
Neural Attentions for Natural Language
Understanding and Modeling

by

Hongyin Luo

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2019

c○ Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 23, 2019

Certified by. .
James Glass

Senior Research Scientist, CSAIL
Thesis Supervisor

Accepted by .
Leslie Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Neural Attentions for Natural Language Understanding and

Modeling

by

Hongyin Luo

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2019, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

In this thesis, we explore the use of neural attention mechanisms for improving natural
language representation learning, a fundamental concept for modern natural language
processing. With the proposed attention algorithms, our model made significant
improvements in both language modeling and natural language understanding tasks.

We regard language modeling as a representation learning task that learns to
align local word contexts and their following words. We explore the use of attention
mechanisms for both the context and following words to improve the performance of
language models, and measure perplexity improvements on classic language modeling
tasks. To learn better representation of contexts, we use a self-attention mechanism
with a convolutional neural network (CNN) to simulate long short-term memory
networks (LSTMs). The model process sequential data in parallel and still achieves
competitive performances. We also propose a phrase induction model and headword
attention to learn the embedding of following phrases. The model is able to learn
reasonable phrase segments and outperforms several state-of-the-art language models
on different data sets. The approach outperformed AWD-LSTM model by reducing
2 perplexities on the Penn Treebank and Wikitext-2 data sets, and achieved new
state-of-the-art performance on the Wikitext-103 data set with 17.4 perplexity.

For language understanding tasks, we propose the use of a self-attention CNN
for video question answering. The performance of this model is significantly higher
than the baseline video retrieval engine. Finally, we also investigate an end-to-end co-
reference resolution model by applying cross-sentence attentions to utilize knowledge
in contextual data and learn better contextualized word and span embeddings. The
model achieved 66.69% MAP@1, and 87.42% MAP@5 accuracy of video retrieval and
57.13% MAP@1, 80.75 MAP@5 accuracy of a moment detection task, significantly
outperforming the baselines.

Thesis Supervisor: James Glass
Title: Senior Research Scientist, CSAIL

3

4

Acknowledgments

This thesis is completed with kind guidance and assistance of my research advisor, Dr.

James Glass. His patience and kindness helped me made through all the difficulties.

The study is partly supported by Ford Motor Company. They provided real-life,

industrial data for us to conduct exciting research projects.

I would also send my sincere thanks to my parents who are always supportive, and

my friends that kept encouraging me. The thesis could not be completed with their

help.

Thanks to Marcia for hosting treats for the group and making sure that the water

mark on the thesis is towards the correct direction!

5

6

Contents

1 Introduction 15

2 Background 19

2.1 Word Representation Learning . 19

2.1.1 One-hot Representation . 19

2.1.2 Distributed Word Embedding 20

2.2 Neural Language Models . 22

2.2.1 Language Modeling . 22

2.2.2 A Simple Neural Network for Language Modeling 24

2.2.3 Recurrent Language Models 24

2.2.4 Long Short-Term Memory . 25

3 Language Modeling with Graph Temporal Convolutional Networks 27

3.1 Introduction . 27

3.2 Related Work . 29

3.3 Background . 31

3.3.1 Long Short-Term Memory and Variants 31

3.3.2 Graph Neural Networks . 32

3.4 Graph Temporal Convolutional Networks 32

3.4.1 Position-aware Context Attention 33

3.4.2 Message Propagation . 33

3.4.3 Syntax Learning and Representation 34

3.4.4 Other Details . 35

7

3.5 Experiments . 35

3.5.1 Settings . 35

3.5.2 Effectiveness (Q1) . 36

3.5.3 Learning Structural Information (Q2) 37

3.6 Conclusion and Future Work . 39

4 Improving Neural Language Models by Segmenting, Attending, and

Predicting the Future 41

4.1 Introduction . 41

4.2 Related Work . 42

4.3 Syntactic Height and Phrase Induction 44

4.4 Model . 46

4.4.1 Phrase Segmentation . 47

4.4.2 Phrase Embedding with Attention 48

4.4.3 Phrase and Word Prediction 49

4.5 Experiments . 50

4.5.1 Penn Treebank . 51

4.5.2 Wikitext-2 . 52

4.5.3 Wikitext-103 . 53

4.6 Discussion . 54

4.7 Conclusion . 57

5 Cross-Sentence Attention for Co-reference Resolution 59

5.1 Introduction . 59

5.2 Related Work . 61

5.2.1 Co-reference Resolution . 61

5.2.2 Language Representation Learning 61

5.3 Learning Cross-Sentence dependency 62

5.3.1 Linear Sentence Linking . 62

5.3.2 Attentional Sentence Linking 63

5.3.3 Co-reference Prediction . 64

8

5.4 Experiments . 65

5.4.1 Model and Hyperparameter Setup 65

5.4.2 Experiment Results and Discussion 65

5.5 Conclusion and Future Work . 67

6 Self-Attention Convolutional Neural Networks for Video Question

Answering 69

6.1 Introduction . 69

6.2 Related Work . 71

6.2.1 Video Retrieval. 72

6.2.2 Visual/Video Question Answering 72

6.2.3 Community Question Answering 72

6.3 The Corpus . 73

6.3.1 Video Extraction . 73

6.3.2 Video Segmentation . 73

6.3.3 Question Annotation . 74

6.4 Models . 75

6.4.1 YouTube . 75

6.4.2 Memory Networks . 75

6.4.3 SACNNs . 76

6.4.4 Training . 77

6.5 Experiments and Evaluation . 78

6.5.1 Video Retrieval . 78

6.5.2 Local Moment Detection . 79

6.5.3 Global Moment Detection . 79

6.6 Conclusion and Future Work . 80

7 Conclusions 83

7.1 Summary . 83

7.2 Contributions . 84

7.3 Future Work . 84

9

10

List of Figures

2-1 Some word clusters learned by the distributed embedding model. [Mikolov et al., 2013] 22

2-2 The 2-D projection of country words and corresponding capitals. The

vectors from countries to capitals are roughly towards the same direction.

[Mikolov et al., 2013] . 23

2-3 An illustration of the LSTM architecture. 𝑥𝑡 stand for the input and

ℎ𝑡 stands for the output hidden state at the 𝑡-th step [Olah, 2015]. . . 26

3-1 Two possible parse trees for the sentence “I shot an elephant in my

pajamas.” . 37

3-2 Attentions generated when processing target words marked with red.

The upper plots show the attention weights, and the lower figures show

the possible underlying syntactic structures. 38

4-1 Groundtruth dependency tree and syntactic heights of each word. . . 46

4-2 The 3-step diagram of our approach. The current target word is “the”,

the induced phrase is “morning flights”, and the next word is “morning”. 47

4-3 Examples of induced phrases and corresponding headword attention

for generating the phrase embedding. The word of each row stands for

the target word as the current input of the language model, and the

values in each row in the matrices stands for the words consisting the

induced phrase and their weights. 54

4-4 Examples of phrase inducing and headword attentions. Each row of the

matrix stands for the induced phrase of a word listed at the beginning

of each row. The darkness of the color indicates the attention weights. 55

11

6-1 An example of moment detection in a video for an input question “what

does the auto function for air conditioner do?” 70

6-2 The structure of the applied MemNN model [Sukhbaatar et al., 2015]. 76

6-3 The architecture of the SACNN model. The blue blocks stand for

word-level and sentence-level distributed embeddings. The red blocks

stand for the attention weights assigned to each word. The sentence

embedding is calculated by averaging all word embeddings with the

attention distribution. 76

12

List of Tables

3.1 Evaluation of test perplexity of different recent models, including LSTM

(Large) [Zaremba et al., 2014], Variational LSTM [Gal and Ghahramani, 2016],

LSTM + Cache [Grave et al., 2016], Variational RHN [Zilly et al., 2016],

IndRNN [Li et al., 2018], AWD-LSTM [Merity et al., 2017], RNNG

[Dyer et al., 2016], and PRPN [Shen et al., 2017]. 36

4.1 Experimental results on Penn Treebank dataset. Compared with the

AWD-LSTM baseline models, our method reduced the perplexity on

test set by 1.6. 51

4.2 Experimental results on Wikitext-2 dataset. 52

4.3 Experimental results on Wikitext-103 dataset. 53

5.1 Experimental results of previous models and cross-sentence dependency

learning models on the CoNLL-2012 shared task. 65

5.2 Examples predictions of the ASL model and the baseline model. The

bold and underlined words in the second sentences are the target

pronouns or references. The underlined phrases and words in the first

sentences are the groundtruth co-references. Red colored words are the

predictions of the baseline E2E-Coref model, while the green phrases

and words are the predictions of our model. The examples showed that

our model successfully captured the cross-sentence information. . . . 66

6.1 The statistics of the collected videos, transcripts, and questions. . . . 74

13

6.2 Experimental results of SACNN and MemNN models, and YouTube

baseline for video retrieval and moment detection tasks. The experi-

mental results show that our method significantly outperformed the

Youtube baseline in the video retrieval task. The proposed models also

perform well on both moment detection tasks. 80

14

Chapter 1

Introduction

Recently, neural networks have been frequently applied in NLP tasks and led to signifi-

cant improvements. Neural language models [Bengio et al., 2003] represent words with

low-dimensional, distributed word vectors. The term “distributed vector” stands for a

vector whose dimensions represent semantics jointly and a single dimension is not in-

terpretable. Distributed word embedding has become a popular method for many NLP

tasks and achieved state-of-the-art performances. Recently, distributed embedding

algorithms have been proposed for representing basic language units, including char-

acters [Zhang et al., 2015] and words [Mikolov et al., 2013, Pennington et al., 2014].

These models are trained based on task-oriented objective functions or by regressing

semantic similarities. Outputs of the trained representation models, which are referred

to as pre-trained character/word embeddings, are often used as the inputs to other

NLP models.

Besides characters and words, many NLP tasks require higher level language repre-

sentations, such as phrase and sentence embeddings. To solve this problem, several mod-

els have been proposed for phrases [Lee et al., 2016] or sentences [Bahdanau et al., 2014,

Chung et al., 2014]. Variants of recurrent neural networks (RNNs), for example long

short-term memory (LSTM) networks [Hochreiter and Schmidhuber, 1997] and gated

recurrent units (GRU) [Chung et al., 2014] are applied for sequence representation

tasks. The networks take sequences of word vectors as inputs, embed the sequences

with distributed vectors. The sequence embeddings can be applied in many ap-

15

plications including co-reference resolution [Lee et al., 2017], machine translation

[Bahdanau et al., 2014], and language modeling [Merity et al., 2017].

Although LSTMs and GRUs have led to significant improvements in sequence repre-

sentations learning, the attention mechanism [Bahdanau et al., 2014, Xu et al., 2015a]

can further push the performances of sequence embedding. RNNs model sentences

following a sequential order, while natural sentences often contains non-sequential

structures and dependencies. Attention mechanisms enable RNNs to consider skip-

word dependencies and highlights the most important knowledge for learning best

word and sequence embeddings. More specifically, the attention mechanism can help

with two aspects. First, it improves the learning of contextual word representations.

The quality of contextual word representations influences the performances of many

NLP tasks. The authors of [Peters et al., 2018] proposed a deep highway LSTM archi-

tecture to learn contextualized word representations, which improved the performance

of several tasks including co-reference and reading comprehension. The model has a

stronger ability to memorize input sequences and model contexts, but has not shown

an ability to model structural and syntactic knowledge in sentences.

Secondly, the attention mechanism can improve the quality of sequence embeddings,

including sentences and contexts. [Shen et al., 2017] proposed syntactic distance and

attention for language modeling, which enables the model to learn the parsing tree of

the input sentences without any supervision. This method significantly improved the

performance of language modeling. [Bahdanau et al., 2014] showed that the attention

mechanism can summarize the most informative context for generating the next words

in the sentence of the target language.

In this work, we apply and extend the attention mechanism on different NLP

tasks where the models learn different level of language representations. We applied

cross-sentence attentions to improve the end-to-end co-reference resolution model.

We showed that we can build a parallel sequence embedding model that calculates

relations among words with self-attentions. We also applied self-attention in a video

question answering model and showed that the proposed self-attention convolutional

neural network (SA-CNN) improves the quality of question and answer embedding. We

16

also applied attention mechanism in phrase-level predictions for improving language

models.

17

18

Chapter 2

Background

2.1 Word Representation Learning

Words are represented as strings in natural languages. However, computers cannot

directly conduct computation with strings. As a result, strings are often converted

into discrete symbols. However, this approach is not effective enough to represent the

complexity of natural languages, since both syntax and semantics are hierarchical,

highly correlated, and usually have various and complex combinations. To overcome

this difficulty, researchers have proposed to represent words as vectors. In this section,

we introduce different models for word vectorization.

2.1.1 One-hot Representation

The most direct and intuitive model for word vectorization is representing words as

one-hot vectors. One-hot vector means a vector has only one element assigned with 1,

and 0 for all other elements. Given a vocabulary with 𝑁 unique words, we construct

a 𝑁 dimensional vector space for word representation. The representation of the 𝑖-th

word in the vocabulary,

𝑤𝑖 = [0, . . . , 0, 1, 0, . . . , 0] (2.1)

The 𝑖-th element of 𝑤𝑖 is assigned with 1, and all other elements are 0s. Words can

be processed by the mathematical models with such representations. However, the

19

one-hot word representations are not capable to capture the relations among different

words. For example, neither computer nor human can tell the semantic and syntactic

similarities among different words only with one-hot vectors, since the Euclidean

distances between all word pairs are the same.

𝑑𝑖,𝑗 =
√
12 + 12 =

√
2 (2.2)

2.1.2 Distributed Word Embedding

A good word representation model should be able to capture the semantic similarity

and syntactic relation between two words. In this section, we first describe the core of

distributed word embeddings - the matrix factorization algorithm, and then introduce

two popular frameworks based on this method.

Pointwise Mutual Information Matrix

Before introducing distributed word representation learning, we introduce the pair-

wise mutual information (PMI) matrix. Consider a corpus with 𝑛 unique words

𝑤1, 𝑤2, . . . , 𝑤𝑛. We construct a matrix 𝐴, where elements are

𝑎𝑖𝑗 = log
𝑃 (𝑤𝑖, 𝑤𝑗)

𝑃 (𝑤𝑖) · 𝑃 (𝑤𝑗)
(2.3)

where 𝑃 (𝑤) stands for the frequency that word 𝑤 appears in the corpus. Say #(𝑤)

is defined as the number of word 𝑤 and |𝐷| is the total number of words in the corpus,

we calculate 𝑃 (𝑤) with

𝑃 (𝑤) =
#(𝑤)

|𝐷|
(2.4)

𝑃 (𝑤𝑖, 𝑤𝑗) stands for the probability that 𝑤𝑖 and 𝑤𝑗 appears in the same context

window. Let #(𝑤𝑖, 𝑤𝑗) stands for the number of cases that 𝑤𝑖 and 𝑤𝑗 appears in a

context window,

𝑃 (𝑤𝑖, 𝑤𝑗) =
#(𝑤𝑖, 𝑤𝑗)

|𝐷|
(2.5)

20

Matrix Factorization for Distributed Word Embedding

The goal of matrix factorization (MF) is finding two non-identical matrices whose

matrix product can be as close as the target matrix. For example given a target

matrix 𝐴, the goal of MF is to find matrices 𝑊 and 𝐻, satisfying

𝐴 = 𝑊 ·𝐻 (2.6)

We use the gradient descent (GD) algorithm to find locally optimal solutions. The

objective function that is to be minimized by the optimization problem is

𝑙 = ||𝐴−𝑊𝐻||22 (2.7)

Skip-Gram Word Embeddings

In this chapter, we introduce the Skip-Gram algorithm as an example of online word

representation learning. The algorithm scans each word and its context window in the

entire corpus. The algorithm assign a word vector 𝑤𝑖 and a context vector 𝑐𝑖 for the

𝑖-th word in the vocabulary.

Consider a target word 𝑖 and its context window of 2𝑛 + 1 length, [𝑖 − 𝑛, 𝑖 −

𝑛 + 1, . . . , 𝑖, . . . , 𝑖 + 𝑛 − 1, 𝑖 + 𝑛], the Skip-Gram model updates 𝑤𝑖 and 𝑐𝑗, 𝑗 ̸= 𝑖 by

maximizing the following objective function,

𝑙 = log[
∑︁

𝑗∈[𝑖−𝑛,𝑖+𝑛],𝑗 ̸=𝑖

𝜎(𝑤𝑖 · 𝑐𝑗) +
∑︁

𝑗∈𝑁𝐸𝐺𝑖

(1− 𝜎(𝑤𝑖 · 𝑐𝑗))] (2.8)

where 𝜎(·) stands for the sigmoid function,

𝜎(𝑥) =
1

1 + 𝑒−𝑥
(2.9)

and 𝑁𝐸𝐺𝑖 stands for a set of negative samples that are not in the current context

window of the word 𝑖. As proved in [Levy and Goldberg, 2014], the Skip-Gram model

is implicitly factorizing a PMI matrix.

21

The learned word vectors have several advantages. Firstly, word vectors indicates

word similarities. An example from [Mikolov et al., 2013] is shown in Figure 2-1. As

shown in the example, words with similar word vectors generally belong to the same

topic.

Figure 2-1: Some word clusters learned by the distributed embedding model.
[Mikolov et al., 2013]

The word embeddings also learn relations among different words. Figure 2-2

[Mikolov et al., 2013] shows the word vectors of country names and their capitals. The

vectors connecting a country and its capital have roughly the same direction. This

suggests that the distributed word embedding encode semantics through the geometry

of the vector space.

2.2 Neural Language Models

2.2.1 Language Modeling

In this thesis, we mainly discuss about word-level language models (LMs). The goal of

language is to generate text word by word. The language models learn a probabilistic

distribution 𝑃 of word sequences that model natural languages. Given a corpus, a

22

Figure 2-2: The 2-D projection of country words and corresponding capitals.
The vectors from countries to capitals are roughly towards the same direction.
[Mikolov et al., 2013]

language model learns to fit the probability [Bengio et al., 2003]

𝑃 (𝑤1, 𝑤2, . . . , 𝑤𝑛) = 𝑝(𝑤1)
𝑛∏︁

𝑖=2

𝑝(𝑤𝑖|𝑤𝑖−1
1) (2.10)

where 𝑤𝑖−1
1 stands for a word sequence [𝑤1, 𝑤2, . . . , 𝑤𝑖−1]. We define it as the

context of the 𝑖-th word

𝑐𝑖 = [𝑤1, 𝑤2, . . . , 𝑤𝑖−1] (2.11)

The core of most studies in language modeling is modeling the conditional proba-

bilistic distribution 𝑝(𝑤𝑖|𝑐𝑖).

23

2.2.2 A Simple Neural Network for Language Modeling

[Bengio et al., 2003] proposed a simple neural network architecture for language

modeling and achieved good performance. Given a target word 𝑤𝑖 and its con-

text 𝑐𝑖 = [𝑤𝑖−𝑛+1, . . . , 𝑤𝑖−2, 𝑤𝑖−1], the neural networks learns 𝑝(𝑤𝑖|𝑐𝑖) with stochastic

gradient descent (SGD). Note that 𝑛 is a hyper-parameter and stands for the length

of a context window.

The first module of the network is a lookup layer whose parameter is a randomly

initialized matrix 𝐷 ∈ 𝑅|𝑉 |×𝑑, where |𝑉 | stands for the number of unique words in

the vocabulary and 𝑑 stands for the output size of the lookup layer. Given the index

of an input word in the vocabulary, for example 𝑗, the lookup layer outputs the 𝑗-th

row of the parameter matrix 𝐷.

Given 𝑐𝑖, the output of the lookup layer is a sequence of vectors, [𝑥𝑖−𝑛+1, . . . , 𝑥𝑖−2, 𝑥𝑖−1].

A hidden layer is applied for calculating the context embedding ℎ𝑖,

ℎ𝑖 = 𝑇𝑎𝑛ℎ(𝑊 ℎ · [𝑥𝑖−𝑛+1, . . . , 𝑥𝑖−2, 𝑥𝑖−1] + 𝑏ℎ) (2.12)

Then we can calculate the distribution of the next word, 𝑌 with

𝑌 = [𝑝(𝑤1), 𝑝(𝑤2), . . . , 𝑝(𝑤|𝑉 |)] = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 𝑦 · ℎ𝑖 + 𝑏𝑦) (2.13)

where

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖∑︀
𝑗 𝑒

𝑥𝑗
(2.14)

2.2.3 Recurrent Language Models

[Mikolov et al., 2010] proposed a language model with recurrent neural networks

(RNNs). An RNN is designed for modeling sequential input, and natural language as a

word sequence is a good fit. Given a sequence of inputs, [𝑥1, 𝑥2, . . . , 𝑥𝑛], the dynamics

of a RNN is shown as follows,

ℎ𝑡 = 𝜎(𝑊 ℎ · ℎ𝑡−1 +𝑊 𝑥 · 𝑥𝑡 + 𝑏) (2.15)

24

where [ℎ1, ℎ2, . . . , ℎ𝑛] are the outputs of the RNN. In [Mikolov et al., 2010], the

RNN architecture is used for predicting 𝑝(𝑤𝑖|𝑐𝑖). Different from the model proposed

in [Bengio et al., 2003], the neural network for generating a context embedding ℎ𝑖

is recurrent, while the calculation of 𝑌 follows in the same manner. RNNs perform

better than the simple multi-layer perceptrons because they can capture sequence

information.

2.2.4 Long Short-Term Memory

Previous studies have shown that RNNs suffer from gradient vanishing/explosion

problems [Pascanu et al., 2013]. To solve the gradient problems caused by the RNN

structure, [Hochreiter and Schmidhuber, 1997] proposed the long short-term memory

(LSTM) network. Similarly to traditional RNNs, LSTM networks employ a recurrent

architecture and output a sequence of vectors [ℎ1, ℎ2, . . . , ℎ𝑛] given a sequential input

[𝑥1, 𝑥2, . . . , 𝑥𝑛].

A gating mechanism is applied in LSTMs to solve the gradient problems. The

dynamics of LSTMs is shown as follows.

𝑖𝑡 = 𝜎(𝑊 𝑖
ℎ · ℎ𝑡−1 +𝑊 𝑖

𝑥 · 𝑥𝑡 + 𝑏𝑖) (2.16)

𝑓𝑡 = 𝜎(𝑊 𝑓
ℎ · ℎ𝑡−1 +𝑊 𝑓

𝑥 · 𝑥𝑡 + 𝑏𝑓) (2.17)

𝑜𝑡 = 𝜎(𝑊 𝑜
ℎ · ℎ𝑡−1 +𝑊 𝑜

𝑥 · 𝑥𝑡 + 𝑏𝑜) (2.18)

𝑧𝑡 = 𝑇𝑎𝑛ℎ(𝑊 𝑧
ℎ · ℎ𝑡−1 +𝑊 𝑧

𝑥 · 𝑥𝑡 + 𝑏𝑧) (2.19)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑧𝑡 (2.20)

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑇𝑎𝑛ℎ(𝑐𝑡) (2.21)

In general, 𝑖𝑡 is an input gate, 𝑓𝑡 is a forget gate, and 𝑜𝑡 is an output gate. These

gates control the scale of the gradient to prevent them from vanishing or exploding.

𝑐𝑡 is the cell of the LSTM, which maintains long-term information. ℎ𝑡 is the output of

the current step, which is also called a hidden state of the LSTM. The architecture of

25

LSTM is shown in Figure 2-3.

Figure 2-3: An illustration of the LSTM architecture. 𝑥𝑡 stand for the input and ℎ𝑡

stands for the output hidden state at the 𝑡-th step [Olah, 2015].

The LSTM architecture is frequently used in the recent studies in the area of

natural language because it is good at modeling sequences and easy to train. In this

thesis, many studies directly applied LSTMs or made improvements to the architecture

of LSTMs.

26

Chapter 3

Language Modeling with Graph

Temporal Convolutional Networks

3.1 Introduction

Recently, there have been attempts to use non-recurrent neural models for language

modeling but a noticeable performance gap still remains [Bai et al., 2018]. We propose

a non-recurrent neural language model, dubbed graph temporal convolutional network

(GTCN), that relies on graph neural network blocks and convolution operations. While

the standard recurrent neural network language models encode sentences sequentially

without modeling higher-level structural information, our model regards sentences as

graphs and processes input words within a message propagation framework, aiming to

learn better syntactic information by inferring skip-word connections. Specifically, the

graph network blocks operate in parallel and learn the underlying graph structures

in sentences without any additional annotation pertaining to structure knowledge.

Experiments demonstrate that a model without recurrent connections can achieve

comparable perplexity results in language modeling tasks and successfully learn

syntactic information.

Recurrent neural networks (RNNs) are currently considered the de facto tool

for language modeling tasks. RNNs encode sentences by processing each word in a

sequential manner. There is a strong inductive bias, though usually implicit, that

27

the structure of a sentence is a sequence of words. However, natural language has

complex underlying syntactic structures. Although recent work [Kuncoro et al., 2018]

has demonstrated that RNNs are capable of capturing structural dependencies as

long as they have enough capacity, in practice, it is less clear whether RNNs are able

to capture such structural information with limited resources, especially over long

distances.

The underlying structures of sentences are useful in natural language understanding

and generation. To fully understand the meaning of a sentence, a linguistic analysis

not only needs to recognize the semantics of words in the sentence, but also needs to

understand how the words are organized in the sentence. To compose a correct sentence,

one should also follow grammars and syntactic rules. Unfortunately, conventional

recurrent architectures are not specifically designed for modeling such structures. As

a result, poor performance can be expected for tasks requiring structural information.

Traditionally, natural language parsers are used to model grammar and syntactic

knowledge. By generating a parse tree, the parser can describe the structure and

word dependencies of a sentence. However, to generate such a structure often involves

some form of supervised training of a parser. Recent works have demonstrated several

ways of learning structural information of natural sentences without supervision,

which can be helpful when performing language modeling tasks [Cheng et al., 2016,

Shen et al., 2017].

In contrast to RNNs, convolutional neural networks (CNNs) might be good can-

didates for learning structures due to their use of hierarchical filters. Recently,

increasing attention has been paid to the use of CNNs for language modeling tasks.

[Dauphin et al., 2016] propose a gated convolutional language model, and the experi-

ments in [Bai et al., 2018] show that temporal convolutional networks (TCNs) perform

almost as well as RNNs for many tasks. However, there is a noticeable performance

gap between TCNs and RNNs. Furthermore, those models are not easily interpretable

in that they do not explicitly learn the structures of sentences.

A more dedicated architecture for modeling non-sequential structures is based on

graph networks (GNs) [Scarselli et al., 2009]. The underlying structure among nodes

28

is described with adjacency matrices on which the model propagates messages between

different nodes [Kipf and Welling, 2016, Li et al., 2016].

In this work we aim to demonstrate how a non-recurrent neural model can more

explicitly model structural information in sentences without supervision for improving

language modeling tasks. Specifically, this non-recurrent neural model consists of a

novel convolutional architecture combined with graph network blocks. To avoid the

sequential inductive bias of natural sentences, we regard the underlying structures

of the sentences as fully connected graphs to learn as much syntactic information as

possible. We also apply a message propagation mechanism to learn the representations

of words and sentences. Though individual modules used in this research have been

previously reported, to our knowledge, the combination of these components to achieve

the reported results on language modeling tasks is novel.

The contributions of this work are as follows:

1. We show how RNNs model implicit connections between words, though they

carry a sequential inductive bias.

2. We propose a graph- and convolution- based language model, which can run in

parallel. To our knowledge, the model achieves state-of-the-art results on the

Penn Treebank dataset compared to existing non-recurrent language models.

3. We introduce an unsupervised approach to learn syntactic parsing structure and

other dependencies among words, which further improves the performance of

our proposed language model.

3.2 Related Work

RNNs have been widely applied to language modeling tasks for over a decade. For

example, [Cheng et al., 2016] use a long short-term memory (LSTM) RNN to learn

a self-attention mechanism that indicates contextual dependencies in a language

modeling task. As another example, [Shen et al., 2017] propose an unsupervised

learning method for syntactic distance, in which the language model can generate a

29

parsing tree of a sentence. To achieve faster training speed, [Gao et al., 2018] adopts a

group strategy for recurrent layers. Also, inspired by human speed reading mechanisms,

several RNN variants [Seo et al., 2017, Campos et al., 2017] have been proposed to

decide how to update their hidden states based on the importance of input tokens in a

sequence. In contrast to RNN-based language models, it has been recently argued that

temporal convolutional networks (TCNs) have competitive performance in some NLP

tasks including word-level and character-level language modeling [Bai et al., 2018]. As

is the case for RNNs, TCNs cannot easily model relational information well by design.

Many kinds of sequential data can be represented as graphs, in which nodes stand

for entities and edges stand for relations. In order to model relational structures,

our framework is based on graph neural networks (GNNs), which were first proposed

in [Scarselli et al., 2009]. Subsequently, the authors in [Li et al., 2016] replaced the

Almeida-Pineda algorithm used in [Scarselli et al., 2009] with backpropagation. In

[Garcia and Bruna, 2017] GNNs were applied to image classification tasks in a “few-

shot” setting. In [Gilmer et al., 2017], GNNs were applied to molecular property

prediction tasks. The authors also summarized and generalized a message-passing

mechanism. [Kipf and Welling, 2016] proposed graph convolution networks (GCNs)

for semi-supervised learning, which conduct message propagation without learning edge

representations. [Li et al., 2016] introduce a gating mechanism, which improves the

performance of GNNs. Unfortunately, there are relatively few papers discussing how

to adapt GNNs to natural language tasks. [Marcheggiani and Titov, 2017] applied

GNNs to semantic role labeling. [Schlichtkrull et al., 2017] used GNNs to perform

knowledge base completion tasks. [Johnson, 2016] generated a graph based on textual

input and update the relationship during training. [Scarselli et al., 2009] proposed a

neural model for message propagation in graphs, using an adjacency matrix, 𝐴, of a

target graph to maintain structural information. Finally, [Seo et al., 2016] combined

GNNs with RNNs for graph structured data.

30

3.3 Background

3.3.1 Long Short-Term Memory and Variants

The LSTM [Hochreiter and Schmidhuber, 1997] attempts to solve gradient problems

associated with training recurrent networks and memorize longer sequences. The basic

feedforward propagation method of LSTMs is described in Section 2.2.4.

A variant of LSTMs, named Quasi-RNNs (QRNN) [Bradbury et al., 2016], calcu-

lates 𝑧, 𝑓, 𝑜, 𝑖 in parallel by replacing ℎ𝑡−1 with 𝑥𝑡−1, which significantly accelerates

training. However, QRNNs still have to calculate cell values sequentially.

Applying the inductive bias that the underlying structure of natural sentences are

linear sequences, LSTMs only explicitly model sequential structures. The relation

between two words with a distance larger than 1 is modeled implicitly with a sequence

of input and forget gates. We can rewrite the message propagation in LSTM cells in

the form of 𝑐 = 𝐴 · 𝑧, where 𝑐 = [𝑐1, 𝑐2, . . . , 𝑐𝑡]
𝑇 , and 𝑧 = [𝑧1, 𝑧2, . . . , 𝑧𝑡]

𝑇 as follow:

𝑐 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑖1

𝑓2𝑖1 𝑖2

· · · · · ·∏︀𝑡
𝑖=2 𝑓𝑖 · 𝑖1

∏︀𝑡
𝑖=3 𝑓𝑖 · 𝑖2 · · · 𝑖𝑡

⎤⎥⎥⎥⎥⎥⎥⎦
⏟ ⏞

𝐴

⎡⎢⎢⎢⎢⎢⎢⎣
𝑧1

𝑧2

· · ·

𝑧𝑡

⎤⎥⎥⎥⎥⎥⎥⎦ (3.1)

In the above equation, each element in 𝐴, 𝐴𝑖𝑗 indicates the amount of message

passed from 𝑧𝑗 to 𝑧𝑖, where

𝑎𝑖𝑗,�̸�=𝑗 =
𝑖∏︁
𝑗

𝑓𝑗+1 · 𝑖𝑗 (3.2)

𝑎𝑖𝑖 = 𝑖𝑖 (3.3)

Inspired by recent work on graph neural models (GNNs) [Scarselli et al., 2009] and

graph convolution networks (GCNs) [Kipf and Welling, 2016], we can regard 𝐴 as the

adjacency matrix of a weighted, directed graph 𝐺 = (𝑧, 𝐸), where 𝑧 = [𝑧1, 𝑧2, . . . , 𝑧𝑡]
𝑇

31

are nodes and each edge 𝑒 ∈ 𝐸 indicates the amount of information needed to be

propagated from one node to another. Equation 3.1 shows how LSTMs implicitly

learn relation between each pair of words in a sentence.

3.3.2 Graph Neural Networks

We argue that sentences can be structured as graphs, in which nodes stand for entities

and edges stand for relations. Following [Scarselli et al., 2009, Kipf and Welling, 2016],

the message propagation in a GCN is given by:

𝑋 𝑙+1 = 𝑓(𝐷− 1
2𝐴𝐷− 1

2 ·𝑋 𝑙𝑊) (3.4)

where 𝑥𝑙 and 𝑥𝑙+1 are the input and output of the current layer, 𝑓 is a non-linear

activation, 𝐷 is the diagonal degree matrix of adjacency matrix 𝐴, and 𝑊 stands for

a learnable weight matrix in the current layer.

The gating mechanism can also be applied to message propagation in graphical

models. [Li et al., 2016] propose gated graph neural networks (GGNNs), which filter

the embeddings of the target node and its neighbors with gates instead of simply

averaging them as in GCNs.

3.4 Graph Temporal Convolutional Networks

Inspired by the analysis of LSTMs and recent work on graphical neural models, in this

section we introduce graph temporal convolutional networks (GTCNs) for language

modeling. We are motivated by the fact that we can calculate the adjacency matrix,

𝐴, in parallel, and thus avoid the difficulties of training recurrent neural structures and

adopting the sequential hypothesis for language models. The GTCN model consists of

two modules: context attention and message propagation.

32

3.4.1 Position-aware Context Attention

To decide how much the previous words contribute to predicting the next word, the

GTCN model generates an attention over a context for each target word. Given the

input sequence consists of 𝑛 words, 𝑋 = [𝑋1, 𝑋2, . . . , 𝑋𝑛], we calculate key and value

vectors, 𝑘 and 𝑣, for each word for calculating the attention,

𝑞𝑖 = 𝑡𝑎𝑛ℎ(𝑊 𝑞
1 · 𝑥𝑖 +𝑊 𝑞

2 · 𝑥𝑖−1 + 𝑏𝑞) (3.5)

𝑘𝑖 = 𝑡𝑎𝑛ℎ(𝑊 𝑘
1 · 𝑥𝑖 + 𝑤𝑘

2 𝑖−1 + 𝑏𝑘) (3.6)

where * is a convolution operation.

For words 𝑥𝑖 and 𝑥𝑗(𝑗 < 𝑖), we calculate their relation 𝑎𝑖𝑗 as follows,

𝑎𝑖𝑗 =
𝑒𝑖𝑗∑︀

𝑠<𝑘<𝑖 𝑒𝑖𝑘
(3.7)

𝑒𝑖𝑗 = 𝑒𝑥𝑝(𝑞𝑖 · (𝑘𝑗 +𝑊 𝑝
𝑖−𝑗) + 𝑏𝑒) (3.8)

where 𝑠 is the start location of a visible window, and 𝑊 𝑝
𝑑 is the relative position

representation proposed in [Shaw et al., 2018], which encodes the distances between

different words.

3.4.2 Message Propagation

We apply the gated graph neural network (GGNN) architecture described in [Li et al., 2016]

for message propagation in each layer of the GTCN. In contrast to the original GGNN,

the GTCN message propagation method does not have a recurrent architecture. Given

input sequence 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑡]
𝑇 , we summarize the entire sentence with generated

attention to predict 𝑥𝑡+1. The context representation 𝑥𝑐
𝑡 is calculated as follows:

𝑐𝑡 =
𝑡−1∑︁
𝑖

𝑎𝑡𝑖𝑥𝑖 (3.9)

33

We then calculate input gate 𝑖, forget gate 𝑓 , and residual gate 𝑟 with 𝑥𝑡 and 𝑥𝑐
𝑡 ,

𝑔 = 𝜎(𝑊 𝑔
1 𝑥𝑡 +𝑊 𝑔

2 𝑐𝑡 + 𝑏𝑔), 𝑔 ∈ [𝑖, 𝑓, 𝑟] (3.10)

We also calculate an output gate for the GTCN,

𝑜 = 𝜎(𝑊 𝑜
1𝑥𝑡 +𝑊 𝑜

2𝑥𝑡−1 + 𝑏𝑜) (3.11)

The GTCN predicts the embedding of 𝑥𝑡+1 as

𝑚𝑡 = 𝑜⊙ 𝜑(𝑊 ℎ
1 · (𝑥𝑡 ⊙ 𝑖) +𝑊 ℎ

2 · (𝑐𝑡 ⊙ 𝑓) + 𝑏ℎ) (3.12)

�̂�𝑡+1 = ℎ𝑡 = 𝑖⊙𝑚𝑡 + (1− 𝑖)⊙𝑚𝑡 (3.13)

where ⊙ stands for element-wise product, and 𝜑 is a non-linear activation function.

3.4.3 Syntax Learning and Representation

Given a sentence 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛], the GTCN model generates a attention weights

for every pair of words. In other words, for each word 𝑥𝑡, there is a corresponding

attention weight sequence [𝑎1, 𝑎2, . . . , 𝑎𝑡−1]. The attention weights are calculated with

Equation 8 described above. This feature makes our approach different from the

syntactic distance model [Shen et al., 2017], which learns one parsing tree for an entire

sentence.

Similarly to recurrent neural network grammars (RNNG) [Dyer et al., 2016], our

model constructs a unique parsing tree for each word in an input sentence with other

visible tokens. Experiment shows that the attention weights generated by the GTCN

captures information about the structure of the ground truth parse tree.

34

3.4.4 Other Details

Convolution Windows We hope the multi-layer GTCN model is able to learn

different levels of semantics in the given sentence. In our design of the model, the

lower GTCN layers learn local information, while the upper layers learn information

from a longer context. In practice, the size of the context window of layer 𝑖 is 𝑖 · 𝐿,

where 𝐿 is the context window length of the first GTCN layer. Experiments show

that this strategy works better than making the entire sentence visible for all layers

and using the same context window size for each layer.

Variational Dropout The standard dropout model [Srivastava et al., 2014] ran-

domly samples masks for input tensors at each time step in sequence processing. In

our GTCN model, we employ variational dropout [Gal and Ghahramani, 2016], which

samples one mask for the same variables in different time steps, to improve training

convergence.

3.5 Experiments

The experiments are designed to answer the following questions: Q1: How effective

is the graph convolutional language model, compared with RNN-based language

models? Q2: Can the GTCN language model learn syntactic information without

any annotations?

3.5.1 Settings

We conduct experiments on language modeling (LM) on the Penn Treebank (PTB)

dataset [Mikolov et al., 2010], which includes 10,000 different words. Our GTCN

model employed 4 layers, in which each layer applies a convolution window sized 10,

20, 30, and 40 respectively. The embedding size of words is chosen as 400, and the

hidden layers were 800 dimensions. We also applied tied weights for the encoder and

decoder.

In the optimization process, we apply stochastic gradient descent (SGD) and the

35

Model PPL Model Size Recurrence Syntax

LSTM (Large) 78.4 66M Yes -
Variational LSTM 73.4 66M Yes -
LSTM + Cache 72.1 - Yes -
Variational RHN 65.4 23M Yes -
IndRNN 65.3 - Yes -
AWD-LSTM 57.3 24M Yes -

TCN 88.7 - - -
CharCNN 78.9 19M - -
GTCN (ours) 66.1 27M - Yes

RNNG 102.4 - Yes Yes
PRPN 62.0 - Yes Yes

Table 3.1: Evaluation of test perplexity of different recent models, including LSTM
(Large) [Zaremba et al., 2014], Variational LSTM [Gal and Ghahramani, 2016],
LSTM + Cache [Grave et al., 2016], Variational RHN [Zilly et al., 2016], IndRNN
[Li et al., 2018], AWD-LSTM [Merity et al., 2017], RNNG [Dyer et al., 2016], and
PRPN [Shen et al., 2017].

average-SGD (ASGD) strategy proposed in [Merity et al., 2017]. The batch size is 20,

and the length of training sequences is 70. The initial learning rate of the SGD step is

30. The dropout rate of the embedding layer is 0.4, while the hidden layers apply 0.25.

3.5.2 Effectiveness (Q1)

Table 3.1 shows the performance of our model and lists a selection of recent baselines.

The experiments show that our model outperforms many strong baselines, but is not

as good as the current best LSTM language models. However, our model outperforms

other CNN-based model significantly, decreasing the perplexity of the TCN model by

over 20 points. To our knowledge, this is the first convolution based neural language

model that has reached such performance on the PTB dataset. We also compare our

model with prior work that make use of syntactic information in language modeling.

The GTCN model performs better than all models in this family except the parse-read-

predict network (PRPN) [Shen et al., 2017], which employed an LSTM architecture

with semantic and syntactic attention.

36

3.5.3 Learning Structural Information (Q2)

In this section, we examine the structural information learned by the GTCN language

model with an example. By taking the example “I shot an elephant in my pajamas1” as

the input of a trained 4-layer GTCN language model, we can visualize the attentions

generated by GTCN while encoding the sentence, for predicting the words, on each

layer of the network.

Figure 3-1 shows two parsing trees of the example sentence. In this example, the

parsing tree on the left makes more sense because “I” am more likely to be “in my

pajamas”. Admitting both are possible. With this example, we show how the attention

mechanism works in the GTCN.

I

shot

an elephant

in

my pajamas

I

shot

an elephant

in

my pajamas

Figure 3-1: Two possible parse trees for the sentence “I shot an elephant in my
pajamas.”

To analyze the syntactic information learned by the model, we visualize the

attentions generated while processing each word. For each word, we plot its attention

weights on all GTCN layers.

Figure 3-2 visualizes attentions generated when the GTCN model processes the

input sentence. Tree A is the groundtruth parsing tree and Tree B is the generated

tree of attention weights output by the GTCN. The target word processed at each

step is shown in red. Slashed edges stand for words and nodes that are not visible

at the current step. The arrows are the edges of temporal parse trees constructed

only with visible words. We color the visible nodes in the parse trees according to

attentions shown above.

Since we calculate attention weights for every pair of words, the GTCN can use

1https://www.nltk.org/book/ch08.html

37

big.pdf

I

shot

an elephant

in

my pajamas

shot

an elephant

in

my pajamas

shot

an elephant

in

my pajamas

shot

an elephant

in

my pajamas

<s> I<s> I<s> I<s>

I
shot

an elephant

in

my pajamas

<s> I
shot

an elephant

in

my pajamas

<s> I
shot

an elephant

in

my pajamas

<s> I
shot

an elephant

in

my pajamas

<s>

Tree A

Tree B

Step 1 Step 2 Step 3 Step 4

Figure 3-2: Attentions generated when processing target words marked with red.
The upper plots show the attention weights, and the lower figures show the possible
underlying syntactic structures.

different syntactic information while processing the sentence at different steps for

better encoding target words. For example, when processing the word “elephant”, the

model highlights “shot” and “an”. In the Step 4 of parsing tree B, “elephant” and “in”

receive higher weights when the model encodes word “my”. In step 3, while processing

word “in”, the model assigns higher weights on “shot”, and “elephant”, but pays less

attention to “shot”. This suggests that the model decides that “in” is leading a word

sequence that describes “an elephant”. This prediction indicates that the model prefers

the second parse tree when encoding the sentence.

Although the model generates different attentions on context while processing

different words, we find a common phenomenon of the learned attention weights. As

illustrated in Figure 3-2, the attention mechanism learns a path from target words to

the root (PTR) of the parse trees. In general, the nodes on this path are assigned

higher attention weights. While modeling the word “in”, the model decides that “an

elephant” contains enough information to encode “in”, so it does not use much higher

level information.

38

The above example illustrates that our model is more flexible than CNNs and

LSTMs in learning structures. CNNs have a fixed kernel size and dilation size

[Bai et al., 2018]. The structure of context modeling in CNNs totally depends on

hyper-parameter settings, including kernel size, dilation size, and the number of layers.

In contrast, LSTMs process sentence sequentially, and the relation between words

𝑖 and 𝑗, 𝑎𝑖,𝑗, is always smaller than 𝑎𝑖+1,𝑗. With our model, which does not employ

fixed-length filters or recurrent cells, the language model can learn more information

about context structures, such as PTR, for better predictions.

3.6 Conclusion and Future Work

In this work, we proposed a graph temporal convolution network (GTCN) for language

modeling that processes natural sentences as graphs instead of linear sequences.

Without any recurrent components, our proposed model can run in parallel. Although

there is still a performance gap between our model and state-of-the-art RNN-based

LMs, our GTCN LM significantly outperforms existing convolution-based models. We

also proposed the right-root parsing trees (RPTs) for representing syntactic information

of sub-sentences in language modeling tasks. By visualizing the attention weights

generated by the GTCN and constructing the RPTs, we illustrated that the GTCN can

capture syntactic information for language modeling. We believe that due to the ability

to run in parallel and capturing syntactic information, it is worth exploring further

how the GTCN model performs on other natural language processing applications

that need sentence encoding with syntactic knowledge.

39

40

Chapter 4

Improving Neural Language Models

by Segmenting, Attending, and

Predicting the Future

4.1 Introduction

Neural language models are typically trained by predicting the next word given a

past context [Bengio et al., 2003]. However, natural sentences are not constructed as

simple linear word sequences, as they usually contain complex syntactic information.

For example, a subsequence of words can constitute a phrase, and two non-neighboring

words can depend on each other. These properties make natural sentences more

complex than simple linear sequences.

Most recent work on neural language modeling learns a model by encoding con-

texts and matching the context embeddings to the embedding of the next word

[Bengio et al., 2003, Merity et al., 2017, Melis et al., 2017]. In this line of work, a

given context is encoded with a neural network, for example a long short-term mem-

ory (LSTM) [Hochreiter and Schmidhuber, 1997] network, and is represented with a

distributed vector. The log-likelihood of predicting a word is computed by calculating

the inner product between the word embedding and the context embedding. Although

41

most models do not explicitly consider syntax, they still achieve state-of-the-art

performance on different corpora. Efforts have also been made to utilize structural

information to learn better language models. For instance, parsing-reading-predict

networks (PRPN) [Shen et al., 2017] explicitly learn a constituent parsing structure

of a sentence and predict the next word considering the internal structure of the given

context with an attention mechanism. Experiments have shown that the model is able

to capture some syntactic information.

Similar to word representation learning models that learns to match word-to-word

relation matrices [Mikolov et al., 2013, Pennington et al., 2014], standard language

models are trained to factorize context-to-word relation matrices [Yang et al., 2017].

In such work, the context comprises all previous words observed by a model for

predicting the next word. However, we believe that context-to-word relation matrices

are not sufficient for describing how natural sentences are constructed. We argue

that natural sentences are generated at a higher level before being decoded to words.

Hence a language model should be able to predict the following sequence of words

given a context. In this work, we propose a model that factorizes a context-to-phrase

mutual information matrix to learn better language models. The context-to-phrase

mutual information matrix describes the relation among contexts and the probabilities

of phrases following given contexts. We make the following contributions:

∙ We propose a phrase prediction model that improves the performance of state-

of-the-art word-level language models.

∙ Our model learns to predict approximate phrases and headwords without any

annotation.

4.2 Related Work

Neural networks have been widely applied in natural language modeling and gen-

eration [Bengio et al., 2003, Bahdanau et al., 2014] for both encoding and decod-

ing. Among different neural architectures, the most popular models are recurrent

42

neural networks (RNNs) [Mikolov et al., 2010], long short-term memory networks

(LSTMs) [Hochreiter and Schmidhuber, 1997], and convolutional neural networks

(CNNs) [Bai et al., 2018, Dauphin et al., 2017].

Many modifications of network structures have been made based on these architec-

tures. LSTMs with self-attention can improve the performance of language modeling

[Tran et al., 2016, Cheng et al., 2016]. As an extension of simple self-attention, trans-

formers [Vaswani et al., 2017] apply multi-head self-attention and have achieved com-

petitive performance compared with recurrent neural language models. A current state-

of-the-art model, Transformer-XL [Dai et al., 2019], applied both a recurrent architec-

ture and a multi-head attention mechanism. To improve the quality of input word em-

beddings, character-level information is also considered [Kim et al., 2016]. It has also

been shown that context encoders can learn syntactic information [Shen et al., 2017].

However, instead of introducing architectural changes, for example a self-attention

mechanism or character-level information, previous studies have shown that careful

hyper-parameter tuning and regularization techniques on standard LSTM language

models can obtain significant improvements [Melis et al., 2017, Merity et al., 2017].

Similarly, applying more careful dropout strategies can also improve language models

[Gal and Ghahramani, 2016, Melis et al., 2018]. LSTM language models can be im-

proved with these approaches because LSTMs suffer from serious over-fitting problems.

Recently, researchers have also attempted to improve language models at the

decoding phase. [Inan et al., 2016] showed that reusing the input word embeddings in

the decoder can reduce the perplexity of language models. [Yang et al., 2017] showed

the low-rank issue in factorizing the context-to-word mutual information matrix and

proposed a multi-head softmax decoder to solve the problem. Instead of predicting

the next word by using only similarities between contexts and words, the neural cache

model [Grave et al., 2016] can significantly improve language modeling by considering

the global word distributions conditioned on the same contexts in other parts of the

corpus.

To learn the grammar and syntax in natural languages, [Dyer et al., 2016] proposed

the recurrent neural network grammar (RNNG) that models language incorporating

43

a transition parsing model. Syntax annotations are required in this model. To

utilize the constituent structures in language modeling without syntax annotation,

parse-read-predict networks (PRPNs) [Shen et al., 2017] calculate syntactic distances

among words and computes self-attentions. Syntactic distances have been proved

effective in constituent parsing tasks [Shen et al., 2018a]. In this work, we learn phrase

segmentation with a model based on this method and our model does not require

syntax annotation.

4.3 Syntactic Height and Phrase Induction

In this work, we propose a language model that not only predicts the next word of a

given context, but also attempts to match the embedding of the next phrase. The first

step of this approach is conducting phrase induction based on syntactic heights. In

this section, we explain the definition of syntactic height in our approach and describe

the basics ideas about whether a word can be included in an induced phrase.

Intuitively, the syntactic height of a word aims to capture its distance to the root

node in a dependency tree. In Figure 4-1, the syntactic heights are represented by the

red bars. A word has high syntactic height if it has low distance to the root node.

A similar idea, named syntactic distance, is proposed by [Shen et al., 2017] for

constructing constituent parsing trees. We apply the method for calculating syntactic

distance to calculate syntactic height. Given a sequence of embeddings of input words

[𝑥1, 𝑥2, · · · , 𝑥𝑛], we calculate their syntactic heights with a temporal convolutional

network (TCN) [Bai et al., 2018].

𝑑𝑖 = 𝑊𝑑 · [𝑥𝑖−𝑛, 𝑥𝑖−𝑛+1, · · · , 𝑥𝑖]
𝑇 + 𝑏𝑑 (4.1)

ℎ𝑖 = 𝑊ℎ ·𝑅𝑒𝐿𝑈(𝑑𝑖) + 𝑏ℎ (4.2)

where ℎ𝑖 stands for the syntactic height of word 𝑥𝑖. The syntactic height ℎ𝑖 for each

word is a scalar, and 𝑊ℎ is a 1 × 𝐷 matrix, where 𝐷 is the dimensionality of 𝑑𝑖.

These heights are learned and not imposed by external syntactic supervision. In

44

[Shen et al., 2017], the syntactic heights are used to generate context embeddings. In

our work, we use the syntactic heights to predict induced phrases and calculate their

embeddings.

We define the phrase induced by a word based on the syntactic heights. Consider

two words 𝑥𝑖 and 𝑥𝑘. 𝑥𝑘 belongs to the phrase induced by 𝑥𝑖 if and only if for any

𝑗 ∈ (𝑖, 𝑘), ℎ𝑗 < 𝑚𝑎𝑥(ℎ𝑖, ℎ𝑘). For example, in Figure 4-1, the phrase induced by the

red marked word the is “the morning flights”, since the syntactic height of the word

morning, ℎ𝑚𝑜𝑟𝑛𝑖𝑛𝑔 < ℎ𝑓𝑙𝑖𝑔ℎ𝑡𝑠. However, the word “to” does not belong to the phrase

because ℎ𝑓𝑙𝑖𝑔ℎ𝑡𝑠 is higher than both ℎ𝑡ℎ𝑒 and ℎ𝑡𝑜. The induced phrase and the inducing

dependency connection are labeled in blue in the figure.

Note that this definition of an induced phrase does not necessarily correspond to

a phrase in the syntactic constituency sense. For instance, the words “to Houston”

would be included in the phrase “the morning flights to Houston” in a traditional

syntactic tree. Given the definition of induced phrases, we propose phrase segmenting

conditions (PSCs) to find the last word of an induced phrase. Considering the induced

phrase of the 𝑖-th word, 𝑠𝑖 = [𝑥𝑖, 𝑥𝑖+1, · · · , 𝑥𝑗], there are two conditions that 𝑥𝑗 should

satisfy:

1. The syntactic height of 𝑥𝑗 must be higher than the height of 𝑥𝑖, that is

ℎ𝑗 − ℎ𝑖 > 0 (4.3)

2. The syntactic height of 𝑥𝑗+1 should be lower that 𝑥𝑗.

ℎ𝑗 − ℎ𝑗+1 > 0 (4.4)

Given the PSCs, we can decide the induced phrases for the sentence shown in

Figure 4-1. The last word of the phrase induced by “United” is “canceled”, and the

last word of the phrase induced by “flights” is “Houston”.

45

United canceled the morning flights to Houston

root

Figure 4-1: Groundtruth dependency tree and syntactic heights of each word.

4.4 Model

In this work, we formulate multi-layer neural language models as a two-part framework.

For example, in a two-layer LSTM language model [Merity et al., 2017], we use the

first layer as phrase generator and the last layer as a word generator:

[𝑐1, 𝑐2, · · · , 𝑐𝑇] = 𝑅𝑁𝑁1([𝑥1, 𝑥2, · · · , 𝑥𝑇]) (4.5)

[𝑦1, 𝑦2, · · · , 𝑦𝑇] = 𝑅𝑁𝑁2([𝑐1, 𝑐2, · · · , 𝑐𝑇]) (4.6)

For a 𝐿-layer network, we can regard the first 𝐿1 layers as the phrase generator and

the next 𝐿2 = 𝐿− 𝐿1 layers as the word generator. Note that we use 𝑦𝑖 to represent

the hidden state output by the second layer instead of ℎ𝑖, since ℎ𝑖 in our work is

defined as the syntactic height of 𝑥𝑖. In the traditional setting, the first layer does

not explicitly learn the semantics of the following phrase because there is no extra

objective function for phrase learning.

We force the first layer to output context embeddings 𝑐𝑖 for phrase prediction

with three steps. Firstly, we predict the induced phrase for each word. Secondly, we

calculate the embedding of each phrase with a head-finding attention. Lastly, we align

the context embedding and phrase embedding with negative sampling. The word

46

United
canceled

the

morning

flights

to

Houston

Phrase Generator

Step 1. Syntactic height
and phrase induction

morning flights

Step2. Phrase embedding
with headword attention

Word Generator

Context-phrase
alignment

morning

Context-word
alignment

Objective
Function

Step 3. Phrase and word prediction

Phrase
Embedding

Figure 4-2: The 3-step diagram of our approach. The current target word is “the”, the
induced phrase is “morning flights”, and the next word is “morning”.

generation is trained in the same way as standard language models. The diagram of

the model is shown in Figure 4-2.

4.4.1 Phrase Segmentation

We calculate the syntactic height and predict the induced phrase for each word:

ℎ𝑖 = 𝑇𝐶𝑁([𝑥𝑖−𝑛, 𝑥𝑖−𝑛+1, · · · , 𝑥𝑖]) (4.7)

where 𝑇𝐶𝑁(·) stands for the TCN model described in Equations 4.1 and 4.2, and 𝑛

is the width of the convolution window.

Based on the proposed phrase segmenting conditions (PSCs) described in the

previous section, we predict the probability of a word being the first word outside a

induced phrase. Firstly, we decide if each word, 𝑥𝑗−1, 𝑗 ∈ (𝑖+ 1, 𝑛], satisfies the two

phrase segmenting conditions, PSC-1 and PSC-2. The probability that 𝑥𝑗 satisfies

PSC-1 is

𝑝1𝑝𝑠𝑐(𝑥𝑗) =
1

2
· (𝑓𝐻𝑇 (ℎ𝑗 − ℎ𝑖) + 1) (4.8)

Similarly, the probability that 𝑥𝑗 satisfies PSC-2 is

𝑝2𝑝𝑠𝑐(𝑥𝑗) =
1

2
· (𝑓𝐻𝑇 (ℎ𝑗 − ℎ𝑗+1) + 1) (4.9)

47

where 𝑓𝐻𝑇 stands for the HardTanh function with a temperature 𝑎:

𝑓𝐻𝑇 (𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 𝑥 ≤ − 1

𝑎

𝑎 · 𝑥 − 1
𝑎
< 𝑥 ≤ 1

𝑎

1 𝑥 > 1
𝑎

This approach is inspired by the context attention method proposed in the PRPN

model [Shen et al., 2017].

Then we can infer the probability of whether a word belongs to the induced phrase

of 𝑥𝑖 with

𝑝𝑖𝑛𝑑(𝑥𝑗) =

𝑗∏︁
𝑘=1

𝑝(𝑥𝑘) (4.10)

where 𝑝𝑖𝑛𝑑(𝑥𝑖) stands for the probability that 𝑥𝑖 belongs to the induced phrase, and

𝑝(𝑥𝑘)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 𝑘 ≤ 𝑖+ 1

1− 𝑝1𝑝𝑠𝑐(𝑥𝑘−1) · 𝑝2𝑝𝑠𝑐(𝑥𝑘−1) 𝑘 > 𝑖+ 1

Note that the factorization in Equation 4.10 assumes that words are independently

likely to be included in the induced phrase of 𝑥𝑖.

4.4.2 Phrase Embedding with Attention

Given induced phrases, we can calculate their embeddings based on syntactic heights.

To calculate the embedding of phrase 𝑠 = [𝑥1, 𝑥2, · · · , 𝑥𝑛], we calculate an attention

distribution over the phrase:

𝛼𝑖 =
ℎ𝑖 · 𝑝𝑖𝑛𝑑(𝑥𝑖) + 𝑐∑︀
𝑗 ℎ𝑗 · 𝑝𝑖𝑛𝑑(𝑥𝑗) + 𝑐

(4.11)

where ℎ𝑖 stands for the syntactic height for word 𝑥𝑖 and 𝑐 is a constant real number

for smoothing the attention distribution. Then we generate the phrase embedding

48

with a linear transformation:

𝑠 = 𝑊 ·
∑︁
𝑖

𝛼𝑖 · 𝑒𝑖 (4.12)

where 𝑒𝑖 is the word embedding of 𝑥𝑖. In training, we apply a dropout layer on 𝑠.

4.4.3 Phrase and Word Prediction

A traditional language model learns the probability of a sequence of words:

𝑝(𝑥1, 𝑥2, · · · , 𝑥𝑛) = 𝑝(𝑥1) ·
∏︁
𝑖

𝑝(𝑥𝑖+1|𝑥𝑖
1) (4.13)

where 𝑥𝑖
1 stands for 𝑥1, 𝑥2, · · · , 𝑥𝑖, which is the context used for predicting the next

word, 𝑥𝑖+1.

In our model, we learn the language model by jointly learning phrase prediction.

The conditional probability of each word can be written as:

𝑝(𝑥𝑖+1, 𝑠
𝑖
1|𝑥𝑖

1) = 𝑝(𝑠𝑖1|𝑥𝑖
1) · 𝑝(𝑥𝑖+1|𝑠𝑖1) (4.14)

where 𝑠𝑖 stands for the phrase induced by word 𝑥𝑖 and 𝑠𝑖1 stands for the induced phrase

sequence 𝑠1 to 𝑠𝑖. 𝑥𝑖+1 is the next word of 𝑥𝑖, and also the second word in phrase 𝑠𝑖.

We use classical cross-entropy losses [Bengio et al., 2003, Merity et al., 2017] to

train the word generation model 𝑝(𝑥𝑖+1|𝑠𝑖) based on the induced phrase 𝑠𝑖. We define

the phrase generation, or context-phrase alignment model as follows:

𝑝(𝑠𝑖1|𝑥𝑖
1) ≈

∏︁
𝑖

𝑝(𝑠𝑖|𝑥𝑖
1) (4.15)

𝑝(𝑠𝑖|𝑥𝑖
1) = 𝜎(𝑐𝑇𝑖 · 𝑠𝑖) (4.16)

where 𝜎(𝑥) = 1
1+𝑒−𝑥 , and 𝑐𝑖 stands for the context embedding of 𝑥1, 𝑥2, · · · , 𝑥𝑖, defined

in the next subsection.

We use an extra objective function and negative sampling to align context repre-

49

sentations and the embeddings of induced phrases. Given the context embedding 𝑐𝑖,

the induced phrase embedding 𝑠𝑖, and random sampled negative phrase embeddings

𝑠𝑛𝑒𝑔𝑖 , we define the following objective function for context 𝑖:

𝑙𝐶𝑃𝐴
𝑖 = 1− 𝜎(𝑐𝑇𝑖 · 𝑠𝑖) +

1

𝑛

𝑛∑︁
𝑗=1

𝜎(𝑐𝑇𝑖 · 𝑠
𝑛𝑒𝑔
𝑗) (4.17)

where 𝑛 stands for the number of negative samples. With this loss function, the

model learns to maximize the similarity between the context and true induced phrase

embeddings, and minimize the similarity between the context and negative samples

randomly selected from the induced phrases of other words.

It worth noting that our approach is model-agnostic and can be applied to various

architectures. The TCN network for calculating the syntactic heights and phrase

inducing is an independent module. In context-phrase alignment training with negative

sampling, the objective function provides phrase-aware gradients and does not change

the word-by-word generation process of the language model.

4.5 Experiments

We evaluate our model with word-level language modeling tasks on Penn Treebank

(PTB) [Mikolov et al., 2010], Wikitext-2 (WT2) [Bradbury et al., 2016], and Wikitext-

103 (WT103) [Merity et al., 2016] corpora.

The PTB dataset has a vocabulary size of 10,000 unique words. The entire corpus

includes roughly 40,000 sentences in the training set, and more than 3,000 sentences

in both valid and test set.

The WT2 data is about two times larger the the PTB dataset. The dataset

is consist of Wikipedia articles. The corpus includes 30,000 unique words in its

vocabulary and is not cleaned as heavily as the PTB corpus.

The WT103 corpus contains a larger vocabulary and more articles than WT2. It

consists of 28k articles and more than 100M words in the training set. WT103 can

evaluate the ability of capturing long-term dependencies [Dai et al., 2019].

50

In each corpus, we apply our approach to publicly-available, state-of-the-art models.

This demonstrates that our approach can improve different existing architectures. Our

trained models will be published for downloading.

Model #ParamsDev
PPL

Test
PPL

[Inan et al., 2016] - Tied Variational LSTM 24M 75.7 73.2
[Zilly et al., 2017] - Recurrent Highway
Networks

23M 67.9 65.7

[Shen et al., 2017] - PRPN - - 62.0
[Pham et al., 2018] - Efficient NAS 24M 60.8 58.6
[Melis et al., 2017] - 4-layer skip LSTM
(tied)

24M 60.9 58.3

[Shen et al., 2018b] - ON-LSTM 25M 58.3 56.2
[Liu et al., 2018] - Differentiable NAS 23M 58.3 56.1
[Yang et al., 2017] - AWD-LSTM-MoS 22M 58.1 56.0
[Merity et al., 2017] - AWD-LSTM 24M 60.7 58.8
[Merity et al., 2017] - AWD-LSTM + fine-
tuning

24M 60.0 57.3

Ours - AWD-LSTM + Phrase Induction -
Attention

24M 60.2 58.0

Ours - AWD-LSTM + Phrase Induction 24M 59.6 57.5
Ours - AWD-LSTM + Phrase Induction +
finetuning

24M 57.8 55.7

[Dai et al., 2019] - Transformer-XL 24M 56.7 54.5
[Yang et al., 2017] - AWD-LSTM-MoS +
finetuning

22M 56.5 54.4

Table 4.1: Experimental results on Penn Treebank dataset. Compared with the
AWD-LSTM baseline models, our method reduced the perplexity on test set by 1.6.

4.5.1 Penn Treebank

We train a 3-layer AWD-LSTM language model [Merity et al., 2017] on PTB data

set. We use 1,150 as the number of hidden neurons and 400 as the size of word

embeddings. We also apply the word embedding tying strategy [Inan et al., 2016].

We apply variational dropout for hidden states [Gal and Ghahramani, 2016] and the

dropout rate is 0.25. We also apply weight dropout [Merity et al., 2017] and set weight

dropout rate as 0.5. We apply stochastic gradient descent (SGD) and averaged SGD

51

Model #ParamsDev
PPL

Test
PPL

[Inan et al., 2016] - Variational LSTM
(tied)

28M 92.3 87.7

[Inan et al., 2016] - VLSTM + augmented
loss

28M 91.5 87.0

[Grave et al., 2016] - LSTM - - 99.3
[Grave et al., 2016] - LSTM + Neural cache - - 68.9
[Melis et al., 2017] - 1-Layer LSTM 24M 69.3 69.9
[Melis et al., 2017] - 2-Layer Skip Connec-
tion LSTM

24M 69.1 65.9

[Merity et al., 2017] - AWD-LSTM + fine-
tuning

33M 68.6 65.8

Ours - AWD-LSTM + Phrase Induction 33M 68.4 65.2
Ours - AWD-LSTM + Phrase Induction +
finetuning

33M 66.9 64.1

Table 4.2: Experimental results on Wikitext-2 dataset.

(ASGD) [Polyak and Juditsky, 1992] for training. The learning rate is 30 and we clip

the gradients with a norm of 0.25.

We compare the word-level perplexity of our model with other state-of-the-art

models and our baseline is AWD-LSTM [Merity et al., 2017].. The experimental

results are shown in Table 4.1. Although not as good as the Transformer-XL model

[Dai et al., 2019] and the mixture of softmax model [Yang et al., 2017], our model

significantly improved the AWD-LSTM, reducing 2.2 points of perplexity on the

validation set and 1.6 points of perplexity on the test set.

We also did ablation study without headword attention and the result is listed in

Table 4.1. Without the attention mechanism, the model performs worse than the full

model but is still better than our baseline. Hence we just test the full model in the

following experiments.

4.5.2 Wikitext-2

We also trained a 3-layer AWD-LSTM language model on the WT2 dataset. The

network has the same input size, output size, and hidden size as the model we applied

on PTB dataset, following the experiments done by [Merity et al., 2017]. Some hyper-

52

Model #ParamsDev
PPL

Test
PPL

[Grave et al., 2016] - LSTM - - 48.7
[Bai et al., 2018] - TCN - - 45.2
[Dauphin et al., 2017] - GCNN-8 - - 44.9
[Grave et al., 2016] - LSTM + Neural cache - - 40.8
[Dauphin et al., 2017] - GCNN-14 - - 37.2
[Merity et al., 2018] - 4-layer QRNN 151M 32.0 33.0
[Rae et al., 2018] - LSTM + Hebbian +
Cache

- 29.7 29.9

[Dai et al., 2019] - Transformer-XL Stan-
dard

151M 23.1 24.0

[Baevski and Auli, 2018] - Adaptive input 247M 19.8 20.5
[Dai et al., 2019] - Transformer-XL Large 257M 17.7 18.3
Ours - Transformer-XL Large + Phrase
Induction

257M - 17.4

Table 4.3: Experimental results on Wikitext-103 dataset.

parameters are different from the PTB language model. We use a batch size of 60.

The embedding dropout rate is 0.65 and the dropout rate of hidden outputs is set to

0.2. Other hyper-parameters are the same as we set in training on the PTB dataset.

The experimental results are shown in Table 4.2. Our model improves the AWD-

LSTM model by reducing 1.7 points of perplexity on both the validation and test sets,

while we did not make any change to the architecture of the AWD-LSTM language

model.

4.5.3 Wikitext-103

The current state-of-the-art language model trained on Wikitext-103 dataset is the

Transformer-XL [Dai et al., 2019]. We apply our method on the state-of-the-art

Transformer-XL Large model, which has 18 layers and 257M parameters. The input

size and hidden size are 1024. 16 attention heads are used. We regard the first 14

layers as the phrase generator and the last 4 layers as the word generator. In other

words, the context-phrase alignment is trained with the outputs of the 14th layer.

The model is trained on 4 Titan X Pascal GPUs, each of which has 12G memory.

Because of the limitation of computational resources, we use our approach to fine-tune

53

Un
ite
d

ca
nc
ele
d the

mo
rni
ng

flig
hts to

Ho
us
ton

Predictions Groundtruth

(a) Syntactic heights of each word.

un
ite

d

can
cel

ed the

morn
ing

flig
hts to

ho
ust

on

united

canceled

the

morning

flights

to

0.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.12 0.32 0.34 0.03 0.19

0.0 0.0 0.0 0.48 0.52 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.12 0.88

0.0 0.0 0.0 0.0 0.0 0.0 1.0

(b) Induced phrases and headword attentions.

Figure 4-3: Examples of induced phrases and corresponding headword attention for
generating the phrase embedding. The word of each row stands for the target word as
the current input of the language model, and the values in each row in the matrices
stands for the words consisting the induced phrase and their weights.

the officially released pre-trained Transformer-XL Large model for 1 epoch. The

experimental results are shown in Table 4.3. Our approach got 17.4 perplexity with

the officially released evaluation scripts, significantly outperforming all baselines and

achieving new state-of-the-art performance.

4.6 Discussion

In this section, we show what is learned by training language models with the context-

phrase alignment objective function by visualizing the syntactic heights output by

the TCN model and the phrases induced by each target word in a sentence. We also

visualize the headword attentions over the induced phrase.

The first example is the sentence showed in Figure 4-1. The sentence came from

[Jurafsky and Martin, 2014] and did not appear in our training set. Figure 4-1 shows

the syntactic heights and the induced phrase of “the” according to the ground-truth

dependency information. Our model is not given such high-quality inputs in either

training or evaluation.

Figure 4-3 visualizes the structure learned by our phrase induction model. The

inferred syntactic heights are shown in Figure 4-3a. Heights assigned to words “the”

54

wedid n'tev
enge

t a
cha

nce to dothe

pro
gra

mswe

wan
ted to do

we
did
n't

even
get

a
chance

to
do

the
programs

we
wanted

to

(a)

sev
era

l
fun

d

man
ag

ers
ex

pe
ct a

rou
gh
mark

etthi
s

morn
ing
be

for
e

pri
ces

sta
bili

ze

several
fund

managers
expect

a
rough

market
this

morning
before
prices

(b)

(c) (d)

bu
t a

majo
rity of the

<un
k>
cou

nci
l
did n'tbu

y
tho

se

arg
um

en
ts

but
a

majority
of

the
<unk>
council

did
n't

buy
those

(e)

at
lea

st
the

y
bo

th
spe

akwith
str

on
g

<un
k> as do

<un
k>an

d
<un

k>

at
least
they
both

speak
with

strong
<unk>

as
do

<unk>
and

(f)

Figure 4-4: Examples of phrase inducing and headword attentions. Each row of the
matrix stands for the induced phrase of a word listed at the beginning of each row.
The darkness of the color indicates the attention weights.

and “to” are significantly lower than others, while the verb “canceled” is assigned the

highest score in the sentence. Induced phrases are shown in Figure 4-3b. The words

at the beginning of each row stand for the target word of each step. Values in the

matrix stand for attention weights for calculating phrase embedding. The weights

are calculate with the phrase segmenting conditions (PSC) and the syntactic heights

described in Equations 4.8 to 4.11. For the target word “united”, ℎ𝑢𝑛𝑖𝑡𝑒𝑑 < ℎ𝑐𝑎𝑛𝑐𝑒𝑙𝑒𝑑

55

and ℎ𝑐𝑎𝑛𝑐𝑒𝑙𝑒𝑑 > ℎ𝑡ℎ𝑒, hence the induced phrase of “united” is a single word “canceled”,

and the headword attention of “canceled” is 1, which is indicated in the first row of

Figure 4-3b. The phrase induced by “canceled” is the entire following sequence, “the

morning flights to houston”, since no following word has a higher syntactic height than

the target word. It is also shown that the headword of the induced phrase of “canceled”

is “flights”, which agrees with the dependency structure indicated in Figure 4-1.

More examples are shown in Figure 4-4. Figures 4-4a to 4-4d show random

examples without any unknown word, while the examples shown in Figures 4-4e and

4-4f are randomly selected from sentences with unknown words, which are marked

with the UNK symbol. The examples show that the phrase induction model does not

always predict the exact structure represented by the dependency tree. For example,

in Figure 4-4b, the TCN model assigned the highest syntactic height to the word

“market” and induced the phrase “expect a rough market” for the context “the fund

managers”. However, in a ground-truth dependency tree, the verb “expect” is the word

directly connected to the root node and therefore has the highest syntactic height.

Although not exactly matching linguistic dependency structures, the phrase-level

structure predictions are reasonable. The segmentation is interpretable and the

predicted headwords are appropriate. In Figure 4-4c, the headwords are “trying”,

“quality”, and “involvement”. The model is also robust with unknown words. In Figure

4-4e, “the <unk> council” is segmented as the induced phrase of “but a majority of”.

In this case, the model recognized that the unknown word is dependent of “council”.

The sentence in Figure 4-4f includes even more unknown words. However, the model

still correctly predicted the root word, the verb “speak”. For the target word “with”,

the induced phrase is “strong <unk>”. Two unknown words are located in the last few

words of the sentence. The model failed to induce the phrase “<unk> and <unk>”

for the word “do”, but still successfully split “<unk>” and “and”. Meanwhile, the

attentions over the phrases induced by “speak”, “do”, and the first “<unk>” are not

quite informative, suggesting that unknown words made some difficulties for headword

prediction in this example. However, the unknown words are assigned significantly

higher syntactic heights than the word “and”.

56

4.7 Conclusion

In this work, we improved state-of-the-art language models by aligning context and

induced phrases. We defined syntactic heights and phrase segmentation rules. The

model generates phrase embeddings with headword attentions. We improved the

AWD-LSTM and Transformer-XL language models on different data sets and achieved

state-of-the-art performance on the Wikitext-103 corpus. Experiments showed that our

model successfully learned approximate phrase-level knowledge, including segmentation

and headwords, without any annotation. In future work, we aim to capture better

structural information and possible connections to unsupervised grammar induction.

57

58

Chapter 5

Cross-Sentence Attention for

Co-reference Resolution

5.1 Introduction

In this chapter, we present a word embedding model that learns cross-sentence

dependency for improving end-to-end co-reference resolution (E2E-CR). While the

traditional E2E-CR model generates word representations by running long short-term

memory (LSTM) recurrent neural networks on each sentence of an input article or

conversation separately, we propose linear sentence linking and attentional sentence

linking models to learn cross-sentence dependency. Both sentence linking strategies

enable the LSTMs to make use of valuable information from context sentences while

calculating the representation of the current input word. With this approach, the

LSTMs learn word embeddings considering knowledge not only from the current

sentence but also from the entire input document. Experiments show that learning

cross-sentence dependency enriches information contained by the word representations,

and improves the performance of the co-reference resolution model compared with our

baseline.

Co-reference resolution requires models to cluster mentions that refer to the same

physical entities. The models based on neural networks typically require different

levels of semantic representations of input sentences. The models usually need to

59

calculate the representations of word spans, or mentions, given pre-trained character

and word-level embeddings [Turian et al., 2010, Pennington et al., 2014] before pre-

dicting antecedents. The mention-level embeddings are used to make co-reference

decisions, typically by scoring mention pairs and making links [Lee et al., 2017,

Clark and Manning, 2016a, Wiseman et al., 2016]. Long short-term memories (LSTMs)

are often used to encode the syntactic and semantic information of input sentences.

Articles and conversations include more than one sentences. Considering the

accuracy and efficiency of co-reference resolution models, the encoder LSTM usually

processes input sentences separately as a batch [Lee et al., 2017]. The disadvantage

of this method is that the models do not consider the dependency among words from

different sentences, which plays a significant role in word representation learning and

co-reference predicting. For example, pronouns are often linked to entities mentioned

in other sentences, while their initial word vectors lack dependency information. As

a result, a word representation model cannot learn an informative embedding of a

pronoun without considering cross-sentence dependency in this case.

It is also problematic if we encode the input document considering cross-sentence

dependency and treat the entire document as one sentence. An input article or

conversation can be too long for a single LSTM cell to memorize. If the LSTM updates

itself for too many steps, gradients will vanish or explode [Pascanu et al., 2013], and

the co-reference resolution model will be very difficult to optimize. Regarding the

entire input corpus as one sequence instead of a batch also significantly increases the

time complexity of the model.

To solve the problem that traditional LSTM encoders, which treat the input

sentences as a batch, lack an ability to capture cross-sentence dependency, and to

avoid the time complexity and difficulties of training the model concatenating all input

sentences, we propose a cross-sentence encoder for end-to-end co-reference (E2E-CR).

Borrowing the idea of an external memory module from [Sukhbaatar et al., 2015], an

external memory block containing syntactic and semantic information from context

sentences is added to the standard LSTM model. With this context memory block,

the proposed model is able to encode input sentences as a batch, and also calculate the

60

representations of input words by taking both target sentences and context sentences

into consideration. Experiments showed that this approach improved the performance

of co-reference resolution models.

5.2 Related Work

5.2.1 Co-reference Resolution

A popular method of co-reference resolution is mention ranking [Durrett and Klein, 2013].

Reading each mention, the model calculates co-reference scores for all antecedent

mentions, and picks the mention with the highest positive score to be its co-reference.

Many recent works are based on this approach. [Durrett and Klein, 2013] designed a

set of feature templates to improve the mention-ranking model. [Peng et al., 2015]

proposed a mention-ranking model by jointly learning mention heads and co-references.

[Clark and Manning, 2016a] proposed a reinforcement learning framework for the

mention ranking approach. Based on similar ideas but without using parsing features,

the authors of [Lee et al., 2017] proposed the current state-of-the-art model which

uses neural networks to embed mentions and calculate mention and antecedent scores.

[Lee et al., 2018] applied ELMo embeddings [Peters et al., 2018] to improve within-

sentence dependency modeling and word representation learning. [Wiseman et al., 2016]

and [Clark and Manning, 2016b] proposed models using global entity-level features.

5.2.2 Language Representation Learning

Distributed word embeddings have been used as the basic unit of language representa-

tion for over a decade [Bengio et al., 2003]. Pre-trained word embeddings, for example

GloVe [Pennington et al., 2014] and Skip-Gram [Mikolov et al., 2013] are widely used

as the input of natural language processing models.

Long short-term memory (LSTM) networks [Hochreiter and Schmidhuber, 1997]

are widely used for sentence modeling. A single-layer LSTM network was applied in

the previous state-of-the-art co-reference model [Lee et al., 2017] to generate word

61

and mention representations. To capture longer distance dependencies , [?] proposed

a recurrent model that outputs hidden states by skipping input tokens.

Recently, memory networks [Sukhbaatar et al., 2015] have been applied in language

modeling [Cheng et al., 2016, Tran et al., 2016]. Applying an attention mechanism

on memory cells, memory networks allow the model to focus on significant words or

segments for classification and generation tasks. Previous works have shown that

applying memory blocks in LSTMs also improves long-distance dependency extraction

[Yogatama et al., 2018].

5.3 Learning Cross-Sentence dependency

To improve the word representation learning model for better co-reference resolution

performance, we propose two word representation models that learn cross-sentence

dependency.

5.3.1 Linear Sentence Linking

Instead of treating the entire input document as separate sentences and encode the

sentences as a batch with an LSTM, the most direct way to consider cross-sentence

dependency is to initialize LSTM states with the encodings of adjacent sentences. We

name this method linear sentence linking (LSL).

In LSL, we encode input sentences with a 2-layer bidirectional LSTM. Give input

sentences [𝑠1, 𝑠2 . . . 𝑠𝑛], the outputs of the first layer are [[−→𝑠 1;
←−𝑠 1], [

−→𝑠 2;
←−𝑠 2], . . . [

−→𝑠 𝑛;
←−𝑠 𝑛]].

In the second LSTM layer, the initial state of the forward LSTM of 𝑠𝑖 is initialized as

−→
𝑆 𝑖 = [−→𝑐 2

0; [
−→𝑠 𝑖−1;

←−𝑠 𝑖−1]]

while the backward state is initialized as

←−
𝑆 𝑖 = [←−𝑐 2

0; [
−→𝑠 𝑖−1;

←−𝑠 𝑖−1]]

where 𝑐𝑖0 stands for the initial cell of the 𝑖-th layer, and 𝑥 stands for the final

62

output of the LSTMs in first layer. We then concatenate the outputs of the forward

and backward LSTMs in the second layer as the word representations for co-reference

prediction.

5.3.2 Attentional Sentence Linking

It is difficult for LSTMs to embed enough information about a long sentence into

a low-dimensional distributed vector. To collect richer knowledge from neighbor

sentences, we propose a long short-term recurrent memory module and an attention

mechanism to improve sentence linking.

To describe the architecture of the proposed model, we focus on adjacent input

sentences 𝑠𝑖−1 and 𝑠𝑖. We present the input embeddings of the 𝑗-th word in the 𝑖-th

sentence with 𝑥𝑖,𝑗.

Long Short-Term Memory RNNs

To solve the traditional recurrent neural networks, [Hochreiter and Schmidhuber, 1997]

proposed the LSTM architecture. The detail of recurrent state updating in LSTMs

ℎ𝑡 = 𝑓𝑙𝑠𝑡𝑚(𝑥𝑡, ℎ𝑡−1, 𝑐𝑡−1) is shown in section 2.2.4.

where 𝑥𝑡 is the input embedding and ℎ𝑡 is the output representation of the 𝑡-th

word.

LSTMs with Cross-Sentence Attention

We design an LSTM module with cross-sentence attention for capturing cross-sentence

dependency. We name this method attentional sentence linking (ASL). Considering

input word 𝑥𝑖,𝑡 in the 𝑖-th sentence and all words from the previous sentence 𝑋𝑖−1 =

[𝑥𝑖−1,1, 𝑥𝑖−1,2, . . . , 𝑥𝑖−1,𝑚], we regard the matrix 𝑋𝑖−1 as an external memory module

and calculate an attention on its cells, where each cell contains a word embedding.

𝛼𝑗 =
𝑒𝑐𝑗∑︀
𝑘 𝑒

𝑐𝑘
(5.1)

63

𝑐𝑘 = 𝑓𝑐([𝑥𝑖,𝑡;ℎ𝑡−1;𝑥𝑖−1,𝑘]
𝑇) (5.2)

With the attention distribution 𝛼, we can get a vector summarizing related

information from 𝑠𝑖−1,

𝑣𝑖−1 =
∑︁
𝑗

𝛼𝑗 · 𝑥𝑖−1,𝑗 (5.3)

The model decides if it needs to pay more attention on the current input or

cross-sentence information with a context gate.

𝑔𝑡 = 𝜎(𝑓𝑔([𝑥𝑖,𝑡;ℎ𝑡−1; 𝑣𝑖−1]
𝑇)) (5.4)

�̂�𝑖,𝑡 = 𝑔𝑡 · 𝑥𝑖,𝑡 + (1− 𝑔𝑡) · 𝑣𝑖−1 (5.5)

𝜎(·) stands for the Sigmoid function. The word representation of the target word

is calculated as

ℎ𝑖,𝑡 = 𝑓𝑙𝑠𝑡𝑚(�̂�𝑖,𝑡, ℎ𝑖,𝑡−1, 𝑐𝑖,𝑡−1) (5.6)

where 𝑓𝑙𝑠𝑡𝑚 stands for standard LSTM update described in section 5.3.2.

5.3.3 Co-reference Prediction

In this work, we apply the mention-ranking end-to-end co-reference resolution (E2E-

CR) model proposed by [Lee et al., 2017] for co-reference prediction. The word

representations applied in E2E-CR model is formed by concatenating pre-trained

word embeddings and the outputs of LSTMs. In our work, we represent words by

concatenating pre-trained word embeddings and the outputs of LSL- and ASL-LSTMs.

64

MUC B3 Ceafe Avg.
Models Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 F1

[Wiseman et al., 2016] 77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2
[Clark and Manning, 2016b] 78.9 69.8 74.0 70.1 57.0 62.9 62.5 55.8 59.0 65.3
[Clark and Manning, 2016a] 79.2 70.4 74.6 69.9 58.0 63.4 63.5 55.5 59.2 65.7
[Lee et al., 2017] 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2

E2E-CR + LSL 81.0 71.5 76.0 72.6 59.4 65.3 65.0 57.5 61.0 67.4
E2E-CR + ASL 79.2 73.7 76.4 69.4 62.1 65.6 64.0 58.9 61.4 67.8

Table 5.1: Experimental results of previous models and cross-sentence dependency
learning models on the CoNLL-2012 shared task.

5.4 Experiments

We train and evaluate our model on the English corpus of the CoNLL-2012 shared

task [Pradhan et al., 2012]. We implement our model based on the published imple-

mentation of the baseline E2E-CR model [Lee et al., 2017] 1. Our implementation

is also available online for reproducing the results reported in this thesis 2. In this

section, we first describe our hyperparameter setup, and then show the experimental

results of previous work and our proposed models.

5.4.1 Model and Hyperparameter Setup

In practice, the LSTM modules applied in our model have 200 output units. In

ASL, we calculate cross-sentence dependency using a multi-layer perceptron with

one hidden layer consisting of 150 hidden units. The initial learning rate is set as

0.001 and decays 0.001% every 100 steps. The model is optimized with the Adam

algorithm [Kingma and Ba, 2014]. We randomly select up to 40 continuous sentences

for training if the input is too long. In co-reference prediction, we select 250 candidate

antecedents as our baseline model.

5.4.2 Experiment Results and Discussion

We evaluate our model on the test set of the CoNLL-2012 shared task. The performance

of previous work and our model are shown in Table 5.1. We mainly focus on the

1https://github.com/kentonl/e2e-coref
2https://github.com/luohongyin/coatt-coref

65

- I remember receiving an SMS like this one
last year before it snowed since snowfall would
affect road conditions in Beijing to a large extent.
- Uh-huh . However, it did not give people such
a special feeling as it did this time.

- Reporters are tired of the usual stand ups.
- They want to be riding on a train or walking
in the rain or something to get attention .

- Planned terrorist bombing that ripped a 20 x
40 - foot hole in the Navy destroyer USS Cole
in the Yemeni port of Aden.
- The ship was there for refueling.

- Yemeni authorities claimed they have
detained over 70 people for questioning.
- These include some Afghan - Arab volunteers.

Table 5.2: Examples predictions of the ASL model and the baseline model. The bold
and underlined words in the second sentences are the target pronouns or references.
The underlined phrases and words in the first sentences are the groundtruth co-
references. Red colored words are the predictions of the baseline E2E-Coref model,
while the green phrases and words are the predictions of our model. The examples
showed that our model successfully captured the cross-sentence information.

average F1 score of MUC, 𝐵3, and CEAF metrics. Comparing with the baseline model

that achieved 67.2% F1 score, the ASL model improved the performance by 0.6%

and achieved 67.8% average F1. Experiments show that the models that consider

cross-sentence dependency significantly outperform the baseline model, which encodes

each sentence from the input document separately.

Experiments also indicated that the ASL model has better performance than

the LSL model, since it summarizes extracts context information with an attention

mechanism instead of simply viewing sentence-level embeddings. This gives the model

a better ability to model cross-sentence dependency.

Examples for comparing the performance of the ASL model and the baseline are

shown in Table 2. Each example contains two continuous sentences with co-references

distributed in different sentences. Underlined spans in bold are target mentions and

66

annotated co-references. Spans in green are ASL predictions, and spans in red are

baseline predictions. A prediction on “-” means that no mention is predicted as a

co-reference.

Table 2 shows that the baseline model, which does not consider cross-sentence

dependency, has difficulty in learning the semantics of pronouns whose co-references are

not in the same sentence. The pre-trained embeddings of pronouns are not informative

enough. In the first example, “it" is not semantically similar with “SMS" in GloVe

without any context, and in this case, “it" and “SMS" are in different sentences. As a

result, if reading this two sentences separately, it is hard for the encoder to represent

“it" with the semantics of “SMS". This difficulty makes the co-reference resolution

model either prediction a wrong antecedent mention, or cannot find any co-reference.

However, with ASL, the model learns the semantics of pronouns with an attention

to words in other sentences. With the proposed context gate, ASL takes knowledge

from context sentences if local inputs are not informative enough. Based on word

represents enhanced with cross-sentence dependency, the co-reference scoring model

can make better predictions.

5.5 Conclusion and Future Work

We proposed linear and attentional sentence linking models for learning word repre-

sentations that captures cross-sentence dependency. Experiments showed that the

embeddings learned by proposed models successfully improved the performance of

the state-of-the-art co-reference resolution model, indicating that cross-sentence de-

pendency plays an important role in semantic learning in articles and conversations

consists of multiple sentences. It worth exploring if our model can improve the perfor-

mance of other natural language processing applications whose inputs contain multiple

sentences, for example, reading comprehension, dialog generation, and sentiment

analysis.

67

68

Chapter 6

Self-Attention Convolutional Neural

Networks for Video Question

Answering

6.1 Introduction

With the tremendous increase in new devices and machines, people are not always

aware of the various features and functions of their devices or how to use new functions

they never tried before. However, there are hundreds of video instructions over

the Internet to help people understand how to use their devices and corresponding

functions. Most people usually enter their questions as a query to a video search

engine, e.g. Youtube, to search for an instruction. However, the search engines have

some limitations. Firstly, they are not designed for answering question. Secondly,

they retrieves entire videos sometimes with a long duration. Therefore, users need to

manually search inside a video to find their desired answers.

To address those limitations, several models are proposed by previous research to

find the users’ interest points in videos. Unfortunately, these approaches are obstructed

by another limitation: lack of labeled data, including manual annotation of video

segments and moments. While deep neural networks with attention mechanisms can

69

Video
Instruction

What does the auto
function for air conditioner

do?

“the system also comes with an auto function it automatically controls
the temperature air distribution and air flow to reach and maintain a
comfort level based on the temperature you selected”

Figure 6-1: An example of moment detection in a video for an input question “what
does the auto function for air conditioner do?”

infer and extract such moments automatically in an unsupervised way, potentially

better results can be achieved when having the target moments provided in advance,

which enables supervised or semi-supervised training of the attention. This would

allow not only more reliable video retrieval, but also better moment detection.

Following this idea, we have developed a corpus identifies the related videos and

its segments to provide an accurate answer for an input question. In our corpus, each

video introduces a set of devices and describes their aspects and functions. The videos

also include instructions about how can users operate, or interact with the devices.

We annotated the videos to manually split them into smaller segments, where each

segment focuses on a single aspect or a single function for answering users’ questions

70

more directly. For example, the question shown in Figure 6-1, “What does the auto

function for air conditioner do?” can be clearly answered by a 30s long segment,

instead of the entire video.

We develop two models–self-attention convolutional neural networks and mem-

ory neural networks [Mohtarami et al., 2018]–with our corpus for the video retrieval

and moment detection tasks. The models encode input questions, videos and their

segments into their embedding representations, and use attentions over the encoded

representations to retrieve the best video and to detect the desired moment for an-

swering the input question. In general, the experiments show that (i) the moment

detection task is more challenging than the video retrieval task, and (ii) the models

can significantly perform better if they use the labels for video segments/moments

during training, and (iii) our models outperform the YouTube baseline.

6.2 Related Work

Our work and collected corpus have the following features:

∙ Modality: In our corpus, there are textual questions which their answers are

in two modalities–videos and transcripts.

∙ Integration: In our corpus, there are videos that discuss a more general topic,

e.g., introducing the air conditioner (AC) of a vehicle. These videos have different

segment parts about more detailed sub-topics, e.g., how to turn on the AC or

how to adjust it. The former is related to video retrieval and the latter is related

to moment detection task. This enable us to integrate both video retrieval and

moment detection tasks to find the exact answer of a given question.

∙ Chain: In our corpus, a video is highly focused on a certain topic with the

segments that are usually about similar sub-topics and highly related to each

other. This makes the moment detection task more challenging.

With respect to the above features, we compare our work with following previous work

categories.

71

6.2.1 Video Retrieval.

[Jiang et al., 2007] presented a model with rich hand-crafted features to retrieve the

related videos for a given query. [Xu et al., 2015b] proposed a model that jointly learns

video and language embeddings for better retrieval task. [Araujo and Girod, 2018]

showed that videos can be retrieved with image queries. While, instead of merely using

visual inputs, [Yang and Meinel, 2014] used transcripts to improve the performance

of video retrieval. The works in this category aims to retrieve the videos related to

a specific query without considering which segment of the video is the exact answer

to the given query (i.e., moment detection). Thus, our work is different from this

category in terms of the Integration and Chain features of our work.

6.2.2 Visual/Video Question Answering

[Lin et al., 2014] and [Antol et al., 2015] worked on the Visual Questions Answering

(VQA) task and respectively presented MSCOCO and VQA datasets focused on answering

questions about scene understanding. [Das et al., 2017] proposed a multi-turn visual

question corpus. While the VQA is developed for images, our work focuses on videos.

In video QA, [Rohrbach et al., 2015] presented the MPII-MD dataset that contains

movies and their descriptions. [Tapaswi et al., 2016] presented the MovieQA dataset

which contains collected movies, subtitles, stories, questions, and candidate textual

answers for multiple choice questions. The answers could be generated or selected

from the textual candidates. In contrast of their works, we aim to retrieve the videos

that include answers for a given question and then detect the moments of the retrieved

videos that provide the best answers. Thus, our work is different in terms of the

Integration and Chain features.

6.2.3 Community Question Answering

Given a Community Question Answering (cQA) thread containing a question and a list

of answers, the works in this category aim to automatically rank the answers accord-

ing to their relevance to the question [Mohtarami et al., 2016, Màrquez et al., 2015,

72

Belinkov et al., 2015, Nakov et al., 2016]. The answers may have some relations and

in discussion with each other [Barrón-Cedeno et al., 2015, Joty et al., 2015], but in

general they are written by different users and are mostly independent. Thus, this is

different from the Chain feature of our work. Furthermore, our work is different in

terms of the Integration and Chain features.

6.3 The Corpus

Our corpus contains videos and their transcripts, where each video is divided into

several segments (i.e. video clips) and each segment is annotated with a set of questions.

Overall, the process of corpus creation has several stages: (i) video extraction, (ii) video

segmentation, and (iii) question annotation, which we describe below.

6.3.1 Video Extraction

We consider a YouTube channel–Ford Motor Company 1–as the source of our videos.

This channel contains the How-To videos that introduce a set of functions on vehicles,

e.g., “How to Check Your Tires with the Penny Test? ” We collected all its 107 How-

To videos, transcribed them as a part of this corpus. The statistics of the videos

and transcripts, e.g., the lengths of videos and transcripts, the vocabulary size, are

presented in rows 1–9 of Table 6.1.

6.3.2 Video Segmentation

Following our aim of detecting the moment of a video with respect to a given question,

we split each video into segments based on its transcript. Each segment includes one

or more complete sentences and can be used to answer the How-to questions about

a specific topic. For example, if a video is about the air conditioner (AC) system of

a vehicle, a segment might introduce how to turn on the AC or the function of the

“AUTO” button on the panel. The annotators also provide questions based on a single

1https://www.youtube.com/user/ford

73

Videos Segments

Videos
1. Num. of Videos 107 464
2. Avg. Num. of seg. 4.34 -
3. Total Length (sec) 9,605.35 -
4. Avg. of Length (sec) 89.77 20.70
5. Min. of Length (sec) 11.45 4.13
6. Max. of Length (sec) 292.87 104.3

Transcripts
7. Avg. Num. of Words 264.50 60.99
8. Total Num. of Words 28,301 28,301
9. Vocab. Size 2,489 2,489

Questions
10. Num. of Questions - 9,482
11. Num. of Ques./seg. - 20.44
12. Avg. Num. of Words - 9.32
13. Vocab. Size - 3,329

Table 6.1: The statistics of the collected videos, transcripts, and questions.

video segment and its transcript instead of watching the entire video. The statistics

of the segments are shown in Table 6.1.

6.3.3 Question Annotation

We have used Amazon Mechanical Turk2 (AMT) to collect questions for the video

segments. Each video segment was assigned to 10 to 12 annotators, who were asked

to enter two different questions that are answered by the content of the given video

segment. Note that only the videos are shown to the annotators without their

transcripts to avoid using the exact words for the transcripts in the questions. In

total, we collected around 10K questions. The corpus and the implementation of our

models are publicly available 3. Rows 10–13 in Table 6.1 show the statistics of the

collected questions, and an example of the questions is shown in Figure 6-1.

2https://www.mturk.com/
3https://github.com/luohongyin/VehicleVQA

74

6.4 Models

In this work, we evaluate three models for video retrieval and moment detection tasks

using our corpus; YouTube video retrieval search engine4, self-attention convolutional

neural networks (SACNN) and memory neural networks (MemNN), which are explained

below.

6.4.1 YouTube

We use the YouTube API 5 as a baseline model. Given a question as a query to the

API, it attempts to find the related videos to the question from the specific channel

used for our corpus as explained in Section6.3. Then, it retrieves a ranked set of

videos, and this set is used to evaluate the performance of YouTube.

6.4.2 Memory Networks

A memory network (MemNN) model is proposed in [Mohtarami et al., 2018] for stance

detection task with the capability of extracting rationales from documents with respect

to given claims. In this work, we investigate the model for the video retrieval and

moment detection tasks. We give a question and a video including all its segments

to the model and it outputs a score for the video and a set of scores corresponding

to the video segments–as rationales–that indicate the relatedness of the video and

its segments to the input question. In this work, we employ the same MemNN

architecture proposed in [Mohtarami et al., 2018]. The architecture of the model is

shown in Figure 6-2 [Sukhbaatar et al., 2015].

We train a single MemNN for both video retrieval and moment detection. The

only supervision signal we used for the training is the video-level labels. Thus, the

moment detection task is a semi-supervised task for MemNN. In this work, we use

the final output of the MemNN to find the best video and use the attention weights

over segments to find the best segment.

4https://www.youtube.com/
5https://www.youtube.com/yt/dev/api-resources/

75

Figure 6-2: The structure of the applied MemNN model [Sukhbaatar et al., 2015].

6.4.3 SACNNs

We also present the SACNN model for our tasks. We apply a convolutional neural

network (CNN) as the first step to encode the words and their contexts to their

embedding representations. Upon the CNN layers, we apply a self-attention mech-

anism [Cheng et al., 2016, Tran et al., 2016, Vaswani et al., 2017] as a pooling layer

to generate fixed-length embeddings for input questions, videos, and video segments.

These embeddings are used to calculate the cosine similarity between the input ques-

tions with the videos or their segments. Then, these scores are used to select the top

𝑁 videos as possible answers. The details of the model is shown in Figure 6-3.

Figure 6-3: The architecture of the SACNN model. The blue blocks stand for word-
level and sentence-level distributed embeddings. The red blocks stand for the attention
weights assigned to each word. The sentence embedding is calculated by averaging all
word embeddings with the attention distribution.

In practice, we use a two-layer CNN with ReLU activation function for the hidden

layer. The size of the convolution window is 5, for both layers. The output of the

76

CNN is consist of two parts - an attention score and a embedding vector. The feed

forward process of the SACNN is shown as follow,

𝐻 = 𝑅𝑒𝐿𝑈(𝑊ℎ *𝑋 + 𝑏ℎ) (6.1)

�̂�, 𝑌 = 𝑊𝑦 *𝐻 + 𝑏𝑦 (6.2)

𝐸 = 𝑅𝑒𝐿𝑈(�̂�) (6.3)

where 𝐸 = [𝑒1, 𝑒2, . . . , 𝑒𝑛] stands for the context embeddings output by the CNN

module. 𝑌 = [𝑦1, 𝑦2, . . . , 𝑦𝑛] is a vector of scores. We then calculate an attention

distribution with the scores 𝑌 . The attention of the 𝑖-th word, 𝛼𝑖, is

𝛼𝑖 =
𝑒𝑦𝑖∑︀
𝑗 𝑒

𝑦𝑗
(6.4)

With the attention distribution over the input sentence (question or transcript),

the final sentence embedding is calculated as

𝑠𝑡 =
∑︁
𝑖

𝛼𝑖 · 𝑒𝑖 (6.5)

where 𝑡 ∈ {𝑄, 𝑇}, standing for either question and transcript. In practice, the

question and transcript encoders do not share parameters.

6.4.4 Training

In this work, we train our models with negative sampling. For each question-transcript

pair, we randomly select 15 negative transcripts for the input question. With the

question embedding 𝑞 and a series of transcript embedding [𝑡𝑝, 𝑡𝑛1 , 𝑡
𝑛
2 , . . . , 𝑡

𝑛
𝑚], where 𝑡𝑝

stands for the positive sample and 𝑡𝑛𝑖 are negative samples, we calculate the probability

that a transcript is the answer to a question by

𝑝(𝑡𝑖|𝑞) =
𝑒𝑡𝑖·𝑞∑︀
𝑗 𝑒

𝑡𝑗 ·𝑞
(6.6)

77

Then we update the parameters in the model with stochastic gradient descent

(SGD) based on cross-entropy losses,

𝑙 = −
∑︁
𝑖

(𝑦𝑖 · 𝑙𝑜𝑔(𝑝(𝑡𝑖|𝑞)) + (1− 𝑦𝑖) · 𝑙𝑜𝑔(1− 𝑝(𝑡𝑖|𝑞))) (6.7)

where 𝑦𝑖 is 1 for the positive samples and 0 for negative samples.

6.5 Experiments and Evaluation

We evaluate the models explained in Section 6.4 with our corpus on the video retrieval

and moment detection tasks. We apply 10-fold cross-validation to evaluate the

performance of our models, where all questions for the same video are assigned to

the same fold. We report mean averaged precision (MAP) at 𝑁 = {1, 5, 10}, which is

the standard evaluation metric of ranking and retrieval tasks. We do not report the

MAP@10 score of the local moment detection task, since many videos contain less

than 10 segments. In our published corpus, we also split the folds as same as we used

in our experiments.

6.5.1 Video Retrieval

The experimental results for the video retrieval task is shown in Table 6.2 (rows 1–3).

The results indicate that the YouTube API performs not well (row 1), since traditional

video search engines are not specially designed for retrieving information based on

questions. This proves that designing a special video question answering system for

video instruction retrieval is necessary.

Both neural models significantly outperform the YouTube baseline. The MemNN

and SACNN can achieve high performance, in particular for MAP@5 and MAP@10.

The reason is that they encode the videos transcriptions using embedding representa-

tions through attention mechanism. With this mechanism, the models can highlight

vehicle-related words and terms, which are more important and informative for the

video retrieval model to make the decision. The MemNN relatively performs better

78

than SACNN, Because it applies higher-level attentions over video segments, helping

the model to learn better representation of the entire videos.

6.5.2 Local Moment Detection

In this task, we assume the model is given a related video to an input question, and

the model aims to retrieve the moment in the given video that makes the best answer

to the question. The experimental results are shown in Table 6.2 (rows 4–5). We

do not report the performance of Youtube search engine because it cannot perform

moment detection.

Experimental results show that the SACNN leads to significantly better perfor-

mance than MemNN, in particular for MAP@1. The reason is that SACNN uses

the labels for video segments during training, While MemNN uses only the video

labels–not segment labels–during training. Although not using explicit segment-level

labels, the MemNN model still achieved high MAP@5 accuracy. This suggests that

the segmental attention of the MemNN successfully captured some of the moments

that directly answer the questions.

However, in real-life situations, the video question answering system is not provided

with the groundtruth related video as the settings in the local moment detection task.

Thus the global moment detection task is more important.

6.5.3 Global Moment Detection

To align our experiments better with the real-life application, we propose the global

moment detection task. In this task, we relax our assumption for the local moment

detection (described above), where the model is given all related and unrelated videos

for an input question, and is asked to retrieve the best moment from the entire given

set of videos.

The experimental results are shown in Table 6.2 (rows 6–7). The retrieving

performances of both models are lower than the local moment detection task, indicating

that the problem becomes more difficult when considering all videos, which significantly

79

MAP@1 MAP@5 MAP@10

Video Retrieval
1. YouTube 36.54 56.24 -
2. MemNN 65.02 90.36 93.91
3. SACNN 66.69 87.42 91.09

Local Moment Detection
4. MemNN 37.38 80.17 -
5. SACNN 77.94 97.65 -

Global Moment Detection
6. MemNN 24.53 54.66 75.14
7. SACNN 57.13 80.75 85.20

Table 6.2: Experimental results of SACNN and MemNN models, and YouTube baseline
for video retrieval and moment detection tasks. The experimental results show that
our method significantly outperformed the Youtube baseline in the video retrieval
task. The proposed models also perform well on both moment detection tasks.

enlarged the search space of the question-answering model.

With segment-level supervision, the SACNN model achieved higher performance

than MemNN. The model is able to successfully hit the moment with the best answer

in its top-5 choices in around 4 out of 5 test cases. In addition, although the MemNN

model for global moment detective is semi-supervised, it still reached good MAP@10

performance. This indicates that the MemNN learns to retrieve the best video by

paying attention to the most related video segments.

6.6 Conclusion and Future Work

We have described a novel corpus that unifies video retrieval and moment detection

tasks. This is the first corpus to offer such a combination. We further developed a self-

attention convolutional neural network and a memory network model, and evaluated

them and the YouTube video search engine on our corpus. The results showed that the

neural models can achieve better performance compared to the YouTube baseline. In

future work, we plan to extend the annotations to cover other domains, other modalities

such as spoken language, and other important aspects of video and moment retrieval

80

such as personalized retrieval using the personal interests of users, which have been

shown useful in previous research [Wang et al., 2017, He et al., 2017, Cao et al., 2017].

81

82

Chapter 7

Conclusions

This thesis proposed different attention mechanisms for different natural language

tasks. Experimental results have shown the effectiveness of our proposed models.

7.1 Summary

In Chapter 3, we simulated an LSTM architecture with CNNs and self attentions.

with this method, the model can process natural languages in parallel, while still

achieving comparable performance with the standard LSTMs.

In Chapter 4, we proposed a phrase-aware word-level language model. We employed

syntactic heights for phrase inducing and generated phrase embeddings with attentions

calculated with the heights. This method improved several strong baselines, such as

AWD-LSTM and Transformer-XL. We also found that the learned induced phrases

are interpretable.

In Chapter 5, we improved the state-of-the-art end-to-end co-reference resolution

(E2E-Coref) model by integrating cross-sentence information to the LSTM processing

the target sentence. The model is realized with an cross-sentence attention model.

In Chapter 6, we constructed a video question answering corpus. We solved both

video retrieval and moment detection tasks with memory networks and self-attention

convolutional neural networks. Our methods significantly outperformed the Youtube

video retrieval baseline.

83

7.2 Contributions

This thesis proposed different attention mechanisms for different natural language

tasks. Experimental results have shown the effectiveness of our proposed models.

Experiments on different tasks proved that the proposed attention mechanisms can

improve different levels of language representations. Cross-sentence attention improved

contextual word embeddings for co-reference recognition. Context attention in GTCNs

improved context representation for language modeling. The headword attention for

following phrases helps the language model to induce the following phrase and learn

syntax without any supervision. Self-attention improved sentence embeddings for

video question answering.

7.3 Future Work

The proposed methods in this thesis can improve many other models since they learn

the natural language better than current models, as suggested by the experimental

results. In future work, we will apply the proposed attention mechanisms in different

problems and applications in the field of natural langauge processing, including machine

translation, reading comprehension, question answering, and information extraction.

We will also explore more effective method for improving language modeling and

representation.

84

Bibliography

[Antol et al., 2015] Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D.,
Lawrence Zitnick, C., and Parikh, D. (2015). VQA: Visual question answering.
In Proceedings of the IEEE International Conference on Computer Vision, pages
2425–2433.

[Araujo and Girod, 2018] Araujo, A. and Girod, B. (2018). Large-scale video re-
trieval using image queries. IEEE Transactions on Circuits and Systems for Video
Technology, 28(6):1406–1420.

[Baevski and Auli, 2018] Baevski, A. and Auli, M. (2018). Adaptive input represen-
tations for neural language modeling. arXiv preprint arXiv:1809.10853.

[Bahdanau et al., 2014] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural
machine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473.

[Bai et al., 2018] Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation
of generic convolutional and recurrent networks for sequence modeling. arXiv
preprint arXiv:1803.01271.

[Barrón-Cedeno et al., 2015] Barrón-Cedeno, A., Filice, S., Da San Martino, G., Joty,
S., Marquez, L., Nakov, P., and Moschitti, A. (2015). Threadlevel information for
comment classification in community question answering. In Proceedings of the
ACL-IJCNLP, volume 15, pages 687–693.

[Belinkov et al., 2015] Belinkov, Y., Mohtarami, M., Cyphers, S., and Glass, J. (2015).
VectorSLU: A continuous word vector approach to answer selection in community
question answering systems. SemEval-2015, page 282.

[Bengio et al., 2003] Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003).
A neural probabilistic language model. Journal of machine learning research,
3(Feb):1137–1155.

[Bradbury et al., 2016] Bradbury, J., Merity, S., Xiong, C., and Socher, R. (2016).
Quasi-recurrent neural networks. arXiv preprint arXiv:1611.01576.

[Campos et al., 2017] Campos, V., Jou, B., Giró-i Nieto, X., Torres, J., and Chang,
S.-F. (2017). Skip RNN: Learning to skip state updates in recurrent neural networks.
arXiv preprint arXiv:1708.06834.

85

[Cao et al., 2017] Cao, D., Nie, L., He, X., Wei, X., Zhu, S., and Chua, T.-S. (2017).
Embedding factorization models for jointly recommending items and user generated
lists. In Proceedings of the SIGIR, pages 585–594, New York, NY, USA.

[Cheng et al., 2016] Cheng, J., Dong, L., and Lapata, M. (2016). Long short-term
memory-networks for machine reading. arXiv preprint arXiv:1601.06733.

[Chung et al., 2014] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Em-
pirical evaluation of gated recurrent neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555.

[Clark and Manning, 2016a] Clark, K. and Manning, C. D. (2016a). Deep re-
inforcement learning for mention-ranking coreference models. arXiv preprint
arXiv:1609.08667.

[Clark and Manning, 2016b] Clark, K. and Manning, C. D. (2016b). Improving coref-
erence resolution by learning entity-level distributed representations. arXiv preprint
arXiv:1606.01323.

[Dai et al., 2019] Dai, Z., Yang, Z., Yang, Y., Cohen, W. W., Carbonell, J., Le, Q. V.,
and Salakhutdinov, R. (2019). Transformer-xl: Attentive language models beyond
a fixed-length context. arXiv preprint arXiv:1901.02860.

[Das et al., 2017] Das, A., Kottur, S., Gupta, K., Singh, A., Yadav, D., Moura, J. M.,
Parikh, D., and Batra, D. (2017). Visual Dialog. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[Dauphin et al., 2016] Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D.
(2016). Language modeling with gated convolutional networks. arXiv preprint
arXiv:1612.08083.

[Dauphin et al., 2017] Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. (2017).
Language modeling with gated convolutional networks. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 933–941. JMLR.
org.

[Durrett and Klein, 2013] Durrett, G. and Klein, D. (2013). Easy victories and uphill
battles in coreference resolution. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages 1971–1982.

[Dyer et al., 2016] Dyer, C., Kuncoro, A., Ballesteros, M., and Smith, N. A. (2016).
Recurrent neural network grammars. arXiv preprint arXiv:1602.07776.

[Gal and Ghahramani, 2016] Gal, Y. and Ghahramani, Z. (2016). A theoretically
grounded application of dropout in recurrent neural networks. In Advances in
neural information processing systems, pages 1019–1027.

86

[Gao et al., 2018] Gao, F., Wu, L., Zhao, L., Qin, T., Cheng, X., and Liu, T.-Y. (2018).
Efficient sequence learning with group recurrent networks. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), volume 1,
pages 799–808.

[Garcia and Bruna, 2017] Garcia, V. and Bruna, J. (2017). Few-shot learning with
graph neural networks. arXiv preprint arXiv:1711.04043.

[Gilmer et al., 2017] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl,
G. E. (2017). Neural message passing for quantum chemistry. In Proceedings of the
34th International Conference on Machine Learning-Volume 70, pages 1263–1272.
JMLR. org.

[Grave et al., 2016] Grave, E., Joulin, A., and Usunier, N. (2016). Improving neural
language models with a continuous cache. arXiv preprint arXiv:1612.04426.

[He et al., 2017] He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. (2017).
Neural collaborative filtering. In Proceedings of the 26th International Conference
on World Wide Web, WWW ’17, pages 173–182.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural computation, 9(8):1735–1780.

[Inan et al., 2016] Inan, H., Khosravi, K., and Socher, R. (2016). Tying word vectors
and word classifiers: A loss framework for language modeling. arXiv preprint
arXiv:1611.01462.

[Jiang et al., 2007] Jiang, Y.-G., Ngo, C.-W., and Yang, J. (2007). Towards optimal
bag-of-features for object categorization and semantic video retrieval. In Proceedings
of the 6th ACM international conference on Image and video retrieval, pages 494–501.
ACM.

[Johnson, 2016] Johnson, D. D. (2016). Learning graphical state transitions.
https://openreview.net/pdf?id=HJ0NvFzxl.

[Joty et al., 2015] Joty, S., Barrón-Cedeno, A., Da San Martino, G., Filice, S., Mar-
quez, L., Moschitti, A., and Nakov, P. (2015). Global thread-level inference for
comment classification in community question answering. In Proceedings of the
EMNLP, volume 15.

[Jurafsky and Martin, 2014] Jurafsky, D. and Martin, J. H. (2014). Speech and lan-
guage processing, volume 3. Pearson London.

[Kim et al., 2016] Kim, Y., Jernite, Y., Sontag, D., and Rush, A. M. (2016). Character-
aware neural language models. In Thirtieth AAAI Conference on Artificial Intelli-
gence.

87

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

[Kipf and Welling, 2016] Kipf, T. N. and Welling, M. (2016). Semi-supervised classi-
fication with graph convolutional networks. Proceedings of ICLR.

[Kuncoro et al., 2018] Kuncoro, A., Dyer, C., Hale, J., Yogatama, D., Clark, S.,
and Blunsom, P. (2018). Lstms can learn syntax-sensitive dependencies well, but
modeling structure makes them better. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), volume 1,
pages 1426–1436.

[Lee et al., 2017] Lee, K., He, L., Lewis, M., and Zettlemoyer, L. (2017). End-to-end
neural coreference resolution. arXiv preprint arXiv:1707.07045.

[Lee et al., 2018] Lee, K., He, L., and Zettlemoyer, L. (2018). Higher-order coreference
resolution with coarse-to-fine inference. arXiv preprint arXiv:1804.05392.

[Lee et al., 2016] Lee, K., Salant, S., Kwiatkowski, T., Parikh, A., Das, D., and Berant,
J. (2016). Learning recurrent span representations for extractive question answering.
arXiv preprint arXiv:1611.01436.

[Levy and Goldberg, 2014] Levy, O. and Goldberg, Y. (2014). Neural word embedding
as implicit matrix factorization. In Advances in neural information processing
systems, pages 2177–2185.

[Li et al., 2018] Li, S., Li, W., Cook, C., Zhu, C., and Gao, Y. (2018). Independently
recurrent neural network (indrnn): Building a longer and deeper rnn. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5457–
5466.

[Li et al., 2016] Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. (2016). Gated
graph sequence neural networks. Proceedings of ICLR.

[Lin et al., 2014] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,
D., Dollár, P., and Zitnick, C. L. (2014). Microsoft coco: Common objects in
context. In European conference on computer vision, pages 740–755. Springer.

[Liu et al., 2018] Liu, H., Simonyan, K., and Yang, Y. (2018). Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055.

[Marcheggiani and Titov, 2017] Marcheggiani, D. and Titov, I. (2017). Encoding sen-
tences with graph convolutional networks for semantic role labeling. In Proceedings
EMNLP.

[Màrquez et al., 2015] Màrquez, L., Glass, J., Magdy, W., Moschitti, A., Nakov, P.,
and Randeree, B. (2015). SemEval-2015 Task 3: Answer Selection in Community
Question Answering. In Proceedings of the 9th International Workshop on Semantic
Evaluation.

88

[Melis et al., 2018] Melis, G., Blundell, C., Kočiskỳ, T., Hermann, K. M., Dyer,
C., and Blunsom, P. (2018). Pushing the bounds of dropout. arXiv preprint
arXiv:1805.09208.

[Melis et al., 2017] Melis, G., Dyer, C., and Blunsom, P. (2017). On the state of the
art of evaluation in neural language models. arXiv preprint arXiv:1707.05589.

[Merity et al., 2017] Merity, S., Keskar, N. S., and Socher, R. (2017). Regularizing
and optimizing LSTM language models. arXiv preprint arXiv:1708.02182.

[Merity et al., 2018] Merity, S., Keskar, N. S., and Socher, R. (2018). An analysis of
neural language modeling at multiple scales. arXiv preprint arXiv:1803.08240.

[Merity et al., 2016] Merity, S., Xiong, C., Bradbury, J., and Socher, R. (2016). Pointer
sentinel mixture models. arXiv preprint arXiv:1609.07843.

[Mikolov et al., 2010] Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and Khu-
danpur, S. (2010). Recurrent neural network based language model. In Eleventh
Annual Conference of the International Speech Communication Association.

[Mikolov et al., 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J.
(2013). Distributed representations of words and phrases and their compositionality.
In Advances in Neural Information Processing Systems, pages 3111–3119.

[Mohtarami et al., 2018] Mohtarami, M., Baly, R., Glass, J., Nakov, P., Màrquez, L.,
and Moschitti, A. (2018). Automatic stance detection using end-to-end memory
networks. In Proceedings of the NAACL, NAACL-HLT ’18, New Orleans, LA, USA.

[Mohtarami et al., 2016] Mohtarami, M., Belinkov, Y., Hsu, W.-N., Zhang, Y., Lei,
T., Bar, K., Cyphers, S., and Glass, J. (2016). SLS at semeval-2016 task 3: Neural-
based approaches for ranking in community question answering. In Proceedings
of NAACL-HLT Workshop on Semantic Evaluation, pages 753–760, San Diego,
California. Association for Computational Linguistics.

[Nakov et al., 2016] Nakov, P., Màrquez, L., Magdy, W., Moschitti, A., Glass, J., and
Randeree, B. (2016). SemEval-2016 task 3: Community question answering. In
Proceedings of the 10th International Workshop on Semantic Evaluation, SemEval
’16, San Diego, California. Association for Computational Linguistics.

[Olah, 2015] Olah, C. (2015). Understanding lstm networks.

[Pascanu et al., 2013] Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the
difficulty of training recurrent neural networks. In International Conference on
Machine Learning, pages 1310–1318.

[Peng et al., 2015] Peng, H., Chang, K.-W., and Roth, D. (2015). A joint frame-
work for coreference resolution and mention head detection. In Proceedings of the
Nineteenth Conference on Computational Natural Language Learning, pages 12–21.

89

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. (2014). Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pages 1532–1543.

[Peters et al., 2018] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C.,
Lee, K., and Zettlemoyer, L. (2018). Deep contextualized word representations.
arXiv preprint arXiv:1802.05365.

[Pham et al., 2018] Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J.
(2018). Efficient neural architecture search via parameter sharing. arXiv preprint
arXiv:1802.03268.

[Polyak and Juditsky, 1992] Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of
stochastic approximation by averaging. SIAM Journal on Control and Optimization,
30(4):838–855.

[Pradhan et al., 2012] Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., and Zhang,
Y. (2012). Conll-2012 shared task: Modeling multilingual unrestricted coreference
in ontonotes. In Joint Conference on EMNLP and CoNLL-Shared Task, pages 1–40.
Association for Computational Linguistics.

[Rae et al., 2018] Rae, J. W., Dyer, C., Dayan, P., and Lillicrap, T. P. (2018). Fast
parametric learning with activation memorization. arXiv preprint arXiv:1803.10049.

[Rohrbach et al., 2015] Rohrbach, A., Rohrbach, M., Tandon, N., and Schiele, B.
(2015). A dataset for movie description. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3202–3212.

[Scarselli et al., 2009] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. (2009). The graph neural network model. IEEE Transactions on
Neural Networks, pages 61–80.

[Schlichtkrull et al., 2017] Schlichtkrull, M., Kipf, T. N., Bloem, P., Berg, R. v. d.,
Titov, I., and Welling, M. (2017). Modeling relational data with graph convolutional
networks. arXiv preprint arXiv:1703.06103.

[Seo et al., 2017] Seo, M., Min, S., Farhadi, A., and Hajishirzi, H. (2017). Neural
speed reading via skim-rnn. arXiv preprint arXiv:1711.02085.

[Seo et al., 2016] Seo, Y., Defferrard, M., Vandergheynst, P., and Bresson, X. (2016).
Structured sequence modeling with graph convolutional recurrent networks. arXiv
preprint arXiv:1612.07659.

[Shaw et al., 2018] Shaw, P., Uszkoreit, J., and Vaswani, A. (2018). Self-attention
with relative position representations. arXiv preprint arXiv:1803.02155.

[Shen et al., 2017] Shen, Y., Lin, Z., Huang, C.-W., and Courville, A. (2017). Neu-
ral language modeling by jointly learning syntax and lexicon. arXiv preprint
arXiv:1711.02013.

90

[Shen et al., 2018a] Shen, Y., Lin, Z., Jacob, A. P., Sordoni, A., Courville, A., and
Bengio, Y. (2018a). Straight to the tree: Constituency parsing with neural syntactic
distance. arXiv preprint arXiv:1806.04168.

[Shen et al., 2018b] Shen, Y., Tan, S., Sordoni, A., and Courville, A. (2018b). Ordered
neurons: Integrating tree structures into recurrent neural networks. arXiv preprint
arXiv:1810.09536.

[Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1):1929–1958.

[Sukhbaatar et al., 2015] Sukhbaatar, S., Weston, J., Fergus, R., et al. (2015). End-
to-end memory networks. In Advances in Neural Information Processing Systems,
pages 2440–2448.

[Tapaswi et al., 2016] Tapaswi, M., Zhu, Y., Stiefelhagen, R., Torralba, A., Urtasun,
R., and Fidler, S. (2016). MovieQA: Understanding Stories in Movies through
Question-Answering. In IEEE Conference on Computer Vision and Pattern Recog-
nition.

[Tran et al., 2016] Tran, K., Bisazza, A., and Monz, C. (2016). Recurrent memory
networks for language modeling. arXiv preprint arXiv:1601.01272.

[Turian et al., 2010] Turian, J., Ratinov, L., and Bengio, Y. (2010). Word representa-
tions: a simple and general method for semi-supervised learning. In Proceedings
of the 48th annual meeting of the association for computational linguistics, pages
384–394. Association for Computational Linguistics.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In
Advances in Neural Information Processing Systems, pages 5998–6008.

[Wang et al., 2017] Wang, X., Nie, L., Song, X., Zhang, D., and Chua, T.-S. (2017).
Unifying virtual and physical worlds: Learning toward local and global consistency.
ACM Trans. Inf. Syst., 36(1):4:1–4:26.

[Wiseman et al., 2016] Wiseman, S., Rush, A. M., and Shieber, S. M. (2016). Learning
global features for coreference resolution. arXiv preprint arXiv:1604.03035.

[Xu et al., 2015a] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R.,
Zemel, R., and Bengio, Y. (2015a). Show, attend and tell: Neural image caption
generation with visual attention. In International Conference on Machine Learning,
pages 2048–2057.

[Xu et al., 2015b] Xu, R., Xiong, C., Chen, W., and Corso, J. J. (2015b). Jointly
modeling deep video and compositional text to bridge vision and language in a
unified framework. In AAAI, volume 5, page 6.

91

[Yang and Meinel, 2014] Yang, H. and Meinel, C. (2014). Content based lecture video
retrieval using speech and video text information. IEEE Transactions on Learning
Technologies, (2):142–154.

[Yang et al., 2017] Yang, Z., Dai, Z., Salakhutdinov, R., and Cohen, W. W. (2017).
Breaking the softmax bottleneck: A high-rank rnn language model. arXiv preprint
arXiv:1711.03953.

[Yogatama et al., 2018] Yogatama, D., Miao, Y., Melis, G., Ling, W., Kuncoro, A.,
Dyer, C., and Blunsom, P. (2018). Memory architectures in recurrent neural
network language models. In International Conference on Learning Representations.
https://openreview. net/forum.

[Zaremba et al., 2014] Zaremba, W., Sutskever, I., and Vinyals, O. (2014). Recurrent
neural network regularization. arXiv preprint arXiv:1409.2329.

[Zhang et al., 2015] Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level
convolutional networks for text classification. In Advances in Neural Information
Processing Systems, pages 649–657.

[Zilly et al., 2016] Zilly, J. G., Srivastava, R. K., Koutník, J., and Schmidhuber, J.
(2016). Recurrent highway networks. arXiv preprint arXiv:1607.03474.

[Zilly et al., 2017] Zilly, J. G., Srivastava, R. K., Koutník, J., and Schmidhuber, J.
(2017). Recurrent highway networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 4189–4198. JMLR. org.

92

