (Figure 4-2). The

two possible attention modules included a single-level attention module and a multi-

level attention module. The single-level attention module is applied to the output of

the embedding module. The multi-level attention module utilizes the hidden features

from between the FC layers as well as the final output of the embedding module.

Both attention modules were initially designed to aid the model in ignoring irrelevant

segments from the audio clip, such as silence and background noise. Training was

conducted using negative log likelihood (NLL) loss. Trials included varying the learn-

2https://pytorch.org/
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Figure 4-1: General architecture of the model proposed in (Yu et al., 2018), where
T represents the time dimension, X represents the size of the input features, and H
represents the size of the hidden states. Final LogSoftmax activation is not shown.

ing rate and weight decay as well as weighting the batch sampler and loss function

based on the CMI class distributions in the training set.

4.1.3 Evaluation and Results

Final evaluation was conducted using the held-out test set for both classifiers. Exper-

imental trial comparisons were conducted for the NN classifier using the validation

set. Overall accuracy as well as class-level precision, recall, and F1 scores were calcu-

lated at the utterance-level for each classifier. Naive baseline results were computed

by classifying each utterance as the majority class in the dataset: CMI1. Table 4.2

contains the baseline results. The results obtained from both the GMM-UBM and

NN classifier models were comparable to those found in the previous work. However,

there was no significant improvement.
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Figure 4-2: Architectures of the three attention module variations tested in this pre-
liminary experiment. The leftmost branch displays the model with no added atten-
tion, the center branch displays the single-level attention module, and the rightmost
branch displays the multi-level attention module. Final LogSoftmax activation is not
shown. Input labels to the attention modules correspond to labels in Figure 4-1.

Class Accuracy Precision Recall F1
CMI1

36.7%

0.367 1.0 0.537
CMI2 0.0 0.0 0.0
CMI3 0.0 0.0 0.0
CMI4 0.0 0.0 0.0
CMI5 0.0 0.0 0.0

Table 4.2: Baseline results for the Code-Mixing Index experiment. Results were
obtained by classifying each utterance as CMI1, the majority class. Overall accuracy
and precision, recall, F1 scores by CMI class are displayed. Calculated using the full
dataset test set.

GMM-UBM Classifier

Each utterance was assigned a score for all five CMI classes based on its average frame

log-likelihood for each of the adapted GMMs. The CMI class with the highest score
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was then assigned as the predicted class of the utterance. The overall, utterance-level

accuracy was 34.6%. Please refer to Table 4.3 for more detailed results.

Class Accuracy Precision Recall F1
CMI1

34.6%

0.567 0.428 0.488
CMI2 0.377 0.469 0.420
CMI3 0.290 0.167 0.212
CMI4 0.173 0.238 0.200
CMI5 0.147 0.314 0.200

Table 4.3: Overall accuracy and precision, recall, F1 scores by CMI class. Calculated
at the utterance-level using the GMM-UBM classifier and the full dataset test set.

Neural Network Classifier

The best performing trial utilized the utterance-level dialect embedding concatenated

with the utterance-level phoneme frequency embedding as input features. The model

itself consisted of the embedding module with no added attention and was trained

with a learning rate of 10−3, no weight decay, random batch sampling, and a weighted

loss function. The overall, utterance-level accuracy was 38.9%. Please refer to Table

4.4 for more detailed results.

Class Accuracy Precision Recall F1
CMI1

38.9%

0.578 0.361 0.445
CMI2 0.474 0.522 0.497
CMI3 0.307 0.418 0.354
CMI4 0.188 0.260 0.218
CMI5 0.323 0.294 0.308

Table 4.4: Results for the NN model with no added attention, trained on utterance-
level dialect embeddings and phoneme frequency embeddings. Overall accuracy and
precision, recall, F1 scores by CMI class are displayed. Calculated at the utterance-
level using the full dataset test set.

Trials which utilized the 250 ms interval-based features and two types of attention

modules overall performed worse than the simpler trial described above. The overall,

utterance-level accuracy of the interval-based features paired with the attention-less

NN model was 37.3%; slightly worse than the best performing model. Please refer to

Table 4.5 for more detailed results.

39



Class Accuracy Precision Recall F1
CMI1

37.3%

0.536 0.366 0.435
CMI2 0.349 0.766 0.479
CMI3 0.310 0.120 0.173
CMI4 0.222 0.200 0.210
CMI5 0.287 0.364 0.321

Table 4.5: Results for the NN model with no added attention, trained on 250 ms in-
terval dialect embeddings and phoneme frequency embeddings. Overall accuracy and
precision, recall, F1 scores by CMI class are displayed. Calculated at the utterance-
level using the full dataset test set.

The attention modules function by applying attention to the embedded vectors

in the time dimension. Thus, a trial utilizing both the utterance-level features and

the attention modules could not be conducted. Trials were conducted utilizing the

interval-based features and the NN model with single-level and multi-level attention.

The best performing model with attention utilized the interval-based dialect embed-

ding alone and the multi-level attention module. The overall, utterance-level accuracy

was 43.3%. Please refer to Table 4.6 for more detailed results. Although the overall

accuracy was higher than other models, the performance of this model on classes

CMI4 and CMI5 was much worse.

Class Accuracy Precision Recall F1
CMI1

43.3%

0.468 0.733 0.571
CMI2 0.416 0.587 0.487
CMI3 0.304 0.152 0.203
CMI4 0.267 0.006 0.012
CMI5 0.425 0.070 0.120

Table 4.6: Results for the NN model with the multi-level attention module, trained
on 250 ms interval dialect embeddings. Overall accuracy and precision, recall, F1
scores by CMI class are displayed. Calculated at the utterance-level using the full
dataset test set.

4.1.4 Conclusions

The experiments conducted using the NN classifier provided interesting results that

were further investigated prior to moving forward with this research. First, the

slight decrease in performance between the utterance-level dialect embeddings and
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the interval-based dialect embeddings was explored. In theory, the interval-based

dialect embeddings should have provided the model with a finer-grained, more in-

formative view of the utterance and thus, should have performed better. We closely

inspected interval-based dialect embeddings that captured similar data. Embeddings

of the same word or dialect should share more features than embeddings of separate

dialects. However, very little correlation between theoretically similar embeddings

was found. The model these embeddings were extracted from was trained to identify

dialects given an entire utterance. Taking this into account, it seems likely that the

embeddings are not reliable when the model is provided with a short speech segment,

such as 250 ms.

The second result which was investigated was the decrease in performance when

either the single-level or multi-level attention module was added. (Yu et al., 2018)

designed the attention module to ignore segments of silence and background noise,

while placing attention on segments with interesting noise features. However, when

trained on the GALE data, the attention layer tended toward placing equal attention

on each part of the audio clip. It seems likely that adding another complex layer on

top of the embedding module made it difficult to train with the small amount of data

available in the full dataset. These more complex models tend to perform worse on

the classes with very few training samples, such as CMI4 and CMI5.

Furthermore, CMI labeling seems to be an ineffective and underspecified classi-

fication scheme. For example, the class CMI2 both represents an utterance with a

majority MSA and minority DA, as well as a majority DA and minority MSA. It ap-

pears to be difficult for a model to consistently translate acoustic data to a CMI label,

which could represent a variety of different code-switching forms and is dependent

on the length of the utterance. Additionally, a CMI class output is not very helpful

information for use in other acoustic systems. More granular information regarding

the location of code-switching within an utterance would be more helpful to systems,

such as ASR systems.
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4.2 Binary Classification

4.2.1 Data Processing

This preliminary experiment used the reduced dataset. The decision move from the

CMI classification scheme to a binary classification scheme brought about the creation

of this dataset. The model no longer needed to be able to differentiate between

utterances with no code-switching and those with frequent code-switching, instead it

needed to be able to detect differences in dialect within a single utterance. For this

purpose, the model was trained and tested using only data which contained code-

switching. In preparation, the dataset was divided into separate train, validation,

and test sets using a 70/15/15 percentage split.

Feature Extraction

39-dimension MFCC features, including deltas and delta-deltas, were extracted from

the dataset using a 25 ms window and 10 ms stride.

Classification

This experiment utilized a simple frame-level binary classification approach. Each

MFCC feature frame was matched with a binary label based on if the frame occurred

during a MSA segment or a DA segment of the utterance. This determination was

made using the forced word alignments, a file which provides the starting timestamp

and duration of each word in the dataset within its designated audio clip. Frames

were assigned a single timestamp based on the start of the frame window. They were

then mapped to a word-level binary label generated from the forced word alignments

and transcripts. Figure 4-3 visualizes the frame-level label extraction process.

This classification scheme comes with a small level of error, propagated from the

error in the generated forced word alignments file. Work conducted by colleagues at

QCRI found that this error was largely negligible.
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Figure 4-3: Frame-level binary label extraction process. Word-level labels were gen-
erated using the transcripts as well as the timestamp and duration information pro-
vided by the forced word alignment file. Frames were then mapped to word-level
labels based on the start of the frame.

4.2.2 Neural Network Classifier

Two main considerations were taken into account when beginning the binary clas-

sification experiment. First, the difficulty of training a large NN, observed in the

previous experiments detailed in Section 4.1. Second, the reduced amount of training

data. Keeping these factors in mind, we aimed to create a NN classifier with a rela-

tively small number of trainable parameters. However, using a standard feed-forward

NN to make a frame-level dialect predictions, based on only 25 ms of audio data,

seemed impractical. We therefore opted to use a single layer CNN, in order to mini-

mize the number of model parameters and provide a contextual window around each

frame for use in final classification.

The model consisted of a single convolutional layer with kernel size 25, followed by

batch normalization layer, ReLu activation, a linear layer used to map to the binary

output size, and finally a LogSoftmax activation to generate class-level log probability

values (Figure 4-4). The model was trained using a learning rate of 10−3, NLL loss,

and an early stopping regularization technique.
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Figure 4-4: NN classifier architecture. The convolutional layer utilizes a kernel size
of 25. Final LogSoftmax activation is not shown.

4.2.3 Evaluation and Results

Evaluation was conducted using the held-out test set. Each frame of an utterance was

given a binary label (MSA or DA) based on the model output probabilities. These

labels were then compared to the ground truth labels obtained from the forced word

alignments. Overall accuracy as well as class-level precision, recall, and F1 scores were

then calculated at the frame-level. The baseline results were computed by labeling

each frame as the majority class in the dataset: MSA. Table 4.7 contains the baseline

results.

Class Accuracy Precision Recall F1
MSA

82.6%
0.826 1.0 0.905

DA 0.0 0.0 0.0

Table 4.7: Baseline results for the binary classification experiment. Results were
obtained by labeling each frame as MSA, the majority class. Overall accuracy and
precision, recall, F1 scores by dialect class are displayed. Calculated at the frame-level
using the reduced dataset test set.

In order to select an appropriate probability threshold to use in assigning labels
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to frames, a receiver operating characteristic (ROC) curve was plotted. The DA

probability threshold corresponding to the equal error rate operating point was chosen

for use. For this model the threshold for classification was:

class =

DA if x ≥ 0.19

MSA otherwise

(4.2)

The results using this threshold for classification can be seen in Table 4.8.

Class Accuracy Precision Recall F1
MSA

69.8%
0.841 0.782 0.810

DA 0.225 0.301 0.257

Table 4.8: Results for the CNN model using the classification threshold described in
(4.2). Overall accuracy and precision, recall, F1 scores by dialect class are displayed.
Calculated at the frame-level using the reduced dataset test set.

Upon closer inspection of the DA class probability outputs, it became clear the

model was severely biased toward MSA and did not appear to show any indication it

had learned differences between MSA and DA. Figure 4-5 shows examples of DA class

probability outputs from two different utterances as well as their associated ground

truth labelings. As can be seen in the provided examples, the outputs lacked any

discernible pattern or similarity linking them to the ground truth labelings.

4.2.4 Conclusions

It is a difficult task to train, classify, and evaluate code-switching data at the frame-

level. The frame-level label, itself, does not precisely match the ground-truth tran-

scription labels; as is seen in Figure 4-3. A single frame could span two words in

differing dialects; however, it will only be given the label of the word that occurs at

the beginning of the frame.

Even with the model’s ability to make use of a contextual window of frames for

classification, at a low-level the task drifts away from code-switching detection and

more closely resembles a very short-input dialect identification task. Unfortunately,

without relying on manual annotations or other acoustic systems, it is impossible to
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Figure 4-5: Two examples of DA class probability outputs from different utterances
as well as their associated ground truth labelings. A value of 1.0 represents the DA
class and a value of 0.0 represents the MSA class.

segment the raw audio data at a more natural level. Training at the word-level or di-

alect segment-level would both better align with the labels provided in the transcripts

and the natural division of language.
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Chapter 5

Alignment-Free Code-switching

Detection System

The failures of the systems described in Chapter 4 were, in part, due to their clas-

sification schemes. The CMI classification method proved to be underspecified and

reliant on factors that are difficult for a model to learn. Frame-level binary classi-

fication was accompanied with a level of ambiguity and error due to the mapping

from labeled word to frame. The alignment-free code-switching detection system uti-

lizes word-level granularity and CTC loss to train the NN classifier on variable-timed

labels, while still outputting time specific predictions.

5.1 Data Processing

Many experiments were conducted on this system utilizing both the full and reduced

datasets. The results from the use of the reduced dataset are more compelling. Thus,

the remainder of Chapter 5 will focus on the work completed using this dataset. As

before, the dataset was split into separate train, validation, and test sets using a

70/15/15 percentage split.
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5.1.1 Feature Extraction

MFCC features were extracted for use as input into this system. Trials were completed

using MFCCs with various window sizes, strides, and dimensionality. Consistently

the best performing features utilized standard MFCC parameters: 25 ms window, 10

ms stride, dimension 39 including deltas and delta-deltas.

5.1.2 Classification

This system was trained using CTC loss, described in Section 2.2.1. CTC loss training

allows the model to output frame-level predictions, but train using a lower granular-

ity target label. For this system, word-level target labels were extracted using the

transcripts. Each word in the utterance was given a binary label based on if the

word occurred during an MSA segment or a DA segment of the utterance. Frame-

level labels were also extracted for use in evaluation. Each MFCC feature frame was

matched with a binary label based on if the frame occurred during an MSA segment

or a DA segment of the utterance. As previously stated, frame-level labels come with

a small amount of error due to the mapping between the forced word alignments and

the frames.

5.2 Bi-LSTM + Attention Classifier

The NN architecture of this system is composed of a bi-LSTM layer, an attention

module, and a final linear layer/LogSoftmax activation to generate log probability

values (Figure 5-1).

5.2.1 Bi-LSTM

The bi-LSTM portion of the architecture is made up of a single layer bi-LSTM with

hidden dimension 100. The temporal and context-dependent nature of the data lends

itself well to the use of a bi-LSTM. This specialized NN is able to utilize contextual

information in both the forward and backward direction, allowing each hidden state
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Figure 5-1: Bi-LSTM + Attention architecture. In implementation, the hidden di-
mension of the bi-LSTM layer, H, is of size 100. Final LogSoftmax activation is not
shown.

associated with a frame to take into consideration information from acoustic data

occurring before and after it.

5.2.2 Attention Module

Due to the poor results obtained using an attention module in Section 4.1, experiments

with a variety of different attention modules were conducted before settling on the

module shown in Figure 5-1. These experiments are described in Section 5.5.3.

The addition of an attention module, with a small number of trainable parameters,

to the bi-LSTM layer achieved the best results. This attention module makes use of

a FC linear layer to map the sequence of hidden states, output by the bi-LSTM, to

a single-dimensional attention vector. The values of the attention vector are then

scaled to fall between [0, 1]. Element-wise multiplication is then used to apply the
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attention vector values to the sequence of hidden states.

5.3 Alignment-Free Training

Training was conducted using CTC loss. CTC loss is useful for training variations of

RNNs, such as bi-LSTMs, where the input data is sequential, but the timing of the

target labels is variable. A major goal of this work was to construct a model which,

after initial training, only requires an audio clip as input; no transcriptions or manual

segmentation of any kind. As the model is both meant to be automatic and aid other

acoustic systems, it should not rely on additional manually generated input or input

from the acoustic systems it should be aiding.

The data from the reduced datset was first artificially segmented into frames, in

order to extract features and feed the data into the model. However, training and

evaluating at this artificial frame-level does fit the task well. Multiple frames often

represent single words or dialect segments - natural forms of utterance segmentations.

Due to variable timing, we were unable to partition the raw input data at these more

natural segmentation points. However, by utilizing CTC loss and the transcription

data at training time, the model was able to take in artificially segmented observations

(frame-level) and learn using naturally segmented labels (character-level, word-level,

or dialect segment-level). Thus, the model does not require any specific segmentation

or transcription data after training; only raw acoustic data.

For this system we chose to train the model using word-level target labels. Character-

level target labels caused the output of the model to frequently shift its probability

estimates between classes within short timespans. The focus of this task is intra-

sentential code-switching, not intra-word code-switching. Thus, frequent shifts in

output values such as this are undesirable. Segment-level targets led to issues in the

model learning the distribution of MSA and DA in the dataset. Many DA segments

are very short when compared to MSA segments; on average they are a quarter of the

length of MSA segments (Table 3.2). Using segment-level targets caused the model to

lose this valuable information at training time. Training the model at the word-level
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greatly reduced the chances of sporadic, noisy outputs as well as allowed the model

to view the data at a natural level of segmentation present in any type of speech

data. Despite training at the word-level, the model still provides probability estimate

outputs at the frame-level.

During initial training runs, gradients often went to infinity due to the inherent

numerical instability of CTC loss. Utilization of a smaller learning rate, 10−4, helped

to lessen the issue. Any remaining infinite gradients were zeroed out at each back-

propagation step. Early stopping regularization, based on the validation loss, was

also used in the training of this system.

5.4 Further Processing and Peak Detection

The NN model used in this system outputs frame-level log probabilities for three

possible classes: MSA, DA, and blank. The blank label, required for training with

CTC loss, is used to represent the lack of a prediction at a time step. Although the

blank is important for many tasks, such as ASR, for this task we chose to remove the

blank output prediction entirely. After the removal of the blank class probabilities,

the log probabilities of the MSA and DA predictions were converted to a linear scale

and renormalized. Due to the binary nature of the classification, the two-channel

class prediction values encoded redundant data. Thus, the MSA prediction values

were discarded in favor of the DA values. This left a single prediction value for each

frame. When the prediction value is close to zero the frame is likely MSA; conversely,

when the prediction value is close to one the frame is likely DA.

After cleaning, the prediction values produced by this model tended toward zero,

likely MSA, with occasional spike-like increases toward one, likely DA. An example

output can be seen in Figure 5-2. This general prediction pattern prompted us to view

the problem through the lens of the Matrix language-frame model. Slightly modifying

the code-switching task to instead detect where DA words and short phrases are

inserted into a mainly MSA utterance. This form of short DA segment insertions is

common in the reduced dataset.
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Figure 5-2: Example DA probability estimates for a single utterance.

Figure 5-3: Filtered DA probability estimates for the same utterance shown in Figure
5-2. Detected peaks are marked in red.

A post-processing methodology of filtering and peak detection, commonly seen in

spoken term detection tasks, was utilized to detect likely locations of DA insertions

within an utterance. A median filter with kernel size 31 was passed over the predic-

tion values. This filter was used to smooth outliers and remove small spikes in the

data, which commonly occurred, but did not tend to be representative of true DA

detections. An example of the output from Figure 5-2 passed through the median

filter can be seen in Figure 5-3.

After filtering the data, peaks in the prediction values were detected by locating

local maxima. Specifically, the peak detection was done by comparing the prediction
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value at a frame to the values at its neighboring frames. Peaks were further filtered

by requiring the prediction value of the frame to be greater than the mean of all the

local maxima. The final set of peaks was then used in evaluation. Peaks detected

from the example output seen in Figure 5-2 are encoded in red in Figure 5-3.

5.5 Evaluation

5.5.1 Metrics

The nature of automatic code-switching detection made it challenging to find metrics

which could accurately capture the performance of the system. Due to the similarities

between spoken term detection tasks and this task, we ultimately determined metrics

used in the former tasks could be applied to the latter task. Three main metrics were

used: False Alarm Rate (FAR), Miss Rate (MR), and Peak Hit Rate (PHR).

Each metric required class labels be applied to the utterance, at some level of

segmentation, based on data from the model. As training was conducted using word-

level targets, we chose to apply class labels to the utterance at the word-level. Each

word in an utterance was given either an MSA or DA classification based on peak

location data obtained during post-processing. If a peak was located within ±N

frames of a word, that word was classified as DA; otherwise it was classified as MSA.

Metrics were calculated for various values of N . The metrics for an utterance, x, are

defined as follows:

FAR(x) =
ŴFP (x)

WMSA(x)
(5.1)

MR(x) =
ŴFN(x)

WDA(x)
(5.2)

PHR(x) =
PTP (x)

P (x)
(5.3)

where WMSA(x) and WDA(x) represent the count of MSA words in x and DA

53



words in x respectively. ŴFP (x) is the count of words incorrectly classified as DA.

ŴFN(x) is the count of words incorrectly classified as MSA. P (x) is the total count

of peaks detected in the utterance and PTP (x) is the count peaks that fall within ±N

frames of a DA word.

Baseline values for the three metrics were computed by classifying words in the test

set based on the MSA and DA word distribution found in the training set. Baseline

results can be seen in Table 5.1.

Avg. FAR Avg. MR Avg. PHR

0.142 0.858 0.140

Table 5.1: Baseline results for the metrics used to evaluate the alignment-free code-
switching detection system. Results were obtained by labeling each word as MSA or
DA based on the class distribution of the reduced dataset training set. FAR, MR,
and PHR were calculated for each utterance and then averaged.

5.5.2 Results

The metrics described in the previous section were calculated for three values of N :

25, 10, and 0. Results for each value of N can be seen in Table 5.2. Figure 5-4

shows examples of filtered prediction estimates and detected peaks from two different

utterances as well as their associated ground truth labelings. As is visible in the

example graphs, peaks commonly occurred within or very near a DA segment.

N Avg. FAR Avg. MR Avg. PHR

0 0.322 0.466 0.274

10 0.293 0.332 0.340

25 0.257 0.214 0.416

Table 5.2: Results of the alignment-free code-switching detection system calculated
for N = 0, 10, 25. FAR, MR, and PHR were calculated for each utterance in the
reduced dataset test set and then averaged.

For further comparison, the three main metrics were calculated using the binary

classifier described in Section 4.2. Results, for the same values of N , can be seen
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Figure 5-4: Two examples of filtered DA probability estimates and detected peaks as
well as ground truth labelings.

in Table 5.3. The alignment-free code-switching detection system shows a great im-

provement in Avg. MR over the binary classifier and the baseline.

N Avg. FAR Avg. MR Avg. PHR

0 0.034 0.927 0.287

10 0.032 0.910 0.324

25 0.028 0.893 0.385

Table 5.3: Results of the binary classifier, described in Section 4.2, calculated for
N = 0, 10, 25. FAR, MR, and PHR were calculated for each utterance in the reduced
dataset test set and then averaged.

5.5.3 Attention Module Analysis

Experimentation

Overall, the previously described attention module outperformed trials using differ-

ent types of attention, such as a more complex self-attention layer, removal of the

attention module completely, as well as applying different functions to the output
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of the attention layer. The parameter-heavy self-attention layer produced essentially

random noise as output. This result aligns with the findings reported with the use of

attention in Section 4.1. A network of this size would benefit from a larger dataset

for training. The complete removal of the attention module also showed a decrease in

performance. Results for the model without attention, for varying values of N , can

be seen in Table 5.4. Additionally, we experimented with applying different types

of functions to the attention vector following the FC linear layer used in this mod-

ule. These included Sigmoid activation, Tanh activation, scaling, and the identity

function. Scaling the values of the attention vector to fall within the range [0, 1] per-

formed the best. The Sigmoid and Tanh activations tended to smooth out interesting

activations in the attention vector. However, the values of the vector did need to

be constrained to avoid large variations in magnitude in the output of the attention

module.

N Avg. FAR Avg. MR Avg. PHR

0 0.321 0.500 0.245

10 0.293 0.368 0.313

25 0.258 0.241 0.397

Table 5.4: Results of the alignment-free code-switching detection system with the
attention module removed. Calculated for N = 0, 10, 25. FAR, MR, and PHR were
calculated for each utterance in the reduced dataset test set and then averaged.

Simple Attention Module

Closer inspection of the attention vector values revealed interesting results. The

values generally tended toward one but would occasionally spike downward. This

qualitative inspection indicated that in many instances these spikes aligned with the

locations where code-switching occurs. Examples of attention vector values for two

different utterances as well as their associated ground truth labelings can be seen in

Figure 5-5. The attention module does benefit the overall model, as demonstrated by

the metrics. It would seem it is doing so by placing attention on the locations where

code-switching may be happening.
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Figure 5-5: Two examples of attention vector values and the associated ground truth
labelings for the utterance. Downward spikes in the attention vector tend to occur
at the beginning or end of DA segments.

5.6 Conclusions

The alignment-free code-switching detection system is able to predict points within an

utterance where DA is likely being spoken. The detected peaks tend to be within the

boundary of a DA word, but as can be seen from the results in Table 5.2, performance

greatly increases as the amount of tolerated error (N) around the word increases. It

is possible this can be partially attributed to the ambiguity in generating frame-level

labels. A frame could be labeled as MSA and start during an MSA word, but the

majority of the frame window could take place during a DA word. If a peak was

correctly detected at this frame, it would be treated as a false alarm when N = 0.

Although peak detections tend to accurately occur during DA segments, the model

does not appear to learn anything about the length of the DA segments. Thus, while

the results observed in this model are promising, the information is not as helpful

as it could be for use in other acoustic systems. Data regarding segment length is

equally as important as data regarding segment location.
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Chapter 6

Conclusions

6.1 Summary of Contributions and Findings

The alignment-free code-switching detection system is still far from being able to

precisely detect the location of code-switching points within an utterance. However,

with the use of qualitative inspection, it is clear the model was able to learn some

acoustic differences between MSA and DA. This work has shown the difficulty of

using an underspecified classification method such as CMI as well as the challenge of

treating this task as a simple binary classification. This work has also presented the

potential for success in utilizing RNN architectures, attention modules, and CTC loss

for training. Information obtained from the current system and future work building

off this model can be referenced by ASR and other acoustic systems.

6.2 Future Work

The alignment-free code-switching detection system does a suitable job of detecting

points where DA is being spoken, but it does not provide the precision accuracy that

could greatly improve performance in ASR and other acoustic systems. The next steps

in this area should focus on the segmentation portion of the task. An important aspect

in the code-switching detection task is determining how long a speaker is utilizing a

certain dialect or language. Possibilities include combining CTC loss training with an
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objective function focused on learning segment duration or augmenting the alignment-

free code-switching detection system with an acoustic activity detector. Furthermore,

we believe interesting work can be done in generalizing the current system to work

with a variety of different types of code-switching, perhaps even intra-word code-

switching.

A benefit of the alignment-free code-switching detection system is its portability

to other languages and dialects. The system requires no language-specific knowledge.

However, future work should experiment with more sophisticated approaches. One

possible approach, for data which fits the Matrix language-frame model, could be to

build an acoustic model and a language model to represent the ML. EL insertions

would be treated as special out-of-vocabulary terms in the language model. The

lexical knowledge gained from the language model may assist in learning common EL

insertion patterns and thus, detecting where code-switching occurs.
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