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Abstract
Personal digital assistants such as Siri, Cortana, and Alexa must translate a user’s natural
language query into a semantic representation that the back-end can then use to retrieve in-
formation from relevant data sources. For example, answering a user’s question about the
number of calories in a food requires querying a database with nutrition facts for various
foods. In this thesis, we demonstrate deep learning techniques for performing a semantic
mapping from raw, unstructured, human natural language directly to a structured, rela-
tional database, without any intermediate pre-processing steps or string matching heuris-
tics. Specifically, we show that a novel, weakly supervised convolutional neural architec-
ture learns a shared latent space, where vector representations of natural language queries
lie close to embeddings of database entries that have semantically similar meanings.

The first instantiation of this technology is in the nutrition domain, with the goal of re-
ducing the burden on individuals monitoring their food intake to support healthy eating or
manage their weight. To train the models, we collected 31,712 written and 2,962 spoken
meal descriptions that were weakly annotated with only information about which database
foods were described in the meal, but not explicitly where they were mentioned. Our best
deep learning models achieve 95.8% average semantic tagging F1 score on a held-out test
set of spoken meal descriptions, and 97.1% top-5 food database recall in a fully deployed
iOS application. We also observed a significant correlation between data logged by our
system and that recorded during a 24-hour dietary recall conducted by expert nutrition-
ists in a pilot study with 14 participants. Finally, we show that our approach generalizes
beyond nutrition and database mapping to other tasks such as dialogue state tracking.

Thesis Supervisor: James R. Glass
Title: Senior Research Scientist
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Chapter 1

Introduction

Today’s AI-powered personal digital assistants, such as Siri,1 Cortana,2 and Alexa,3 con-

vert a user’s spoken natural language query into a semantic representation that is used to

extract relevant information from a structured database. These dialogue systems typically

begin with standard natural language processing (NLP) tasks, including intent detection

(i.e., determining the user’s goal), followed by semantic tagging of the natural language

utterance to determine precisely what the user is requesting. For example, the user’s intent

may be to book a flight, and the relevant semantic tag values are Boston for the departure

city, and Toronto for the arrival city. Subsequently, the semantic frame representation of

the user’s query is converted into a SQL command for querying a structured database,

which should contain all the available flights to and from a given city on a particular date.

The problem with these conventional approaches is that they often rely heavily on man-

ual feature engineering and a set of heuristics for mapping from user queries to database

entries. There is a fundamental mismatch between how people describe objects, and how

1https://www.apple.com/siri
2https://www.microsoft.com/en-us/cortana
3https://developer.amazon.com/alexa
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the corresponding entities are represented in a structured database. For example, when a

person describes the food they have eaten, they might say they had a slice of “toast,” rather

than a piece of bread. However, the matching entries in a food database are various types of

“bread, toasted,” which is not an exact word match, and to complicate matters further, there

are numerous other potential database matches, including French toast, toasted cereal, and

toasted nuts or seeds. A similar problem occurs for “oatmeal,” which also matches oatmeal

bread and oatmeal cookies, as well as “milk,” which is mentioned in database entries for

yogurt and other dairy products. Historically, researchers have dealt with this mismatch

by regularizing text through tokenizing, stemming, and other heuristics.

To avoid this pipeline of text normalization and word matching database lookup, we

have instead taken the approach of feeding raw input to neural networks, and allowing

the models to learn how to handle the text mismatch internally. This thesis examines

the use of deep learning models for the components used in spoken dialogue systems.

In particular, we have explored neural models for learning the semantic representations of

natural language input, as well as for mapping from a user’s query to a structured database.

Instead of parsing a user query into a semantic fame and translating it into an SQL query,

we let the neural model learn how to transform natural language input and database entries

into points in a shared vector space, where semantically similar entities lie nearby.

1.1 Dialogue Systems

With the rise of conversational agents such as Siri and Cortana, dialogue systems that

interact with people through spoken language are becoming more and more popular. With

the abundance of data and more powerful computation available to us today, we can apply

increasingly powerful models to machine learning problems. In particular, neural networks

have been shown to outperform prior state-of-the-art statistical models in computer vision
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and speech recognition, and can learn to handle raw input without requiring any manual

feature engineering. Thus, we apply neural methods to spoken dialogue systems, allowing

the models to handle raw natural language internally, with minimal pre-processing. While

the concept of learning semantic representations of natural language is not new, and has

been explored extensively in dialogue systems and in many other NLP applications, our

approach to directly map from a user query to a matching database entry without running

an intermediate SQL query is, to the best of our knowledge, a novel technique.

Figure 1-1: A standard pipeline for a spoken dialogue system, where the input spoken user
query is passed to an automatic speech recognizer to generate its text, and the generated
text or the input textual user query is sent to the language understanding component for
pre-processing and semantic tagging. Then, the information is passed to the dialogue
manager to update the state of the dialogue and predict the next action the system should
take to generate a desired response.

The standard pipeline of steps in a spoken dialogue system (SDS) is shown in Fig. 1-1,

where the user query (either written or spoken) is fed through an automatic speech rec-

ognizer if it is spoken, and the text of the query is sent to the language understanding

component. In this component, the semantic tagging step involves isolating slots and cor-

responding slot values (e.g., in a flight booking system, the departure city slot may

have the value Boston). The database retrieval then looks up the relevant information

(e.g., flights) from a knowledge base. This information is passed to the dialogue manager,
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which updates the state of the dialogue (i.e., the user’s goals, which are usually repre-

sented as a set of slots and matching slot values) and determines the next action the system

should take, such as asking a followup question about the user’s preferred departure time.

Throughout this thesis, we will follow the steps in this pipeline, starting with language

understanding, then moving onto database mapping, and finally finishing up with dialogue

management by asking followup questions and tracking dialogue state.

We can classify dialogue systems into categories across several dimensions, which

allows us to clearly define the problem to be solved, and facilitates comparing systems:

∙ Rule-based vs. Statistical: Early work on dialogue systems used rule-based ap-

proaches, whereas more recent work has used statistical models and reinforcement

learning methods. In the 1960s, Weizenbaum at MIT developed the first computer

therapist called ELIZA, which responded based entirely on hand-crafted rules.4 As

another example, in 2000, Wayne Ward and colleagues built the University of Col-

orado (CU) communicator automated travel agent system, which relied on parsing

for natural language understanding, and a rule-based “event-driven” dialogue man-

ager which mapped from the current dialogue context to the next action using a

hierarchy of semantic frames (Pellom et al., 2000). Seneff at MIT built several

systems, including the multilingual Voyager system for answering queries about

objects in geographical regions (e.g., restaurants, hotels, libraries) in 1995 (Glass

et al., 1995), Pegasus in 1994 for travel planning (Zue et al., 1994), the telephone-

based Jupiter system for weather information in 1999 (Glass et al., 1999), and a

more recent dialogue manager in 2010 that combined rules with a simple statis-

tical model for flight reservations (Xu and Seneff, 2010). Then the field transi-

tioned to statistical machine learning models (Lemon and Pietquin, 2012) and rein-

4https://en.wikipedia.org/wiki/ELIZA
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forcement learning frameworks for dialogue systems, such as Levin et al. (1998),

as well as Young et al. (2013) at the University of Cambridge, who demonstrated

the success of POMDP-based methods (i.e., Partially Observable Markov Decision

Processes) for SDS. Most recently, neural methods have been explored for specific

system components, as well as end-to-end neural networks for the overall dialogue

system pipeline (Wen et al., 2016; Li et al., 2017b). In our work, we continue the

trend with deep learning models.

∙ Task-oriented vs. Chatbot: Typically, dialogue systems are either meant to ac-

complish a specific task, such as booking a flight (e.g., the well-known Air Travel

Information System (ATIS) (Hemphill et al., 1990)) or reserving a restaurant (such

as the University of Cambridge restaurant corpus for dialogue state tracking chal-

lenges5), or to entertain the user with fun chatting. The task-oriented systems usually

involve multiple turns, while the chatbots are often only single-turn interactions,

and rely on an encoder-decoder structure for generating a response with a recur-

rent neural network (RNN) decoder, given the input user query fed to the encoder

network (Bahdanau et al., 2014). Xing et al. (2017) guide the decoder’s generation

with LDA topic information, Qiu et al. (2017) use the encoder-decoder to re-rank re-

trieved responses from an information retrieval mechanism, and Li et al. (2017a) use

adversarial learning to generate responses that are indistinguishable from responses

written by humans. In our case, we work in specific domains (e.g., nutrition) that

have clearly defined tasks (e.g., food logging).

∙ Single-turn vs. Multi-turn: If a dialogue requires slot filling for accomplishing

some task (e.g., determining departure and arrival cities for booking a new flight),

the conversation will last for multiple rounds (or turns), going back and forth be-

5http://camdial.org/ mh521/dstc/
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tween the user and the system. On the other hand, a dialogue may consist of only a

single turn, which is typically the case in information retrieval and question answer-

ing (e.g., Google search or asking Siri a question). Information retrieval systems

have a task very similar to our database mapping task—they rank the similarity of

Web documents to a user query (typically with weighted term-based ranking algo-

rithms such as BM25F (Craswell et al., 2005), efficient q-gram character match-

ing algorithms for string similarity search (Hu et al., 2015), or key-value memory

networks that leverage key-value pairs stored as memories from a knowledge base

of facts (Miller et al., 2016; Eric and Manning, 2017)), whereas we rank possible

United States Department of Agriculture (USDA) food matches to a user’s meal de-

scription. Our database food mapping task is reminiscent of single-turn dialogues,

but with followup clarification questions to narrow down the search space as needed.

∙ Structured vs. Unstructured: Finally, the data used for training the system, and

thus the types of interactions the system will be able to handle at test time, are usu-

ally either structured (e.g., slot filling in the flight and restaurant booking domains)

or unstructured (e.g., Ubuntu or Twitter data). In our work, we allow the users to

speak completely naturally when describing their meal, which allows our system to

handle unstructured natural language user queries.

In summary, we propose novel neural techniques to accomplish the database mapping

piece of task-oriented spoken dialogue systems with unstructured user queries. We em-

phasize that in our work, a key differentiator is how the training data for database mapping

was weakly annotated—that is, the model was not told explicitly where the foods were

mentioned in the meal description, but only which foods were mentioned in the meal. The

complexity of the problem can be defined as the number of slots to be filled for semantic

tagging (i.e., five in the nutrition domain, 17 for restaurants, and 127 for flight booking),
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the number of database matches that need to be ranked (i.e., 220,077 total entries in our

food database), and the average length of a user utterance and vocabulary size (i.e., 6.36

words on average per meal, 88 words maximum in a user query, and 14,788 words total

in the meal descriptions we collected on the crowdsourcing platform Amazon Mechani-

cal Turk (AMT), where workers, also known as Turkers, are paid to complete tasks for

data collection and annotation). Thus, given the scope of the problem, we believe our

techniques will apply to the following applications outside of nutrition:

∙ Retrieving the best answer (or most similar previously asked question, and its corre-

sponding answer) to a question on a forum (e.g., SemEval6 or StackOverflow posts).

∙ Mapping patients’ notes and other information in electronic health records (EHR) to

a medical database of relevant facts (e.g., drug or disease codes in ICD-97).

∙ Recommending restaurants (or movies) given a user’s description of what they want

to eat (or watch), and a database of movie summaries8 (or restaurant reviews9).

∙ Determining which action to take, given a user query (e.g., “make the woman’s shirt

blue” in Photoshop, “turn on the Wimbledon” for watching TV, “dim the lights” for

smart light bulbs, or “play X song” on the radio).

∙ Mapping a user query to a robot or self-driving car command.

1.2 Thesis Contributions

The contributions of this thesis are four-fold:
6http://alt.qcri.org/semeval2019/index.php?id=tasks
7https://www.cdc.gov/nchs/icd/icd9cm.htm
8https://www.imdb.com/
9https://www.yelp.com/dataset
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1. Weakly supervised neural models for learning semantic vector representations:

We demonstrate that convolutional neural network (CNN) architectures are a viable

approach for semantic tagging and, more importantly, learning semantically mean-

ingful embeddings of natural language, all without requiring any manual feature

engineering or pre-processing. The network was trained on weakly annotated data,

without any pre-trained word embeddings or semantic tags, and was not told where

the food items were located.

2. Direct mapping from a user’s natural language query to a structured database:

We leverage our learned CNN embeddings to map directly from a user query to

matching database entries, bypassing the pipeline of string matching heuristics typ-

ically used in dialogue systems for API calls to a database. There are no constraints

on how the user queries the system—they are encouraged to speak completely natu-

rally, which the model learns to handle automatically.

3. Deep reinforcement learning for asking followup clarification questions: We

establish that an RL agent achieves a balance between recall and ease-of-use, asking

questions that result in higher food recall than a rule-based baseline, while asking

fewer questions per dialogue than an entropy-based solution. The RL agent was

rated by humans as significantly more natural and less frustrating than the baselines.

4. Fully functional system prototype for diet tracking on iOS: We applied our tech-

nology to the real-world problem of diet tracking, simplifying the food logging pro-

cess through speech. We built and deployed a complete food logging application

for iOS, which was downloaded by almost 1,000 users within a month of the launch

date, and allows us to collect data in the wild from real users to retrain our models.

To assess the deep learning methods we have developed for semantic tagging and map-
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ping from natural language input to structured databases, we have applied this technology

in the nutrition domain, which we motivate in the next section. However, our technology

is general enough that it can be applied to any domain in which a spoken query must be

mapped to a database in order to respond appropriately to the user.

1.3 Chapter Overview

The remainder of this thesis is organized as follows:

∙ Chapter 2 provides background on artificial neural network models.

∙ Chapter 3 motivates our focus on the nutrition domain for spoken food logging, and

describes the corpora we have collected and annotated for training our models.

∙ Chapter 4 presents our deep learning approach to semantic tagging of natural lan-

guage meal descriptions, showing that these perform similar to or even better than

prior state-of-the-art statistical models requiring hand-crafted feature engineering.

∙ Chapter 5 illustrates our novel convolutional neural network architecture for learning

a shared semantic embedding space of natural language for mapping directly from

user-described foods to structured database food matches.

∙ Chapter 6 describes our deep reinforcement learning agent for asking followup clar-

ification questions to narrow down the food database search space.

∙ Chapter 7 demonstrates that our neural architecture generalizes to other tasks and

domains, specifically dialogue state tracking and system response selection.

∙ Chapter 8 summarizes our findings, discusses our ongoing development and evalu-

ation of a full system prototype, and presents several directions for future work.
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∙ Appendix A shows several full interactions with the system, illustrating limiting

cases where it does not properly understand the user.

∙ Finally, we include a glossary of acronyms with their definitions.
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Chapter 2

Background: Artificial Neural Networks

Neural network models have become increasingly popular not only in the NLP commu-

nity, but in the fields of speech recognition and computer vision as well. Deep learning is

advantageous because neural networks have the ability to learn their own features, without

requiring hand-crafted feature engineering. They are also quite powerful, often outper-

forming linear classifiers on complex tasks, since they are composed of multiple stacked

layers, each with a nonlinear function. In particular, dialogue research has shifted dra-

matically away from statistical and rule-based approaches to newer neural models such as

the encoder-decoder network. Prior state-of-the-art methods for semantic tagging utilized

conditional random field (CRF) models (Sutton et al., 2012), or more recently, RNN mod-

els (Hochreiter and Schmidhuber, 1997). While we investigate all these approaches, the

method we have chosen for our system is a CNN (LeCun et al., 1995), which is commonly

used in computer vision tasks, requires fewer parameters and is faster to train than RNNs,

and enables interpretation by inspecting the learned convolutional filters for patterns. We

will demonstrate the success of CNNs on semantic tagging and database mapping.
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2.1 Feed-Forward (FF) Neural Networks

An artificial neural network (ANN) is called “artificial” because it only approximate the

neurons in the human brain. ANNs are composed of layers of connected nodes, where each

input is multiplied by weights (which are like the dendrites of neurons in the brain) that

are learned through a standard machine learning (ML) training process. However, the key

difference between neural networks and prior statistical models is that neural networks

apply non-linear activation functions (similar to the decision the brain neuron makes to

fire, based on whether the electrical state exceeds some threshold), and can have multiple

layers stacked on top of each other (which is why it is referred to as “deep” learning).

This makes neural networks very powerful, but also require powerful computation, large

training data, and the right training algorithm (i.e., backpropagation), which is why they

only recently became successful, despite having been developed decades ago.

The most basic type of neural network is the feed-forward neural network (FF), or

multi-layer perceptron (MLP), in which each node in the previous layer is connected to

every node in the subsequent layer, as shown in the example in Fig. 2-1. During training,

labeled examples are fed to the model, which predicts its output, and then updates the

weights for each node by propagating gradients of the loss function, with respect to the

ground truth label, backwards all the way through the entire network, using the chain rule

to multiply incoming gradients by outgoing gradients. In the diagram, the values of the

hidden layer ℎ are computed by the following equation

ℎ = 𝑓(𝑊ℎ𝑥+ 𝑏ℎ) (2.1)

where input 𝑥 is multiplied by the edge weights 𝑊ℎ and summed with a bias term 𝑏ℎ, and

then a non-linear activation function 𝑓 is computed. This function might be the popular

rectified linear unit (ReLU) that is 0 for values of 𝑥 below 0 and linear for all positive
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values, sigmoid for binary outputs (i.e., with an output range of [0, 1]), or hyperbolic

tangent (tanh) with output in the range [-1, 1]. The output 𝑜 is computed as the softmax of

the hidden layer’s nodes ℎ multiplied by another set of weights 𝑊𝑜, as in the equation

𝑜 = softmax(𝑊𝑜ℎ+ 𝑏𝑜) (2.2)

where the softmax outputs probabilities of each possible output label, as follows:

softmax(𝑦𝑖) =
exp(𝑦𝑖)∑︀
𝑗 exp(𝑦𝑗)

(2.3)

Figure 2-1: A simple example of a feed-forward neural network, in which each node in the
input layer (i.e., the sentence “She loves NLP :)” is connected to every node in the hidden
layer, which then pass their output to every node in the final output layer that predicts a
probability for each possible sentiment label (i.e., happy, sad, or neutral).
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2.2 Recurrent Neural Networks (RNN)

In FF networks, information flows in one direction only, from input to output, and each

input goes through the network independently from the other inputs. However, in some

cases, it is important for the network to “remember” previous timesteps. For example,

in machine translation, the model needs to know which word was previously generated

before predicting which word comes next. Recurrent neural networks enable this kind

of memory by incorporating a feedback loop, where the output from the hidden layer at

the previous timestep is fed into the current timesteps hidden layer, along with the input.

The vanilla RNN, along with its long short-term memory (LSTM) and gated recurrent unit

(GRU) variants that address the vanishing/exploding gradients problem (Hochreiter and

Schmidhuber, 1997; Gers et al., 2003), have become popular in speech recognition and

natural language processing, including semantic tagging (Mesnil et al., 2013a; Yao et al.,

2013). A simple RNN is depicted in Fig. 2-2, where the edges connecting the previous

timesteps to the subsequent timesteps are clearly illustrated, resulting in the following

equation for the hidden state, where another set of weights 𝑈ℎ are learned for multiplying

to the previous hidden state ℎ𝑡−1:

ℎ𝑡 = 𝑓(𝑊ℎ𝑥𝑡 + 𝑈ℎℎ𝑡−1 + 𝑏ℎ) (2.4)

The LSTM uses a gating mechanism for explicitly remembering and forgetting specific

information, in order to address the vanishing gradient problem, where if the history is too

long and the gradient is less than one, the gradients become smaller and smaller as they

are multiplied together and passed further down the network to earlier timesteps. The

LSTM memory cell shown in Fig. 2-3 has a forget gate 𝑓𝑡 which outputs a sigmoid 𝜎
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Figure 2-2: A simple illustration of an RNN, where there are recurrent connections (shown
in bold) between hidden layers at each subsequent timestep to remember the past.

value between 0 and 1 indicating how much to remember from the previous cell state 𝑐𝑡−1:

𝑓𝑡 = 𝜎(𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ) (2.5)

The input gate 𝑖𝑡 decides how much of the candidate memory cell ̃︀𝑐𝑡 to use in comput-

ing the new memory cell 𝑐𝑡, following these equations:

𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2.6)

̃︀𝑐𝑡 = tanh([ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (2.7)

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × ̃︀𝑐𝑡 (2.8)

Finally, the output gate 𝑜𝑡 determines how much of the new memory cell 𝑐𝑡 is passed
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Figure 2-3: The LSTM memory cell, with input, forget, and output gates to control which
information is retained from one timestep to the next (Hochreiter and Schmidhuber, 1997).

through to the output of the hidden layer ℎ𝑡:

𝑜𝑡 = 𝜎(𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (2.9)

ℎ𝑡 = 𝑜𝑡 × tanh 𝑐𝑡 (2.10)

The popular simplified variant, called the GRU, is displayed in Fig. 2-4,1 with only

one update gate 𝑧𝑡 that are the input and forget gates combined.

2.3 Convolutional Neural Networks (CNN)

CNNs, which were originally developed for computer vision, have also been successfully

applied to speech and NLP tasks such as sentence matching (Yin et al., 2016b) and ma-

1http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure 2-4: The gated recurrent unit (GRU), which merges the input and forget gates into
a single “update” gate 𝑧𝑡, simplifying the LSTM that had three gates.

chine comprehension (Yin et al., 2016a). Recent work has shown significant performance

improvement over previous state-of-the art text classification techniques using very deep

character-level CNNs (Conneau et al., 2017). Whereas for images the CNN learns filter

maps that apply 2D convolutions over regions of images, CNNs can also learn filters that

apply 1D convolutions to sequences of words in a sentence. We show a depiction of the

convolution process,2 where a learned kernel, or filter (in gray) is slid across the input (in

blue), to generate the output (in green). The empty spaces indicate padding. Typically,

each convolution layer is followed by a pooling layer, and many layers can be stacked

so that the higher layers see input from increasingly wider regions of the input and, thus,

may have a higher-level understanding of the input. For example, in computer vision,

lower-level layers may pick up on edges, whereas higher layers may identify objects.

2.4 Attention-based Transformer Network

Recent work has demonstrated that recurrence may not be necessary for state-of-the-art

performance on NLP tasks, and that an attention mechanism is all that is required (Vaswani

et al., 2017). The Transformer network, shown in Fig. 2-6, is an encoder-decoder architec-

2https://github.com/vdumoulin/conv arithmetic

47



Figure 2-5: An illustration of the convolution process with a 2D filter, or kernel (in gray),
that is slid across the input (in blue), and the resulting output (in green), with padding.

ture with 𝑁 stacked layers, each containing multiple self-attention heads, followed by a

feed-forward layer. The self-attention mechanism allows each layer to focus (or “attend”)

to the positions from the previous layer that are most relevant, resulting in a weighted sum

of the inputs from the previous layer, where the weights are the attention values. In addi-

tion, there is the standard attention mechanism found in sequence-to-sequence (seq2seq)

models between the encoder’s output and the decoder, which learns where to pay the most

attention over all positions in the input while generating its output.

2.5 Word Embeddings

For NLP tasks, a key component of neural networks is the first layer, or the word em-

bedding layer, that maps from input words to vectors (or embeddings) of numbers. These

embeddings, which are essentially a lookup table from words in a vocabulary to vec-
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Figure 2-6: The Transformer network (Vaswani et al., 2017), with 𝑁 stacked layers for
both the encoder and decoder, composed of multiple self-attention heads and FF layers.
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tors of numbers, are often learned through training a neural network to perform language

modeling on a large dataset (e.g., Wikipedia or Google News), and can then be used as

pre-trained vectors to initialize the word embedding layer of other NLP tasks, or they can

be learned from scratch on the task of interest. There are many approaches to learning pre-

trained word embeddings. One popular approach is known as word2vec (Mikolov et al.,

2013b), where the objective was to predict the surrounding words given the vector of the

center word 𝑤𝑡, as shown Fig. 2-7.

Figure 2-7: The word2vec skip-gram architecture, where the objective is to learn word
vectors that are good at predicting nearby words (Mikolov et al., 2013b).

The notion of learning vectors that are good at predicting the context of a word is

known as the “distributional hypothesis,” where words in similar contexts tend to have the
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same meaning. Learned word embeddings tend to have interesting geometric properties

such that indicate relationships among word meanings. For example, in the plot in Fig. 2-

8, the vectors for countries all lie on the left-hand side of vector space, while their capital

cities lie in a similar location on the right-hand side. This is all learned simply from

the training data, without explicitly telling the model anything about these concepts or

their relationships. This allows us to do simple arithmetic with word vectors, such as

vec(man)− vec(king)+ vec(woman) to get the embedding of queen.

Figure 2-8: A plot of country and capital city words’ vectors learned by word2vec, and
reduced to two dimensions with PCA.
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2.6 Summary

In conclusion, there are many different architecture options for neural networks, but the

choice depends on the task at hand. While we explore all of these deep learning architec-

tures in our work, we largely choose to focus on CNNs due to their comparable empirical

performance on the tasks and domains we are interested in, with the added benefit of fewer

parameters and faster training time. Finally, it is important to keep in mind that while deep

learning is a popular method now in ML, this may not always be the technique of choice,

and there are limitations. For example, it is still difficult for neural networks to explain why

they predicted a certain answer, whereas prior statistical models were more interpretable.

Hence, we will show throughout this thesis that by inspecting the learned convolutional

filters of our CNNs, we do gain some interpretability.
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Chapter 3

Background: Nutrition Database and

Corpora

3.1 Motivation for Diet Tracking

Today, many Americans are trying to eat more healthy, nutritious diets. This is for a variety

of reasons. Some are worried about reducing specific nutrients’ intake due to disease; for

example, diabetics must limit their carbohydrates and watch their protein. In addition, the

rising obesity rate in the United States has led many to worry about losing weight. Adult

obesity increased from 13% to 32% between the 1960s and 2004 (Wang and Beydoun,

2007), and over one-third of American adults today are obese (Ogden et al., 2014). This

led to an estimated medical cost of $147 billion in 2008 (Finkelstein et al., 2009). Some

are following popular diets such as vegan, gluten-free, and Paleo. Still others are simply

interested in staying healthy and fit or maintaining their current weight. For all these

reasons, nutrition has become a popular area of research in fields such as computer vision

and NLP, and many smartphone apps are related to health and nutrition.
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However, despite the plethora of diet tracking programs already in existence, the pri-

mary challenge with all of them is they are time-consuming and difficult to use. People

often give up after only a few days, which makes it hard to sustain long-term weight loss

goals. The popular diet tracking app MyFitnessPal, which has over 100 million users,

found that users who manage to come within 5% of their weight loss goals use the app for

six consecutive days on average, whereas the other users only continue for three consecu-

tive days.1 Thus, a group of nutritionists at Tufts University approached us five years ago

and requested that we collaborate on a project to build a system that uses speech as the

input modality for quick and easy diet tracking.

We believe nutrition is an importation application that is still relatively unexplored

from an NLP research perspective, and we propose applying cutting-edge conversational

agent technology to this domain. We accomplished our goal of merging these two bodies

of work (dialogue and nutrition) into a novel system that has the potential to fundamentally

change the way people interact with diet tracking applications, enabling them to more

easily and efficiently record their dietary intake in order to become more fit and healthy.

3.2 Nutrition Corpora

The first step for any ML task is to gather the data for training the models. Here we

describe our two primary datasets: structured food databases, and natural language meal

descriptions. In addition, we discuss our spoken corpus, as well as quantity data.

1https://www.wsj.com/articles/new-reasons-why-you-should-keep-a-food-journal-1463419285
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3.2.1 Structured Food Databases

Ultimately, a diet tracking system responds to the user with nutrition facts for foods they

ate. Thus, we need data with nutrient information for various foods. There are two

databases with generic and branded food items that we used, and have combined into

our back-end Postgresql database: USDA Standard Reference (SR) and USDA Branded

foods. The data statistics are shown in Table 3.1, and a screenshot of the online USDA

database information for a particular food item is shown in Figure 3-1.

Database Number of Foods
USDA SR 8,911

USDA Branded 211,166

Table 3.1: Structured food database statistics, where number of “foods” refers to the total
number of food entities in each database, either USDA Standard Reference or Branded
food products. See Figure 3-1 for an example food entry, with all its nutrition facts.

Figure 3-1: An illustration of the data contained in the USDA database for each food entry.
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3.2.2 Natural Language Meal Descriptions

Since our primary tasks involve semantic mapping of natural language meal descriptions

and mapping from natural language input to structured databases, we collected meal de-

scriptions on the AMT crowdsourcing platform and annotated them for semantic tags (i.e.,

food, quantity, other) and matching food database entries.

In order to generate reasonable meal description tasks, we partitioned the over 5k foods

in the USDA database into specific meals such as breakfast, dinner, etc. (see Table 3.2). A

given task was randomly assigned a subset of 9-12 food items from different categories. To

reduce biasing the language used by Turkers (i.e., an AMT worker), we included images of

the food items along with the less natural USDA titles (see Fig. 3-2 ). Turkers were asked

to select at least three of the foods, and generate a meal description using these items (see

Fig. 3-3 for the actual AMT interface). This enabled workers to select foods that would

typically be eaten together, producing more natural meal descriptions and quantities.

Meal # Foods # Diaries # Words per Diary
Breakfast 1167 4010 18.8

Dinner 2570 3850 21.6
Salad 232 4040 19.1

Sandwiches 375 4000 20.1
Smoothies 384 3850 20.1
Pasta/Rice 1270 4000 20.6

Snacks 1342 4077 19.1
Fast Foods/Meals 669 3886 19.1

All Foods 5124 31712 19.8

Table 3.2: Meal description statistics, organized by category.
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Figure 3-2: The instructions and example meal diaries shown to workers in our AMT data
collection task.
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Figure 3-3: The AMT interface, where Turkers had to check off at least three foods, and
write a “response” (i.e., meal description containing those food items).
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Semantic Tagging Annotation

The diaries were then tokenized and used as input for the second phase, where we asked

Turkers to label individual food items within the diaries. The third and final phase com-

bined the meal descriptions with their food labels and prompted Turkers to label the brand,

quantity, and description properties associated with a particular food item (Fig. 3-4) (Kor-

pusik et al., 2014; Korpusik, 2015).

Figure 3-4: After Turkers labeled the foods, the final AMT task asked them to label prop-
erties (e.g., quantities in yellow) of a given food highlighted in red.

We labeled semantic tags for a total of 22,000 meal descriptions including breakfast,

lunch, dinner, and snacks on AMT, which we used to train our models. The frequency of

each tag is shown in Table 3.3. We measured the reliability of the data annotations by cal-

culating the inter-annotator agreement among Turkers. Specifically, we calculated Fleiss’

kappa scores for the two labeling tasks: 0.77 for food labeling, and 0.41 for property la-

59



beling. The score for the food labeling task indicates substantial agreement. The score for

property labeling is lower, but still indicates moderate agreement (Viera et al., 2005).

Label Frequency
Food 76,399
Brand 13,826
Quantity 38,668
Description 46,898
Other 89,729

Table 3.3: Statistics for tokens assigned one of five possible labels out of the 22,000 col-
lected meal descriptions.

We also incorporated algorithms for improving Turker labeling performance. In order

to determine whether the food and property labels selected by the Turkers were reasonable,

we automatically detected which tokens were foods or properties in each meal description

and required Turkers to label these tokens upon submitting a property labeling task. If a

token was missing, the submission error message would require the Turker to return to the

task to complete the labeling more accurately, but would not reveal which were missing.

To automatically generate hidden food and property labels, we used a trie matching

algorithm (Knuth et al., 1977) trained on the USDA food lexicon. A trie is an n-ary tree

data structure where each node is a character, and a path from the root to a leaf represents a

token. We built a variant of the standard trie where each node contains a token that is part

of a USDA food entry, and a path from the root to a leaf represents an entire food phrase.

For example, a node might contain the token “orange,” and its child node might contain

the token “juice” (see Fig. 3-5). Then, the matching algorithm would find every matching

entry from the USDA trie that is present in a meal description. Since USDA food entries

often contain only the singular form of a food token, we incorporated plural handling into

the trie matching, using the Evo Inflector libary’s implementation of Conway’s English

pluralization algorithm (Conway, 1998).
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Figure 3-5: An example trie for four USDA foods that all start with “Orange”: Orange
juice raw, Orange juice canned, Orange juice frozen, and Orange Pineapple Juice Blend.

3.2.3 Speech Corpus and Recognizer

The meal descriptions we have described thus far are all written, rather than spoken,

whereas at test time the system must be able to handle spoken user input. To address

this limitation, we collected a corpus of spoken meal descriptions, and created a nutrition

speech recognizer (Korpusik et al., 2016a). We collected the speech data via AMT (Saylor,

2015), where we asked Turkers to record 10 meal descriptions. The diaries were selected

from previously collected written meal descriptions, and spelling and grammar errors were

manually corrected. The Turkers’ recording, converted to text via a recognizer embedded

in the AMT task, was required to contain at least 60% of the words in the transcript they

were reading in order to submit the task.

We split the resulting 2,962 utterances (from 37 speakers totaling 2.74 hours) into 80%

training, 10% development, and 10% test sets, and removed punctuation and capitaliza-
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tion from the text data for training the language model. Using Kaldi (Povey et al., 2011),

we trained a fully-connected, feedforward, deep neural network (DNN) acoustic model

and a trigram language model on 40,000 written sentences (this is a larger set than the

original 10,000 meal logs (Korpusik et al., 2016a) because each meal was split into in-

dividual sentences). The DNN’s input features were Mel-frequency cepstral coefficient

(MFCC) (Vergin et al., 1999) that are the standard for speech recognition. The network

was used in conjunction with a hidden Markov model (HMM) (Juang and Rabiner, 1991)

recognizer that had 265 tied states; therefore it had 265 outputs. The DNN had 6 hidden

layers, each with a sigmoid nonlinearity, followed by a softmax. The decoder had a word

error rate (WER) of 7.98% on the test set. We then annotated the semantic tags and food-

property associations of the recognizer’s output on AMT, as described in subsection 3.2.2

for subsequent understanding evaluation.

3.2.4 Quantity Data

Since we thus far have only collected gold standard labels for food database matches, we

then also collected over 99k food and quantity descriptions. To collect quantity descrip-

tions, we revised the AMT task such that workers were told to select one quantity option

from among all the database quantity units available for a given food item. They were

instructed to describe this quantity naturally (e.g., two cups of ), and in a separate textbox,

to describe the food item (e.g., chopped kale). To reduce biasing the language used by

workers, we included images of the foods along with the less natural USDA titles.

For our evaluation on speech data, we collected 9,600 spoken meal descriptions on

AMT (1,200 for each of the eight meal categories), using the Google speech recognizer

API. The data was collected the same way as the text data, but with speech instead of text,

and as a single description for each combined food and quantity.
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Meal # Quantities # Foods # Diaries
Breakfast 616 1,477 33,317

Dinner 613 2,556 23,094
Salad 173 232 2,446

Sandwich 234 372 4,474
Smoothies 214 382 5,789
Pasta/Rice 366 1,262 12,715

Snacks 725 1,334 12,041
Fast Food 271 661 5,474
All Foods 1,562 5,156 99,350

Table 3.4: AMT quantity data statistics, organized by meal.

Now that we have motivated the diet tracking problem and described the corpora, we

are ready to move onto the three core chapters of this thesis: language understanding

of written and spoken meal descriptions, food database mapping, and asking followup

clarification questions in order to quickly narrow down the food database search space.
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Chapter 4

Spoken Language Understanding

We begin the journey of building a spoken food logging system with spoken language

understanding (SLU)—the first step in the pipeline after recognizing the speech of the

user utterance, as in Fig. 1-1. Specifically, SLU entails identifying relevant slots and their

associated values, also known as semantic tagging or slot filling. For example, in Fig. 4-1,

“chocolate” is labeled as B-Description (for beginning of the Description semantic

tag), and “chip granola” is assigned the semantic tag I-Food (for inside the Description).

Given these tags, the system then decides which action to take next and how to respond.

Figure 4-1: Semantic tagging on a written meal description, where “chocolate,” “chip,”
and “granola” are all a Description tag for the food “bar,” and where “B” is the beginning
of a new semantic tag, “I” is inside a semantic tag, and “O” is other.

We investigate a suite of neural network models for tagging foods, brands, quantities,

and descriptions in the natural language meal descriptions (described in Section 3.2.2).
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As we noted earlier, these models have the benefit of not requiring hand-crafted feature

engineering. However, they are sensitive to hyperparameters; thus, in the last section of

this chapter, we show that neural models generalize to other domains without fine-tuning.

This chapter is organized as follows. First, we compare a suite of neural networks

(including recurrent, convolutional, and the recently proposed Bidirectional Encoder Rep-

resentations from Transformers (BERT) model) on written and spoken meal descriptions,

demonstrating that the best CRF performs best on written meals, but that the neural models

(in particular, a single pre-trained BERT model with fine-tuning of a token classification

layer on top) are more robust to speech recognition errors in the spoken test data. Error

analysis shows that the models are less confident when making errors, enabling the system

to follow up with the user when uncertain. Finally, at the end of this chapter, we also es-

tablish that the neural models easily generalize to new domains, since we port the models

from the nutrition domain to the ATIS benchmark and a restaurant corpus, without any

task-specific fine-tuning.

4.1 Related Work

The SLU literature largely focuses on the ATIS corpus (Hemphill et al., 1990; Dahl et al.,

1994), which is composed of spoken queries about flight information. For example, under-

standing the query “I want to fly to Boston from New York next week” involves identifying

the goal as airfare and slot values of Boston, New York, next, and week for the slots de-

parture city, arrival city, relative departure time, and departure time period, respectively.

Research on ATIS has moved from early work involving handmade template match-

ing requiring expensive grammars to more data-driven methods. He and Young (2003)

showed improved performance using the expectation maximization algorithm for a gener-

ative hidden vector state (HSV) model over hand-crafted semantic grammar rules. Wang
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et al. (2006) used a discriminative CRF rather than generative models to reduce slot error

rate by over 20%. Raymond and Riccardi (2007) similarly demonstrated that the addition

of a-priori long-term dependency features in CRF models led to better performance than

the generative finite-state transducer, and Meza-Ruiz et al. (2008) also showed that global

dependency features in discriminative models outperform the generative HSV model. This

motivates our use of the CRF with its sequential processing. Heintze et al. (2010) demon-

strated a performance improvement as incrementally longer utterance prefixes are seen by

a classifier, and Tur et al. (2011) used dependency parsing to simplify natural utterances

into more concise, keyword-style queries that are easier for classifiers to process. Tur et al.

(2010) study analyzing the state-of-the-art on ATIS revealed common error patterns that

were still unresolved, including long-distance dependencies in slot filling.

More recently, neural networks such as bidirectional RNNs (Mesnil et al., 2013b,

2015) and LSTMs (Yao et al., 2014a), and CNNs (Xu and Sarikaya, 2013), have been

shown to outperform CRFs, which motivates our use of neural networks on our tasks.

In addition, there has been work on jointly training RNNs for slot filling and intent and

domain detection (Hakkani-Tür et al., 2016; Lee et al., 2018; Liu and Lane, 2016; Ma

et al., 2017; Goo et al., 2018), as well as end-to-end neural networks for mapping directly

from speech to semantic tags (Haghani et al., 2018), and memory networks to remember

dialogue history (Chen et al., 2016).

A similar trend has been observed for named entity recognition (NER) as for SLU,

where early work applied hand-crafted rules (Nadeau and Sekine, 2007), but transitioned

to machine learning methods over the course of the 1990s and 2000s, including supervised

learning such as hidden Markov models, support vector machines, and CRFs (Lin and Wu,

2009; Passos et al., 2014), as well as unsupervised clustering and semi-supervised learning

from distributional semantics, given a set of seed entities. Recently, CNNs (Collobert et al.,

2011) and LSTM-CRFs (Huang et al., 2015; Lample et al., 2016) were explored.
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Within the past year, several papers have come out that learn contextual representa-

tions of sentences, where the entire sentence is used to generate embeddings. Embeddings

from Language Models (ELMo) (Peters et al., 2018) uses a linear combination of vectors

extracted from intermediate layer representations of a bidirectional LSTM trained on a

large text corpus as a language model (LM); in this feature-based approach, the ELMo

vector of the full input sentence is concatenated with the standard context-independent to-

ken representations and passed through a task-dependent model for final prediction. This

showed performance improvement over state-of-the-art on six NLP tasks, including ques-

tion answering, textual entailment, and sentiment analysis. On the other hand, the OpenAI

Generative Pre-trained Transformer (GPT) (Radford et al., 2018) is a fine-tuning approach,

where they first pre-train a multi-layer Transformer (Vaswani et al., 2017) as a LM on a

large text corpus, and then conduct supervised fine-tuning on the specific task of interest,

with a linear and softmax layer on top of the pre-trained Transformer (see Section 2.4).

Finally, Google’s BERT (Devlin et al., 2018) is a fine-tuning approach similar to GPR,

but with the key difference that instead of combining separately trained forward and back-

ward Transformers, they instead use a masked LM for pre-training, where they randomly

mask out input tokens and predict only those tokens. They demonstrate state-of-the-art

performance on 11 NLP tasks, including the CoNLL 2003 NER tagging task.

For the restaurant and nutrition tasks, prior state-of-the-art involved complicated CRFs

with carefully hand-crafted features, such as semantic dependency features from query de-

pendency parses (Liu et al., 2013b), and word vector and distributional prototype similarity

features (Korpusik et al., 2016a). The motivation of this work is to avoid manual feature

engineering with neural networks that automatically learn features. We demonstrate that

our models are easily ported from one domain to another without fine-tuning.
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4.2 Models

Although CRFs are a powerful discriminative classifier for sequential tagging problems,

they require manual feature engineering. A popular alternative which does not require

any feature engineering is a neural network. We investigated a collection of deep learning

models for semantic tagging: RNNs, CNNs, the recently proposed attention-based BERT,

CRF models trained on logits from the hidden layer of RNNs, and a FF baseline. We also

ensembled various models, and initialized with pre-trained embeddings.

4.2.1 RNN

In our PyTorch (Ketkar, 2017) implementation of the RNN, we built a bidirectional GRU

on top of a word embedding layer, with a linear layer on top for the final prediction. We

used embeddings of dimension 128, hidden layers of size 512, batches with 50 samples

each, and trained with the Adam optimizer on cross-entropy loss for 1,000 steps of ran-

domly selected batches. The maximum length was set based on the longest sample in each

batch. The FF baseline replaced the recurrent layer with a linear layer of size 512. We

implemented the RNN-CRF as in (Yao et al., 2014b) by extracting logits from the trained

RNN’s hidden layer and feeding these as features to the CRF. Thus, the RNN-CRF does

not require any manual feature engineering, unlike the CRFs discussed in Section 4.1.

4.2.2 CNN

A CNN window of 5 tokens can be interpreted as an n-gram of 5 tokens, which directly

provides context similar to the features used in a CRF. We implemented variants of the

CNN model in Keras (Chollet, 2015). Each model was composed of a word embedding

layer initialized uniformly with 150 dimensions, followed by three stacked 1D convolu-
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tional layers, with kernel windows spanning lengths of five, five, and three tokens, re-

spectively and 64 filters each. Finally, a fully-connected layer with a softmax activation

predicts the semantic tag for each token. We used the Adam optimizer (Kingma and Ba,

2014), binary cross-entropy loss, and early stopping to prevent overfitting, where training

continued for up to 15 epochs unless there was no performance gain on the validation set.

We experimented with pre-trained word embeddings from publicly available 200-dimension

Glove (Pennington et al., 2014) (trained on Wikipedia and Gigaword), 300-dimension

word2vec (Mikolov et al., 2013b) (trained on Google News), and 300-dimension Fast-

Text (Bojanowski et al., 2017) (trained on Wikipedia News) standard word embeddings.

After initialization, the word embeddings were updated during training.

4.2.3 BERT

Finally, we used the base pre-trained BERT in PyTorch with a fine-tuned token classifi-

cation layer on top and hyperparameters tuned on 10% validation data (i.e., batch of 32,

uncased tokenizer, 3×10−5 learning rate, and four epochs). Since BERT uses word pieces,

but the data is pre-tokenized, we use only the first sub-token’s predicted label during eval-

uation. As shown in Fig. 4-2, the tokens (or word pieces) for each meal description are

fed into the pre-trained base BERT model (i.e., with only 12 multi-head attention layers,

instead of 24 in large), and a single classification layer is fine-tuned on top that uses a

softmax to predict the semantic tag (or named entity in the original paper) for each token.

4.3 Experiments

We evaluated our deep learning models on a held-out test set and compared our perfor-

mance to a state-of-the-art CRF model with hand-crafted features. Our metrics are preci-
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Figure 4-2: An illustration of how BERT is used for named entity recognition, or semantic
tagging in our case (Devlin et al., 2018).

sion (i.e., the percentage of correct semantic tags out of all the predicted semantic tags),

recall (i.e., the percentage of correct semantic tags out of all the true semantic tags), and F1

score (i.e., the harmonic mean of precision and recall). We show results for both written

and spoken meal descriptions in Tables 4.1 and 4.2, respectively.

One interesting result is that on spoken data, the neural networks actually outperform

the best CRF, demonstrating their ability to perform well despite automatic speech recog-

nition (ASR) errors. The poor performance on semantic tagging of brands for both corpora

is likely due to the small number of brand tokens (i.e., only 3.4% of the test set’s tokens are

brands), as well as the difficulty distinguishing between brands and descriptions. Errors

could be due to misrecognized brands; for example, “don julio tortillas” was incorrectly

recognized as “on whole wheat tortillas,” which is a description instead of a brand.

The second takeaway is that BERT outperforms the other neural models on both writ-

ten and spoken meal descriptions, despite being pre-trained out of the nutrition domain
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Model Food Brand Num Descrip Avg
CRF (unigram) 92.3 78.5 93.9 86.6 92.4
CRF (+ bigram) 94.1 80.3 95.1 88.9 93.7

Best CRF (Korpusik and Glass, 2017) 94.6 85.7 95.1 90.3 94.4
FF baseline 85.1 69.0 91.0 74.4 85.3

1 RNN 94.3 77.2 94.2 87.1 92.1
RNN-CRF 94.4 76.8 93.1 86.9 91.7

4 RNNs 95.1 80.5 94.5 88.4 92.9
1 CNN 91.9 79.5 95.1 87.1 92.4

CNN + Glove 94.4 84.1 94.7 89.5 93.9
CNN + wd2vc 93.6 83.6 91.0 88.0 92.1

CNN + FastText 93.7 82.9 94.3 88.8 93.2
4 Glove CNNs 94.4 84.4 91.7 89.0 92.7

4 RNN + 4 CNN 76.9 78.3 94.5 89.1 85.3
BERT 94.6 87.0 94.7 90.4 94.2

Table 4.1: Per-label F1 scores on written meals (Korpusik and Glass, 2017). The CRF per-
forms best, but it requires hand-crafted features, whereas the neural models are competitive
without feature engineering. Although BERT is not the best overall, it does particularly
well on brands and descriptions, which is hard, even for AMT workers, to distinguish.

Model Food Brand Num Descrip Avg
Best CRF (Korpusik and Glass, 2017) 93.3 79.0 96.6 87.7 94.2

FF baseline 87.9 61.7 93.7 78.3 90.1
1 RNN 94.0 81.5 95.9 89.1 94.9

RNN-CRF 94.1 80.6 95.3 87.9 94.5
4 RNNs 94.4 80.9 97.2 89.8 95.3
1 CNN 93.9 78.2 97.5 89.1 95.1

CNN + Glove 94.9 80.9 97.5 91.1 95.5
CNN + wd2vc 95.4 80.6 97.2 90.9 95.7

CNN + FastText 94.8 74.8 97.6 90.4 95.0
4 Glove CNNs 95.1 82.2 97.0 91.4 95.6

4 RNN + 4 CNN 95.5 77.4 97.8 91.7 95.6
BERT 94.4 85.3 97.8 91.1 95.8

Table 4.2: Per-label F1 scores on spoken meal data. All the neural networks outperform
the CRF, demonstrating that they are more robust to speech recognition errors.

72



and only adding a task-specific softmax layer on top for fine-tuning. This illustrates how

learning a strong representation of language that can be shared among tasks and domains

is more important than the previous approach of pre-training only the word embedding

layer, and then building a task-specific model on top.

We hypothesize that the models will be less confident in their predictions when making

mistakes. This has important applications for real-world tasks, in which the model could

learn from human feedback when it is not confident in its prediction. For example, in

a diet tracking application, if the model is uncertain about the tag for “oatmeal” in the

food description “oatmeal cookie,” it might ask, “Was the oatmeal a description of cookie,

or a separate food?” Thus, the model could learn online from users without asking an

overwhelming number of questions, only for clarification on those for which it is least

certain. In addition, we could use the confidence of the model to discover errors in the

test set labels if, for example, the model is very confident when it makes a mistake. Here

we show that the models are indeed less confident when making errors, and that high

confidence can be used to discover errors in the test data.

We see in Fig. 4-3 that as we increase the confidence threshold1 from 0.5 to 0.999,

the weighted average F-score on the written meal test set increases. In particular, during

evaluation, we omit the examples where the model is uncertain, since the predicted tag’s

probability is below the specified confidence threshold. The performance improvement

from eliminating examples where the model is less certain indicates that the model is

more confident when its predicted tag is correct, and less confident when it makes errors.

Error analysis reveals that the model tends to have less certainty in its predictions

when it is mistaken, and that high-confidence predictions may identify errors in the data

annotation. We see in Fig. 4-4 that the high-confidence prediction for “syrup” as a Food

1Note that we define “confidence” as the probability which the model assigns to the top-predicted label,
and is unrelated to speech recognition confidence.
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Figure 4-3: The F-score as a function of the confidence threshold, on the written meal
description task, where tags that fall below the threshold are omitted from the recompute
of the F-score. Performance improves as more data is omitted, since the model is only
evaluated on tags where it is more certain (i.e., the predicted tag’s probability is above
the confidence threshold). While the percent of data omitted increases quite a bit as the
confidence threshold rises from 0.9 to 0.999, the F-score gain is incremental in this region.
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(i.e., 𝑝 = 0.999) is actually correct, whereas the gold standard tag for Brand from AMT

is a mistake. We also note that the predicted probabilities for the mistakes are lower,

illustrating the model’s uncertainty (i.e., 𝑝 = 0.69 and 𝑝 = 0.73 for incorrectly tagged

tokens “medium sized” and “butter,” respectively).

Figure 4-4: Incorrectly predicted semantic tags for a sample meal description, where
“syrup” is actually tagged correctly by the model. Thus, this data annotation error can be
discovered by identifying incorrect predictions that have high confidence (e.g., 𝑝 = 0.999).

We see a common type of error made by the model in Fig. 4-5, where multiple adjacent

food items cause the model to incorrectly predict the first food token as a Description

rather than a Food. In addition, Fig. 4-6 illustrates the difficulty of distinguishing between

brands, foods, and descriptions, especially in the presence of out-of-vocabulary words (i.e.,

tokens unseen during training are <UNK>).

Figure 4-5: The model incorrectly predicts that “cheese” is a description of “bacon” in-
stead of a separate food item.

In addition to error analysis, we also analyzed what specifically the neural network

models were learning, since a common criticism is that these networks are “black boxes”

and hard for humans to interpret. To do this, we select the tokens that have the highest acti-

vation for each of the 64 learned filters in the top layer of the trained three-layer CNN. We
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Figure 4-6: The model confuses brands with descriptions and foods.

observe that individual filters seem to pick out semantically similar words. In Table 4.3,

filter 34 identifies quantities, filters 5 and 44 pick out brands, and filter 20 focuses on food.

Filter Top-10 Highest Activation Tokens
34 8, 16, 14, 2, had, a, 6, an, ., 12
5 ’s, of, Natural, Welch, Pantry, brand, Debbie, Ida,

Jemima, Arizona
44 Coke, coke, Water, Mountain, Kraft, cheese,

Eggs, Dr. Miracle, Mt.
20 chile, tuna, egg, crab, chicken, cottage, butter,

oranges, cauliflower, coconut

Table 4.3: Top-10 tokens with high activation for meal CNN filters.

Finally, we discuss the tradeoff between accuracy and model speed/size. When de-

ploying a real-world system for interacting with users, efficiency is critical. While BERT

performs best, it has 109.5 million parameters and requires 1.1GB, whereas the CNN is

only 3.1 million parameters (and 12MB), as shown in Table 4.4.

Model # Params Size Training Time
biGRU 3,457,159 14MB 31.8s
CNN 3,120,775 12MB 18.4s
BERT 109,486,854 1.1GB 6920s

Table 4.4: A comparison of the training speed and size of the three deep learning models
we investigated, where training speed is based on one epoch on an NVIDIA GeForce GTX
1080 GPU. We used eight GPUs in parallel to train BERT, so we multiplied its training
time of 865 seconds by eight to get the total time.
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4.4 Domain Transferability

To conclude this chapter, we show that the neural models we have explored on the nu-

trition domain thus far also generalize to two other spoken language understanding do-

mains: flight booking in the well-known ATIS, as well as restaurant booking. ATIS2,

which has been used since the 1990s, and the restaurant task3 are both publicly available.

See Table 4.5 for a summary of the data statistics. As on written meal descriptions, BERT

performs best on both ATIS and restaurants.

Dataset # Train Samples # Test Samples # Tags
Written Meals 35,130 3,412 5
Spoken Meals 35,130 476 5

ATIS 4,978 893 127
Restaurants 7,659 1,520 17

Table 4.5: The data statistics for each corpus. The spoken meal description data uses the
same training set as the written.

4.4.1 ATIS Corpus

The ATIS task involves dialogues between users and automated spoken dialogue systems

for booking flights. The goal is to label each token in a user utterance with the correct

semantic tags, in the standard B-I-O format (e.g., B-fromloc.city name refers to

the beginning of the departure city’s name, and O is Other). We show an example user

utterance with its corresponding gold standard semantic tags in Fig. 4-7. In our work, we

start from the same dataset as prior work (He and Young, 2003): the training set consists

of 4,978 utterances selected from the Class A (context independent) training data in the

2https://github.com/yvchen/JointSLU/tree/master/data
3https://groups.csail.mit.edu/sls/downloads/restaurant/
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ATIS-2 and ATIS-3 corpora, and the ATIS test set contains both the ATIS-3 NOV93 and

DEC94 datasets.

Figure 4-7: Semantic tagging on a user utterance in the ATIS corpus, where BOS and EOS
refer to the beginning and end of the sentence, respectively.

As in Section 4.3, we show the experimental results in Table 4.6, and the CNN’s

learned filters in Table 4.7. We see a similar trend as in the nutrition domain, where

pre-training the CNN with word embeddings improves performance, and BERT is best

overall. We see a pattern in the CNN’s learned filters, where filter 11 identifies numbers,

12 focuses on flight attributes such as airline and number of stops, filter 22 finds cities, and

23 isolates tokens relating to days and time frames.

4.4.2 Restaurant Corpus

The restaurant corpus was collected on AMT, where workers were hired to write queries

about restaurants, given a set of keywords (i.e., the semantic tags, as shown in Fig. 4-

8) (Liu et al., 2013a). See Table 4.8 for more examples. They used a semi-Markov CRF

with hand-crafted features, where they augmented baseline n-gram features with linguistic

knowledge such as syntactic structural features, and semantic dependency parse features,

from hierarchical parse trees (see Fig. 4-9 for an illustration).

Once again, as shown in Table 4.9, the neural models outperform the prior state-of-the-

art CRF with hand-crafted features, and BERT is best. In Table 4.10, we see that learned

CNN filter 6 identifies cuisines, filter 32 focuses on location, and filter 35 finds ratings.
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Model Precision Recall F-score
FST (Raymond and Riccardi, 2007) 91.6 91.9 91.7

CRF (Tur et al., 2011) – – 95.0
R-CRF (Mesnil et al., 2015) – – 96.5

bLSTM (Hakkani-Tür et al., 2016) – – 95.5
FF baseline 85.8 86.7 85.7

Transformer encoder (Vaswani et al., 2017) 96.6 96.6 96.4
1 RNN 97.9 97.9 97.7

RNN-CRF 97.8 97.9 97.7
4 RNNs 98.0 98.1 97.8
1 CNN 96.4 97.0 96.5

CNN + Glove 97.5 97.6 97.3
CNN + word2vec 97.1 97.4 97.1
CNN + FastText 96.8 97.1 96.7
4 Glove CNNs 97.5 97.7 97.4

4 RNNs + 4 Glove CNNs 97.8 97.9 97.6
BERT 98.1 98.3 98.1

Table 4.6: Precision, recall, and F-scores on ATIS, where the neural methods (other than
the FF baseline) outperform the statistical FST and CRF from prior work. Again, en-
sembles of neural networks, and pre-training help, but a single fine-tuned BERT model
outperforms them all.

Filter Top-10 Highest Activation Tokens
11 12, 5, 230, 4, 7, to, 6, round, 10, 8
12 round, nonstop, us, american, northwest, delta,

united, twa, daily, continental
22 phoenix, houston, pittsburgh, denver, detroit,

milwaukee, cincinnati, chicago, charlotte, toronto
23 on, thursday, leave, between, from, friday, tuesday, in, leaving, a

Table 4.7: Top-10 tokens with high activation for ATIS CNN filters.

Figure 4-8: Semantic tags for a sample query in the restaurant domain.
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Query
a four star restaurant with a bar

any asian cuisine around
any bbq places open before 5 nearby

any place along the road has a good beer selection that also serves ribs
any reasonably priced indian restaurants in the theater district

Table 4.8: Example restaurant queries collected on AMT, illustrating various tags in the
restaurant domain (e.g., Rating for “four star,” Hours for “open before 5,” and Dish
for “beer” and “ribs.”

Figure 4-9: Example parse tree on a restaurant query, where the dependency relation be-
tween the adjective “vegan” and its parent plural noun “spots” is highlighted.
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Model Precision Recall F-score
Best CRF (Liu et al., 2013b) 85.3 83.9 84.6

FF baseline 82.3 80.7 81.0
1 RNN 87.1 87.4 87.2

RNN-CRF 87.1 87.4 87.2
4 RNNs 89.1 89.3 89.1
1 CNN 88.3 88.2 88.1

CNN + Glove 88.8 88.8 88.7
CNN + word2vec 88.9 88.7 88.6
CNN + FastText 88.9 88.9 88.8
4 Glove CNNs 89.7 89.7 89.7

4 RNNs + 4 Glove CNNs 89.9 90.0 89.8
BERT 91.6 91.6 91.6

Table 4.9: Precision, recall, and F-scores on the restaurant test set (Liu et al., 2013b).
The gain from Glove and word2vec is not from using larger dimensions (200 and 300,
respectively). Without pre-trained embeddings, using larger dimensions decreases the F-
score (from 88.1 to 87.5 and 87.1, respectively).

Filter Top-10 Highest Activation Tokens
6 brazilian, authentic, asia, italian, tex, mexican,

sandwich, mex, mediterranean, spanish
32 nearest, closest, does, time, the, local, nearby, downtown, italian, at
56 till, until, after, open, at, past, before, a, is, every
35 4, highest, 3, 5, star, 1, starving, three, get, five

Table 4.10: Top-10 tokens with highest activations for four learned CNN filters on the
restaurant dataset.
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4.5 Summary and Future Work

In this chapter, we have demonstrated that neural networks (and BERT particular) outper-

form prior state-of-the-art CRFs that required manual feature engineering, on three spoken

language understanding tasks: ATIS, restaurants, and spoken meal descriptions (with the

exception of written meal descriptions, where a hand-crafted CRF still slightly outper-

forms BERT). In addition, pre-training the CNN with word vectors consistently boosts

performance. Our analysis of the trained CNN shows that its filters are learning seman-

tically meaningful categories related to the semantic tags, as well as predicting tags with

lower confidence when making mistakes. In the future, we aim to incorporate a feedback

mechanism into our food logging prototype such that the model will ask for clarification

when it is uncertain about the semantic tags, thus learning online from users.
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Chapter 5

Database Retrieval

In the previous chapter, we addressed the first step for language understanding in spoken

dialogue systems (i.e., semantic tagging, or spoken language understanding). We now turn

our attention to the second piece—database retrieval (as shown in Fig. 1-1). Many speech

understanding applications involve mapping the concepts present in a natural language ex-

pression to their corresponding database entries. In recent efforts to create an ability for

users to log their food intake by speech, we are faced with this situation, where we need to

determine which particular foods have been described, and, ultimately, find their associ-

ated database entry in a nutritional database. For example, if someone says, “For breakfast

I had a bowl of Kellogg’s corn flakes,” we would like to find the matching food entries in

the USDA nutrient database (i.e., “Cereals ready-to-eat, KELLOGG, KELLOGG’S Corn

Flakes”), so we can log the appropriate nutrition information.

As illustrated in Figure 5-1, we first attempted what one might consider the most ob-

vious solution to this database mapping problem (Korpusik et al., 2014, 2016a), where we

fed meal descriptions through a pipeline involving 1) semantic tagging of each token (as

in Chapter 4), 2) performing food segmentation with simple linear classifiers to associate
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Figure 5-1: The previous system’s sequence of steps: semantic tagging, segmenting a meal
into food entities, and USDA database lookup using heuristics.

foods with their properties (e.g., brands, quantities, and descriptions), and 3) retrieving

matching USDA food entries from a database. This approach had several undesirable

properties. First, it was vulnerable to intermediate errors. Second, it relied on heuristics

for the database lookup (e.g., stemming) to account for mismatches in language usage

between the meal description and the database entry. Unfortunately, there are many in-

stances where the common word is not present in the database entry at all (e.g., there is

no exact match if the user says “toast,” only various types of “bread, toasted” as well as

“french toast” for additional confusion), so additional heuristics are required to bridge this

mismatch (Naphtal, 2015). To address these issues, we developed a new model that can

directly map between the natural language description to the underlying database entries.

The remainder of the chapter is as follows. In Section 5.2, we describe the novel

CNN-based architecture for learning semantic embeddings of natural language, which we
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then use at test time to rank matching database entries. We describe both the overall word-

based architecture in Section 5.2.1, as well as character-based embeddings in Section 5.2.2

for handling misspellings. After learning the embeddings, the next step is ranking the

database matches using these learned embeddings. We describe three approaches: a finite-

state transducer in Section 5.3.1 that requires no semantic tagging pre-processing, and

a re-ranking algorithm in Section 5.3.2 that substantially outperforms our previous best

configuration. Finally, we discuss multi-task learning in Section 5.4 for simultaneous

food and quantity mapping in a jointly trained neural network, where we hypothesize that

information about quantities is useful for predicting foods, and vice versa (e.g., cheese and

toast come in slices, whereas milk and juice are usually in cups).

5.1 Related Work

5.1.1 Learning Embeddings

While in our work we learn embeddings for USDA food entries through CNNs, recent

work (Adi et al., 2016) has analyzed the relative strengths of various other sentence em-

beddings, including averaging word vectors learned with the continuous-bag-of-words

method (Mikolov et al., 2013a), LSTM auto-encoders (Li et al., 2015), and skip-thought

vectors based on GRU (Kiros et al., 2015). Our approach differs from these in that we

use a CNN rather than recurrent networks, and we learn the vectors through a domain-

specific binary verification task for predicting whether a USDA food entry matches a meal

description.

Similar work in learning joint embeddings for two different modalities or languages

explored a margin-based contrastive loss. For ranking annotations given an image, prior

work directly incorporated the rank into the model’s loss function, along with a hinge loss
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between true and false annotation samples (Weston et al., 2011); similarly, a margin-based

loss was used to learn a joint multimodal space between images and captions for caption

generation (Karpathy and Fei-Fei, 2015; Harwath et al., 2016), and sentence/document

embeddings were learned through a multilingual parallel corpus with a noise-contrastive

hinge loss ensuring non-aligned sentences were a certain margin apart (Hermann and Blun-

som, 2014). Other work predicted the most relevant document given a query through the

cosine similarity of jointly learned bag-of-words embeddings (Huang et al., 2013).

5.1.2 CNNs for Natural Language Processing

Many researchers are now exploring CNNs for NLP. For example, in question answering,

recent work has shown improvements using deep CNN models for text classification (Con-

neau et al., 2017; Zhang et al., 2015; Xiao and Cho, 2017) following the success of deep

CNNs for computer vision. Whereas these architectures take in a simple input text exam-

ple and predict a classification label, our task takes in two input sentences and predicts

whether they match. In work more similar to ours, parallel CNNs predict the similarity of

two input sentences. While we process each input separately, others first compute a word

similarity matrix between the two sentences, and use the matrix as input to one CNN (Pang

et al., 2016; Wang et al., 2016b; Hu et al., 2014).

attention-based convolutional neural network (ABCNN) has also been proposed for

sentence matching. The ABCNN (Yin et al., 2016b) combines two approaches: applying

attention weights to the input representations before convolution, as well as after convolu-

tion, but before pooling. Our method is similar, but we compute dot products (our version

of the attention scheme) with the max-pooled high-level representation of the USDA vec-

tor. Hierarchical ABCNN applies cosine similarity attention between CNN representations

of a query and each sentence in a document for machine comprehension (Yin et al., 2016a).
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Thus, the attention comes after pooling across the input, whereas we compute dot products

between each meal token and the learned USDA vector.

5.1.3 Multitask Learning

multitask learning (MTL) has been applied successfully to many NLP tasks. Collobert

and Weston (2008)’s early exploration of multitask learning involved jointly training a

single CNN like ours on several tasks: part-of-speech tagging, chunking, NER, semantic

role labeling (SRL), semantic relation prediction, and language modeling. They focus

specifically on SRL, while we care about both our tasks equally. Liu et al. (2015) built a

multitask DNN that combined two different tasks of multiple-domain query classification

and information retrieval for web search ranking. Similar to our work, they embedded an

input query into a lower-level shared semantic representation used for the two different

tasks at the top layer; however, they use a DNN while we employ a CNN.

Other work in MTL for NLP demonstrated an improvement in sentence compression

by incorporating two auxiliary tasks, combinatory categorical grammar (CCG) tagging

and gaze prediction, based on the intuition that longer reading time correlates with text

difficulty (Klerke et al., 2016); they showed that the cascaded architecture, where aux-

iliary tasks are predicted at an inner layer, outperforms the model where auxiliary tasks

are predicted at the top layer. Luong et al. (2016) investigated MTL for neural machine

translation with the seq2seq model, with the surprising result that parsing (i.e., sharing the

encoder) and image caption generation (i.e., sharing the decoder) both improve translation,

despite the much smaller datasets.

Multi-task learning has also been applied to other fields, including ASR and computer

vision. Toshniwal et al. (2017) explored end-to-end speech recognition on the conversa-

tional Switchboard corpus, demonstrating gains in character-based ASR by adding super-
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vision at lower layers in a deep LSTM network with two lower-level tasks. In computer

vision, Misra et al. (2016) proposed a novel cross-stitch unit that combines CNNs for

two tasks by automatically learning an optimal combination of shared and task-specific

representations. Wang et al. (2016a) constructed a shared sub-network with higher-level

sub-networks for two image representations, in order to achieve high accuracy from cross-

image representations while maintaining the efficiency of single-image representations.

5.2 Learning Semantic Embeddings

The natural language understanding component of a diet tracking system requires mapping

a spoken or written meal description to the corresponding USDA food database matches.

We employed two steps to achieve a system that directly selects the best USDA matches

for a given meal description: 1) we constructed a CNN model that learns vector repre-

sentations (either word-based or character-based) for USDA food items through a binary

verification task (i.e., whether or not a USDA item is mentioned in a meal description),

and 2) we re-ranked the food database entries based on a combination of dot product and

word-by-word cosine similarity scores (Korpusik et al., 2016a). We also discuss an earlier

approach to mapping that used a finite state transducer (FST) to map directly to the USDA

database matches without semantic tagging as pre-processing, but this does not perform

quite as well as a the re-ranking algorithm.

5.2.1 CNN Training Details

We learn the semantic embeddings of food descriptions by training the CNN architecture

shown in Figure 5-2 on a simple binary verification task with two inputs—the user’s meal

description and a food database entry—where the model’s goal is to determine whether the
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Figure 5-2: Architecture of our CNN model for predicting whether a USDA food entry is
mentioned in a meal, which simultaneously learns semantic embeddings.

database food matches the meal description or not.1 Our model is composed of a shared

64-dimension embedding layer, followed by one convolution layer above the embedded

meal description, and max-pooling over the embedded USDA food name. The text is to-

kenized using spaCy.2 The meal CNN computes a 1D convolution of 64 filters spanning

a window of three tokens with a ReLU activation. During training, both the USDA in-

put’s max-pooling and the CNN’s convolution over the meal description are followed by

dropout (Srivastava et al., 2014) of probability 0.1,3 and batch normalization (Ioffe and

Szegedy, 2015) to maintain a mean near zero and a standard deviation close to one. A dot

1Note that while we did not exhaustively try every possible model architecture, and thus cannot guar-
antee this is the optimal structure, we did iterate through many versions of the model before empirically
selecting this particular design (e.g., we initially fed both inputs through a convolutional layer, and tuned
hyperparameters such as embedding size and number of filters). Our aim is to demonstrate that this model
learns meaningful embeddings, not that this exact architecture gives the best performance.

2https://spacy.io
3Performance was better with 0.1 dropout than 0.2 or no dropout.
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product is performed between the max-pooled 64-dimension USDA vector and each 64-

dimension CNN output of the meal description. Mean-pooling4 across these dot products

yields a single scalar, followed by a sigmoid for final prediction.5 This design is motivated

by our goal to compare the similarity of specific meal tokens to each USDA food.

To prepare the data for training, we padded each text input to 100 tokens,6 and limited

the vocabulary to the most frequent 3,000 words, setting the rest to UNK (i.e., unknown).

We trained the model to predict each (USDA food, meal) input pair as a match or not

(1 or 0, respectively) with a threshold of 0.5 on the output. The model was optimized

with Adam (Kingma and Ba, 2014) on binary cross-entropy loss, norm clipping at 0.1, a

learning rate of 0.001, early stopping after the loss stops decreasing for the second time on

the validation data (i.e., 20% of the data), and mini-batches of 16 samples. We removed

capitalization and commas from USDA foods.

5.2.2 Character-based Models

In this section, we address the problem of what happens when a user misspells a food or

brand in their meal description, or when there is a new food that the system has not seen be-

fore in the training data. For example, if the user misspells “cheerios” as “cherios,” ideally

the system would be able to correctly interpret this unknown word as the cereal “chee-

rios.” To handle cases like these, we built a character-based CNN that learns embeddings

for each character in a token, rather than only at the word level. Thus, with a character

model, out-of-vocabulary (OOV) words are represented as character sequences and can

4The inverse (mean-pooling before dot product) hurt performance.
5Note that our approach would work for newly added database entries, since we can feed the new database

food’s name into the pre-trained CNN to generate a learned embedding. This is the strength of using a
binary prediction task, rather than a softmax output, so we do not have to re-train the network every time the
database adds a new entry.

6We selected 100 as an upper bound since the longest meal description in the data contained 93 words.

90



be used to predict matching foods with similar characters, while the previous word-based

approach would not be able to handle such OOV words. Another approach which we leave

for future work is learning word pieces rather than words or characters.

Levenshtein Edit Distance

As a baseline, we implemented the Levenshtein edit distance (Marzal and Vidal, 1993)

for determining the distance between two sequences of characters. The minimum distance

is computed through the following recurrence relation, where each term corresponds to

deletion, insertion, and substitution of a character, respectively:

𝑑[𝑖, 𝑗] = min (𝑑[𝑖− 1, 𝑗] + 1, 𝑑[𝑖, 𝑗 − 1] + 1, 𝑑[𝑖− 1, 𝑗 − 1] + 𝑐) (5.1)

where cost 𝑐 is 0 if the two characters are equal and 1 if not. During the ranking step, if an

OOV word is encountered, Levenshtein edit distance is used to determine which USDA

foods are most similar to the tagged food segment containing the OOV.

Character-based Embeddings

The second method we explored for handling OOV words is a character-based convolu-

tional neural network (charCNN) that processes each character in a token to generate a

word embedding Korpusik et al. (2017b). As shown in Figure 5-3, each token is padded

to 24 characters and fed through the shared network, which consists of a 15-dimension

embedding layer over each character, followed by a convolution of 64 filters over win-

dows of three characters with hyperbolic tangent activation,7 max-pooling to reduce the

24 embeddings to one embedding, and a highway network on top (Srivastava et al., 2015)

7We also tried rectified linear unit, but this did not perform as well.
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to allow information flow along highways connecting layers.8

Figure 5-3: Architecture of the character-based CNN model.

Since the character-based models predict USDA matches primarily based on similar

character sequences, rather than semantic similarity (e.g., “cheerios” would have a high

similarity to “cheese”), we modified the USDA food database names during the ranking

step for the character-based models. Specifically, we shortened the USDA food names

to more concise descriptions that only included those tokens that had an 𝛼 weight above

a threshold of 0.25 (where 𝛼𝑖 is the probability that token 𝑖 was used to describe that

particular USDA food item in the training data). Thus, the new USDA names only included

tokens that were used most often in the training data to describe those USDA foods, which

are more likely to match the characters of that food in a user’s meal description. For

example, the USDA food “Cereals ready-to-eat, GENERAL MILLS, CHEERIOS” would

become simply “cheerios.”

To evaluate how well the standard word-based model compares to the character-based

8Without the highway layer, the performance is not as good.
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models on noisy data, we artificially induced typos in the test set. The original test data

was clean so the performance was the same with the standard word-based model as well as

when we augmented it with character-based models. We measure the ranking performance

using mean average precision (MAP). The MAP score, which is a commonly used metric

in information retrieval, measures the average precision as:

∑︀𝑛
𝑘=1 𝑝𝑟𝑒𝑐(𝑘)𝑟𝑒𝑙(𝑘)

correct # foods in the meal
, (5.2)

where 𝑘 is the rank of a USDA food entry, 𝑝𝑟𝑒𝑐(𝑘) is the precision of the food entry at

rank 𝑘 (i.e., how many correct foods have been identified so far, divided by the current

rank 𝑘), and 𝑟𝑒𝑙(𝑘) is 1 if the USDA food at rank 𝑘 is actually in the meal description,

and 0 otherwise. In Table 5.1, the last two rows apply the word-based model if there are

no OOVs, use character-based models for food segments consisting of one OOV token,

and combine the rankings generated by both models for food segments containing OOV

and in-vocabulary words by taking the maximum similarity value per USDA food. We

constructed a test set where 10% of the characters in each meal description were randomly

deleted, substituted, or inserted. The error type, the index of the modification, and the

new character for substitutions and insertions were all randomly selected. We see that the

charCNN has the highest performance on the noisy test data.

Model MAP Recall
Baseline Levenshtein 6.27 15.5

Char CNN 8.65 17.1
Word CNN 12.0 26.3

Word CNN + Levenshtein 13.4 29.1
Word CNN + Char CNN 13.8 30.0

Table 5.1: Comparison of character-based approaches to the basic word-based CNN model
on the all-food data with 10% typos.
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5.2.3 Analysis of Learned Semantic Embeddings

To better understand the behavior of our models, we qualitatively analyze the top predicted

USDA hits at test time, as well as the learned embeddings. In Table 5.2, we observe

reasonable top-3 USDA foods predicted for each tagged food segment by the word-based

model augmented with charCNN for the meal “I had a bowl of cherios with a banana and

a glass of 1% milk.” Note that since “cheerios” is misspelled as “cherios,” the word model

would predict matches for UNK as it is an OOV word; however, the charCNN correctly

handles the error. In addition, we demonstrate that the charCNN is able to learn meaningful

word embeddings. In Table 5.3, we see that the top-5 neighbors of the USDA food item are

intuitive, where we computed the nearest neighbors by minimizing the Euclidean distance

between a given food’s embedding and all the other USDA foods.

Food Top-1 Top-2 Top-3
cherios cheerios oat cluster cheerios frosted cheerios
banana banana banana pudding banana pepper

1% milk 1% milk dry whole milk milk low sodium

Table 5.2: Top-3 predicted USDA hits for tagged foods in the meal “I had a bowl of
cherios with a banana and a glass of 1% milk.” with the word-based model combined
with the charCNN and re-ranking.

Top-5 USDA Foods
beef new zealand imported kidney raw
beef new zealand imported inside raw

beef new zealand imported sweetbread raw
beef new zealand imported heart raw

beef new zealand imported manufacturing beef raw

Table 5.3: Top-5 nearest USDA neighbors, based on Euclidean distance for embeddings
learned by the charCNN, to the food “beef new zealand imported tongue raw.”

We also show through qualitative analysis that the word-based CNN model is indeed
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learning meaningful vector representations of the USDA food entries, which is why it suc-

cessfully maps from meal descriptions to USDA foods. If we look at the nearest neighbor

to three USDA foods (see Table 5.4) using Euclidean distance, we observe that the neigh-

bors are in fact semantically similar. In addition, we can look at a t-SNE plot of the learned

vectors for each USDA food item, where a point is a single database food entry, and the

color is the food category. In Fig. 5-4, we see that there are clusters corresponding to

food categories (e.g., breakfast cereals are all yellow, baked products are green, and dairy

and egg food items are red), which indicates that the learned embeddings for semantically

related foods lie close together in vector space, as expected.

Table 5.4: Nearest neighbor foods to three learned USDA food vectors.

USDA Food Nearest USDA Food
Rice white short-grain... ...Mexican Spanish Rice

Fast Foods Chicken Tenders Chicken Broiler or Fryers...
Beans Baked Canned... Beans Black Mature...

Looking at the model’s predicted dot products between USDA foods and each token in

a meal description, we observe spikes at tokens corresponding to that USDA food entry.

We visualize the spike profile of the dot products at each token for the top USDA hits

in Fig. 5-5. Despite the spelling mismatch, the USDA foods “McDonald’s Big Mac”

and “Fast Foods, Cheeseburger” spike at “big mac,” “Catsup” peaks at “ketchup,” and

“Bananas, Raw” matches “peeled banana.”

5.3 Mapping Approaches

While the NN model learns to predict whether or not a USDA food is mentioned in a meal,

it does not directly retrieve the matching USDA foods from a meal. To do this, as a first

approach, we trained a finite state transducer (FST) to take as input the model’s learned
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Figure 5-4: A t-SNE plot of the learned embeddings for each USDA food database entry,
where the color corresponds to the food category, and foods in the same category tend
to cluster together. The center consists of several different clusters. The black points are
fruits and fruit juices, and the dark blue are beverages. Since these are both drinks, they
overlap. We hypothesize that the red cluster for dairy and egg that lies near the center is
milk, since the center clusters are primarily related to beverages. In addition, just below the
breakfast cereals, we note there are several teal points for cereal grains and pasta, which
again has a reasonable location near cereals. The two small clusters of purple points, one
which overlaps with breakfast cereals, and the other inside the cereal grains and pasta
cluster, represent sweets and snacks. These may lie close to cereals since some sweets and
snacks (e.g., Rice Krispie treats, Chex Mix) contain cereal.
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Figure 5-5: Dot products between top USDA hits and meal tokens for the meal description
“for dinner I had a big mac with an extra teaspoon of ketchup and a peeled banana.”

dot products (between each token in a full meal description and all possible USDA foods),

and automatically output the most likely sequence of USDA foods for the whole meal.

Afterward, we leveraged semantic tagging as a pre-processing step to identify individual

food segments, and found that it performed better at ranking food database matches.

5.3.1 Finite State Transducer

We constructed a generic FST, composed it with a meal-specific FST, and determined the

top-5 sequences of USDA foods in the meal with n-best Viterbi decoding Korpusik et al.

(2017a). The model FST, shown in Figure 5-6, enables transitions between Other states

(i.e., no USDA food is discussed at that token) and three interleaved USDA food states,

where there are transitions for each possible USDA entry. Each state has a self-loop, which

allows multiple consecutive tokens to have the same USDA food. This model forces the

output to have a sequence of exactly three USDA food items, with Other in between.
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Figure 5-6: A generic FST with a sequence of three USDA foods, with Other in between.

The meal FST consists of start and end states, as well as one state for every token

in a given meal description (e.g., slice of toast in Fig. 5-7), where the transitions to each

state are all the possible USDA foods, and the weights are the negative dot products be-

tween each token and all possible USDA food entries. This FST forces the output to have

the same length as the input meal description, and will select for each token the USDA

food that has the highest similarity score between its learned embedding and the token

embedding. Composing the generic FST with the meal FST yields alignments (similar to

aligning speech to text in speech recognition)—for each token, Other or a USDA item

with a large dot product is aligned with it.

Figure 5-7: The meal-specific FST, which has one state per token, and the weights for
the transitions are proportional to the similarity score between a USDA food’s learned
embedding and the learned token embedding.
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We used these FST-predicted alignments to generate additional positive and negative

training examples to improve performance. For each input (USDA food, meal) pair, we

also generated an example of a shortened food segment and its corresponding USDA en-

try, where the segment is all the tokens that were aligned with that USDA food in the

alignment. Thus, we fine-tuned the network so that it knows which tokens in particular are

associated with which USDA entries.

One issue with using the alignments directly for predicting the most likely USDA

matches is that the n-best lists only differ in position of USDA foods, rather than gen-

erating alternative USDA entries (e.g., in one alignment, the USDA entry for “banana”

might be assigned to the first three tokens, whereas in the second alignment, “banana”

might span the first four tokens). To force the FST n-best decoder to generate different

USDA food choices, we thus composed the model and diary FSTs with a third high-level

FST that outputs nothing for Other states and USDA self-loops. For example, the align-

ment “Other ID18290 ID18290 Other ID7953 ID7953 ID7953 Other ID20137” maps to

“ID18290 ID7953 ID20137,” and the n-best list would contain different choices of USDA

foods. From the positions of the USDA foods in this final sequence of IDs, we can deter-

mine which food alternatives group together and their ranking.

Binary Verification and Ranking Experiments

For the following experiments, we focused on a subset of 101 USDA foods (i.e., 16,589 to-

tal meal descriptions) for training and evaluation. First, we show in Table 5.5 performance

of the neural network model for binary verification (i.e., predicting whether a USDA food

item is mentioned in a meal description) and ranking (i.e., how highly it ranks the correct

USDA foods in a meal description). We see in Table 5.5 that the neural models with the

base LSTM and CNN perform similarly on binary verification, but the LSTM is worse at
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the ranking task. Incorporating aligned token segments specific to each USDA food as ad-

ditional training examples improves performance in both binary verification and ranking.

Model Train Acc. Test Acc. MAP
baseline word matcher 59.4 59.0 0.067

baseline classifier 90.9 89.8 0.077
base LSTM 95.1 92.9 0.020
base CNN 94.2 92.7 0.853

base CNN + alignments 96.4 95.7 0.892

Table 5.5: Performance on binary verification and ranking. The base LSTM uses LSTMs
instead of CNNs to process the USDA and meal description inputs before computing dot
products. The baselines are a lexical matcher (i.e., at least two shared words is a match)
and logistic regression classifier trained on n-grams and word matches.

In-the-loop Database Lookup Experiments

We ultimately care how well the system will perform at test time with actual users, so

we also compared the performance of the existing system set up with tagging followed

by food-property association and rule-based database lookup to the performance using the

new neural architecture followed by FST n-best prediction. We evaluated the system on

two metrics: the percent of correct USDA entries recalled by the system, and the number

of alternative foods shown to the user on average. It is preferable to have fewer alternatives

to avoid overwhelming the user with options, while still having high recall. As shown in

Table 5.6, the CRF tagger with many manually defined features performs similarly to the

CNN tagger with no feature engineering, while the neural architecture with FST n-best

predictions has much higher recall than either tagger, from 79% up to 92.6%.
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Model USDA Recall Avg. # Food Options
CRF tagger 78.9% 0.12
CNN tagger 78.5% 0.09

FST alignments 92.6% 0.16

Table 5.6: System evaluation with tagging followed by USDA lookup vs. neural-FST
setup with direct USDA predictions on a held-out test set of 5k meals with only 101 USDA
foods. The third column (average number of food options) is the average number of lower
probability food alternatives retrieved by the system per food entity.

5.3.2 Semantic Tagging and Re-ranking

Since the FST approach must learn which USDA foods match a given meal description

without any information about where the foods occur in the sentence, we investigated

whether providing the system with such information via semantic tags would boost per-

formance. At test time, rather than feeding the entire meal description into the CNN, we

instead first perform semantic tagging (see Chapter 4) as a pre-processing step to identify

individual food segments (Korpusik et al., 2014, 2016a; Korpusik and Glass, 2017), and

subsequently rank database foods via dot products with their learned embeddings. A CNN

tagger labels tokens as Begin-Food, Inside-Food, Quantity, and Other. Then,

we feed a food segment into the pre-trained embedding layer in the model described in

Section 5.3 to generate vectors for each token. Finally, we average the vectors for to-

kens in each tagged food segment (i.e., consecutive tokens labeled Begin-Food and

Inside-Food), and compute the dot products between these food segments and each

previously computed and stored USDA food vector.9 The dot products are used to rank

the USDA foods in two steps: a fast-pass ranking, followed by fine-grained re-ranking

that weights important words more heavily Korpusik et al. (2017b). For example, simple

9Our approach with CNN-learned embeddings significantly outperforms re-ranking with skipgram em-
beddings (Mikolov et al., 2013c). For comparison, on breakfast descriptions, our model achieves 64.8%
top-5 recall, whereas re-ranking with skipgrams only yields 3.0% top-5 recall.

101



ranking would yield generic milk as the top hit for 2% milk, whereas re-ranking focuses

on the property 2% and correctly identifies 2% milk as the top match.

∙ Ranking: initial ranking of USDA foods using dot products between USDA vectors

and food segment vectors.

∙ Re-ranking: fine-grained word-by-word 𝑐𝑜𝑠 similarity10 ranking of the top-30 hits

with weighted distance 𝐷 (Korpusik and Glass, 2018a).

𝐷 =
∑︁
𝑖

𝛼𝑖 max
𝑗

(𝑤𝑖 · 𝑤𝑗) +
1

𝑁

∑︁
𝑗

𝛽𝑗 max
𝑖

(𝑤𝑖 · 𝑤𝑗) (5.3)

where 𝑁 refers to the length of the tagged food segment. The left-hand term finds the most

similar meal description token 𝑤𝑗 to each USDA token 𝑤𝑖, weighted by the probability 𝛼𝑖

that token was used to describe the USDA food item in the training data. In the same

way, the right-hand term finds the most similar USDA token 𝑤𝑖 to each meal token 𝑤𝑗 ,

weighted by the probability 𝛽𝑗 that token 𝑤𝑗 was used to describe that USDA food item in

the training data (see Fig. 5-8).11

Figure 5-8: A re-ranking example for the food “chili” and matching USDA item “chili
with beans canned.” There is only one 𝛽0 term in the right-hand summation of equation 1,
since there is only a single token “chili” from the meal description.

10Note that for the initial ranking, we use dot product similarity scores, but for word-by-word similarity
re-ranking, we use cosine distance. These distances were selected empirically, where on the dataset of all
foods, these metrics yielded higher food recall than using dot products for both ranking steps, or cosine
distance for both, and Euclidean distance was the worst (see Table 5.9).

11Although the sum appears biased toward longer USDA foods, the right-hand term is over each token in
the food segment, which is fixed, and the left-hand term is normalized by the 𝛼 weights. Dividing 𝐷 by the
number of tokens in the USDA food item hurt performance (39.8% recall on breakfast data versus 64.8%
with the best model).
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Ranking Experiments

We see in Table 5.7 that the new re-ranking algorithm outperforms the FST decoding (see

Section 5.3.1) on a 101 foods case study, boosting top-5 food recall from 91.9% to 96.2%.

Model MAP Top-5 Recall
CNN + FST decode 86.9 91.9
CNN + re-ranking 92.7 96.2

Table 5.7: FST decoding compared to the new ranking method on 101 foods data. These
results are high because we collected 16k meals for an initial case study with only 101
foods, whereas we only used 4k for the other meals with up to 2570 foods.

We also observe an improvement between just ranking and two-pass re-ranking when

we apply the re-ranking algorithm to the larger all-food dataset, which is what the system

will be using at test time with real users. In Table 5.8, the top row applies only the first-pass

ranking to predict the top-5 USDA matches. With the full two-pass re-ranking algorithm

in the second row, top-5 recall goes up to 64%.

Model DB MAP Top-5 Recall
CNN + ranking USDA 20.6 58.1

CNN + re-ranking USDA 31.3 64.0

Table 5.8: Evaluation of ranking once vs. re-ranking on the all-food dataset.

We evaluated the CNN with re-ranking on all eight meal categories, in addition to the

all-food dataset, where each model is trained/tested only on its meal category. Note in

Table 5.9 there is a correlation between the number of foods in the meal category and the

difficulty of the task, since dinner has more foods than any other meal (2,570 foods total)

and has the lowest scores, whereas salads have the fewest foods (only 232) and achieve a

recall of 92.5%. These experiments demonstrate that for most meal categories it is best to

use cosine similarity as the distance metric for both ranking steps, and pre-training with
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FastText; however, for the all-food category, which we use at test time, it is best to use

a combination of dot products for initial ranking, followed by cosine similarity word-by-

word re-ranking, and initialization with word2vec.

Meal Cos Euclidean Dot Dot + Cos Glove word2vec FastText
Breakfast 65.9 9.64 65.1 64.8 60.8 67.3 67.5

Dinner 47.1 5.47 44.5 45.1 43.0 46.9 48.8
Salad 92.3 65.6 92.4 92.5 87.5 91.2 92.7

Sandwiches 76.7 32.5 76.5 76.5 73.3 76.5 76.5
Smoothies 74.9 22.9 75.6 75.1 69.6 78.9 76.4
Pasta/Rice 52.5 9.38 51.6 51.9 48.3 51.0 51.8

Snacks 68.1 15.5 67.9 67.3 62.3 67.7 68.2
Fast Foods 70.2 25.1 70.5 70.3 67.1 71.0 71.5
All Foods 63.4 28.5 17.7 64.0 62.8 65.1 65.0

Table 5.9: Top-5 USDA food recall per meal on the held-out test data, for various distance
metrics, as well as with and without pre-trained word vectors (where we use the combina-
tion of dot products for ranking, and cosine distance for word-by-word re-ranking).

5.4 Quantity Mapping with Multitask Learning

In the previous sections, we investigated the problem of mapping natural language meal

descriptions to their corresponding food database entries. But this was limited to food

matching, whereas we also need to address the remaining challenge of mapping user-

described quantities to matching database quantity entries. This is a difficult problem

because user descriptions are often very different from database entries. For example, a

user might say “a bowl” or “a handful,” but these do not easily map to database quantities,

such as cups or grams. In a scenario where the user says, “a spoonful of peanut butter,”

the system should determine that the database food match is Peanut butter, smooth style,

with salt with the corresponding quantity 1 tbsp.
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In this section, we tackle the quantity mapping problem by developing a new CNN

architecture that is trained with a softmax layer on top to directly predict the most likely

database quantities, whereas our prior food mapping network in Section 5.2.1 used a binary

classification task to learn embeddings for each database food entry, which were then

ranked via cosine similarities at test time. In addition, we explore multitask learning to

jointly predict both the matching food and quantity database entries given a single input

meal description. We show that by leveraging the close relationship between quantities

and foods, we can use predicted quantity matches to improve food ranking performance.

5.4.1 Models

We implemented two variants of the CNN architecture for mapping natural language quan-

tity descriptions to the USDA database: the first is reminiscent of the food mapping ap-

proach described in Section 5.2.1, learning USDA quantity embeddings via binary classi-

fication with a sigmoid output, and the other is a different approach that directly predicts

the most likely database matches via a softmax layer on top. In this section, we first de-

scribe two baseline methods for ranking database quantities (using the longest common

substring, and number of exact token matches). We then detail our two sigmoid and soft-

max CNN models. Finally, we explain the new multitask training mechanism. The data

we used for these experiments are described in Section 3.2.4.

Baselines

A simple lexical approach for ranking the most likely database quantity entries, given a

user’s meal description, is to use the number of tokens12 that are an exact match between

the two. Those database quantities with the maximum number of tokens in common would

12We used the Spacy toolkit (https://spacy.io/) for tokenization.
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be ranked most highly. Our second baseline uses the length of the longest common sub-

string (LCS) between the user’s meal description and each database quantity, where we

implement a string matching algorithm that stores the number of matching characters seen

so far in a dynamic programming table. For the food mapping task, we compare against

our prior state-of-the-art CNN with re-ranking (see Section 5.3.1).

Sigmoid CNN

The sigmoid model (see Fig. 5-9) is the same as that used in Section 5.2.1 for mapping

natural language meal descriptions to their associated food database matches, except we

pad the input quantity descriptions to 20 tokens instead of 100.13 The input 50-dimension

embedding layer is followed by a 1D convolution with 64 filters spanning windows of

three tokens, with a ReLU activation and dropout of probability 0.2. This network is

trained for a binary verification task, where each input pair consists of a user-described

quantity and a USDA quantity that either matches the user’s description or not.14 Through

learning to complete this binary verification task, the network learns semantic embedding

representations of each USDA database quantity, which are then used at test time to rank

all the possible database quantity options based on the cosine similarity score with the user-

described quantity embedding (which is generated by feeding the input meal description

through the meal portion of the network, consisting of an embedding layer followed by a

convolution and max-pooling). The model is trained with the Adam optimizer (Kingma

and Ba, 2014) on binary cross-entropy loss.

13The padding results in dot products with each of the 20 input tokens.
14For each positive match we collected, we sampled a random negative quantity from among those quan-

tities not described by the user.
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Figure 5-9: The sigmoid CNN for predicting whether or not an input USDA quantity name
and user-described quantity match or not.

Softmax CNN

The softmax CNN (see Fig. 5-10) is a new architecture that we implemented to directly

rank all the USDA database quantities within the network itself, rather than requiring the

multi-step process of generating embeddings with the network and subsequently ranking

all the USDA quantities with cosine similarity scores. Rather than feeding the network

only a single USDA quantity option, we input all possible USDA quantities along with

the user’s meal description. The USDA quantities are embedded and used in dot product

computation with the convolved meal description the same way as in the sigmoid network;

however, this model performs the computation for every USDA quantity, with a final feed-

forward layer on top to output a probability distribution over all quantities via a softmax.
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Figure 5-10: The softmax CNN for directly ranking all the USDA quantity options for a
given user’s input meal description.

Simple Softmax CNN

The simple softmax CNN (see Fig. 5-11) is another new neural architecture that feeds

only the input meal description into the embedding and convolution layers before the final

feed-forward layer with a softmax output over all possible food or quantity options.

108



Figure 5-11: The simple softmax CNN for directly ranking all the USDA quantity options
for a given user’s input meal description.

Multitask CNN

The new multitask model is structured the same way as the sigmoid and softmax CNNs

for quantity mapping, but has an additional output layer for predicting the USDA food

match. Thus, the majority of the network is shared between the two tasks, and the loss is

the combination of the quantity prediction and food prediction losses.

5.4.2 Experiments

Here, we demonstrate that the new softmax model outperforms the previous best binary

verification model (see Section 5.2.1) for food mapping. We also show that jointly training

the CNN to predict both USDA food and quantity matches yields higher quantity recall for

most meal categories. We note that since the quantity predictor has high performance, we

can leverage the predicted quantities to rerank the USDA food options to favor those that

109



have the highest ranked quantities as available options in the database, which consistently

boosts performance. We evaluate on both written and spoken held-out test sets15 using top-

5 recall, which indicates the percentage of test cases in which the correct food or quantity

option appears in the top-5 hits.

Sigmoid vs. Softmax

We see in Table 5.10 that all the CNN models significantly outperform the longest common

substring (LCS) and number of word matches (WM) baselines on the quantity mapping

task; thus, simply counting word or character matches is not sufficient, and a more so-

phisticated model is required. The softmax is superior to the sigmoid, for both food and

quantity matching (trained separately). For all subsequent experiments, we use the simple

softmax as the default softmax since it performs best; we conjecture this is due to the rela-

tively simple task, for which the complex softmax is too powerful and overfits the training

data. In Table 5.11, we evaluate the new CNN models on food mapping and discover that

the simple softmax model improves on our prior state-of-the-art CNN with word-by-word

similarity re-ranking algorithm (Section 5.3.1), yielding an 83.3% gain on all foods.

Spoken Data

Because our production system will enable both text and speech input, here we investigate

whether the models trained on text data still perform well on speech data. As shown in

Table 5.12, when evaluated on 9,600 spoken meal descriptions (1,200 per meal category),

the softmax quantity and food mapping models still perform quite well.

15We divide the 99,350 text samples into 80% train/10% dev/10% test.
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Meal LCS WM Sigm. Soft. Simple Soft.
Breakfast 13.5 7.87 71.1 94.8 96.9

Dinner 10.9 10.4 82.1 94.8 98.2
Salad 25.1 36.9 75.5 82.7 97.4

Sandwich 19.2 30.1 77.7 92.0 97.2
Smoothies 18.5 37.1 75.3 92.6 98.7
Pasta/Rice 11.7 12.6 84.0 95.5 98.1

Snacks 15.8 12.3 63.7 93.4 96.9
Fast Food 16.5 13.7 72.2 93.8 98.7
All Foods 13.9 13.3 70.0 96.5 97.3

Table 5.10: Top-5 quantity recall per meal category for LCS and word match (WM) base-
lines, the sigmoid, softmax, and simple softmax.

Meal Baseline CNN Sigmoid Simple Soft.
Breakfast 47.3 34.6 95.8

Dinner 38.5 25.4 91.6
Salad 75.9 40.4 98.4

Sandwich 70.8 46.4 97.9
Smoothies 69.5 53.7 97.2
Pasta/Rice 39.2 29.9 89.5

Snacks 60.2 41.4 96.9
Fast Food 53.6 38.7 98.2
All Foods 49.7 46.4 91.1

Table 5.11: Top-5 food recall per meal category for the new sigmoid and softmax CNNs,
compared to the baseline CNN reranker (Korpusik et al., 2017b).
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Meal Q LCS Q WM Q Best F CNN F Best
Breakfast 15.2 8.36 92.0 54.5 80.9

Dinner 14.5 14.6 92.8 45.7 67.3
Salad 27.2 40.9 89.5 82.6 90.9

Sandwich 24.8 29.3 89.2 82.4 88.8
Smoothies 26.0 37.8 90.8 73.6 88.6
Pasta/Rice 14.5 14.0 89.4 43.7 60.2

Snacks 19.5 16.8 90.3 64.4 84.1
Fast Food 19.0 13.3 84.3 58.2 84.0
All Foods 20.1 21.9 91.6 62.6 80.1

Table 5.12: Top-5 quantity (Q) and food (F) recall per meal category for the best simple
softmax and baseline models on spoken data.

Quantity Input Only

Since it would seem that the interaction between foods and quantities helps the mod-

els learn to predict relevant foods and quantities, we ran an experiment to see whether

the quantity mapping performance would suffer if the input to the network was only the

quantity description, without the associated food’s description. For example, with the

user-described input meal diary “I had a cup of cheese,” the model might tend to prefer

database units that relate to cheese, such as “cup, shredded” rather than the generic “cup”

or “cup, diced.” However, in this experiment, the input would simply be “cup.” To convert

the full meal to a quantity segment, we ran our CNN tagger from Chapter 4 that labels

food and quantity tokens, and extracted only the tagged quantity tokens. As expected,

quantity mapping performance is much worse without the full meal input. On Breakfast,

the top-5 quantity recall is only 55.8 for sigmoid and 70.0 for softmax (leading to 21.5%

and 26.2% drop in performance for the sigmoid and softmax models, respectively, with

only quantities as input); the top-5 quantity recall scores for the other meals are similarly

all below 70 for sigmoid models and below 80 for softmax.
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Multitask Learning

Finally, we investigated MTL to determine whether a single model that jointly predicts

food and quantity labels would perform better than either model individually. MTL with

the simple softmax model improves quantity mapping for most meal categories (see Ta-

ble 5.13); however, the food mapping task is more challenging, as there are far more food

options than quantities, so MTL does not benefit this task. This indicates that MTL can

improve the task with fewer labels, but not the harder task (Bingel and Søgaard, 2017).

Since we also want to boost food mapping by leveraging the quantity mapping task, as

an alternative approach to training a joint multitask model, we used the best quantity soft-

max trained on all data (since if we only used training data, then it could not accurately

predict quantities seen only in the test data) to rerank the predicted foods. This boosts

the top-1 food mapping performance on test data for all meals except Fast Food (see Ta-

ble 5.13). First, we predict the top-5 USDA quantities. Then, we rerank the predicted

USDA foods that have at least one of the top-5 predicted quantities as a unit option above

those that do not. This gain indicates that we can leverage a higher-performing task to

improve a weaker, closely related task.

Meal Q Soft. MTL Q F Soft. Reranked F
Breakfast 89.6 88.7 80.4 81.5

Dinner 89.6 89.7 71.8 72.9
Salad 89.0 88.2 83.7 84.1

Sandwich 89.6 88.4 82.7 83.6
Smoothies 89.3 89.9 82.0 82.0
Pasta/Rice 90.0 90.1 66.5 67.4

Snacks 85.9 86.5 82.4 83.0
Fast Food 92.5 93.4 88.8 88.3
All Foods 86.6 86.3 70.3 71.1

Table 5.13: Top-1 recall for MTL Quantity and reranked Foods.
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Nearest Neighbors

When users interact with our live nutrition system, we must ensure the rankings generated

by our food and quantity mappers at test time are reasonable. To qualitatively evaluate the

performance of our CNN model, we observe that its predictions make sense intuitively.

For example, in the test meal description “I had a cup of milk and a tablespoon of honey,”

with the softmax model trained on Breakfast data, the quantity ranking for milk is {cup, fl

oz, quart} and {tbsp, cup, packet (0.5 oz)} for honey, which matches commonsense.16

By inspecting the nearest neighbors of the learned USDA quantity embeddings (see

Table 7.6), we see that the Pasta softmax model (i.e., the complex softmax CNN trained

on the Pasta meal category17) is learning meaningful representations of quantities, where

those of a similar unit are close to each other in vector space. We can also determine what

the 64 CNN filters over the embedded quantities learned by inspecting which tokens cause

the filters to fire with the highest activations. This analysis shows that filter 46 tends to

identify meat-related tokens (i.e., tenderloin, beef, loin, strip, steak, pork, wagyu, roast,

dried, and strips are the top-10 tokens in order of descending filter response), while filter

53 picks out numbers (i.e., three, one, a, two, eight, five, four, six, twelve, and seven).

Quantity Neighbor 1 Neighbor 2 Neighbor 3
cup cup whole cup slices cup shredded
oz oz whole oz boneless oz serving 2.7 oz

serving 1/2 cup serving 1 cup cup slices cup whole

Table 5.14: Top-3 neighbors to three USDA quantities, based on Euclidean distance of
learned embeddings from a Pasta softmax model.

16A pre-trained semantic tagger (Korpusik and Glass, 2017) identifies each food/quantity segment.
17In the deployed system, we would use the full Allfood softmax model.
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5.5 Summary and Future Work

The contributions of this chapter are three-fold: 1) in Section 5.2, we learned semantic

vector representations of natural language with a novel CNN model trained on weakly

annotated data, and designed a new re-ranking algorithm in Section 5.3.2, for mapping

directly from natural language meal descriptions to matching USDA food database en-

tries using these learned semantic embeddings, 2) in Section 5.2.2, we demonstrated that

character-based models can handle misspellings and other out-of-vocabulary words at test

time, and 3) in Section 5.4, we expanded our initial work on mapping natural language

meal descriptions to their corresponding USDA food database entries to address the re-

maining challenge of mapping meal descriptions to their associated quantity database hits,

using multitask learning. In future work, we will investigate contextual understanding to

determine whether the user has refined their meal description, and we may explore speech-

to-speech networks and input lattices to account for speech recognition errors. In the next

chapter, we will address the challenge of directly mapping to a large database of possible

food matches, given only the initial user’s meal description, by asking followup clarifica-

tion questions to narrow down the search space.
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Chapter 6

Followup Clarification Questions

A dialogue system will often ask followup clarification questions when interacting with a

user if the agent is unsure how to respond. In this chapter, we explore deep reinforcement

learning (RL) for asking followup questions when a user records a meal description, and

the system needs to narrow down the options for which foods the person has eaten. We

build off of Chapter 5, in which we trained novel CNN models to bypass the standard

feature engineering used in dialogue systems to handle the text mismatch between natural

language user queries and structured database entries, demonstrating that our model learns

semantically meaningful embedding representations of natural language. In the nutrition

domain, the followup clarification questions consist of possible attributes for each food

that was consumed; for example, if the user drinks a cup of milk, the system should ask

about the percent milkfat. We investigate an RL agent to dynamically follow up with the

user, which we compare to rule-based and entropy-based methods. On a held-out test set,

when all followup questions are answered correctly, deep RL boosts top-5 food recall,

from 54.9% without followup, to 89.0%. We also demonstrate that a hybrid RL model

achieves the best perceived naturalness ratings in a human evaluation.
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Figure 6-1: In this sample dialogue, the AI agent asks a followup clarification question
about the brand of oatmeal.

In this chapter, we continue the difficult task of mapping a natural language meal

description to a set of matching foods found in the USDA food database. The huge search

space1 presents a challenge for search algorithms that aim to find the correct USDA food—

it is almost impossible to pick the right food from a single user input. Thus, the system

needs to ask followup clarification questions to narrow down the search space (see Fig. 6-

1 for an example dialogue). However, the system should not ask too many questions of

the user, since that may annoy the user. The followup questions must also be intuitive

1There are 5,124 food entries in the Standard Reference subset that we use and 215,557 branded food
products.
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for humans (e.g., the system should not ask about percent milkfat for vegetables), so the

system needs to learn which attributes are reasonable to ask, for which foods. Hence,

we must balance food recall with efficiency and ease of use—suitable for applying the

reinforcement learning (RL) framework.2

We use supervised learning to train the initial food ranker (Korpusik et al., 2017a);

however, when asking followup questions, it is unclear which order is best at each turn of

the dialogue. We do not know ahead of time whether the questions asked will yield the

optimal ranking until the dialogue is complete, and at the same time, we wish to finalize

the ranking as quickly as possible to avoid annoying the user with excessive questioning.

Thus, we investigate deep RL that relies on a reward function for determining the best

order of food attributes to ask in order to narrow down the top-500 USDA hits as quickly

as possible, while keeping the correct match ranked highest.

In our setup, we train a deep Q-network (DQN) to predict Q-values (i.e., the expected

sum of future rewards) for actions (i.e., food attributes, such as the brand). In our experi-

ments with a logistic Q-function, we verify that the DQN learns better value functions than

linear approximators, as shown previously (He et al., 2016; Narasimhan et al., 2015). The

agent selects the question with the highest Q-value and asks the user to select the correct

option for that attribute. The current ranked list of USDA hits gets updated accordingly,

the new state is fed to the Q-network to determine the next best action to take, and so on,

until the dialogue ends when there are no more questions left or fewer than five USDA hits

remaining in the top-𝑛. The full system is depicted in Fig. 6-2.

We compare the RL agent to a rule-based model and an entropy-based solution. In

addition, in some tasks, expert knowledge can help guide machine learning models (e.g.,

intuitively, it makes sense to ask how much milkfat is in milk, but not caffeine for veg-

2Our RL reward function favors short dialogues (ease of use) and followups that lead to the correct food
(high recall).
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Figure 6-2: The full system framework, where the user’s meal is first tagged, then passed
to the database lookup component, which consists of re-ranking based on learned CNN
embeddings, followed by RL for asking followup clarification questions to narrow down
the top-𝑛 ranked USDA hits to five.

etables). With this motivation in mind, we explore a new hybrid model for combining

expert-engineered solutions with deep RL. We discover a tradeoff between asking fewer

questions and achieving high food recall. Evaluated on humans, the rule-based model has

fewest turns and lowest recall, while entropy has the most turns and highest food recall.

Hybrid RL achieves a balance between the two, with 4.15 turns on average, 89.4% top-5

recall, and significantly better frustration and naturalness ratings.

6.1 Related Work

Although RL has been used for many years in a wide array of fields, including dialogue

systems and robot planning, only recently has deep RL begun to gain popularity among

NLP researchers. Mnih et al. (2013)’s work on playing Atari games led the shift from pre-

vious state-of-the-art Markov decision processes (Young et al., 2010) to the current use of
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Q-networks to learn which actions to take to maximize reward and achieve a high score.

While Mnih et al. (2013) used convolutional neural networks with video input for playing

games, and Narasimhan et al. (2015) used deep RL for playing text-based games, the

same strategy is also applicable to dialogue systems. Li et al. (2016b) showed that deep

RL models enabled chatbots to generate more diverse, informative, and coherent responses

than standard encoder-decoder models. Other work leveraged RL to construct a person-

alized dialogue system for a coffee-ordering task, where action policies were the sum of

general and personal Q-functions (Mo et al., 2016). Li et al. (2016a) used RL in the movie

domain to learn when to ask a teacher questions, and showed that the learner improved at

answering factual questions about a movie when it clarified the question or asked for help

or additional knowledge. Similar to our hybrid model that balances a rule-based approach

with RL, Henderson et al. (2005) used a hybrid supervised and RL technique trained on

the COMMUNICATOR corpus for flight booking, although they found that a supervised

approach outperformed the hybrid.

Deep reinforcement learning has also been successfully applied to task-oriented dia-

logue, which is similar to our diet tracking application. Zhao and Eskenazi (2016) used a

deep Q-network to jointly track the dialogue state with an LSTM network and predicted

the optimal policy with a multilayer perceptron to estimate the Q-values of possible ac-

tions. In their case, the goal was to guess the correct famous person out of 100 people

in Freebase by playing a 20 questions game and asking the user simulator questions re-

lating to attributes such as birthplace, profession, and gender. While their questions are

binary Yes/No questions, ours have many options to choose from. Another similar work

responded to users with a matching movie entity from a knowledge base after asking for

various attributes, such as actors or the release year (Dhingra et al., 2016). Their system

first learned from a rule-based agent and then switched to RL. They used a GRU network

to track dialogue state and another GRU with a fully-connected layer and softmax on top
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to model policies. The main difference between our work and Dhingra et al. (2016)’s is

they modeled uncertainty over database slots with a posterior distribution over knowledge

base entities. Williams and Zweig (2016) focused on initiating phone calls to contacts in

an address book, and discovered that RL after pre-training with supervised learning accel-

erated the learning rate. Peng et al. (2017) used a hierarchical deep RL model to conduct

dialogues with multiple tasks interleaved from different domains.

Finally, Li et al. (2017b) focused on optimizing all components in a task-oriented di-

alogue system simultaneously, in a single end-to-end neural network trained with RL for

booking movie tickets. In our case, the tagger and database ranker are separately trained

components, and the RL policy is learned solely for asking followup clarification ques-

tions, without affecting the other steps in the pipeline. In future work, it would be interest-

ing to explore jointly learning tagging, database mapping, and asking followup questions

all in one model. In addition, since we do not have any dialogue data, we cannot train a

user simulator and dialogue manager as is typically done. Instead of allowing open-ended

responses from the user, the system provides a sample of possible options from which the

user selects one. Therefore, the user simulator does not need to generate responses, and

can be assumed to select the correct option each time (or we could introduce random noise

if we wanted to simulate users occasionally answering questions incorrectly). Finally, the

tagger in Li et al. (2017b)’s work is an LSTM that jointly predicts intent and slots. In our

work, the tagger is a CNN that only predicts slots, since there is only one intent (i.e., log-

ging food). In summary, our RL agent for asking followup clarification questions is easily

ported from one dialogue system and domain to another, where all of the components are

already trained, rather than requiring the entire system to be trained from scratch, and our

approach works even when no training dialogues are available.
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6.2 Models

The CNN re-ranking approach described in Section 5.3.1 only yields 54.9% top-5 test set

recall (i.e., how many times the correct USDA food appears in the top-5 ranking), but we

would ideally achieve 90% top-5 recall in a system deployed to real users. Thus, in this

chapter, we demonstrate that asking followup clarification questions about food attributes

boosts top-5 recall to 89.0%. We investigated two hybrid reinforcement learning (RL)

models: one using the rule-based method, and another based on entropy. The hybrid

approach asks the first question according to the rule-based or entropy-based method’s

ordering, and afterward selects actions using the RL strategy. This method enables us to

combine an expert-engineered solution (either starting with the most intuitive high-level

question about category defined by hand-crafted rules, or computed using entropy), while

also applying a deep Q-network to learn which attributes to ask next.

6.2.1 Rule-based Followup

In this baseline approach, the dialogue agent asks about each food attribute in a pre-defined

order: category, name, brand, type, milkfat, fat, sweetness, addons, salt, packing style,

preparation method, and caffeine (see Table 6.1). Any attributes for which the remaining

hits all have the same value are skipped, since asking the value of these attributes would

not narrow down the USDA hits any further.

6.2.2 Entropy-based Followup

In a 20-questions-style task, such as that implemented by Zhao & Eskenazi to guess fa-

mous people in Freebase (Zhao and Eskenazi, 2016), an analytic solution based on an

entropy measurement may be used to determine the optimal question to ask at each dia-
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Attribute Examples
Category apples, cereal, pork, snacks

Name apples, oatmeal, ham, popcorn
Brand QUAKER, DOMINO’S
Type instant, wheat, cheddar

Milkfat nonfat, 1%, 2%, whole
Fat low fat, reduced fat

Sweetness sweetened, unsweetened
Addon with beef, with added vitamin A

Salt salted, unsalted, low sodium
Packing regular pack, water pack

Preparation raw, cooked, microwaved, boiled
Caffeine with caffeine, no caffeine

Table 6.1: Possibles actions (i.e., food attributes) available to the model, with example
food items for each.

logue turn. In this scenario, Yes/No questions are asked (e.g., “Is it a man?”) in an order

chosen to minimize the number of questions required. Thus, the goal is to select the action

that maximizes information gain (i.e., the reduction in entropy after asking a question),

where entropy is defined as:

𝐻(𝑋) =
∑︁
𝑥∈𝑋

𝑃 (𝑥) log2
1

𝑃 (𝑥)
(6.1)

However, in our work, instead of asking simple binary Yes/No questions, we are asking

more complex questions that have multiple options as choices for the user to select from.3

Instead of asking, “Was the brand Kellogg’s?” we are asking, “Which brand was it?”

This is similar to the entropy-based questions asked in Gorry et al. (1973) with multiple

symptom options used to diagnose acute renal failure. We select the food attribute with the

maximum entropy at each turn. For a given attribute, we define 𝑋 as the set of possible

3If we were to ask Yes/No questions, we would have to choose from 4,880 possible (attribute, value)
pairs.
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values among the current top-𝑛 ranked foods (including null), and compute 𝐻(𝑋) via

Eq. 6.1. See Fig. 6-3 for an example of how entropy would select percent milkfat as the

next action, since each yogurt option has a different milkfat, whereas all the yogurts are

from the same dairy category, which would yield no new information if asked.

Figure 6-3: A simple example of followup with entropy, where the question that narrows
down the search space most (i.e., reduces entropy most) is the percent milkfat food at-
tribute, whereas asking about category yields no new information.

6.2.3 RL Followup

Since the rule-based approach always asks questions in the same order, we investigated

whether a machine learning approach could figure out the best order of questions to ask

in order to boost food recall further over the deterministic ordering. We do not know

the optimal order until the end of the dialogue is reached and we can check whether the

matching USDA hit was in the top-5 results, so we explored RL for this task because it

uses delayed rewards computed at the end of each dialogue to update the model. As in a

typical RL setup, the agent performs actions given the current state of the environment,

and these actions result in rewards, which the agent learns from in order to choose future

actions that maximize reward.

State The state 𝑠 consists of the food segment’s tokens (e.g., “bacon”); the USDA food

IDs remaining in the narrowed-down, ranked list of matches; and the list of remaining

actions, where each index is a possible food attribute, and the value at that index is 1 if the
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action has not been asked yet, or 0 if it has already been asked. For example, the binary

action mask would be [0, 1, ... ,1] after one turn where the system asked about category

(assuming the first action refers to the category attribute).

Action At each step, the RL agent must determine which action 𝑎 to take by selecting

one of the food attributes (see Table 4.5) to ask a followup question about. Given state 𝑠𝑡,

an action 𝑎𝑡 is selected either randomly with probability 𝜖, which decays from 1.0 to 0.01

at a rate of 0.995 in each minibatch, or as the argmax of the Q-network.

Reward 𝑟 is defined as in (Dhingra et al., 2016):

𝑟 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−0.1× turn if dialogue not done

2(1− (rank − 1)/5.0) else if rank ≤ 5

−1 otherwise

(6.2)

where turn refers to the index of the followup question that is being asked, and rank is the

final ranking of the correct food item (i.e., 1 is best).

The RL agent uses a two-layer feed-forward neural network (see Fig. 6-4) to estimate

the Q-value (i.e., the expected sum of discounted future rewards). The dialogue is consid-

ered done when there are no more attributes remaining, or there are fewer than five USDA

hits left to narrow down. Every 500 steps, the network gets updated based on a randomly

sampled minibatch of 16 previously stored turns (i.e., using experience replay (Zhao and

Eskenazi, 2016)).

The Q-network predicts Q-values for each action given the current input state 𝑠 with

a softmax layer. We define our policy as selecting the next action 𝑎 either randomly with

probability 𝜖 (i.e., exploration) or via the argmax of the predicted Q-values with probability

1− 𝜖 (i.e., exploitation). The loss for the Q-network, given chosen action 𝑎, is as follows,
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Figure 6-4: The RL Q-network architecture, composed of a simple feed-forward (FF)
layer followed by a softmax, which takes as input the tagged food segment (embedded and
max-pooled), concatenated with a 1-hot vector of the top-500 ranked hits. The softmax
output is multiplied by a binary action mask with zeros masking out all the previously
selected actions and ones for the remaining actions. The first step is ranking all possible
USDA food database matches, or hits, and selecting the top-𝑛 (𝑛 = 500). Each of the
USDA foods is assigned an index in the 1-hot vector where the number of dimensions is
the number of unique USDA foods, and the vector is initialized with zero. The foods that
remain in the top-𝑛 ranking (starting with 500, and narrowed down after each turn) are
assigned a value of one in the 1-hot vector.
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where discount factor 𝛾 = 0.9:

𝐿 =
1

2
(𝑟 + 𝛾max

𝑎′
𝑄(𝑠′, 𝑎′)−𝑄(𝑠, 𝑎))2 (6.3)

As in Algorithm 1, during training, we first initialize the experience replay memory

and Q-network. Then, for each training sample, we iterate through the cycle shown in

Fig. 6-5 until the dialogue ends. Each dialogue begins with the user’s food description

(e.g., “a slice of bacon”), which is converted to the start state 𝑠1. Given the current state

𝑠𝑡, an action 𝑎𝑡 is selected either randomly with probability 𝜖, which decays from 1.0 to

0.01 at a rate of 0.995 during each minibatch update, or as the argmax of the Q-network.

Using selected action 𝑎𝑡, the system follows up by asking about the chosen food at-

tribute: “Please select the category for bacon: meat, oils...” and the user selects the correct

attribute value (e.g., meat). The reward 𝑟𝑡 is computed and new state 𝑠𝑡+1 determined

by narrowing down the remaining top-𝑛 USDA hits based on the user’s chosen attribute

value. The experience (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡, 𝑑𝑜𝑛𝑒) is saved to the replay memory, where 𝑑𝑜𝑛𝑒 is

a boolean variable indicating whether the dialogue has ended. The loop repeats, feeding

the new state 𝑠𝑡+1 into the Q-network again to generate Q-values for each action, until the

dialogue ends and 𝑑𝑜𝑛𝑒 is true. The dialogue ends when there are five (or fewer) foods re-

maining, and the system returns the ranked list of USDA hits (e.g., “The results for bacon

are: 10862–Pork, cured, bacon, pan-fried; 10998–Canadian bacon, cooked, pan-fried”).

We use Adam (Kingma and Ba, 2014) to optimize the Q-network, ReLU activation

and a hidden dimension size of 256 in the feed-forward layer, and 50-dimension embed-

dings. We process the user’s raw input by tokenizing with the Spacy toolkit. Each token

is converted to a vocabulary index, padded with zeroes to a standardized length (i.e., the

longest food segment), and fed through an embedding layer mapping each token index

to a 50-dimensional vector. Maxpooling selects the maximum value across all tokens for
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Algorithm 1 RL Training Algorithm
1: Initialize experience replay memory 𝒟
2: Initialize DQN parameters 𝜃
3: for 𝑖 = 1, 𝑁 do
4: Initialize start state 𝑠1 by ranking top-50 hits for meal
5: while ¬𝑑𝑜𝑛𝑒 do
6: if 𝑟𝑎𝑛𝑑𝑜𝑚() < 𝜖 then
7: Execute random action 𝑎𝑡
8: else
9: Execute action 𝑎𝑡 = argmax𝑄(𝑠𝑡, 𝑎)

10: Observe next state 𝑠𝑡+1 and reward 𝑟𝑡
11: Determine whether dialogue is 𝑑𝑜𝑛𝑒
12: Store memory (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝑑𝑜𝑛𝑒) in 𝒟
13: Sample random mini batch of memories (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1, 𝑑𝑜𝑛𝑒𝑗) from 𝒟

14: 𝑦𝑗 =

{︃
𝑟𝑗 if 𝑑𝑜𝑛𝑒𝑗
𝑟𝑗 + 𝛾max𝑎′ 𝑄(𝑠𝑗+1, 𝑎

′; 𝜃𝑡) else
15: Perform gradient descent step on the loss ℒ(𝜃) = 1

2(𝑦𝑗 −𝑄(𝑠𝑗 , 𝑎); 𝜃)
2

each dimension, resulting in a single 50-dimensional vector representation of the user’s

input. The 1-hot vector of top-500 hits is a binary list of all possible USDA hits in the

food database, where each index corresponds to a food item, and the value at that index is

1 if that food is still in the ranked list, or 0 if not.

6.3 Experiments

For all our experiments, we used the written food descriptions and corresponding USDA

food database matches collected on AMT, as described in Section 3.2.4, with 78,980 sam-

ples over the full USDA database of 5,156 foods, where Turkers wrote natural language

descriptions about USDA foods (Korpusik and Glass, 2018a). To build the food knowl-

edge base, we parsed each USDA entry and determined the values for the 12 manually

defined food attributes (see Table 6.1) with a set of heuristics and string matching. We
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Figure 6-5: The RL flow, where the current state is fed through the Q network to gener-
ate Q-values for each possible action. The action with the highest Q-value (or a random
action) is selected, which is used to determine the reward and update the new state, con-
tinuing the cycle until the dialogue ends.

computed top-1 and top-5 USDA food recall (i.e., percentage of instances in which the

correct USDA match was ranked first or in top-5) on 10% held-out test data.

6.3.1 Results from a User Simulator

We see in Table 7.16 the performance of each of our expert-engineered and RL models for

asking followups, along with the baseline re-ranking method taken from Chapter 5. We

also compare against a logistic regression baseline, which performs significantly worse

than deep RL, illustrating why we need a deep Q-network with more than one layer. These

results rely on a user simulator that is assumed to always choose the correct attribute value

for the gold standard food item. The ground truth data consist of user food logs (e.g., “a

slice of bacon”) and matching USDA foods (e.g., 10862–Pork, cured, bacon, pan-fried).

At each turn, the system asks the user to select an attribute value (e.g., “Please select

preparation style for bacon: fried, baked...”), and the simulator selects the value for the

correct USDA food (e.g., preparation style=fried).4

4In our work, if an attribute does not apply to a particular USDA food, it is assigned the null value,
which is one solution for handling attributes that do not apply to all answer candidates.
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All the followup approaches significantly outperform the baseline, boosting top-1 re-

call from 27.3% to 68.0% with entropy. The rule-based and entropy-based solutions are

at opposite ends of the spectrum: using rules results in shorter dialogues, but lower recall,

whereas the entropy solution has the highest recall, but longer dialogues. The RL agents

find a balance between short dialogues and high recall. This tradeoff is similar to that

in (Varges et al., 2010), where longer dialogues achieved higher precision with followup.

This is because the rule-based method asks questions that have many possible attribute

values as options, so when one of these options is chosen, the dialogue is already close to

completion; however, since we limit the options shown to 10 to avoid overwhelming the

user when the system is used by humans, the correct USDA food may be omitted, lowering

food recall. The hybrid RL model strikes a balance between the rule-based method with

fewer turns, and the entropy solution with high food recall.

Model Turns Top-1 Rec. Top-5 Rec.
Re-ranking ** N/A 27.3 54.9
Entropy-based 6.00 68.0 89.5
Hybrid entropy 4.96 65.1 89.2
Rule-based ** 3.03 59.4 89.1
Hybrid rules 4.15 66.4 89.4

Logistic RL ** 3.60 64.6 88.4
Deep RL ** 4.21 66.6 89.0

Table 6.2: Food recall with followups, compared to a re-ranking CNN baseline without
followup (Chapter 5). Statistical significance (t-test based on final rank of the correct
food) is shown, for hybrid rules-RL compared to other methods (** for 𝑝 < .00001).

6.3.2 Results from an Online Study with Humans

While the user simulator answers every question correctly, this is likely not true for hu-

mans interacting with the live system. Thus, we cannot assume the user will perfectly
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answer every question. In addition to maximizing recall, we want to minimize frustration.

Therefore, we conducted studies on AMT to evaluate the various systems on both metrics,

recall and ease-of-use, to confirm our hypothesis that the questions asked by the RL mod-

els are indeed the most intuitive and natural to people, enabling them to answer questions

more accurately and resulting in higher recall scores.

We incorporated our followup clarification dialogue system into a server and built an

AMT task in which workers interacted with the system to narrow down the top-500 food

options to the correct match, given the spoken food description and correct USDA food.

We showed the possible attribute values at each turn, and displayed the top-10 food names

per option (see Fig. 6-6). We paid $0.10 per task, and evaluated 1000 test samples for three

models: rules, entropy, and hybrid rules-RL. We asked Turkers to rate the interaction for

perceived accuracy, naturalness, and ease-of-use on a scale of 1 to 3, where 3 is the best.

Figure 6-6: The AMT task for online evaluation of the dialogue system.

132



In Fig. 6-7, we see the same pattern for food recall on humans as with the user simu-

lator: the entropy-based solution has the highest recall scores, with hybrid RL in between,

and rule-based the worst. We see in Fig. 6-8 that the rule-based model has the shortest

dialogues, again, and entropy-based longest. Interestingly, in Fig. 6-9, note that the hybrid

rules-RL model has significantly better naturalness and ease-of-use scores than rules and

entropy, respectively. Despite entropy’s high recall, Turkers rated it as least accurate.

Figure 6-7: Top-1 and top-5 food recall per model, evaluated on AMT.

Figure 6-8: Average turns per model, evaluated on AMT.

An analysis of the order of attributes asked by the RL model indicates a meaningful

relationship with the target USDA food item described by the user. For example, in Ta-

ble 6.3, we see that the model asks about brands for branded food products; fat for meat,
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Figure 6-9: Average perceived accuracy, naturalness, and ease-of-use scores (higher is
better) in the AMT study (* for 𝑝 < 0.05, as compared to hybrid rules-RL).

baked goods, and dairy; salt for vegetables and cheese; and addons for composite foods.

6.3.3 Sample Dialogues

We show sample interactions with the hybrid rules-RL model in Table 6.4 for the meal

“I had eggs with bacon and a glass of milk,” where we assume the user has eaten fresh

scrambled eggs, regular bacon (i.e., as opposed to meatless or low sodium), and a glass of

1% milk. We observe that, in general, the questions asked by the hybrid RL model seem

fairly intuitive. For example, it asks about the preparation style of the eggs and bacon, as

well as the milkfat and addons for milk (i.e., with or without added vitamins). We show

sample interactions with the entropy-based and rule-based models in Tables 6.5 and 6.6,

respectively, for the same meal. Note the contrast between the short interactions with the

rule-based model, versus the lengthy conversations with entropy.
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Attribute Followup Example Foods
Brand ON THE BORDER, taco ...
Brand McDONALD’S Vanilla ...
Brand Cereals, KASHI ...

Fat Cookies ... reduced fat
Fat Beef, ground, 93% lean meat ...
Fat Cheese, ... low fat

Packing style ... Fruit-flavored drink ...
Packing style ... Plums, raw
Packing style ... Tomato sauce, canned ...

Salt Lentils ... without salt
Salt Pickles ... reduced sodium
Salt Cheese, parmesan, low sodium

... Addons ... with cheese and sausage

... Addons ... with added nutrients

... Addons ... with vitamin E added

Table 6.3: Example target USDA foods for five learned followup patterns asked with RL.

6.4 Summary and Future Work

In this chapter, we demonstrated the success of deep RL for asking followup clarification

questions in the novel nutrition domain. We compared RL to rule-based and entropy-based

solutions for asking followup clarification questions, demonstrating a tradeoff between

shorter dialogues and higher food recall. Asking followup questions significantly boosts

recall, from 27.3% without any clarifications, to 66.4% top-1 recall with hybrid rules-RL

followup. We also demonstrated that the hybrid RL model achieves the highest perceived

naturalness and frustration scores when evaluated on humans.

In future work, we will add an option for users to speak or type a response to followup

questions and will automatically narrow down the options as the user speaks or types. We

will make use of the attributes specified in the user’s initial meal diary to avoid re-asking

that attribute. Finally, we will investigate RL for online learning of user preferences.
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Table 6.4: Sample dialogue with the hybrid RL approach, which selects the correct top-1
hit for all eaten foods.

I had eggs with bacon and a glass of milk.
System: Please select the category for: eggs
∙ egg
∙ sweets
∙ meals
User: egg
System: Please select the sweetness:
∙ None
∙ sweetened
User: None
System: Please select the preparation style:
∙ raw ∙ dried
∙ None ∙ frozen
∙ poached ∙ fried
∙ scrambled ∙ hard-boiled
User: scrambled
Results for: eggs
∙ 01132: Egg, whole, cooked, scrambled X

System: Please select the category for: milk
∙ milk
∙ snacks
∙ sweets
User: milk
System: Please select the preparation style:
∙ None
∙ canned
∙ dried
User: None
System: Please select the addon:
∙ without added vitamins
∙ with lauric acid oil
∙ with added vitamins
User: with added vitamins
System: Please select the milkfat:
∙ nonfat
∙ None
∙ whole
∙ 2%
∙ 1%
User: 1%
Results for: milk
∙ 01082: Milk...1% milkfat, with added vitamins X
∙ 01104: Milk, chocolate..., with added vitamins

System: Please select category for: bacon
∙ meat
∙ oils
∙ vegetables
User: meat
System: Please select preparation style:
∙ None
∙ cooked
∙ fried
∙ baked
∙ heated
User: fried
Results for: bacon
∙ 10862: Pork, cured, bacon, ...pan-fried X
∙ 43378: Pork...bacon...reduced sodium
∙ 10998: Canadian bacon, cooked, pan-fried
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Table 6.5: Sample dialogue using the entropy solution, which asks many questions, some
of which are odd, given the food (e.g., milkfat for eggs). If the user mistakenly selects
salted instead of None, only raw eggs or egg noodles are returned.

I had eggs with bacon and a glass of milk.
System: Please select the milkfat for: eggs
∙ None
∙ whole
User: None
System: Please select the fat:
∙ None
∙ nonfat
User: None
System: Please select the sweetness:
∙ None
∙ sweetened
User: None
System: Please select the salt:
∙ None ∙ salted ∙ unsalted
User: salted
Results for: eggs
∙ 01160: Egg, yolk, raw, frozen, salted...
∙ 01255: Egg, whole, raw, frozen, salted...
∙ 20310: Noodles, egg, cooked...with added salt
∙ 20510: Noodles, egg...unenriched, with added salt
System: Please select the fat for: bacon
∙ None
∙ rendered fat
User: None
System: Please select the sweetness:
∙ None
∙ sweetened
User: None
System: Please select the salt:
∙ None
∙ low sodium
User: None
System: Please select the preparation style:
∙ fried ∙ baked ∙ heated ∙ cooked ∙ frozen
User: fried
Results for: bacon
∙ 10862: Pork, cured, bacon, ...pan-fried X
∙ 10998: Canadian bacon, cooked, pan-fried

System: Please select the salt for: milk
∙ None
∙ low sodium
User: None
System: Please select the sweetness:
∙ None
∙ sweetened
∙ low calorie sweetener
∙ unsweetened
User: None
System: Please select the preparation style:
∙ None
∙ canned
∙ raw
∙ frozen
∙ dried
User: None
System: Please select the fat:
∙ None
∙ nonfat
User: None
System: Please select the brand:
∙ None
∙ MARS
∙ HERSHEY’S
∙ ROLO
∙ CYTOSPORT
∙ SYMPHONY
User: None
System: Please select the milkfat:
∙ whole
∙ None
∙ nonfat
∙ 1%
∙ 2%
User: 1%
Results for: milk
∙ 01175: Milk, fluid, 1% fat, without added vitamins
∙ 01082: Milk...1% milkfat, with added vitamins X
∙ 01104: Milk, chocolate...lowfat, with added vitamins
∙ 01088: Milk, buttermilk, fluid, cultured, lowfat
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Table 6.6: Sample dialogue with the rule-based approach, which asks fewer questions, but
yields incorrect results for eggs and bacon due to ambiguous names (e.g., egg vs. eggs,
and bacon vs. pork).

I had eggs with bacon and a glass of milk.
System: Please select the category for: eggs
∙ egg
∙ sweets
∙ meats
User: egg
System: Please select the name:
∙ egg
∙ egg yolk
∙ egg white
∙ egg substitute
∙ eggs
User: eggs
Results for: eggs
∙ 43285: Eggs, scrambled, frozen mixture
System: Please select the category for: milk
∙ milk
∙ snacks
∙ sweets
User: milk
System: Please select the name:
∙ milk
∙ ready-to-drink reduced fat beverage
∙ chocolate milk
∙ almond milk
User: milk
System: Please select the type:
∙ whole
∙ filled
∙ dry
∙ imitation
∙ None
∙ nonfat
∙ human
∙ fluid
∙ reduced fat
∙ lowfat
∙ goat
User: lowfat
Results for: milk
∙ 01082: Milk...1% milkfat, with added vitamins X

System: Please select the category for: bacon
∙ meat
∙ oils
∙ vegetables
User: meat
System: Please select the name:
∙ bacon
∙ bacon bits
∙ bacon and beef sticks
∙ pork
∙ turkey bacon
∙ canadian bacon
User: bacon
Results for: bacon
∙ 16104: Bacon, meatless
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Chapter 7

Dialogue State Tracking

In the previous chapters, we focused on semantic tagging and database mapping (i.e.,

the language understanding component) in a spoken food logging system. In this chapter,

however, we turn to a different piece of the dialogue system pipeline—dialogue state track-

ing and response selection, which are both part of the dialogue manager (see Fig. 1-1), and

we move into other domains beyond nutrition, such as making restaurant reservations.

Spoken dialogue systems have gained popularity recently with the rise of personal

intelligent assistants such as Siri and Cortana. These systems can be divided into two

categories: chatbots that entertain the user through fun conversation, and task-oriented di-

alogue systems that accomplish a goal for the user, such as making a restaurant reservation

or booking a flight. The standard approach for task-oriented dialogue typically follows a

pipeline of steps, starting with intent detection (i.e., determining the user’s goal), followed

by SLU of the user utterance to determine precisely what the user is requesting. For exam-

ple, the user’s intent may be to book a restaurant, for which the relevant semantic tag values

would be Chinese for the food slot, and centre for the area slot. Subsequently, the

user’s goal is updated based on the output of the SLU component, the next system action
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is selected via the predicted user goal, and finally the system responds according to the

chosen action (see Fig. 7-1 for the standard pipeline).

In such a framework, however, there are several drawbacks. First, the SLU component

is an intermediate step between the user query and updating the dialogue state (i.e., revis-

ing the current prediction for the user’s goal) (Young et al., 2010; Wang and Lemon, 2013;

Williams, 2014), which may cause errors to accumulate further down the pipeline. Recent

approaches avoid this by eliminating the intermediate SLU and directly tracking the state

of the dialogue, given the user utterance (Zilka and Jurcicek, 2015; Mrkšić et al., 2015).

In addition, prior approaches often relied on hand-crafted features, such as semantic dic-

tionaries that map words to synonyms of each other (e.g., area may map to part of

town), or even entirely rule-based dialogue systems. Current approaches explore end-to-

end neural models for dialogue management instead (Mrkšić et al., 2016; Zhong et al.,

2018). In this chapter, we show through three dialogue state tracking challenges how 1)

our convolutional architecture generalizes to new tasks and domains, and 2) we can lever-

age deep learning to avoid the typical pipeline of steps required for dialogue management.

7.1 Related Work

Traditionally, spoken dialogue systems relied on separately trained components for SLU

and dialogue state tracking. The SLU component would identify slot-value pairs from the

speech recogition output, which would be passed to the state tracking module to update

the belief state (Thomson and Young, 2010; Wang and Lemon, 2013). However, this

pipeline of steps would accumulate errors, as the SLU component often would not have

the necessary context to accurately predict the slot values. Thus, belief tracking research

shifted to jointly predicting slot-value pairs and updating the dialogue state (Henderson

et al., 2014c; Sun et al., 2014).
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Typically, these jointly trained SLU and dialogue state updating models rely on a delex-

icalization strategy, which translates various instantiations of slot and value mentions in

the user utterance into generic labels; this approach requires hand-crafted semantic dictio-

naries in order to perform the mapping from specific wordings to generic slot-value labels.

Prior work by Henderson et al. (2014b) fed delexicalized user utterances into a recurrent

neural network, which output a distribution over slot values. However, delexicalizing the

input requires a manually defined semantic dictionary that maps from slot-value pairs to

all possible text forms, or synonyms (see Table 7.1 for examples).

Slot-Value Synonyms
Food=Cheap [affordable, budget, low-cost, low-priced, ...]
Area=Centre [center, downtown, central, city centre, ...]
Rating=High [best, high-rated, highly rated, top-rated, ...]

Table 7.1: Example rephrasings for three slot-value pairs in a semantic dictionary for
restaurant booking.

To avoid this reliance on hand-crafted semantic dictionaries, Mrkšić et al. (2016) re-

cently demonstrated the ability of their Neural Belief Trackers (NBT) to match the per-

formance of delexicalization-based models, without requiring any hand-crafted semantic

dictionaries, as well as the ability to significantly outperform such models when the seman-

tic resources are not available. However, the NBT still requires pre-trained word vectors

tailored to retain semantic relationships. While our work is similar to theirs in that we

both leverage CNNs for dialogue state tracking, our work, on the other hand, does not rely

on pre-trained word vectors, and directly predicts matching slot values instead of doing

binary classification for each slot-value pair; in contrast, the NBT is trained to learn rep-

resentations of user utterances and slot-value pairs that are used for binary classification

(i.e., whether or not a given slot-value pair is mentioned in the user utterance).

In addition, Zhong et al. (2018) state-of-the-art work has explored deep learning meth-
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ods for dialogue state tracking, but with recurrent (instead of convolutional) self-attentive

encoders, and again considers each slot-value pair one at a time, while we predict the

matching slot value from among all options simultaneously. Their self-attentive RNN

model encodes user utterances, system actions, and each slot-value pair under considera-

tion, but still relies on pre-trained Glove word vectors (Pennington et al., 2014), and char-

acter embeddings, while our model does not require pre-trained embeddings. Rastogi et al.

(2017) also feed delexicalized utterances into their multi-domain deep learning model for

state tracking.

For the DSTC6 challenge, the top-2 performing methods each used separately trained

slot-value trackers to refine the initial ranking of system response candidates generated by

an action selector (Ham et al., 2017; Bai et al., 2017). We take a similar approach, but

use a CNN instead of an LSTM network to select system actions. We also use a CNN for

semantic tagging, rather than the CRF used in Bai et al. (2017) or the LSTM inHam et al.

(2017) for slot-value tracking, and we use less feature engineering than these systems. Bai

et al. (2017) use a heuristic strategy for the final scoring, with two branches based on

the preliminary scoring module (e.g., if api call is selected, then update a candidate

response’s score based on the relative index of the word that last occurred in the dialogue

history, using weights according to the output of a separately trained “Uncertainty CRF”).

7.2 2nd Dialogue State Tracking Challenge (DSTC2)

In this section, we examine the WOZ 2.0 written dataset for restaurant booking dia-

logues (Williams et al., 2013; Henderson et al., 2014a), where the task is to predict the

state of the dialogue at each turn. In particular, the dialogue state consists of the user’s

goal at that turn, which is composed of a set of slots that the user is either requesting (e.g.,

“What is the phone number?” would indicate the requested slot phone) or informing the
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system (e.g., “I want Turkish food,” which maps the informable slot food to the value

Turkish). This requires keeping track of the history of the conversation, as well as the

context from the previous system response, as illustrated in Table 7.2.

Figure 7-1: The typical flow of a dialogue system, with spoken language understanding
followed by dialogue state tracking.

The approach we take in this work is a deep learning model, specifically a CNN ar-

chitecture for tracking the user’s goal at each turn in a restaurant booking dialogue. We

show that without relying on any semantic dictionaries or pre-trained word vectors, our

model is competitive with state-of-the-art, achieving 86.9% joint goal accuracy and 95.4%

requestable slot accuracy.

7.2.1 Models

The goal of our work is to accurately update the current belief state of the dialogue by pre-

dicting, at each turn, the correct slot values specified by the user, specifically for a restau-

rant booking task. There are two types of slots: informable (i.e., the user is providing

information about the type of restaurant they want, such as the cuisine), and requestable

(i.e., the user is asking for information about the restaurant, such as the telephone num-
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User: Is there any place here in the centre
that serves corsica food?

food = corsica; area = centre
System: What price range are you looking for?

User: Any price range will do.
food = corsica; area = centre;

price = dontcare
System: There are no restaurants available matching your

criteria. Would you like to try a different area,
price range, or food type?

User: Are there any restaurants in the centre
that serves North American type of food?

food = north american; area = centre;
price = dontcare

System: Yes. The gourmet burger kitchen serves north
american food and is located in the centre part of the city.

Would you like their location?
User: Can I get the phone number?

food = north american; area = centre;
price = dontcare;
requested = phone

System: The phone number for gourmet burger kitchen
is 01223 312598.

User: Thank you. Good bye.
food = north american; area = centre;

price = dontcare

Table 7.2: Example WOZ 2.0 dialogue snippet, with the corresponding slots specified by
the user at each turn. Note that midway through the dialogue, the user changes the goal
food slot value from corsica to north american.
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ber),1 as shown in Table 7.3 which enumerates all possible informable and requestable

slots, as well as the number of values available for each slot. Since the informable slots

are also requestable, the system must differentiate whether the user is providing or request-

ing information. In addition, there is an imbalance of data, since the Food informable slot

has many possible values, whereas Area and Pricerange have fewer than 10, and

some slot-value pairs appear more often than others in the training data.2

Slot Type Num Values
Food Informable, Requestable 75
Area Informable, Requestable 7

Pricerange Informable, Requestable 4
Name Requestable N/A

Address Requestable N/A
Phone Requestable N/A

Postcode Requestable N/A
Signature Requestable N/A

Table 7.3: All possible informable and requestable slots.

As discussed in Section 7.1, prior work has either used hand-crafted features and se-

mantic dictionaries for dialogue state tracking with delexicalization, or neural models re-

lying on pre-trained semantic word vectors, while ours does not.

Below, we describe in detail our novel convolutional neural dialogue state tracker, with

two variants: one model with a binary sigmoid output layer indicating the presence of each

requestable slot (Fig. 7-3), and a separately trained model for each informable slot (Fig. 7-

2) with a softmax output layer to predict the slot value. We discuss two post-processing

techniques for boosting performance to illustrate the importance of error analysis for gain-

ing insight into why a system is underperforming and finding a solution based on human

1http://camdial.org/ mh521/dstc/downloads/handbook.pdf
2Note that requestable-only slots (e.g., address) do not have values that can be specified by the user, since

the user is requesting the value.
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intuition about the task. Thus, we combine deep learning models with expert knowledge

into a hybrid approach in order to overcome the limitations of purely neural methods.

Informable Slot Models

As shown in Fig. 7-2, we separately trained a model for each of the informable slots (i.e.,

Food, Area, and Pricerange).3 Each model is composed of an embedding layer

(which is not pre-trained, and is learned during training), into which we fed the user utter-

ance concatenated with the previous system response as the input 𝑥, where 𝑥 is composed

of the sequence of learned word vectors for the input tokens 𝑤1,𝑤1, ...,𝑤𝑛. The input

had two options, chosen via the development set:4

1. The user utterance concatenated with the full system response, omitting the system

response if the user utterance starts with “no” (i.e., correcting the system), and using

only the final question asked by the system.

2. The user utterance concatenated with all the slots requested by the system (i.e., in

its dialogue act).

This is followed by a single convolutional layer with maxpooling to get a representa-

tion 𝑟 of the embedded input 𝑥:

𝑟 = maxpool(ReLU(Conv1D(𝑥)))) (7.1)

Finally, a feed-forward layer with a softmax on top is used to directly predict the proba-

3We also tried jointly training all the slots, but found that separately training the models boosts perfor-
mance over a single jointly trained model.

4Separately processing the user utterance and system response was worse.
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bility of all possible slot values:

𝑜 = softmax(𝑊𝑟 + 𝑏) (7.2)

where 𝑊 is a learned weight matrix and 𝑏 is a bias term in the final feed-forward layer.

Figure 7-2: The separately trained CNN models for each informable slot type.

Requestable Slot Model

The requestable slot model is also a CNN (shown in Fig. 7-3), but with a separate binary

sigmoid output layer for each possible requestable slot (see Table 7.3), instead of one

softmax layer on top, as in the informable slot models. The input to this model is the first

option we tried for the informable slot models (i.e., the user utterance concatenated with

the full system response, omitting the system response if the user says “no,” and using
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only the final question asked by the system).

Figure 7-3: The CNN architecture for the requestable slot model.

Hybrid Deep Learning and Knowledge-Based Method

While neural network models are incredibly powerful and have demonstrated success over

prior state-of-the-art approaches in many fields, including computer vision, speech recog-

nition, and natural language processing, there are still limitations to using these models

that are often referred to as “black boxes.” In our work, we simply feed the raw user ut-

terance and system response into the model, which then outputs predicted slot-value pairs,

requiring no manual feature engineering, pre-trained word vectors, or semantic dictionar-

ies. However, this can make it difficult to interpret why the model behaves the way it

does, and may limit performance since the model does not inherently have common-sense

knowledge about the real world, or in this case, the restaurant booking task. Thus, by man-
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ually investigating test examples where the system made prediction errors, we are able to

boost the model’s performance by guiding it in the right direction based on expert knowl-

edge of the task and dataset. Such an approach is illustrative of a hybrid between deep

learning without any manual feature engineering, and expert knowledge-based systems,

which we use to address the limitations of the purely neural model.

Post-Processing Techniques to Boost Performance

1. Delexicalization of the input to the model is common practice on dialogue state

tracking tasks. In our work, we take a different approach, and perform string match-

ing of slot values as a post-processing step to correct for any omitted slots (e.g., if

some slot values were not seen in training), after the model makes its predictions.

2. We also check whether any slots that were requested by the system in a given turn

(as specified by the system’s dialogue act) were not predicted by that slot’s model

(i.e., the top value was None). If so, we add the next-highest predicted value for

that slot to the goal state.

Implementation Details

We pad the input to 51 tokens (i.e., the maximum length of the concatenated user utter-

ances and system responses seen during training). The input 64-dimension embedding

layer is followed by a 1D convolution with 64 filters spanning windows of three tokens,

with a ReLU activation and dropout of probability 0.2. Each network is trained to pre-

dict the matching one-hot label array given the input user utterance; that is, the softmax

is trained to predict 1 for each slot-value pair that is specified by the user, and 0 for all

others. For the separately trained models, we add a None value for each slot type, and

assign this value a 1 for each example that does not contain the specified slot type. The
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model is trained with the Adam optimizer (Kingma and Ba, 2014) on binary cross-entropy

loss. The setup is the same for the requestable slot model, with a threshold of 0.5 at test

time for each requestable slot.

We tune several threshold hyperparameters on the development set: at the start of a

dialogue, we use a threshold of 0.5 for a predicted slot value when adding new slots to the

goal state, while a higher threshold of 0.9 is best for adding new slots during the dialogue,

and an even higher threshold of 0.99 for updating the value of slots already in the state. In

addition, we set a threshold of 0.2 that must be exceeded in order to add slots requested by

the system’s dialogue act. Finally, the best input for the Area slot (and for all slots in the

Sim-GEN movie booking task in Section 7.2.2) is the full system response concatenated

with the user input, while the best input for the WOZ Pricerange and Food slots is

the user utterance concatenated with the system’s requested slots.

7.2.2 Experiments

Datasets

For our experiments, we report results on the WOZ 2.0 dataset,5 in which Turkers assumed

the role of the system or user in dialogues similar to those used in the 2nd Dialogue State

Tracking Challenge (DSTC2),6 so we can compare our performance to that of state-of-the-

art approaches on a standard dialogue system benchmark. This task involves restaurant

booking, where the user specifies his or her goal as a set of informable and requestable

slots, as described in Section 7.2.1. The WOZ data is written, not spoken, requiring se-

mantic understanding rather than robustness to speech recognition errors. Our final model

is trained on the full training and development set, with hyperparameters tuned on the

5http://mi.eng.cam.ac.uk/ nm480/woz 2.0.zip
6http://camdial.org/ mh521/dstc/
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development set, and is evaluated on the test utterances. To demonstrate our model’s gen-

eralization capability, we also evaluate on the Sim-GEN dataset of conversations between

an agent and a simulated user for buying movie tickets (Shah et al., 2018).

Metrics

As is commonly used in dialogue state tracking experiments, we report results on two slot

tracking metrics:

∙ Goals: the proportion of dialogue turns where all the user’s informable slots (i.e.,

search goal constraints) were correctly identified.

∙ Requests: the proportion of dialogue turns where all the user’s requestable slots

were correctly identified.

Results

As seen in Fig. 7-4, our CNN model without semantic dictionaries or pre-trained word

vectors, achieved 86.9% goal accuracy and 95.4% requests accuracy on the held-out WOZ

2.0 dataset. In Fig. 7-5, our CNN outperforms the state-of-the-art hierarchical LSTM for

jointly tracking dialogue state and predicting system actions (Liu et al., 2018) on the Sim-

GEN movies.

Ablation Study

Here we show the importance of the two post-processing techniques discussed in Sec-

tion 7.2.1 that combine the deep learning model with expert knowledge based on error

analysis. As shown in Table 7.4, the biggest gain in performance on the WOZ dataset is

from exact string matching of slot values in the user utterance, and the best overall model
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Figure 7-4: Goal and request accuracy of our model compared to a strong delexicalization
baseline and two state-of-the-art neural methods: NBT (Neural Belief Tracker) and GLAD
(Global-Locally Self-Attentive Dialogue State Tracker).

is achieved by using both techniques. We also note that there is no gain from applying

these techniques to the Sim-GEN movies dataset.

Model WOZ Goals Sim-GEN Goals
Best 86.9 96.5

w/o technique 1 76.6 96.5
w/o technique 2 82.6 96.5

w/o technique 1 or 2 72.7 96.5

Table 7.4: Goal development set accuracy of our model, on WOZ and Sim-GEN, without
the two post-processing techniques in Section 7.2.1: 1) exact string matching of slot values
in the user utterance, and 2) adding the slot value with highest predicted probability for
slots requested by the system.

We see examples of errors made by the model on WOZ in Table 7.5, where due to

synonyms such as “expensively” and “upscale” for “expensive,” the model is unable to

recognize out-of-vocabulary words that have similar meaning. In addition, the user cor-
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Figure 7-5: Accuracy of our model, as compared to the state-of-the-art (Liu et al., 2018)
on slots in the Sim-GEN movies dataset.

rection for the area slot in the third example, where the user specifies “anywhere,” is

challenging since the system asks about the “centre” of town. Finally, understanding that

the user wants a “cheap” restaurant if they are “close to broke” requires advanced com-

monsense reasoning.

Qualitative Analysis

To see whether our model is learning semantically meaningful embeddings after passing

the input user utterance through the convolutional layer followed by maxpooling, we used

Euclidean distance to identify the top-𝑛 nearest neighbor embedded utterances to several

utterances selected from the held-out test set (note that we are focusing on the model

trained to predict requestable slots for the purposes of this analysis). In Table 7.6, we note

that nearest neighbor embeddings are indeed similar in meaning to the query user utterance

(e.g., “any” is most similar to the learned vectors for “uh any” and “ah any”), and “chinese
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User: Hello, I’m looking for a nice restaurant
with vegetarian food.

True: food = vegetarian
Pred: food = vegetarian; price = expensive

User: Hi, I want a Tuscan restaurant that’s expensively priced.
True: food = tuscan; price = expensive
Pred: food = vegetarian; price = cheap
System: No such results found. Would you like me to

search for any Mediterranean restaurants in the centre?
User: Is there a Lebanese place anywhere around?

True: food = lebanese; area = dontcare;
price = dontcare

Pred: food = lebanese; area = centre;
price = dontcare

User: I like Persian but I’m close to broke.
True: food = persian; price = cheap

Pred: food = persian
System: I will search for the most nearby English restaurant.

User: It should be an upscale English restaurant.
True: food = english; price = expensive

Pred: food = english

Table 7.5: Examples of incorrect slot-value predictions made by the system due to lexical
variation used by Turkers in the WOZ 2.0 dataset, which requires semantic understanding.

food” is most similar to the learned embedding for “um chinese food”), as expected.

To further understand the behavior of our neural network model and illustrate that is

interpretable, rather than simply a black box, we also extracted the top-10 tokens that had

the highest activations when passed through the learned CNN filters in the requestable

slots model. As shown in Table 7.7, some filters appear to be identifying requestable slots

(e.g., postcode, post, center), whereas others are focused specifically on finding different

types of food (e.g., caribbean, indian, etc.).
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User Utterance Top-3 Nearest Neighbors
phone number and phone number

whats phone number
phone number please

any uh any
ah any

any range
chinese food um chinese food

what about thai food
romanian food

Table 7.6: Top-3 nearest neighbors for three test user utterances, using Euclidean distance
on the model’s learned embeddings (i.e., after convolving and maxpooling the input).

7.2.3 Summary and Future Work

We have demonstrated that our novel convolutional architecture that directly predicts a

user’s goal slots during a task-oriented dialogue in the restaurant booking domain, given

the user utterance and system response, achieves 86.9% joint goal accuracy and 95.4%

requested slots on the WOZ 2.0 test set, without any semantic dictionaries or pre-trained

word vectors. In future work, we plan to predict not only the user’s goal, but the next sys-

tem response. We also plan to modify our model so as to handle the noisy ASR test set of

DSTC2—this may require tricks such as summing the scores from each ASR hypothesis,

applying word dropout, and learning character n-gram embeddings (Zhong et al., 2018).

In the next section, we present our novel approach to the 6th Dialogue State Tracking

Challenge (DSTC6) track for end-to-end goal-oriented dialogue, in which the goal is to

select the best system response from among a list of candidates for restaurant booking.
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CNN Filter Top-10 Tokens
11 caribbean, indian, type, food, bistro, serve,

something, thai, singaporean, romanian
13 european, canapes, indian, bistro, japanese,

caribbean, world, persian, italian, british
16 postcode, post, center, thank, restaurant,

then, i, need, could, uh
19 phone, telephone, does, their, the, is,

south, east, i, in
50 code, expensive, type, moderate, serving,

kind, any, my, anything, cheap

Table 7.7: Top-10 highest activation tokens for several learned CNN filters, where filters
11 and 13 isolate cuisines, and filters 16, 19, and 50 focus on three types of requestable
slots: postcode, phone, and pricerange, respectively.

7.3 6th Dialogue State Tracking Challenge (DSTC6)

In this section, we now turn our attention to the 6th Dialogue State Tracking Challenge

(DSTC6) (Boureau et al., 2017) track with a corpus collected by Facebook AI Research

for end-to-end goal-oriented dialogue. In this task, the goal is making a restaurant reser-

vation for the user, given all their constraints on the location, cuisine, price range, atmo-

sphere, and party size. This overall task is broken down into five subtasks: 1) issuing API

calls, 2) updating API calls, 3) displaying options, 4) providing extra information, and 5)

conducting full dialogues (see Fig. 7-6). This requires not only dialogue management, but

also querying knowledge bases (KB) of restaurants to respond with the correct informa-

tion to the user. The motivation for this challenge is to build end-to-end models that have

the potential to scale up and generalize to new domains better than existing SDS methods,

where the dialogue state is designed to be domain-dependent.

In particular, we focus on the first two tasks in this section, as in (Bai et al., 2017),

since tasks three and four can be simply handled by KB lookup. We compare our CNN
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Figure 7-6: An illustration of the five subtasks in the DSTC6 track for end-to-end goal-
oriented dialogue (Bordes and Weston, 2016).

approach to the top-2 DSTC6 participants, since they achieve 100% top-1 precision (P@1)

on the test set for all subtasks (Korpusik and Glass, 2019b). We demonstrate that our CNN

technique is competitive, reaching 100% P@1 on subtasks 1 and 2, without requiring any

LSTMs, as were used in both the top submissions. In addition, our approach uses the CNN

semantic tagger we developed in Chapter 4, which we establish is generalizable to other

tasks and domains, such as restaurant booking in DSTC6, without requiring task-specific

hyperparameter fine-tuning.
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7.3.1 Models

Baselines

We compare against the baselines used by Bai et al. (Bai et al., 2017): ranking candi-

date system responses randomly, according to tf-idf values, with a support vector machine

(SVM), with a vanilla LSTM, and with a hierarchical LSTM. We also implement a binary

CNN model with a sigmoid output layer (see Fig. 7-13) that predicts whether each candi-

date is a good system response, given the input user utterance and dialogue history. To get

the final ranking, we use the sigmoid output probability for each candidate.

Figure 7-7: The binary CNN baseline predicts whether each candidate system response
is the correct answer. There are two inputs to the network: the full dialogue history con-
catenated with the last user utterance, and a candidate system response on the right. We
pad input tokens with zero to the maximum utterance length seen in training, apply 0.1
dropout, and perform batch norm after maxpooling.
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CNN Architecture

Our best model pushes us closer to generating the next system response, rather than simply

selecting the best response from among the list of candidates. Our full system architecture,

shown in Fig. 7-8, consists of one CNN for semantic tagging and updating the dialogue

state (see Fig. 7-9 for an example utterance with its tags), another CNN for action selection

(see Fig. 7-10), and a final response generation step filling in the template with the slot

values in the final dialogue state.

Figure 7-8: The full system architecture, where the action selector CNN ranks the 15
possible system action templates; the tagger CNN updates the dialogue state by tagging
each utterance in the dialogue history; and the final response is generated by selecting
the top-ranked action, applying an action mask, and populating slots with values. Here,
since there are missing slot values, the api call action is masked out, and the next slot
missing a value is atmosphere, so it is requested by the system as the final response.

Figure 7-9: A sample user utterance with its color-coded semantic tags (i.e., number in the
party, restaurant location, and price range).
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Semantic Tagging

As in Chapter 4, where we used CNNs for semantic tagging on meal descriptions for a diet

tracking application (Korpusik et al., 2014), here we apply a CNN to semantic tagging of

the user utterances in the restaurant booking conversations. We select a CNN here rather

than a CRF because we demonstrated it has comparable performance, without requiring

any feature engineering. We choose it over the more typical LSTM due to its faster training

time.7 We also illustrate the interpretability aspect of the learned convolutional filters

in Table 7.12, by identifying patterns among the tokens that have the highest activation

from the filters. As in Chapter 4, the CNN tagger is composed of a word embedding

layer followed by three stacked 1D convolutional layers, with kernel windows spanning

lengths of five, five, and three tokens, respectively. It learned 150-dimension embeddings

without using pre-trained word vectors, used 64 filters per convolutional layer, applied

ReLU activation, and trained with the Adam optimizer on cross-entropy loss for up to

15 epochs with early stopping determined by no performance gain on the validation set

(20% split). We trained a separate tagger for each of the two subtasks we evaluated in the

DSTC6 challenge, since that performed better than jointly training a tagger on both.

To convert the DSTC6 data to training data for semantic tagging, we searched for

api call utterances (see Table 7.8) within the list of utterances for each dialogue,

since that provided us with the gold standard value for each slot. Each api call has

the following order: cuisine, location, number, price, atmosphere. For

example, a possible utterance might be api call italian paris four cheap

romantic. We then found exact string matches for each of the slot values among the

previous utterances, labeling each utterance with that slot type (e.g., the cuisine tag

would be assigned to each token italian) and the remaining tokens with the other se-

7Training the LSTM takes > 5x longer than training the CNN on Task 2.
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mantic tag O. At test time, we ran each user utterance in the dialogue history for the

DSTC6 challenge through the trained CNN tagger, updating the dialogue state each time

a new slot was identified, using the tagged token as the value for that slot (e.g., two is the

value specified for the number slot in the example utterance shown in Fig. 7-9).

Action Selection

The second CNN in our system is trained to predict the best candidate system response

template from among the 15 possible options in Table 7.8. As shown in Fig. 7-10, this

CNN takes only one input (the full dialogue history of utterances concatenated together)

and feeds it to a learned word embedding layer of 64 dimensions. The embeddings for

each token are fed through a 1D convolutional layer with a window size of three tokens,

ReLU activation, and 64 filters. The output of this layer is then maxpooled before passing

through a final feed-forward layer with a softmax activation to output a probability for

each of the 15 possible candidate system response templates.

Final Response Generation

After the dialogue state is updated by feeding each utterance through the CNN tagger, and

the possible system actions are ranked by the CNN action selector, an action mask is ap-

plied (as in Ham et al. (Ham et al., 2017)), and the action templates are populated with slot

values from the dialogue state. The action mask is formed based on the dialogue state—if

any slot values are not yet specified, the api call action is masked out, and if all slot

values are specified, the request api slot action is masked out. In the final step, if

the api call action is selected, the values are populated using the current dialogue state;

likewise, if the request api slot action is selected, the system response for the next

slot that is still missing its value (again according to the current dialogue state) is chosen
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Action Template
ok let me look into some options for you

api call
i’m on it

hello what can i help you with today
sure is there anything else to update

you’re welcome
what do you think of this option:

great let me do the reservation
sure let me find another option for you

here it is
whenever you’re ready

the option was
i am sorry i don’t have an answer to that question

is there anything i can help you with
request api slot

Table 7.8: The 15 possible system action templates. The api call action is populated
with the values for each of the slots (i.e., cuisine, location, number, price range, atmo-
sphere) in the current dialogue state, while the request api slot template is mapped
to a response for the next missing slot the system needs to call the API.

(see Table 7.9 for the responses generated for each requested slot).8

7.3.2 Experiments

7.3.3 Data

The DSTC6 dialogue data we used is an extension of the bAbI dialogue data in Bordes

and Weston (Bordes and Weston, 2016), where the dialogues for restaurant reservation

are generated through simulation based on a knowledge base (KB) of restaurants. Each

restaurant is specified by a cuisine (e.g., French), location (e.g., Tokyo), price range (e.g.,

8We use the deterministic order for requesting missing slots.
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Figure 7-10: The CNN for action selection, which takes as input the full dialogue history of
utterances concatenated together, and outputs the probabilities for each possible response.

expensive), atmosphere, and dietary restrictions. Each restaurant has a party size option

of 2, 4, 6, or 8, and a phone number and address. There are 10,000 example dialogues

in the training set for each subtask, for which we train tagger and action selector CNNs

separately.

We report precision @ {1, 2, 5} as our evaluation metric (i.e., the number of times

in the test set that the correct system response candidate is ranked first, in the top-2, and

among the top-5 responses, respectively). In our preliminary experiments, we evaluate on

the first of four test sets, in which the knowledge base is the same between training and

test, and where dietary restrictions are omitted.
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Slot System Response
Cuisine any preference on a type of cuisine
Location where should it be
Number how many people would be in your party

Price which price range are you looking for
Atmosphere are you looking for a specific atmosphere

Table 7.9: The system response returned for each of the six possible slots when the
request api slot action template is chosen.

Results

As shown in Table 7.10, our model is competitive with the top participant (Ham et al.,

2017) in the DSTC6 challenge, achieving 100% precision on the first test set for subtasks

1 and 2. Our binary CNN model is outperformed by the SVM, vanilla LSTM, and hierar-

chical LSTM in P@1, though it does better than the SVM in P@2 and outperforms both

the SVM and LSTM in P@5. Note that the action mask is a critical piece of our system

(due to predicting api call with missing slots, and request api slot with all slots

filled)—without it, P@1 drops from 100% to 91.1% on Task 1 (and remains 100% on Task

2). In Table 7.11, we show the results of the tagger on our automatically generated tagging

data for subtask 1. We see examples of tricky user utterances in Fig. 7-11, where the model

makes a mistake when there are two possible tokens for the same tag. In Table 7.12, we

show the tokens that have the highest activations for the tagger’s CNN filters.

7.3.4 Summary and Future Work

In this section, we have demonstrated that the CNN tagger we designed in Chapter 4 for

semantic tagging of natural language meal descriptions is general enough to be directly

applied to the 6th Dialogue State Tracking Challenge (DSTC6) without requiring task-

specific hyperparameter fine-tuning. Our model, which combines the CNN tagger with
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Task 1 Task 2
Model P@1 P@2 P@5 P@1 P@2 P@5

Random 10.2 20.4 50.9 0.95 19.5 46.7
TFIDF 21.0 29.9 52.2 36.7 47.4 66.9
SVM 81.3 81.6 83.0 74.5 76.4 78.9

LSTM 84.3 90.6 98.5 77.8 84.0 97.8
Hier. LSTM 88.6 94.1 99.9 81.7 92.6 100

Bai et al. 99.8 100 100 99.7 100 100
Ham et al. 100 100 100 100 100 100

Binary CNN 78.9 88.9 99.7 69.0 79.3 99.6
Our Model 100 100 100 100 100 100

Table 7.10: We report the precision for each of the baseline methods, the top-2 submissions
to the DSTC6 challenge (Ham et al., 2017; Bai et al., 2017), our baseline binary CNN, and
our final softmax CNN.

a CNN action selector, achieves 100% precision on subtasks 1 and 2 of the end-to-end

goal-oriented dialogue track, and is competitive with the top challenge participants.

In future work, we will experiment on the remaining three subtasks (displaying op-

tions, providing extra information, and conducting full dialogues), as well as the other

three test sets for each subtask. We could also add a feature to our CNN that indicates

whether all the slots have been filled or not when predicting the action template, which

should allow the network to automatically learn the action mask. Finally, we aim to jointly

Semantic Tag Precision Recall F-score
Cuisine 100 96.9 98.4
Location 100 95.9 97.9
Number 100 100 100

Price 96.9 96.5 96.7
Atmosphere 100 100 100

All 99.8 99.8 99.8

Table 7.11: Precision, recall, and F-scores of our CNN semantic tagger on each of the
semantic tags in the automatically generated tagging test set for the first subtask of DSTC6.
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Figure 7-11: Example semantic tagging errors, where the model incorrectly labels both
cheap and london as O, rather than correct tags Price and Location, respectively.

Filter Top-3 Highest Activation Tokens
19 french, spanish, italian
52 two, six, four
63 bombay, london, paris

Table 7.12: Top-3 tokens with high activation for the learned filters in the semantic tagger’s
third CNN layer—filter 19 picks out cuisines, filter 52 isolates party numbers, and filter
63 identifies locations.

train the tagger and action selector CNNs as one fully end-to-end model. In the next sec-

tion, we demonstrate that our CNN approach to selecting the next best system response in

a spoken dialogue system is also competitive on the recently released 7th Dialogue System

Technology Challenge (DSTC7).

7.4 7th Dialogue System Technology Challenge (DSTC7)

In this section, we again focus on the final response generation step of a dialogue system,

taking the user’s query and dialogue history as the only input, completely bypassing the

language understanding and dialogue management components. Therefore, the model is

trained fully end-to-end, with only two inputs: the previous two utterances in a dialogue
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between a student and the advisor, and a candidate utterance for the next system response.

Given a set of 100 possible response candidates, the goal is to select the next best response

based on the dialogue history (see Table 7.13 for an example partial dialogue). We entered

our CNN approach, which does not require any manual feature engineering or semantic

dictionaries, into the 2019 DSTC7 challenge, focusing in particular on subtask one of the

Advising dataset in track one (Korpusik and Glass, 2019a).9

The challenge provided five subtasks: 1) selecting the next response from among 100

candidates, 2) selecting the next response from 120,000 responses, 3) selecting the next

response and its paraphrases from among 100 candidates, 4) selecting the next response

from among 100 candidates that may not contain the correct response, and 5) selecting

the next response from among 100 candidates and incorporating the provided external

knowledge. We demonstrate that our convolutional neural encoder placed 11th out of 20

participants on the first subtask, with a Recall@50 score of 82.4%.

7.4.1 Models

Baseline Dual LSTM Encoder

We compare our model to a strong baseline—the dual LSTM (Hochreiter and Schmidhu-

ber, 1997) encoder (Lowe et al., 2015). The inspiration for this model is the seq2seq (Sutskever

et al., 2014) approach often applied to machine translation, where an encoder (usually a

recurrent model, such as an LSTM) encodes the input sentence in the source language, and

an LSTM decoder is fed the encoded representation to generate the sentence in the target

language.

The LSTM encoder works as follows (see Fig. 7-12).10 Each token in the dialogue his-

9https://ibm.github.io/dstc7-noesis/public/index.html
10http://www.wildml.com/2016/07/deep-learning-for-chatbots-2-retrieval-based-model-tensorflow/
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Advisor: Hello Mingyang! Are you doing well?
Student: Hi advisor. I’m doing alright. I would like
some advice on which courses to take next semester.

Student: My interested area is Software Development
and Intelligent system.

Advisor: you have three choices namely, EECS481
Software Engineering, EECS492 Introduction

to Artificial Intelligence, and EECS 381
Object Oriented and Advanced Programming.

Student: how many difficulty levels do
these classes have?

Advisor: EECS381 is not easy
Advisor: any thoughts about that?

Student: What time does the course occur?
I like afternoon classes and will find something else

if it’s scheduled too early.
Advisor: EECS351 is after lunch. The others are before.

EECS481 is from nine to ten thirty and EECS492
is from ten thirty to twelve.

Table 7.13: Example DSTC7 dialogue snippet, between a student and the advisor. 100
candidate responses are provided, and the system must choose the correct response, given
the conversation history: “481 is the early morning and is quite similar to EECS381, so
you might want to skip it.”

tory is fed through an embedding layer (initialized with Glove (Pennington et al., 2014)),

followed by a recurrent layer, to yield an encoded vector representation of the context,

𝐷𝑒. Likewise, each token in a candidate response is fed through an embedding layer and

a recurrent layer, generating the encoded representation 𝐶𝑒. This is done for each of the

100 candidate responses, and the similarity of each candidate response with the dialogue

context is computed using a learned similarity matrix 𝑀 , via the matrix multiplication

𝐷𝑒𝑀𝐶𝑖
𝑒, where 𝑖 refers to the index of the candidate response. Each of these similar-

ity scores is fed through a final softmax layer to generate probabilities of each candidate

response. The whole model is trained with cross-entropy loss.
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Figure 7-12: The strong baseline dual encoder LSTM network for predicting the next best
system response.

Convolutional Encoder

Our approach is similar to that of the dual LSTM encoder, but with the differences that:

(i) we use a CNN instead of the LSTM, (ii) we only feed the last two utterances into the

context encoder rather than the full dialogue history, which would likely require attention

over all the previous utterances in order to ensure the most important information from the

most recent utterances is not lost among the full dialogue history, as shown in related work

on multi-turn dialogue (Wu et al., 2016; Zhou et al., 2018), and (iii) we compare against

each candidate response one at a time with a sigmoid layer instead of a softmax over all

candidates. Again, our motivation for using convolutional rather than recurrent models

is they train faster, and are more easily interpretable by inspecting which tokens for each

learned filter have the highest activation.

As shown in Fig. 7-13, the model is composed of two inputs: one input layer for the
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Figure 7-13: The CNN architecture for predicting whether a given candidate system re-
sponse is the correct match for the previous two utterances in the dialogue between a
student and their advisor.

previous two utterances in the conversation, concatenated together, and another input layer

for a candidate advisor response. Each of the two inputs is first tokenized using spaCy,11

lowercased, and padded with zeros to a fixed length of 50 tokens. Each candidate system

response is fed through a shared word embedding layer (note that we do not use pre-

trained word vectors in the system we submitted to the challenge, although we have since

compared to pre-training with Glove (Pennington et al., 2014) and word2vec (Mikolov

11https://spacy.io
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et al., 2013b) on the validation set), and is max-pooled to generate a single 256-dimension

vector representation of the dialogue context. At the same time, the dialogue history is fed

through the 64-dimension shared word embedding layer and a 1-dimension convolutional

layer of 256 filters spanning a window of three tokens with a ReLU activation. During

training, this is followed by a dropout of probability 0.1, and batch normalization (Ioffe

and Szegedy, 2015). Following the input encoding step, a dot product is performed with

the candidate response vector and each 256-dimension CNN output of the dialogue history.

Mean-pooling is then performed across these dot products to produce a single scalar value,

which we force to be between zero and one with a final sigmoid layer. We train the model

with binary cross-entropy and the Adam optimizer (Kingma and Ba, 2014).

Convolutional Ensemble

In the convolutional encoder described above, the final ranking of the candidate responses

is generated by computing the sigmoid output probability for each response. We exper-

imented with ensembling several randomly initialized convolutional models, and found

that an ensemble of seven models (six with 256-dimension embeddings and learned CNN

filters, and one with 128 dimensions instead), performed best, while the best individual

model was the CNN with 256 dimensions. We also found that ensembling by summing

the ranked indices predicted by individual models performed better on the development

set than averaging the predicted probability scores for each candidate response.

7.4.2 Experiments

In the 7th Dialogue System Technology Challenge (DSTC7) (Yoshino et al., 2018), the

goal is to predict the next utterance in the dialogue, given the previous utterances in the

dialogue history. There are two corpora—the Ubuntu corpus (Kummerfeld et al., 2018),
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which is based on chat logs from the Ubuntu channels, and Advising data that simulates

a discussion between a student and an academic advisor. We focus on the Advising data,

where the purpose of the dialogue is to guide the student to pick the courses that best fit

their curriculum, as well as personal preferences about time, difficulty, and area of interest.

These conversations were collected by asking students at the University of Michigan to

play the role of both the student and the advisor, using provided personas. The statistics

of the data for the first subtask are shown in Table 7.14.

min max mean median
History length 1 41 9.2 8

Utterance length 1 384 10.3 9
Candidate answer length 1 384 12.4 10

Table 7.14: The Advising dataset’s statistics for subtask 1.

For our experiments, we focus on the first subtask, in which there are 100 candidate

responses for each dialogue snippet, where only one is the correct match, and the others

are distractors. We evaluate performance with the Recall@n metric, where R@n indicates

how often the model ranked the correct response among the top-𝑛. The second metric

we use for evaluation is the mean reciprocal rank (MRR), which is the average of the

reciprocal ranks (i.e., the multiplicative inverse of the rank of the first correct answer) of

results for a sample of candidate responses 𝑄:

𝑀𝑅𝑅 =
1

|𝑄|

|𝑄|∑︁
𝑖=1

1

rank𝑖

(7.3)

To select the best model, we evaluated individual CNNs, as well as ensembles, on

the validation set for Advising subtask 1 (see Table 7.15), and compared against the dual

LSTM encoder baseline. In Table 7.16, we show the Recall and MRR scores of our system

on the two held-out test sets for the Advising subtask 1. Our ensemble of seven convolu-
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tional encoders outperforms the dual LSTM encoder baseline, placing us in 11th place for

this subtask, and ranked 13 out of 20 total participants in the first track of the challenge.

Model R@1 R@10 R@50
Dual LSTM Encoder 6.20 36.0 80.0

Single CNN (meanpool) 3.43 27.2 97.9
Single CNN (maxpool) 10.9 46.3 97.2

2-CNN Ensemble 11.1 48.0 97.2
3-CNN Ensemble 11.8 47.5 97.4
4-CNN Ensemble 12.0 46.7 97.0
5-CNN Ensemble 12.2 46.3 97.0
6-CNN Ensemble 12.4 46.9 97.0
7-CNN Ensemble 12.6 46.9 97.0
8-CNN Ensemble 12.4 46.9 97.0

Single CNN (Glove) 12.2 50.3 98.3
Single CNN (word2vec) 14.8 47.5 97.0
Single CNN (FastText) 11.4 44.1 96.2

Table 7.15: We report the recall for several methods on the validation dataset for Advising
subtask 1. Optimizing for R@1, we select the 7-CNN ensemble for the final evaluation
(since at the time of submission, we were not using pre-trained word embeddings). With
more than 7 CNNs, performance starts dropping. Note that with mean-pooling instead of
max-pooling over the candidate response, recall is lower.

Model Data R@1 R@10 R@50 MRR
CNN Ensemble Test 1 20.6 54.8 82.4 32.3
CNN Ensemble Test 2 8.8 32.0 72.8 16.9

Table 7.16: We report recall and mean reciprocal rank (MRR) for our CNN on the two test
sets for Advising subtask 1.

7.4.3 Analysis

Since one common critique of neural network models is that they are mysterious “black

boxes,” here we yet again analyze the learned CNN filters in order to make the model’s
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behavior more interpretable. Specifically, we identify which tokens in the development

set yield the highest activation for each of the learned CNN filters, and manually inspect

these top-10 highest activation tokens to determine whether there is an intuitive pattern.

In Table 7.17, we can see that filter 1 seems to identify greetings (e.g., “hello” and “hi”),

filter 11 picks out tokens where the student thanks the advisor and ends the dialogue (e.g.,

“thanks” and “goodbye”), filter 144 isolates tokens related to course names (e.g., “operat-

ing system” and “eecs”), and filters 185 and 209 seem to identify tokens related to personal

preferences such as time and workload (e.g., “difficult” and “morning”).

CNN Filter Top-10 Tokens
1 ‘hello’, ‘for’, ‘hi’, ‘today’, ‘?’,

‘afternoon’, ‘full’, ‘doing’, ‘one’, ‘in’
11 ‘thankful’, ‘for’, ‘goodbye’, ‘,’,

‘thanks’, ‘!’, ‘thank’, ‘.’, ‘bye’, ‘will’
144 ‘system’, ‘operating’, ‘482’, ‘heard’,

‘really’, ‘any’, ‘calc’, ‘eecs’, ‘last’, ‘have’
185 ‘programming’, ‘difficult’, ‘light’,

‘course’, ‘in’, ‘workload’, ‘take’,
‘load’, ‘junior’, ‘computing’

209 ‘morning’, ‘light’, ‘class’, ‘in’, ‘relatively’,
‘semester’, ‘prefer’, ‘a’, ‘like’, ‘which’

Table 7.17: Top-10 activated tokens for learned CNN filters.

In addition, we inspect the errors made by our best system (i.e., the ensemble of CNNs)

on the validation set to determine 1) whether the mistakes seem reasonable, and 2) to come

up with ideas for improving performance. In Table 7.18, we see that the system is con-

fused by out-of-vocabulary words (i.e., <UNK>) that were unseen during training. One

approach for handling this better in future work is to use letter trigrams or character-based

embeddings, rather than full word embeddings. We also note that in the second exam-

ple, the student thanks the advisor, and the predicted responses all seem reasonable (e.g.,
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“you’re welcome”). In the third example mistake, where the system is unable to compare

two courses, the limitation is that our system does not use the full conversation history,

but only the previous two utterances. In this scenario, it would help the system to know

that “they” refers to courses EECS370 and EECS280. The final mistake requires a deeper

semantic understanding than our system is capable of currently—the correct response re-

quires commonsense reasoning that by registering for the class, the student can observe

firsthand the professor’s style, and the predicted responses make sense, but illustrate that

the system does not realize “it” refers to courses rather than the professor (e.g., “it has a

high degree of easiness”).

7.4.4 Summary and Future Work

In this section, we have demonstrated that a CNN encoder outperforms a strong dual

LSTM encoder baseline for selecting the correct response from a list of possible candi-

dates. We report a Recall@50 score of 82.4% on the first held-out test set for the Advising

subtask 1 of the first track of the 7th Dialogue System Technology Challenge (DSTC7). In

future work, we will explore methods of incorporating more contextual information and

leveraging the full dialogue history and provided knowledge base of course information.

In order to handle unknown words at test time, we will investigate character embeddings

and delexicalization. We will also apply our models to the other subtasks and Ubuntu data.

175



Student: does eecs370 have <UNK> ?
Correct: nope , no labs in eecs 370 .

Top-4 Predicted:
1) no <UNK> . have a good one !

2) it starts at 3:00 and ends at 4:30pm.
3) i would suggest taking eecs 280

4) how much challenge do you want ?
Student: many thanks , and i hope to never see you again .

Correct: my wish for you is that you graduate quickly .
Top-4 Predicted:

1) you ’re welcome .
2) i believe that is a good decision . i wish you luck .

3) what time of day do you need ?
4) do you need anything else ?

Student: do they pair well together ?
Correct: it depends on your schedule . eecs 370 is a
easy class whereas , according to statistics <UNK>

from past year students , eecs 281 is not an easy class ,
so i recommend <UNK> it with an easier class .

Top-4 Predicted:
1) it depends

2) the students do not like eecs376 .
3) i suggest strongly you take eecs 280

4) you have met all the requirements , so it is possible .
Student: as a professor how is he ?

Correct: if you want , you can see for yourself
by registering for the class .

Top-4 Predicted:
1) well , that depends

2) 370 has a score of <UNK> for being relatively <UNK> .
3) it has a high degree of easiness , helpfulness , and clarity

4) it ’s not a very heavy load

Table 7.18: Examples of incorrect top-4 response predictions.
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Chapter 8

Conclusion

AI has the potential for a positive impact on society through healthcare. For example, by

creating a dialogue system that is able to carry on a conversation, listen, and empathize

with us, rather than sounding stiff and robotic like many existing systems (illustrating the

difficulty of the problem), a conversational agent can act as a therapist to alleviate symp-

toms of anxiety and depression,1 or as a companion to elderly patients with dementia who

need someone with whom to socialize, and for whom speaking is easier than typing. Bick-

more’s group at Northeastern has already developed a collection of relational agents that

help with tasks such as educating patients on anethesia or hospital discharge instructions,

adhering to medication for Schizophrenia patients, promoting healthy eating and exercise

for weight loss, and explaining exhibits at science museums.2

Dialogue systems research has a long history involving the work of many prominent

researchers, from early rule-based systems to statistical models and reinforcement learn-

ing, and now the current deep learning paradigm using end-to-end neural architectures.

However, despite the substantial body of work devoted to dialogue systems, this is not yet

1https://woebot.io/
2https://www2.ccs.neu.edu/research/rag/
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a solved problem, though ripe for a solution. Companies often still use heavily rule-based

systems, and responses are generated either by selecting from a set of pre-defined can-

didates or filling values in hand-crafted response templates. Such systems tend to sound

unnatural, like a machine, and often cannot remember what was previously said or lack

basic commonsense knowledge. Despite the recent trend toward end-to-end learning, the

standard real-world system is still composed of several pieces: speech recognition to con-

vert the user’s speech to text, spoken language understanding to identify slots and values

(e.g., movie name=Jurassic Park), dialogue state tracking, dialogue management

to select the next system action, and response generation. Furthermore, while one system

may work well in a particular domain, such as flight booking, it often does not gener-

alize to other domains, and a whole new system must be constructed for a new domain.

Even more importantly, task-oriented dialogue systems cannot chat with users for fun, and

chatbots are not yet able to carry on an extended conversation naturally with a human.

In this thesis, we designed a novel, weakly supervised NN model and demonstrated that

it successfully performs a semantic mapping from human natural language to a structured

relational database. In the process, it learns semantically meaningful vector representa-

tions, such that entities with similar meanings generate embeddings that lie close together

in vector space. We deployed this technology to the nutrition domain, which is motivated

by the rising obesity rate in the United States (from 13% among US adults in the 1960s to

39.8% in 2015-2016, leading to an estimated medical cost of $147 billion in 20083). Also,

the tedious, time-consuming nature of many existing diet tracking applications causes peo-

ple to give up after only a few days.4 We generalized the technology to booking movies,

flights, and restaurants (Korpusik and Glass, 2018b)), showing its applicability to any do-

main in which a query is mapped to a database to respond to the user.

3https://www.cdc.gov/obesity/data/adult.html
4https://www.wsj.com/articles/new-reasons-why-you-should-keep-a-food-journal-1463419285
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One problem with conventional dialogue systems is they often rely heavily on man-

ual feature engineering and a set of heuristics for mapping from user queries to database

entries. There is a fundamental mismatch between how people describe objects, and how

the matching entities are represented in a structured database. For example, a person may

say they had a slice of “toast,” rather than a piece of bread. However, the food database

may only contain “bread, toasted,” which is not an exact word match, as well as incorrect

matches, such as French toast and toasted nuts. Historically, researchers dealt with this

mismatch through text normalization (e.g., removing punctuation, lowercasing). To avoid

this pipeline of text regularization and word matching lookup, we designed a model that

is fed raw input and handles the text mismatch internally. Rather than requiring manually

defined semantic dictionaries of synonyms, or checking for plurals and misspellings, the

model automatically learns to identify segments of text that are semantically similar.

We designed a novel CNN and empirically established that it learns vector represen-

tations of natural language queries that lie close to embeddings of database entries with

semantically similar meanings (Korpusik et al., 2017a; Korpusik and Glass, 2018a; Kor-

pusik et al., 2017b). We trained a CNN on a binary verification task, which was fed two

inputs—a USDA food name, and a natural language meal description. It predicted whether

the input USDA food was mentioned in the meal. The network was trained on weakly an-

notated data, without any pre-trained word embeddings or semantic tags, and was not told

where the food items were located in the meal. Rather, the network had to automatically

infer which words in the human-described meal corresponded to each USDA food, since

the meals contained at least three foods, as well as non-food words. By successfully solv-

ing this task, the network learned meaningful vector representations of USDA food items

such that foods from the same category lay nearby in vector space. At test time, we ranked

all possible USDA food items by feeding a user’s meal log through the CNN to generate

a vector, and scored its similarity with each USDA food’s embedded vector representa-
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tion, yielding 64% top-5 food recall and outperforming a rule-based database matching

approach, as is commonly used in dialogue systems.

We demonstrated that asking followup clarification questions narrows down the search

space of database matches, boosting top-5 food recall to 89%. We established that a deep

reinforcement learning (RL) agent is more natural for humans to interact with than rule-

based or entropy-based solutions when asking followup questions about food attributes,

since RL uses a reward function to balance asking few questions with achieving high

recall. In future work, we will continue exploring RL to learn dialogue policies online from

interacting with users, and apply end-to-end deep learning models to dialogue systems. We

will also investigate interpretable memory modules with attention over previous context.

Finally, to make the system as interactive and helpful as possible, like a personal dig-

ital nutritionist, we are investigating nutrition question answering and personalized food

recommendation. For example, the system should be able to respond if the user asks a

question such as “How many calories are in a cup of milk?” or “How many grams of fat

have we eaten today?” and recommend foods based on which nutrients the user is missing

and what kind of food they tend to eat (e.g., if the user is low in iron, the system may

recommend spinach if they like green vegetables, or steak if they’re a meat-eater). Similar

to how in our previous work, we fed the history of a user’s tweets through an LSTM to

estimate a user’s purchase behavior (Korpusik et al., 2016b; Sakaki et al., 2016), we could

feed previously eaten meals through an LSTM to estimate which foods they are most likely

to enjoy, while filtering for healthy options.

8.1 Ongoing Work

We are currently implementing a fully functional system prototype for iOS, with the se-

mantic tagging and database mapping models embedded in a server that the client applica-
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tion calls. Our motivation is three-fold: 1) we enable actual users who want to track their

diet to use our spoken food logging system, 2) we gather feedback and evaluate perfor-

mance on real-world users, and 3) we collect additional data that better matches the test

data, since it is organic and taken from people using the application in the wild.

To evaluate the system, we used three different studies: 1) computing the correlation

between food logged with the system and gold standard 24-hour dietary recall with expert

nutritionists, 2) food and quantity recall from workers interacting with the top-n ranked

matches on Amazon Mechanical Turk, and 3) statistics on system usage from users inter-

acting with the live application after launch to the Apple Store.

8.1.1 Tufts Pilot Study

In collaboration with nutritionists at Tufts University, we conducted a pilot study with

the objective to evaluate the accuracy of our application for self-monitoring dietary intake

using natural spoken language. We recruited 14 participants total, who were instructed to

record daily dietary intake using our application for a period of at least five days. Two

24-hour dietary recalls were conducted between day 3 and day 5 as the gold standard for

evaluating total energy intake (TEI; measured in kcal). The two-day energy estimates were

averaged for each assessment method. Estimates of TEI from our system were compared

to estimates obtained from the 24-hour dietary recalls by a paired samples t-test. Pearson’s

correlation coefficient was used to assess the validity of the system.

Participants were an average of 23.2 ± 2.60 (SD; standard deviation) years of age,

92.3% female, and 14.3% were actively trying to lose weight. The results of the patient

satisfaction survey administered at the end of study indicated that, on a scale from 1-5

(where 1 is best, and 5 worst), our system was rated 1.86 ± 0.53 for perceived accuracy

of nutrition facts, 1.79± 0.70 for personalization, and 1.43± 0.65 for appealing interface
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design. Compared to existing food logging applications, on a scale of 1-3 (where 1 is

better, 2 the same, and 3 worse), our application was rated better or the same as existing

methods on 8 out of 9 questions, with a score of 1.67± 1.16 for difficulty, 1.33± 0.58 for

personalization, and 1.67±0.58 for how fun it was. 14.3% of participants said they would

definitely continue using our system, and 28.6% said they probably would.

On average, participants consumed three meals per day and recorded dietary intake

for six days using our application. The average TEI was 1782 ± 773 kcal for all self-

recorded days (range: 4 to 10 days). The mean TEI measured by 24-hour dietary recall

was 1791 ± 862 kcal. The mean TEI measured by our system was 1818 ± 916 kcal for

days corresponding to the 24-hour recall. We observed a significant correlation between

the two assessment methods (𝑟 = 0.58; 𝑃 = 0.03), and there was no significant difference

in TEI estimates obtained from our application compared to the 24-hour recall (𝑃 = 0.90).

This indicates the potential validity of our novel approach to capture dietary data.

8.1.2 AMT System-in-the-Loop Evaluation

In addition to the Tufts pilot study, we also created an AMT task to collect more data (as

shown in Fig. 8-1), as well as to evaluate the system’s performance in terms of food and

quantity recall over time. We used the Google recognizer in the browser, which provides

us with transcripts in addition to recordings that we can use to train our own in-house

speech recognizer. In total, we collected 152,981 spoken food logs. We believe that by

combining this speech data with the large number of written meal descriptions we have

already collected, we can leverage a powerful language model specific to the nutrition

domain to guide our ASR.

In addition, since we ask workers to select the best matching foods and quantities from

among the predicted top-n ranked results retrieved by our server, we have an additional
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Figure 8-1: The AMT task for collecting more data and evaluating the system. Workers
were instructed to record three foods verbally, including quantities, and to select the correct
food and quantity matches. We asked workers for perceived accuracy and ease-of-use,
feedback, and any questions they wish to ask Coco.
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source of data with which to re-train our database mapping model. We launched the AMT

tasks in batches of 1,000 over a period of several months, allowing us to track the trend for

food and quantity recall over time. As shown in Fig. 8-2, we observe that recall improves

over time because the ranked hits are sorted based on how often the food match was eaten,

so as more workers interact with the system and select the correct food matches from the

ranked results, the system learns from this data and improves over time. We also note that

top-15 food recall plateaus at 100% recall, enabling us to reduce our top-n from 30 to only

15 matching foods. We also see that top-5 quantity recall is consistently high, since often

individual foods do not have more than 5 unit options to choose from.

Figure 8-2: Food and quantity recall over time (i.e., per AMT batch of 1,000 HITs).
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8.1.3 Apple Store Launch

The final method we used for collecting real-world data and evaluating our system was

launching our Coco Nutritionist iOS application to the Apple Store. See Appendix A for

full sample interactions with the system. As users interact with Coco, they have the option

to select a better matching food or quantity than the top-1 predicted match. This gives

us more training data for database mapping, whereby we can assume whatever the user

selects is the correct match, and that if they leave the prediction alone, then we can assume

the model’s prediction was correct. If they delete a food, we do not know where the tagger

or the food match was incorrect, so we need a mechanism for feedback on semantic tags.

We store the audio for the spoken meals, along with the transcripts generated by Siri, for

additional ASR training data. Finally, the user has the option to take a picture of their

meal, which we can leverage in the future for predicting foods from images.

The Apple Store provides us with analytics on Coco’s usage. For example, Fig. 8-3 is

the retention plot, showing the percentage of users still using Coco after a certain number

of days past the time they first downloaded the app. Note that the top row is the average,

which indicates that 19% of users were active one day after download, 5% 10 days later,

and 3% after 29 days. In addition, we can measure the number of days that each user

logged meals with Coco (i.e., the streak length), which is shown in Fig. 8-4. As we can

see, although most users only logged meals for one day at a time, there were four users

within a month of download who logged their meals for 20 or more days in a row.

Finally, in order to evaluate Coco, we computed the top-1 food and quantity recall, in

which we assumed the food selected by the user was the correct match (or close enough

to the true answer in their mind). One month after launch to the Apple Store, Coco Nu-

tritionist has been downloaded onto 980 iOS devices, with top-1 and top-5 food recall

scores of 92.3% and 97.1%, respectively. The quantities and amounts are still using basic
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Figure 8-3: The percentage of users still logging with Coco per day after initial download.

Figure 8-4: A histogram of all users’ daily streaks. As expected, the majority of streaks
are only one day long, but given how diet tracking is such a tedious process, it is still
noteworthy that 10.2% of the streaks are three or more consecutive days, 20.8% are for
two or more days, and four users logged their meals for 20 or more days in a row!
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string matching algorithms, which we note both have lower recall than the food prediction

with the learned embeddings approach (i.e., 85.8% top-1 quantity recall and only 80.3%

number amount prediction, versus 92.3% top-1 food recall).

Number Impressions 121,056
Number Product Page Views 3,180
Conversion Rate 0.97%
Number App Units 980
Number Users 582
Number Spoken Recordings 1,895
Daily Average Sessions per Active Device 2.78
Top-1 Food Recall 92.3%
Top-5 Food Recall 97.1%
Top-1 Quantity Recall 85.8%
Amount Prediction Accuracy 80.3%

Table 8.1: Statistics on Coco app downloads and usage between launch date (1/24/19)
and just over one month later (3/1/19), as well as food and quantity recall. Conversion
rate is calculated as the number of app units divided by the number of unique device
impressions. Note that in order to compute recall, we make the assumption that whatever
food or quantity the user selects is the correct match (or a good enough estimate for them).

We also analyze the difference between spoken and typed food logs. Around 30% of

the logs are spoken, and in Fig. 8-5 we see that the spoken logs have a longer tail, which

indicates that speech is lengthier than writing. While most written logs tend to be only

one, two, or three words long, the spoken logs’ probability mass is more spread out and

highest for four words long. This makes sense since people tend to be more descriptive

and wordy when speaking because it is easier and more natural than typing. We can also

check the food density for typed or spoken logs, as shown in Fig. 8-6, which indicates a

similar pattern to that of the number of words per log. There seems to be a higher fraction

of spoken logs with more than one logged food item, compared to typed logs (but for both,

the majority of logs only contain one food item, compared to AMT meal descriptions that
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contain at least three foods). In addition, the spoken food logs contain fewer capitalized

and punctuation characters than written (i.e., 3.95% of spoken characters are uppercase,

compared to 6.47% of typed characters, and only 0.37% of spoken characters are punc-

tuation, whereas 1.42% of typed characters are punctuation), which is reasonable since

written logs tend to be more formal, and the ASR often omits punctuation.

Figure 8-5: A histogram of the number of words per spoken or typed food log.

Finally, we can compute the perplexity of the written and spoken food logs, as well

as the AMT meal descriptions, where perplexity is, intuitively, the number of words on

average that can be selected next by a language model of the corpus (i.e., how confused

the LM is about which word comes next in a test sentence). We computed perplexity as

𝑃𝑃𝐿 = 2−
1
𝑁

∑︀𝑁
𝑤=1 log 𝑝(𝑤) (8.1)

where 𝑁 is the number of words in the corpus, and 𝑝(𝑤) is the probability of a given

word according to a unigram LM computed over the whole corpus. The perplexity of

each of the three sets of food logs we are interested in are shown in Table 8.2. We see

188



Figure 8-6: A histogram of the number of foods per spoken or typed food log.

that the spoken logs have the lowest perplexity, whereas both written corpora have higher

perplexity. Interestingly, written food logs on Coco have much higher perplexity than that

in AMT training data, which may indicate a mismatch between training and testing corpora

and motivates our collection of data with the real-world system to re-train our models.

Corpus Perplexity
AMT 241

Spoken 158
Typed 457

Table 8.2: Perplexity of three food log corpora: AMT training data, typed logs on Coco,
and spoken logs on Coco. Note that we are computing the unigram probability separately
for each corpus, rather than comparing different language models on a standard test set.
The key takeaway is that written food logs have more variability than spoken descriptions.
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8.2 Future Work

8.2.1 Combining Modalities

In the future, we aim to train our own nutrition speech recognizer, as well as combine the

different modalities of language and vision. We are now collecting audio and transcripts

from the Google and Siri recognizers when users log the food they have eaten, which

would enable training our own in-house speech recognizer. As shown in Gür (2012), when

doing speech recognition on clinical conversations with a recognizer trained on dictational

data from doctors, the mismatch in training and testing data leads to poor performance, and

can be improved by updating the default language model using a provided corpus. In our

case, we need to be careful about ensuring the data our models and recognizer are trained

on do not differ significantly from the meal descriptions recorded with the deployed ap-

plication, and we can improve the language model based on our corpus of written meal

descriptions. It would also be interesting to provide the predicted word lattice or N-best

list from the recognizer to help handle speech recognition errors in downstream language

understanding tasks. Many users have also requested the ability to take a photo of their

meal, which may provide complementary information to that in speech and text. For ex-

ample, if the user logs “pizza” with natural language, and a photo of their meal contains

pepperoni slices, computer vision will disambiguate the type of pizza as pepperoni; like-

wise, if the photo of a meal is a glass of milk, the user might specify the percent milkfat

verbally. People have trouble estimating how much they ate, so an image may provide

quantity information without relying on the user.
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8.2.2 Semantic Tagging and Database Mapping

We also plan to investigate jointly training the semantic tagger and database retrieval, as

well as incorporating a feedback mechanism for learning online from users when it has

made a tagging error. Our ultimate goal is to build a truly end-to-end diet tracking system

that would use a single overarching model to carry on a conversation with a user about

their diet choices, including the ability to acquire information, relate it to existing data,

interpret it in terms of the user’s goals and desires, and carry on a conversation to deliver

requested information and advice to the user.

8.2.3 Dialogue

Finally, we aim to make the nutrition system more interactive, enabling users not only to

log their meals, but also to ask nutrition questions (e.g., Which has more iron, spinach or

kale?), and provide diet advice since many users have requested recommendations for a

healthy snack to eat next that falls within their calorie goal, is tailored to the types of food

they like to eat, and ideally is high in nutrients that they’re missing for that day.

8.3 Summary

We believe the critical challenge of building dialogue systems is enabling them to con-

verse naturally, like humans. Current production dialogue systems are often too tedious

and unnatural for users, as may have been noted by anyone who has struggled to provide

credit card information over the phone to automated banking systems. When conversa-

tional agents sound more natural, such as the new Google Duplex,5 this allows them to

communicate more easily with people. To this end, in this thesis, we have built deep

5https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html
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learning models that allow users to naturally log what they have eaten, and automatically

retrieve the best matching food database items along with their nutrition facts. However,

nutrition is only the first instantiation of this technology. We envision building personal AI

digital assistants to help people in all aspects of life, from booking appointments and send-

ing email, to logging the food they eat and how much they exercise, and even providing

therapy and companionship. Obesity and diabetes are two major health problems facing

America today, and we hope to address both. But healthcare is only the first step—we

can have an even broader impact by incorporating conversational AI research into smart

homes and appliances, self-driving cars, and disaster response.
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Appendix A

Full Dialogue Sample Interactions

Here we show full sample dialogues with Coco Nutritionist, including several examples

where the system cannot handle the user query properly. This illustrates the limitations

of the current implementation, which we aim to address in future work. In Fig. A-1, we

see that Coco correctly tags the user query “I had an apple with two tablespoons of peanut

butter,” labeling “an” and “two tablespoons” as Quantity, whereas “apple” and “peanut

butter” are assigned the Food semantic tag. The correct food items are retrieved from the

food database, and the correct quantities are found as well.

However, there are instances where the system performs poorly. For example, in

Fig. A-2, the system incorrectly combines two different food items (i.e. “apple” and

“toast”) into a single food item. This is due to a mismatch between testing and train-

ing data. On AMT, workers were shown examples of meal descriptions, which they would

tend to imitate closely (e.g. “I had a bowl of oatmeal with a cup of milk”), and were

writing the meals instead of speaking. However, with the live system, users will not nec-

essarily describe their meals in the same manner, and sometimes list ingredients one after

the other in a less natural manner than if they were writing or talking to a friend.
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Figure A-1: A sample dialogue with Coco Nutritionist, where the system properly tags the
user’s meal description into foods and quantities, and retrieves the correct matching food
database entries with their corresponding units and amounts.
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Figure A-2: A sample interaction where a tagging error (i.e., labeling “apple toast” as a
single food item instead of two different foods) leads to retrieving incorrect food database
matches. In this case, the user would delete the “apple toast” entry and try again.
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Another limitation of the system is we are constrained to the food items that are in the

database. This means we are missing many items on the menu at various restaurants, as

well as other types of cuisines since the emphasis is on American food. In Fig. A-3, we

see an example where the food item “chocolate perpetuem” does not exist in the USDA

database. Thus, the predicted match for a mocha almond KIND bar is incorrect. One

possibility for future work that could address this is to allow users to manually enter the

nutrition facts for a missing food item. But since they might make typing mistakes, a better

alternative might be to allow the user to take a picture of the nutrition facts label on the

package, and automatically extract the nutrition facts with optical character recognition.

Another issue for food logging is composite food items. For example, sandwiches and

salads are composed of many different ingredients. The system should understand the

relationships between foods and ingredients, combining all the components into a single

meal. In Fig. A-4, we see that the food description “a sandwich with Swiss cheese and

ham” is incorrectly tagged as three different food items, rather than a single sandwich

containing cheese and ham. We are currently implementing a feature to address this, where

users can enter homemade meals and recipes, referring to these with speech. For example,

in this case, the user may enter a new meal item named “Ham sandwich,” which contains

three ingredients (ham, bread, and Swiss cheese), and when they refer to this item, the

system will be able to retrieve their personalized meal with ham and Swiss cheese.

Finally, the current system assumes every user query is a food description, and thus

does not predict the user’s intent. However, the user might be greeting or thanking Coco,

or asking a nutrition question. Or there could be other subtleties, such as that shown in

Fig. A-5, where the user is not logging a burger because they had a salad instead, but the

system still tags both the burger and the salad as food items that were consumed. In the

future, the system should be able to handle these cases, and others, such as if the user

specifies “without mayonnaise,” or corrects the system (e.g., “cooked, not raw”).
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Figure A-3: A sample interaction with the system, where the user’s logged food item does
not exist in the USDA database.
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Figure A-4: Example meal description for a composite food item (i.e., a sandwich), that is
incorrectly tagged as three separate food items.
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Figure A-5: An example interaction illustrating the importance of intent detection, which
we do not currently handle, and requires a deeper understanding of the user’s meaning.
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Glossary

ABCNN Attention-based convolutional neural network (ABCNN) is a convolutional neu-

ral network that models relationships between pairs of sentences through an atten-

tion mechanism. 86

Adam An adaptive optimization method, used as a newer alternative to stochastic gradient

descent. 69, 70, 90, 106, 128, 150, 160, 171

AMT Amazon Mechanical Turk (AMT) crowdsourcing platform is where researchers

pay workers, also called Turkers, to complete a set of tasks for data collection and

annotation. 37, 56, 61, 62, 75, 78, 129, 132, 182, 184, 187–189

ANN Artificial neural network (ANN) is a powerful type of machine learning model in-

spired by neural networks in the human brain. 42

ASR Automatic speech recognition (ASR) is the transcription of speech into text by com-

puters. 71, 87, 155, 182, 185, 188

ATIS Air Travel Information System (ATIS) is an automated flight booking dialogue sys-

tem from the nineties. 35, 66, 67, 77, 78, 82

attention Mechanism for aligning source and target inputs in seq2seq models. 47, 48, 69,

70, 83, 86, 87, 169, 180
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BERT Bidirectional Encoder Representations from Transformers (BERT) is Google’s

deep, attention-based neural network model pre-trained on a large text dataset for

learning contextual word representations. 66, 68–71, 76–78, 82

charCNN Character-based convolutional neural network (charCNN) is a CNN with char-

acter embeddings at the bottom layer instead of words. 91, 93, 94

CNN Convolutional neural network (CNN) is a type of neural network commonly used in

computer vision, where a learned convolutional filter is slid over patches of an input

image, or windows of words for text input. 38, 41, 46, 47, 52, 67, 69, 75, 76, 78,

82, 84–90, 94, 99–101, 103, 105–110, 112, 114, 115, 117, 122, 123, 141–143, 147,

151, 154, 156–161, 163–167, 169, 171–175, 179

CRF Conditional random field (CRF) models are statistical models that were previously

state-of-the-art for semantic tagging and require hand-crafted feature engineering.

41, 66–71, 78, 82, 100, 142, 160

DNN Deep neural network (DNN) refers to an artificial neural network with multiple

stacked hidden layers. 62, 87

dropout Method for regularizing neural networks, by setting random nodes to zero during

training. 89, 106, 149, 155, 171

ELMo Embeddings from Language Models (ELMo) is another approach to learning con-

textual word representations. 68

F1 An evaluation metric defined as the harmonic mean of precision and recall. 71

FF Feed-forward neural network (FF) is the simplest neural network, where every node

in the previous layer is connected to every node in the subsequent layer. 42, 44, 69
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GPR Generative Pre-trained Transformer (GPT) is OpenAI’s deep, attention-based neural

network model for learning contextual word representations. 68

GRU Gated recurrent unit (GRU) is a simpler version of the LSTM. 44, 46, 69, 85, 121

highway Type of connection in neural networks. 91, 92

HMM Hidden Markov model (HMM) is a statistical model with unobservable states that

follow the Markov assumption, in which each state only depends on the previous

state. 62

LM A language model (LM) predicts which word should come next in a sequence, given

the previous context of words. 68, 188

LSTM Long short-term memory (LSTM) is a type of recurrent neural network with gat-

ing mechanisms for remembering longer history. 44, 67, 68, 85, 88, 99, 121, 122,

142, 151, 157, 158, 160, 164, 167, 169, 172, 173, 175, 180

MFCC Mel-frequency cepstral coefficient (MFCC) is a widely used feature in speech

recognition models. 62

ML Machine learning (ML) is a sub-field of Computer Science that trains models on large

amounts of labeled data for making predictions at test time. 42, 52, 54

MLP Multi-layer perceptron (MLP) is a standard feed-forward neural network. 42

MTL Multitask learning (MTL) involves training a single model to perform multiple re-

lated tasks, ideally improving generalizability and performance on all tasks by shar-

ing information. 87, 113
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NER Named entity recognition (NER), closely related to semantic tagging, involves la-

beling entities in sentences, such as people or locations. 67, 68, 87

NLP Natural language Processing (NLP) is the intelligent understanding of human lan-

guage, either written or spoken, by computers. 31, 33, 41, 46–48, 50, 53, 54, 68, 86,

87, 120

OOV Out-of-vocabulary (OOV) words are unseen during training, and difficult for sys-

tems to handle at test time. 90, 91, 93, 94

ReLU Rectified linear unit (ReLU) is a piecewise activation function commonly used in

neural networks. 42, 89, 106, 128, 149, 160, 161, 171

RNN Recurrent neural network (RNN) is a type of neural network commonly used in

language tasks since it preserves the sequential order of words and sounds. 35, 41,

44, 67, 69, 142

SDS A spoken dialogue system (SDS) is an automated agent for tasks such as booking

flights or restaurants. 33, 35, 156

seq2seq Sequence-to-sequence (seq2seq) models are an encoder-decoder style neural net-

work, commonly used in machine translation and caption generation to generate text

given some input. 48, 87, 167

sigmoid Final output prediction layer used in binary classification tasks. 43, 44, 62, 90,

105–107, 109, 110, 112, 145, 147, 158, 169, 171

SLU Spoken language understanding (SLU) involves natural language understanding, or

semantic tagging, on spoken language. 65–67, 139–141
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softmax Normalization layer used as the final output prediction layer in neural networks

for classification tasks with multiple classes. 43, 62, 68, 70, 73, 90, 105, 107–110,

112–114, 121, 126, 145–147, 149, 161, 168, 169

SR Standard Reference (SR) is the smaller USDA food database of 7,793 basic foods,

including fruits, vegetables, meat, and dairy. 55

SRL Semantic role labeling (SRL) is an NLP task that assigns labels to words or phrases

in a sentence that indicate their semantic role, such as agent or predicate. 87

SVM Support vector machine (SVM) is a common supervised machine learning algo-

rithm that finds a hyperplane separating different classes. 158, 164

Transformer A multi-head attention-based encoder-decoder neural network model. 47,

68

USDA United States Department of Agriculture (USDA) provides an online food database

widely used by nutritionists. 36, 55, 56, 60, 62, 83–95, 97–103, 105–107, 109, 113–

115, 118, 119, 123, 125, 126, 128–133, 179

WER Word error rate (WER) is a commonly used metric for measuring the performance

of speech recognition. 62
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