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Abstract

Deep learning is one of the most prominent machine learning techniques nowadays,
being the state-of-the-art on a broad range of applications in computer vision, nat-
ural language processing, and speech and audio processing. Current deep learning
models, however, rely on significant amounts of supervision for training to achieve
exceptional performance. For example, commercial speech recognition systems are
usually trained on tens of thousands of hours of annotated data, which take the form
of audio paired with transcriptions for training acoustic models, collections of text for
training language models, and (possibly) linguist-crafted lexicons mapping words to
their pronunciations. The immense cost of collecting these resources makes applying
state-of-the-art speech recognition algorithm to under-resourced languages infeasible.

In this thesis, we propose a general framework for mapping sequences between
speech and text. Each component in this framework can be trained without any la-
beled data so the entire framework is unsupervised. We first propose a novel neural
architecture that learns to represent a spoken word in an unlabeled speech corpus
as an embedding vector in a latent space, in which word semantics and relationships
between words are captured. In parallel, we train another latent space that captures
similar information about written words using a corpus of unannotated text. By ex-
ploiting the geometrical properties exhibited in the speech and text embedding spaces,
we develop an unsupervised learning algorithm that learns a cross-modal alignment
between speech and text. As an example application of the learned alignment, we
develop a unsupervised speech-to-text translation system using only unlabeled speech
and text corpora.

Thesis Supervisor: James R. Glass
Title: Senior Research Scientist in Computer Science
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Chapter 1

Introduction

1.1 Motivation of this Work

Machine learning, especially deep learning, has become the most prominent tool for

fulfilling artificial intelligence. In the field of natural language and speech processing,

where data is usually expressed as a sequence of smaller units (e.g., a sentence is a

sequence of words, and a speech utterance is a sequence of acoustic features), many

tasks can be formulated as the transformation—or transduction—of input sequences

into output sequences: machine translation, speech recognition, and text-to-speech

synthesis to name but a few. Due to their ability of handling variable-length sequences

and capturing long-term dependency between units within a sequence, deep learning

models such as the recurrent neural network and its variants the long short-term

memory network [Hochreiter and Schmidhuber, 1997] and the gated recurrent unit

network [Chung et al., 2014] have been largely used as a core component for modelling

sequences when developing automatic sequence transducers. As the deep learning

community continues to thrive, ground-breaking neural architectures and methods

such as the sequence-to-sequence paradigm [Sutskever et al., 2014, Cho et al., 2014,

Gehring et al., 2017], attention mechanism [Bahdanau et al., 2015, Luong et al., 2015],

and the most recent Transformer model [Vaswani et al., 2017] have been proposed

to further improve the state-of-the-art performance. Nowadays, machines are able to

achieve performance that is close to human level on speech recognition [Chiu et al.,

17



2018, Saon et al., 2017, Xiong et al., 2017], machine translation [Wu et al., 2016], and

speech synthesis [Shen et al., 2018, Wang et al., 2017].

However, these state-of-the-art models are built within a supervised learning

framework, which often requires a significant amount of labeled data for training. For

example, commercial speech recognition systems [Li et al., 2017] are often trained on

tens of thousands of hours of annotated data, which take the form of audio with paral-

lel transcriptions for training acoustic models, collections of text for training language

models, and possibly linguist-crafted lexicons mapping words to their pronunciations.

Recent end-to-end systems [Chiu et al., 2018] also require data to be in the form of

paired audio and text for end-to-end training. The cost of accumulating such kind

of data is immense, so it is no surprise that only major languages like English and

Mandarin—which have plenty of annotated data readily available—are supported by

high-quality speech recognition. The fact that these state-of-the-art models require

significant amounts of labeled data for training poses a major obstacle for speech

technology to be applied to low-resource languages, which account for most of the

languages spoken around the world. Compared to annotated data, unlabeled data are

relatively easy to collect (e.g., one can effortlessly crawl a massive amount of text from

the Internet or record tens of thousands of hours of conversational speech). There-

fore, it would be very useful (and desirable) if we can design unsupervised learning

approaches that rely only on nonparallel speech and text corpora for solving sequence

transduction tasks such as speech recognition and translation.

There has been some work in weakly- and semi-supervised learning for speech

recognition and synthesis [Karita et al., 2018, Drexler and Glass, 2018, Subramanya

and Bilmes, 2011, Yu et al., 2010, Huang and Hasegawa-Johnson, 2010, Chung et al.,

2019b, Hsu et al., 2019], where plenty of unlabeled data and only a small amount of

labeled data are available. In this thesis, we focus on an unsupervised setting, that

is, not requiring any labeled data.
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1.2 Unsupervised Speech Processing

Our work is closely related to unsupervised speech processing [Glass, 2012], a field

that has attracted considerable attention in the last few years. This research field

deals with the setting when unlabeled speech data are the only available resource for

a language, and unsupervised learning methods are required to learn representations

and linguistic structure directly and only from the speech signal. One of the major

research streams in unsupervised speech processing is unsupervised representation

learning [Chung et al., 2019a, Chorowski et al., 2019, Oord et al., 2018, Pascual

et al., 2019, Chung and Glass, 2018, Chen et al., 2018, Hsu et al., 2017a,b, Zeghidour

et al., 2016, Renshaw et al., 2015, Chen et al., 2015, Lee and Glass, 2012, Zhang and

Glass, 2010, Varadarajan et al., 2008], where the task is to find speech features that

make it easier to discriminate between meaningful linguistic units (e.g., phones or

words). Unsupervised speech segmentation is another major areas of unsupervised

speech processing, where given an unlabeled speech corpus, the goal is to find repeated

word- or phrase-like patterns [Park and Glass, 2008, Jansen and Van Durme, 2011,

Lyzinski et al., 2015], or, in a more difficult scenario, to predict word boundaries and

lexical categories for the entire set [Lee et al., 2015, Räsänen et al., 2015, Kamper

et al., 2017a,b].

1.3 Contributions

In this thesis, we propose a general framework for transducing sequences between

the speech and text modalities. Each component in the framework can be trained

without any labeled data so the entire framework is unsupervised.

To start with, in Chapter 2, we design a novel neural architecture that learns to

represent any spoken word in an unlabeled speech corpus as an embedding vector in a

latent space, in which word semantics and relationships between words are captured.

In parallel, we train another latent space that captures similar information of written

words using an unannotated text corpus. The two corpora, which are used to train
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the embedding spaces of their respective modalities (speech and text), do not need

to be parallel and can be collected independently. Chapter 3, the core of this thesis,

exploits the similarity of geometrical structures of the speech and text embedding

spaces and learn a cross-modal alignment between them. We then show how we can

utilize this cross-modal alignment to develop a speech-to-text sequence transduction

system in a completely unsupervised manner in Chapter 4. Specifically, a speech-to-

text translation system is presented as the example application. Finally, we conclude

this thesis and discuss future work in Chapter 5.
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Chapter 2

Representing Words as

Fixed-Dimensional Vectors

This chapter introduces Speech2Vec, a novel neural architecture for learning fixed-

dimensional vector representations of speech segments corresponding to spoken words

excised from a speech corpus. These vectors contain semantic information pertaining

to the underlying spoken words, whose relationships are also encoded inside these

vectors.

We start with providing some background knowledge about word embeddings1 in

Section 2.1. We then formally introduce Speech2Vec in Section 2.2. Experiments are

presented in Section 2.3, which includes evaluation of the learned word embeddings,

observations and discussions on the results, and visualization of the word embeddings.

Parts of this chapter was published in Chung and Glass [2017, 2018].

1In this thesis, the term “word embeddings” will be used interchangeably with terms “word
vectors” and “vector representations”. All of them refer to dense representations of words in a
low-dimensional vector space.
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2.1 Background

2.1.1 Word Embeddings

To make machines understand and process natural language, we need to transform

words coming in free text into numeric values. One of the simplest transformation

approaches is one-hot encoding in which each distinct word stands for one dimension

of the resulting vector and a binary (0 and 1) value indicates whether the word

is present or not. However, one-hot encoding is computationally impractical when

dealing with the entire vocabulary set, as the representation demands hundreds of

thousands of dimensions. It is therefore desirable to have word embedding approaches

capable of representing words and phrases in vectors of (non-binary) numeric values

with much lower and thus denser dimensions.

The history of word embeddings can be traced back to the 1990s, when vector

space models were used in distributional semantics and models for estimating con-

tinuous representations of words such as Latent Semantic Analysis [Landauer et al.,

1998] and Latent Dirichlet Allocation [Blei et al., 2003] were proposed. The term

“word embeddings” was coined in Bengio et al. [2003], which proposed a simple feed-

forward neural network to perform language modeling and produces word embeddings

as a by-product. Collobert and Weston [2008], Collobert et al. [2011], however, were

probably the first to show the utility of pre-trained word embeddings. They show-

cased that word embeddings trained on a sufficiently large dataset carry syntactic

and semantic information and improve performance on downstream tasks.

Word2Vec [Mikolov et al., 2013b] and GloVe [Pennington et al., 2014] are two of the

most successful and prevalent word embedding models nowadays. They obtain word

embeddings via unsupervised learning from co-occurrence information in text, pro-

ducing word embeddings that encode general semantic relationships. A well-known

example showcasing such relationship is w2v(king) − w2v(man) + w2v(woman) ≈

w2v(queen), where w2v(·) is a learned Word2Vec embedding function. Additionally,

it is worth mentioning that the main benefit of these word embeddings arguably is that

they don’t require any annotation, but can be derived from large unannotated corpora
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that are readily available. Pre-trained embeddings can then be used in downstream

tasks that only have small amounts of labeled data. Some successful applications of

word embeddings are dependency parsing [Yu and Vu, 2017, Ballesteros et al., 2015],

named entity recognition [Lample et al., 2016], part-of-speech tagging [Plank et al.,

2016], language modeling [Kim et al., 2016], just to name a few.

Word embedding approaches such as Word2Vec and GloVe, however, still have

some drawbacks. First of all, they have trouble handling the so-called “polysemy”

phenomenon, where a word has completely different meanings depending on the con-

text it appears (for example, consider the word “bank” in “the bank was robbed”

and “we had a picnic on the river bank”). This problem is inevitable for these ap-

proaches because they are always trying to use a single vector to represent each

word during training. Secondly, their optimization objectives are usually based on

very shallow language modeling tasks, so there is a limitation to what the learned

word embeddings can capture. These disadvantages have motivated the recent devel-

opment of deep language models (language models that use architectures like deep

long short-term memory networks [Hochreiter and Schmidhuber, 1997] and Trans-

former [Vaswani et al., 2017]) for modeling “contextualized” word representations.

Instead of always mapping the same word to the same vector regardless of the con-

text, a contextualized word embedding is a function of the entire sentence, allowing

the same word to be represented as different vectors that capture different semantics

depending on its context. It is therefore no surprise that these contextualized word

embeddings approaches achieve state-of-the-art performance on a wide range of nat-

ural language processing tasks [Peters et al., 2018, Howard and Ruder, 2018, Devlin

et al., 2019, Radford et al., 2018].

2.1.2 Acoustic Word Embeddings

Researchers have also explored the concept of learning vector representations from

audio data [Kamper, 2019, Holzenberger et al., 2018, Milde and Biemann, 2018, Wang

et al., 2018, He et al., 2017, Settle and Livescu, 2016, Chung et al., 2016, Kamper

et al., 2016b, Bengio and Heigold, 2014, Levin et al., 2013]. However, these approaches
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are based on notions of acoustic-phonetic (rather than semantic) similarity, so that

different instances of the same underlying word would map to the same point in a

latent embedding space.

Another stream of research by Harwath and Glass [2017], Harwath et al. [2016],

Harwath and Glass [2015] has presented a deep neural network model capable of

rudimentary spoken language acquisition using raw speech training data paired with

contextually relevant images. Using this contextual grounding, the model learns a

latent semantic audio-visual embedding space. Other similar work that learns a joint

embedding space between the language and vision modalities include Kamper et al.

[2019, 2017c], Chrupa la et al. [2017], Ephrat et al. [2018], which have shown interesting

results in applications such as speech retrieval and speech separation. Our goal here,

however, is to derive a model capable of learning word embeddings from raw speech

without any forms of supervision from any other modalities.

2.2 Speech2Vec: Learning Word Embeddings from

Speech

Given the observation that humans learn to speak before they can read or write, one

might wonder that since machines can learn semantics from raw text, might they also

be able to learn the semantics of a spoken language from raw speech as well?

Our goal is to learn a fixed-length embedding of a speech segment corresponding

to a spoken word that is represented by a variable-length sequence of acoustic features

such as Mel-Frequency Cepstral Coefficients (MFCCs), x = (x1,x2, ...,xT ), where xt

is the acoustic feature at time t and T is the length of the sequence. We desire that

this word embedding is able to describe the semantics of the original spoken word

to some degree. Below we first review a deep neural network architecture commonly

referred to as the RNN Encoder-Decoder framework, which is the backbone of our

Speech2Vec model, followed by formally proposing it.
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2.2.1 Model Architecture: RNN Encoder-Decoder

A Recurrent Neural Network (RNN) Encoder-Decoder consists of an Encoder RNN

and a Decoder RNN [Sutskever et al., 2014, Cho et al., 2014]. For an input se-

quence x = (x1,x2, ...,xT ), the Encoder reads each of its symbol xi sequentially, and

the hidden state ht of the RNN is updated accordingly. After the last symbol xT

is processed, the corresponding hidden state hT is interpreted as the learned repre-

sentation of the entire input sequence. Subsequently, by initializing its hidden state

using hT , the Decoder generates an output sequence y = (y1,y2, ...,yT ′) sequentially,

where T and T ′ can be different. Such a sequence-to-sequence framework does not

constrain the input or target sequences, and has been successfully applied to tasks

such as speech recognition [Chiu et al., 2018], machine translation [Bahdanau et al.,

2015], video caption generation [Venugopalan et al., 2015], abstract meaning represen-

tation parsing and generation [Konstas et al., 2017], and acoustic word embeddings

acquisition [Chung et al., 2016].

With the RNN Encoder-Decoder as the backbone architecture, Speech2Vec, in-

spired by Word2Vec, uses two methodologies for training Speech2Vec: skipgrams and

continuous bag-of-words (CBOW). The two methodologies are based on the distribu-

tional hypothesis, whose basic idea is that words that are used and occur in the same

contexts tend to purport similar meanings.

2.2.2 Speech2Vec based on Skipgrams

The idea of training Speech2Vec with skipgrams is that for each speech segment x(n) =

(x
(n)
1 ,x

(n)
2 , ...,x

(n)
T ) (corresponding to the sequence representing the n-th word) in a

speech corpus, the model is trained to predict the speech segments {x(n−k), ...,x(n−1),

x(n+1), ...,x(n+k)} (corresponding to nearby words) within a certain range k before

and after the sequence x(n), where k is referred to as window size. During train-

ing, the Encoder first takes x(n) as input and encodes it into a vector representa-

tion of fixed dimensionality z(n). The Decoder then maps z(n) to several output

sequences y(i), i ∈ {n − k, ..., n − 1, n + 1, ..., n + k}. The model is trained by
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Figure 2-1: The illustration of Speech2Vec trained with skipgrams. All speech seg-
ments, with each corresponding to a spoken word and represented as a sequence
of acoustic features, were padded by zero vectors into the same length T . During
training, the model is given a speech segment and aims to predict its nearby speech
segments within a certain window size k (k = 1 in this figure). Note that it is the
same Decoder RNN that generates all the output speech segments.

minimizing the gap between the output sequences and their corresponding nearby

speech segments, measured by the general mean squared error
∑

i

∥∥∥x(i) − y(i)

∥∥∥2,
i ∈ {n − k, ..., n − 1, n + 1, ..., n + k}. The intuition behind this approach is that,

in order to successfully decode nearby speech segments, the encoded vector represen-

tation z(n) should contain sufficient semantic information about the current speech

segment x(n). After training, z(n) is taken as the word embedding of x(n). Note that

it is the same Decoder RNN that generates all the output speech segments, and all

speech segments can have different lengths.

2.2.3 Speech2Vec based on CBOW

In contrast to training Speech2Vec with skipgrams that aims to predict nearby speech

segments from z(n), training Speech2Vec with CBOW sets x(n) as the target and aims

to infer it from nearby speech segments. During training, all nearby speech segments

are encoded by a shared Encoder into h(i), i ∈ {n − k, ..., n − 1, n + 1, ..., n + k},
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Figure 2-2: The illustration of Speech2Vec trained with CBOW. During training, the
model aims to generate the target speech segment given its nearby speech segments
within a window size k (k = 1 in this figure). Note that all input speech segments
share the same Encoder RNN.

and their sum z(n) =
∑

i h
(i) is then used by the Decoder to generate x(n). After

training, z(n) is taken as the word embedding for x(n). In our experiments, we found

that Speech2Vec trained with skipgrams consistently outperforms that trained with

CBOW.

2.2.4 Differences between Speech2Vec and Word2Vec

Speech2Vec aims to learn a fixed-length embedding of a speech segment that captures

the semantic information of the spoken word directly from speech data. It can be

viewed as a speech version of Word2Vec. Although they have many properties in com-

mon, such as sharing the same training methodologies (skipgrams and CBOW), and

learning word embeddings that capture semantic information from their respective

modalities, it is important to identify two fundamental differences. First, the archi-

tecture of a Word2Vec model is a two-layered fully-connected neural network with

one-hot encoded vectors as input and output. In contrast, the Speech2Vec model is
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composed of Encoder and Decoder RNNs, in order to handle variable-length input

and output sequences of acoustic features. Second, in a Word2Vec model, the embed-

ding for a particular word is deterministic. Every instance of the same word will be

represented by one, and only one, embedding vector. In contrast, in the Speech2Vec

model, due to the fact that every instance of a spoken word will be different (due to

speaker, channel, and other contextual differences etc.), every instance of the same

underlying word will be represented by a different (though hopefully similar) em-

bedding vector. For experimental purposes, in Section 2.3, all vectors representing

instances of the same spoken word are averaged to obtain a single word embedding.

The effect of this averaging operation is also discussed.

2.3 Experiments

2.3.1 Data and Preprocessing

For our experiments we used LibriSpeech [Panayotov et al., 2015], a corpus of read

English speech, to learn Speech2Vec embeddings. In particular, we used a 500

hour subset of broadband speech produced by 1,252 speakers. Speech features con-

sisting of 13 dimensional Mel Frequency Cepstral Coefficients (MFCCs) were pro-

duced every 10ms. The speech was pre-segmented according to word boundaries

obtained by forced alignment with respect to the reference transcriptions such that

each speech segment corresponds to a spoken word. This resulted in a large set of

speech segments {x(1),x(2), ...,x(|C|)}, where |C| denotes the total number of speech

segments (words) in the corpus.

2.3.2 Model Implementation

We implemented the Speech2Vec model with PyTorch [Paszke et al., 2017]. The

Encoder RNN is a single-layered bidirectional LSTM [Hochreiter and Schmidhuber,

1997], and the Decoder RNN is another single-layered unidirectional LSTM. To facil-

itate the learning process, we also adopted the attention mechanism similar to Subra-

28



manian et al. [2018] that allows the Decoder to condition every decoding step on the

last hidden state of the Encoder, in other words, the Decoder can refer to hT when gen-

erating every symbol yt of the output sequence y. The window size k for training the

model with skipgrams and CBOW is set to three. The model was trained by stochas-

tic gradient descent (SGD) with a fixed learning rate of 1e − 3 and 500 epochs. We

experimented with hyperparameter combinations for training the Speech2Vec model,

including the depths of the Encoder and Decoder RNNs, which memory cell (LSTM

or GRU [Chung et al., 2014]) to use, and bidirectional or unidirectional RNNs. We

conducted experiments using the specified architecture since it produced the most

stable and satisfactory results.

2.3.3 Evaluation Setup

Existing schemes for evaluating methods for word embeddings fall into two major

categories: extrinsic and intrinsic [Schnabel et al., 2015]. With the extrinsic method,

the learned word embeddings are used as input features to a downstream task [Yu and

Vu, 2017, Lample et al., 2016, Plank et al., 2016, Kim et al., 2016, Ballesteros et al.,

2015], and the performance metric varies from task to task. The intrinsic method

directly tests for semantic or syntactic relationships between words, and includes the

tasks of word similarity and word analogy [Mikolov et al., 2013b]. In this work, we

focus on the intrinsic method, especially the word similarity task, for evaluating and

analyzing the Speech2Vec word embeddings.

We used 13 benchmarks [Faruqui and Dyer, 2014a] to measure word similar-

ity, including WS-353, WS-353-REL, WS-353-SIM, MC-30, RG-65, Rare-

Word, MEN, MTurk-287, MTurk-771, YP-130, SimLex-999, Verb-143, and

SimVerb-3500. These 13 benchmarks contain different numbers of pairs of En-

glish words that have been assigned similarity ratings by humans, and each of them

evaluates the word embeddings in terms of different aspects. For example, RG-

65 and MC-30 focus on nouns, YP-130 and SimVerb-3500 focus on verbs, and

Rare-Word focuses on rare-words. The similarity between a given pair of words

was calculated by computing the cosine similarity between their corresponding word
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embeddings. We then reported the Spearman’s rank correlation coefficient ρ between

the rankings produced by each model against the human rankings [Myers and Well,

1995]. Word embeddings that achieve higher ρ are considered better in terms of cap-

turing word semantics. For more details about these word similarity benchmarks,

please refer to Appendix A.

We compared Speech2Vec trained with skipgrams or CBOW with its Word2Vec

counterpart trained on the transcriptions of the LibriSpeech corpus using the fastText

implementation [Bojanowski et al., 2017]. Note that people usually train Word2Vec

on a much larger text corpus such as Google News or Wikipedia. Here we trained

Word2Vec and Speech2Vec on comparable sets of corpora from the same collection

so as to given them a fair comparison. For convenience, we refer to these four models

as skipgrams Speech2Vec, CBOW Speech2Vec, skipgrams Word2Vec, and CBOW

Word2Vec, respectively.

2.3.4 Results and Discussions

We trained the four models with different embedding sizes to understand how large

the embedding size should be to capture sufficient semantic information about the

word. The results are shown in Table 2.1. We also varied the size of the corpus used

for training the four models and report the results in Table 2.2. The numbers in both

tables are the average of running the experiment 10 times and the standard deviations

are negligible. From Table 2.1 and Table 2.2, we have the following discussions.

Embedding size impact on performance. We found that increasing the embed-

ding size does not always result in improved performance. For CBOW Speech2Vec,

skipgrams Speech2Vec, and CBOW Word2Vec, word embeddings of 50-dimensions

are able to capture enough semantic information of the words, as the best perfor-

mance (highest ρ) of each benchmark is mostly achieved by them. For skipgrams

Word2Vec, although the best performance of 7 out of 13 benchmarks is achieved

by word embeddings of 200-dims, there are 6 benchmarks whose best performance

is achieved by word embeddings of other sizes. That being said, we believe that
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Table 2.1: The relationship between the embedding size and the performance on 13
word similarity benchmarks. The results of Speech2Vec and Word2Vec are displayed
in Table 2.1a and Table 2.1b, respectively.

(a) Speech2Vec trained with CBOW and skipgrams on the LibriSpeech speech data.

Model
Speech2Vec

CBOW skipgrams

Vector dim. 10 50 100 200 10 50 100 200

Verb-143 0.182 0.223 0.203 0.205 0.263 0.315 0.276 0.222
SimLex-999 0.183 0.235 0.238 0.237 0.200 0.292 0.317 0.335

MC-30 0.680 0.716 0.688 0.684 0.701 0.846 0.815 0.787
WS-353 0.305 0.343 0.336 0.335 0.370 0.508 0.502 0.498

WS-353-SIM 0.461 0.484 0.474 0.471 0.533 0.663 0.653 0.636
WS-353-REL 0.122 0.192 0.189 0.186 0.207 0.346 0.332 0.331

RG-65 0.676 0.705 0.699 0.697 0.702 0.790 0.756 0.740
MEN 0.476 0.509 0.501 0.498 0.543 0.619 0.606 0.573

MTurk-287 0.346 0.349 0.336 0.331 0.426 0.468 0.442 0.398
MTurk-771 0.356 0.391 0.380 0.377 0.445 0.521 0.503 0.463

SimVerb-3500 0.098 0.122 0.126 0.125 0.100 0.157 0.183 0.204
Rare-Word 0.240 0.273 0.275 0.269 0.249 0.323 0.321 0.317

YP-130 0.198 0.216 0.211 0.214 0.322 0.321 0.334 0.302

(b) Word2Vec trained with CBOW and skipgrams on the LibriSpeech transcriptions.

Model
Word2Vec

CBOW skipgrams

Vector dim. 10 50 100 200 10 50 100 200

Verb-143 0.296 0.380 0.383 0.385 0.307 0.378 0.384 0.365
SimLex-999 0.118 0.146 0.142 0.140 0.202 0.280 0.298 0.300

MC-30 0.524 0.539 0.532 0.521 0.726 0.762 0.746 0.713
WS-353 0.198 0.234 0.228 0.233 0.334 0.452 0.455 0.471

WS-353-SIM 0.313 0.335 0.330 0.334 0.491 0.602 0.599 0.605
WS-353-REL 0.051 0.106 0.095 0.100 0.172 0.308 0.308 0.327

RG-65 0.421 0.425 0.424 0.428 0.666 0.752 0.749 0.724
MEN 0.427 0.465 0.461 0.459 0.563 0.642 0.646 0.632

MTurk-287 0.368 0.387 0.390 0.389 0.430 0.504 0.503 0.469
MTurk-771 0.246 0.290 0.289 0.288 0.413 0.499 0.504 0.479

SimVerb-3500 0.049 0.075 0.072 0.069 0.090 0.149 0.176 0.193
Rare-Word 0.230 0.307 0.309 0.310 0.286 0.408 0.419 0.431

YP-130 0.231 0.261 0.257 0.253 0.345 0.391 0.431 0.448
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Table 2.2: The relationship between the size of the training corpus and the perfor-
mance on 13 word similarity benchmarks. The results of Speech2Vec and Word2Vec
are displayed in Table 2.2a and Table 2.2b, respectively. The percentage denotes the
proportion of the entire corpus that was used for training the models. The reported
results are based on the word embeddings of 50-dim.

(a) Speech2Vec trained with CBOW and skipgrams on the LibriSpeech speech data.

Model
Speech2Vec

CBOW skipgrams

Training size 10% 40% 70% 100% 10% 40% 70% 100%

Verb-143 0.090 0.071 0.116 0.223 0.098 0.152 0.220 0.315
SimLex-999 0.073 0.181 0.205 0.235 0.171 0.272 0.286 0.292

MC-30 0.366 0.503 0.667 0.716 0.469 0.702 0.761 0.846
WS-353 -0.101 0.211 0.319 0.343 0.066 0.392 0.459 0.508

WS-353-SIM 0.001 0.376 0.494 0.484 0.117 0.489 0.609 0.663
WS-353-REL -0.120 0.081 0.174 0.192 -0.084 0.258 0.304 0.346

RG-65 0.024 0.199 0.593 0.705 0.020 0.605 0.661 0.790
MEN 0.033 0.311 0.451 0.509 0.283 0.506 0.585 0.619

MTurk-287 0.059 0.156 0.236 0.349 0.133 0.312 0.399 0.468
MTurk-771 0.098 0.246 0.321 0.391 0.186 0.416 0.462 0.521

SimVerb-3500 -0.023 0.060 0.096 0.122 0.042 0.119 0.145 0.157
Rare-Word 0.071 0.200 0.249 0.273 0.210 0.329 0.308 0.323

YP-130 -0.027 0.067 0.181 0.216 0.097 0.196 0.311 0.321

(b) Word2Vec trained with CBOW and skipgrams on the LibriSpeech transcriptions.

Model
Word2Vec

CBOW skipgrams

Training size 10% 40% 70% 100% 10% 40% 70% 100%

Verb-143 0.196 0.257 0.331 0.380 0.148 0.259 0.328 0.378
SimLex-999 0.014 0.091 0.096 0.146 0.114 0.249 0.266 0.280

MC-30 0.487 0.367 0.456 0.532 0.657 0.625 0.662 0.762
WS-353 0.045 0.091 0.167 0.234 0.129 0.377 0.412 0.452

WS-353-SIM 0.083 0.190 0.303 0.335 0.181 0.463 0.559 0.602
WS-353-REL -0.016 -0.046 0.003 0.106 0.013 0.237 0.256 0.308

RG-65 0.196 0.192 0.333 0.425 0.330 0.416 0.642 0.752
MEN 0.016 0.258 0.403 0.465 0.247 0.541 0.621 0.642

MTurk-287 0.101 0.357 0.367 0.387 0.286 0.440 0.494 0.504
MTurk-771 0.094 0.148 0.223 0.290 0.182 0.392 0.474 0.499

SimVerb-3500 -0.028 0.008 0.045 0.075 0.019 0.116 0.144 0.149
Rare-Word 0.151 0.261 0.275 0.307 0.324 0.408 0.415 0.408

YP-130 0.064 0.085 0.182 0.256 0.403 0.216 0.365 0.391
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Speech2Vec would benefit from increasing the embedding sizes when a larger speech

corpus is available.

Comparing Speech2Vec to Word2Vec. From Table 2.1 we see that skipgrams

Speech2Vec achieves the highest ρ in 8 out of 13 benchmarks, outperforming CBOW

and skipgrams Word2Vec in combination. We believe a possible reason for such results

is due to skipgrams Speech2Vec’s ability to capture semantic information present in

speech such as prosody that is not in text.

Comparing skipgrams to CBOW Speech2Vec. From Table 2.1 we observe that

skipgrams Speech2Vec consistently outperforms CBOW Speech2Vec on all bench-

marks for all embedding sizes. This result aligns with the empirical fact that skip-

grams Word2Vec is likely to work better than CBOW Word2Vec with small training

corpus size [Mikolov et al., 2013b].

Impact of training corpus size. From Table 2.2 we observe that when 10% of

the corpus was used for training, the resulting word embeddings perform poorly.

Unsurprisingly, the performance continues to improve as training size increases.

2.3.5 Variance Study on Speech2Vec Embeddings

At the end of Section 2.2, we mention that in Speech2Vec, every instance of a spoken

word will produce a different embedding vector. Here we try to understand how the

vectors for a given word vary, i.e., are they similar, or is there considerable variance

that the averaging operation we adopted smooths out?

To study this, we partitioned all words into four sub-groups based on the number of

times, N , that they appeared in the corpus, ranging from 5 ∼ 99, 100 ∼ 999, 1000 ∼

9999, and ≥ 10k. Then, for all vector representations {w1,w2, ...,wN} of a given

word w that appeared N times, we computed the mean of the standard deviations of

each dimensions mw = 1
d

∑d
i=1 std(w1,w2, ...,wN), where d denotes the embedding

size. Finally, we averaged mw for every word w that belongs to the same sub-group
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and reported the results in Figure 2-3.

Figure 2-3: How the vector representations for a given word vary with respect to the
times it appears in the corpus.

From Figure 2-3 we observe that when N falls in 5 ∼ 99, the variances of the vec-

tors generated by CBOW Speech2Vec are smaller than those generated by skipgrams

Speech2Vec. However, when N becomes bigger, variances of the vectors generated by

skipgrams Speech2Vec become smaller than those generated by CBOW Speech2Vec,

and the gap continues to grow as N increases. We suspect the lower variation of

the skipgrams model relative to the CBOW model is related to the overall superior

performance of the skipgrams Speech2Vec model. We are encouraged that the devi-

ation of the skipgrams model gets smaller as N increases, as it suggests stability in

the model. We conclude that the vectors produced by skipgrams Speech2Vec for a

given word are relatively invariant with respect to the frequency of the word and the

averaging operation does not have a large impact in an either positive or negative

way. While for CBOW Speech2Vec, the averaging operation is unable to smooth

out the variance as CBOW Speech2Vec consistently performs worse than skipgrams

Speech2Vec according to Table 2.1, and thus calls for better methods for mapping

several vectors into a single one.
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2.3.6 Visualizing Speech2Vec Embeddings

Figure 2-4: t-SNE projection of the word embeddings learned by skipgrams
Speech2Vec. Words with positive and negative meanings were colored in green and
red, respectively.

We visualized the word embeddings learned by skipgrams Speech2Vec with t-

SNE [Maaten and Hinton, 2008] in Figure 2-4. We see that words with positive

meanings (colored in green) are mainly located at the upper part of the figure, while

words with negative meanings (colored in red) are mostly located at the bottom.

Such distribution suggests that the learned word embeddings do capture notions of

antonym and synonyms to some degree.

2.4 Conclusions

In this chapter, we propose Speech2Vec, a neural architecture that integrates the RNN

Encoder-Decoder framework with skipgrams or CBOW for training and extends the

text-based Word2Vec [Mikolov et al., 2013b] model to learn word embeddings directly

from speech. Speech2Vec has access to richer information in the speech signal that

does not exist in plain text, which is one of the possible reasons why in our experiments

in Section 2.3, the learned word embeddings outperform those produced by Word2Vec

from the transcriptions.
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We are fully aware of the fact that using word similarity tasks as the only way to

measure the quality of word vectors is imperfect and can sometimes lead to incorrect

inferences [Faruqui et al., 2016, Schnabel et al., 2015]. In this chapter, we used these

word similarity benchmarks for faster validation of the effectiveness of the proposed

model for learning meaningful vector representations from speech. The usefulness

of the Speech2Vec embeddings in downstream tasks, which are what we truly care

about, will be investigated more in the rest of the thesis.
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Chapter 3

Aligning Speech and Text

Embeddings without Parallel Data

Recent research has shown that word embedding spaces learned from text corpora of

different languages can be aligned without any parallel data supervision. Inspired by

the success in unsupervised cross-lingual word embeddings, in this chapter we tar-

get learning a cross-modal alignment between the embedding spaces of speech and

text learned from corpora of their respective modalities in an unsupervised fashion.

We propose a framework that first respectively learns the individual speech and text

embedding spaces using Speech2Vec and Word2Vec [Mikolov et al., 2013b], and then

attempts to align the two spaces via adversarial training, followed by a refinement

procedure. We show how our framework could be used to perform spoken word recog-

nition and translation, and the experimental results on these two tasks demonstrate

that the performance of our unsupervised alignment approach is comparable to its

supervised counterpart. Our framework is especially useful for developing speech-to-

text sequence transduction systems such as automatic speech recognition (ASR) and

speech-to-text translation for low- or zero-resource languages, which have little paral-

lel audio-text data for training modern supervised ASR and speech-to-text translation

models, but account for the majority of the languages spoken across the world.

This chapter is organized as follows. We start with a brief introduction to cross-

lingual word embeddings and our motivation in Section 3.1. Section 3.2 describes how
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we obtain the speech embedding space in a completely unsupervised manner using

Speech2Vec. Next, we present our unsupervised cross-modal alignment approach in

Section 3.3. In Section 3.4, we describe the tasks of spoken word recognition and

translation, which are similar to ASR and speech-to-text translation, respectively,

except that now the input are speech segments corresponding to spoken words. Fi-

nally, we evaluate the performance of our unsupervised alignment on the two tasks

and analyze our results in Section 3.5. The content of this chapter was published

in Chung et al. [2018b].

3.1 Introduction

3.1.1 Cross-Lingual Word Embeddings

Most successful word embedding models [Mikolov et al., 2013b, Pennington et al.,

2014, Bojanowski et al., 2017] rely on the distributional hypothesis [Harris, 1954], i.e.,

words occurring in similar contexts tend to have similar meanings. Exploiting word

co-occurrence statistics in a text corpus leads to word vectors that reflect semantic

similarities and dissimilarities: similar words are geometrically close in the embedding

space, and conversely, dissimilar words are far apart.

In addition, word embedding spaces have been shown to exhibit similar structures

across languages [Mikolov et al., 2013a]. The intuition is that most languages share

similar expressive power and are used to describe similar human experiences across

cultures; hence, they should share similar statistical properties. Inspired by the no-

tion, several studies have focused on designing algorithms that exploit this similarity

to learn a cross-lingual alignment between the embedding spaces of two languages,

where the two embedding spaces are trained from independent text corpora [Faruqui

and Dyer, 2014b, Xing et al., 2015, Artetxe et al., 2016, Smith et al., 2016, Artetxe

et al., 2017, Cao et al., 2016, Duong et al., 2016]. In particular, recent research

has shown that such cross-lingual alignments can be learned without relying on any

form of bilingual supervision [Zhang et al., 2017a,b, Conneau et al., 2018, Artetxe
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et al., 2018a], and has been applied to training machine translation systems in a

completely unsupervised fashion [Lample et al., 2018b, Artetxe et al., 2018b, Lample

et al., 2018a]. This eliminates the need for a large parallel training corpus to train

machine translation systems.

3.1.2 Motivation

Figure 3-1: Overview of the proposed framework. Given two independent corpora of
speech and text that do not need to be parallel, the framework individually learns
speech and text embeddings using Speech2Vec and Word2Vec. Next, it leverages an
algorithm that is originally proposed for unsupervised cross-lingual word embeddings
to learn a cross-modal linear mapping from the speech embedding space to the text
embedding space. The entire framework is unsupervised.

In Chapter 2, we develop Speech2Vec, which is capable of representing speech seg-

ments excised from a speech corpus as fixed dimensional vectors that contain semantic

information of the underlying spoken words. The design of Speech2Vec is based on

the RNN Encoder-Decoder framework [Sutskever et al., 2014, Cho et al., 2014], and

borrows the methodology of skipgrams or continuous bag-of-words from Word2Vec

for training. Since Speech2Vec and Word2Vec share the same training methodology

39



and speech and text are similar media for communicating, it is reasonable to assume

that the two embedding spaces learned respectively by Speech2Vec from speech and

Word2Vec from text exhibit similar structure.

Motivated by the recent success in unsupervised cross-lingual alignment [Zhang

et al., 2017a,b, Conneau et al., 2018, Artetxe et al., 2018a] and the assumption that

the embedding spaces of the two modalities (speech and text) share similar struc-

ture, we are interested in learning an unsupervised cross-modal alignment between

the two spaces. Such an alignment would be useful for developing automatic speech

recognition (ASR) and speech-to-text translation systems for low- or zero-resource

languages that lack parallel corpora of speech and text for training. In this chap-

ter, we propose a framework for unsupervised cross-modal alignment, borrowing the

methodology from unsupervised cross-lingual alignment presented in Conneau et al.

[2018]. The framework consists of two steps. First, it uses Speech2Vec and Word2Vec

to learn the individual embedding spaces of speech and text. Next, it leverages ad-

versarial training to learn a linear mapping from the speech embedding space to the

text embedding space, followed by a refinement procedure. The proposed framework

is illustrated in Figure 3-1.

3.2 Unsupervised Learning of the Speech Embed-

ding Space

Both Speech2Vec and Word2Vec [Mikolov et al., 2013b] learn the semantics of words

by making use of the co-occurrence information in their respective modalities, and are

both intrinsically unsupervised. However, unlike text where the content can be easily

segmented into word-like units, speech has a continuous form by nature, making the

word boundaries challenging to locate. In Chapter 2, we assumed that utterances

in the speech corpus are already pre-segmented into speech segments corresponding

to words using word boundaries obtained by forced alignment. Such an assumption,

however, makes the process of learning word embeddings from speech not truly un-
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supervised and hence defeats our goal. To eliminate the need of forced alignment,

here we propose a simple pipeline for training Speech2Vec in a totally unsupervised

manner.

3.2.1 Unsupervised Speech Segmentation

Unsupervised speech segmentation is a core problem in zero-resource speech pro-

cessing in the absence of transcriptions, lexicons, or language modeling text. Early

work mainly focused on unsupervised term discovery, where the aim is to find word-

or phrase-like patterns in a collection of speech [Park and Glass, 2008, Jansen and

Van Durme, 2011]. While useful, the discovered patterns are typically isolated seg-

ments spread out over the data, leaving much speech as background. This has

prompted several studies on full-coverage approaches, where the entire speech in-

put is segmented into word-like units [Kamper et al., 2016a, Lee et al., 2015, Sun and

Van hamme, 2013, Walter et al., 2013].

3.2.2 Unsupervised Speech2Vec

We propose to use an off-the-shelf, full-coverage, unsupervised segmentation system

for segmenting our data into word-like units. Three representative systems are ex-

plored in this paper. The first one, referred to as Bayesian embedded segmental

Gaussian mixture model (BES-GMM) [Kamper et al., 2017a], is a probabilistic model

that represents potential word segments as fixed-dimensional acoustic word embed-

dings [Levin et al., 2013], and builds a whole-word acoustic model in this embedding

space while jointly doing segmentation. The second one, called embedded segmental

K-means model (ES-KMeans) [Kamper et al., 2017b], is an approximation to BES-

GMM that uses hard clustering and segmentation, rather than full Bayesian inference.

The third one is the recurring syllable-unit segmenter called SylSeg [Räsänen et al.,

2015], a fast and heuristic method that applies unsupervised syllable segmentation

and clustering, to predict recurring syllable sequences as words.

After training the Speech2Vec model using the speech segments obtained by an
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unsupervised segmentation method, each speech segment is then transformed into an

embedding that contains the semantic information about the segment. Since we do

not know the identity of the embeddings, we use the k-means algorithm to cluster

them into K clusters, potentially corresponding to K different word types. We then

average all embeddings that belong to the same cluster (potentially the instances of

the same underlying word) to obtain a single embedding. Note that by doing so, it

is possible that we group the embeddings corresponding to different words that are

semantically similar into one cluster.

3.3 The Embedding Spaces Alignment Framework

Suppose we have speech and text embedding spaces trained on independent speech

and text corpora. Our goal is to learn a mapping, without using any form of cross-

modal supervision, between them such that the two spaces are aligned.

Let S = {s1, s2, . . . , sm} ⊆ Rd1 and T = {t1, t2, . . . , tn} ⊆ Rd2 be two sets of m

and n word embeddings of dimensionality d1 and d2 from the speech and text embed-

ding spaces, respectively. Ideally, if we have a known dictionary that specifies which

si ∈ S corresponds to which tj ∈ T , we can learn a linear mapping W between the

two embedding spaces such that

W ∗ = argmin
W∈Rd2×d1

‖WX − Y ‖2, (3.1)

where X and Y are two aligned matrices of size d1 × k and d2 × k formed by k

word embeddings selected from S and T , respectively. At test time, the trans-

formation result of any speech segment a in the speech domain can be defined

as argmaxtj∈T cos(Wsa, tj). Our goal here is to learn this mapping W without using

any cross-modal supervision. The proposed framework, inspired by Conneau et al.

[2018], consists of two steps: domain-adversarial training for learning an initial proxy

of W , followed by a refinement procedure which uses the words that match the best

to create a synthetic parallel dictionary for applying Equation 3.1.
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3.3.1 Domain-Adversarial Training

The intuition behind this step is to make the mapped S and T indistinguishable.

We define a discriminator, whose goal is to discriminate between elements randomly

sampled from WS = {Ws1,Ws2, . . . ,Wsm} and T . The mapping W , which can be

viewed as the generator, is trained to prevent the discriminator from making accurate

predictions. This is a two-player game, where the discriminator aims at maximizing

its ability to identify the origin of an embedding, and W aims at preventing the

discriminator from doing so by making WS and T as similar as possible. Given the

mapping W , the discriminator, parameterized by θD, is optimized by minimizing the

following objective function:

LD(θD|W ) =− 1

m

m∑
i=1

logPθD(speech = 1|Wsi)

− 1

n

n∑
j=1

logPθD(speech = 0|tj),
(3.2)

where PθD(speech = 1|v) is the probability that vector v originates from the speech

embedding space (as opposed to an embedding from the text embedding space).

Given the discriminator, the mapping W aims to fool the discriminator’s ability to

accurately predict the original domain of the embeddings by minimizing the following

objective function:

LW (W |θD) =− 1

m

m∑
i=1

logPθD(speech = 0|Wsi)

− 1

n

n∑
j=1

logPθD(speech = 1|tj)
(3.3)

The discriminator θD and the mapping W are optimized iteratively to respectively

minimize LD and LW following the standard training procedure of adversarial net-

works [Goodfellow et al., 2014].
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3.3.2 Refinement Procedure

The domain-adversarial training step learns a rotation matrix W that aligns the

speech and text embedding spaces. To further improve the alignment, we use the W

learned in the domain-adversarial training step as an initial proxy and build a syn-

thetic parallel dictionary that specifies which si ∈ S corresponds to which tj ∈ T .

To ensure a high-quality dictionary, we consider the most frequent words from S

and T , since more frequent words are expected to have better quality of embedding

vectors, and only retain their mutual nearest neighbors. For deciding mutual nearest

neighbors, we use the Cross-Domain Similarity Local Scaling proposed in Conneau

et al. [2018] to mitigate the so-called hubness problem [Dinu et al., 2015] (points tend-

ing to be nearest neighbors of many points in high-dimensional spaces). Subsequently,

we apply Equation 3.1 on this generated dictionary to refine W .

3.4 Defining Tasks for Evaluating the Alignment

Quality

Conventional hybrid ASR systems [Graves et al., 2013] and recent end-to-end ASR

models [Graves and Jaitly, 2014, Chorowski et al., 2015, Chan et al., 2016, Amodei

et al., 2016, Chiu et al., 2018] rely on a large amount of parallel audio-text data for

training. However, most languages spoken across the world lack parallel data, so it

is no surprise that only very few languages support ASR. It is the same story for

speech-to-text translation [Waibel and Fugen, 2008], which typically pipelines ASR

and machine translation, and could be even more challenging to develop as it requires

both components to be well trained. Compared to parallel audio-text data, the cost

of accumulating independent corpora of speech and text is significantly lower. With

our unsupervised cross-modal alignment approach, it becomes feasible to build ASR

and speech-to-text translation systems using independent corpora of speech and text

only, a setting suitable for low- or zero-resource languages.

Since a cross-modal alignment is learned to link the word embedding spaces of
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speech and text, we perform the tasks of spoken word recognition and translation

to directly evaluate the effectiveness of the alignment. The two tasks are similar to

standard ASR and speech-to-text translation, respectively, except that now the input

is a speech segment corresponding to a spoken word.

3.4.1 Spoken Word Recognition

The goal of this task is to recognize the underlying spoken word of an input speech

segment. Suppose we have two independent corpora of speech and text that belong to

the same language. The speech and text embedding spaces, denoted by S and T , can

be obtained by training Speech2Vec and Word2Vec on their respective corpora. The

alignment W between S and T can be learned in an either supervised or unsupervised

way. At test time, given an input speech segment, it is first transformed into an

embedding vector s in the speech embedding space S by Speech2Vec. The vector s

is then mapped to the text embedding space as ts = Ws ∈ T . In T , the word

that has embedding vector t∗ = argmaxt∈T cos(t, ts) closest to ts will be taken as the

recognition result. The performance is measured by accuracy.

3.4.2 Spoken Word Translation

This task is similar to the one in the text domain that considers the problem of

retrieving the translation of given source words, except that the source words are in

the form of speech segments. Spoken word translation can be performed in the exact

same way as spoken word recognition, but the speech and text corpora belong to

different languages. At test time, we follow the standard practice of word translation

and measure how many times one of the correct translations (in text) of the input

speech segment is retrieved, and report precision@ k for k = 1 and 5. We use

the bilingual dictionaries provided by Conneau et al. [2018] to obtain the correct

translations of a given source word.
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3.5 Experiments

In this section, we empirically demonstrate the effectiveness of our unsupervised cross-

modal alignment approach on spoken word recognition and translation introduced in

Section 3.4.

3.5.1 Data and Preprocessing

For our experiments, we used English and French LibriSpeech [Panayotov et al.,

2015, Kocabiyikoglu et al., 2018], and English and German Spoken Wikipedia Cor-

pora (SWC) [Köhn et al., 2016]. All corpora are read speech, and come with a

collection of utterances and the corresponding transcriptions. For convenience, we

denote the speech and text data of a corpus in uppercase and lowercase, respectively.

For example, ENswc and enswc represent the speech and text data, respectively, of

English SWC.

Table 3.1: Detailed statistics of the corpora.

Corpus Train Test Words Segments

English LibriSpeech 420 hr 50 hr 37K 468K
French LibriSpeech 200 hr 30 hr 26K 260K

English SWC 355 hr 40 hr 25K 284K
German SWC 346 hr 40 hr 31K 223K

In Table 3.1, column Train is the size of the speech data used for training the

speech embeddings; column Test is the size of the speech data used for testing, where

the corresponding number of speech segments (i.e., spoken word tokens) is specified

in column Segments; column Words provides the number of distinct words in that

corpus. Train and test sets are split in a way so that there are no overlapping speakers.

3.5.2 Model Implementation and Setup

The speech embeddings were trained using Speech2Vec with skipgrams by setting the

window size k to three. The Encoder is a single-layer bidirectional LSTM, and the

Decoder is a single-layer unidirectional LSTM. The model was trained by SGD with a
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fixed learning rate of 10−3. The text embeddings were obtained by training Word2Vec

on the transcriptions using the fastText implementation without subword informa-

tion [Bojanowski et al., 2017]. The dimension of both speech and text embeddings

is 50. During our hyperparameter search, we tried window size k ∈ {1, 2, 3, 4, 5} and

embedding dimension d ∈ {50, 100, 200, 300} and found that the reported k and d

yield the best performance.

For the adversarial training, the discriminator was a two-layer neural network of

size 512 with ReLU as the activation function. Both the discriminator and W were

trained by SGD with a fixed learning rate of 10−3. For the refinement procedure,

we used the default setting specified in Conneau et al. [2018]. We also tried multi-

layer neural network to model W . However, we did not observe any improvement on

our evaluation tasks when using it compared to a linear W . This discovery aligns

with Mikolov et al. [2013a].

3.5.3 Comparing Methods

Table 3.2: Different configurations for training Speech2Vec to obtain the speech em-
beddings with decreasing level of supervision. The last column specifies whether the
configuration is unsupervised.

Configuration
Speech2Vec training

Unsupervised
How word segments

were obtained
How embeddings were

grouped together

A & A∗ Forced alignment Use word identity 7

B Forced alignment k-means 7

C BES-GMM [Kamper et al., 2017a] k-means 3

D ES-KMeans [Kamper et al., 2017b] k-means 3

E SylSeg [Räsänen et al., 2015] k-means 3

F Equally sized chunks k-means 3

Alignment-Based Approaches. Given the speech and text embeddings, alignment-

based approaches learn the alignment between them in an either supervised or un-

supervised way; for an input speech segment, they perform spoken word recognition

and translation as described in Section 3.4.

By varying how word segments were obtained before being fed to Speech2Vec
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and how the embeddings were grouped together, the level of supervision is gradu-

ally decreased towards a fully unsupervised configuration. In configuration A, the

speech training data was segmented into words using forced alignment with respect

to the reference transcription, and the embeddings of the same word were grouped

together using their word identities. In configuration B, the word segments were also

obtained by forced alignment, but the embeddings were grouped together by perform-

ing k-means clustering. In configurations C,D, and E, the speech training data was

segmented into word-like units using different unsupervised segmentation algorithms

described in Section 3.2. Configuration F serves as a baseline by naively segmenting

the speech training data into equally sized chunks. Unlike configurations A and B,

configurations C,D,E, and F did not require the reference transcriptions to do forced

alignment and the embeddings were grouped together by performing k-means clus-

tering, and are thus unsupervised. Configurations A to F all used our unsupervised

alignment approach to align the speech and text embedding spaces.

We also implemented configuration A∗, which trained Speech2Vec in the same way

as configuration A, but learned the alignment using a parallel dictionary as cross-

modal data supervision. The different configurations are summarized in Table 3.2.

Word Classifier. We established an upper bound by using the fully-supervised

Word Classifier that was trained to map speech segments directly to their corre-

sponding word identities. The Word Classifier was composed of a single-layer bidi-

rectional LSTM with a softmax layer appended at the output of its last time step.

This approach is specific to spoken word recognition.

Majority Word Baseline. For both spoken word recognition and translation

tasks, we implemented a straightforward baseline dubbed Major-Word, where for

recognition, it always predicts the most frequent word, and for translation, it always

predicts the most commonly paired word. Results of the Major-Word offer us insight

into the word distribution of the test set.
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3.5.4 Results and Discussions

Table 3.3: Accuracy on spoken word recognition. ENls− enswc means that the speech
and text embeddings were learned from the speech training data of English Lib-
riSpeech and text training data of English SWC, respectively, and the testing speech
segments came from English LibriSpeech. The same rule applies to Table 3.5 and Ta-
ble 3.6. For the Word Classifier, ENls− enswc and ENswc− enls could not be obtained
since it requires parallel audio-text data for training.

Corpora ENls − enls FRls − frls ENswc − enswc DEswc − deswc ENls − enswc ENswc − enls

Nonalignment-based approach

Word Classifier 89.3 83.6 86.9 80.4 – –

Alignment-based approach with cross-modal supervision (parallel dictionary)

A∗ 25.4 27.1 29.1 26.9 21.8 23.9

Alignment-based approaches without cross-modal supervision (our approach)

A 23.7 24.9 25.3 25.8 18.3 21.6
B 19.4 20.7 22.6 21.5 15.9 17.4
C 10.9 12.6 14.4 13.1 6.9 8.0
D 11.5 12.3 14.2 12.4 7.5 8.3
E 6.5 7.2 8.9 7.4 4.5 5.9
F 0.8 1.4 2.8 1.2 0.2 0.5

Majority Word Baseline

Major-Word 0.3 0.2 0.3 0.4 0.3 0.3

Spoken Word Recognition. Table 3.3 presents our results on spoken word recog-

nition. We observe that the accuracy decreases as the level of supervision decreases,

as expected. We also note that although the Word Classifier significantly outperforms

all the other approaches under all corpora settings, the prerequisite for training such

a fully-supervised approach is unrealistic—it requires the utterances to be perfectly

segmented into speech segments corresponding to words with the word identity of

each segment known. We emphasize that the Word Classifier is just used to estab-

lish an upper bound performance that gives us an idea on how good the recognition

results could be.

For alignment-based approaches, configuration A∗ achieves the highest accuracies

under all corpora settings by using a parallel dictionary as cross-modal supervision

for learning the alignment. However, we see that configuration A using our unsu-

pervised alignment approach only suffers a slight decrease in performance, which

demonstrates that our unsupervised alignment approach is almost as effective as it
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supervised counterpart A∗. As we move towards unsupervised methods (k-means

clustering) for grouping embeddings, in configuration B, a decrease in performance

is observed.

The performance of using unsupervised segmentation algorithms is behind using

exact word segments for training Speech2Vec, shown in configurations C,D, and E

versus B. We hypothesize that word segmentation is a critical step, since incorrectly

separated words lack a logical embedding, which in turn hinders the clustering process.

The importance of proper segmentation is evident in configuration F as it performs

the worst.

The aforementioned analysis applies to different corpora settings. We also observe

that the performance of the embeddings learned from different corpora is inferior to

the ones learned from the same corpus (refer to columns 1 and 3, versus 5 and 6, in

Table 3.3). We think this is because the embedding spaces learned from the same cor-

pora (e.g., both embeddings were learned from LibriSpeech) exhibit higher similarity

than those learned from different corpora, making the alignment more accurate.

Spoken Word Synonyms Retrieval. Word recognition does not display the full

potential of our alignment approach. In Table 3.4 we show a list of retrieved results

of example input speech segments. The words were ranked according to the cosine

similarity between their embeddings and that of the speech segment mapped from

the speech embedding space.

Table 3.4: Retrieved results of example speech segments that are considered incorrect
in word recognition. The match for each speech segment is marked in bold.

Rank
Input speech segments

beautiful clever destroy suitcase

1 lovely cunning destroyed bags
2 pretty smart destroy suitcases
3 gorgeous clever annihilate luggage
4 beautiful crafty destroying briefcase
5 nice wisely destruct suitcase

From the table we observe that the list actually contains both synonyms and
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different lexical forms of the speech segment. This provides an explanation of why

the performance of alignment-based approaches on word recognition is poor: the top

ranked word may not match the underlying word of the input speech segment, and

would be considered incorrect for word recognition, despite that the top ranked word

has high chance of being semantically similar to the underlying word.

Table 3.5: Results on spoken word synonyms retrieval. We measure how many times
one of the synonyms of the input speech segment is retrieved, and report precision@k
for k = 1, 5.

Corpora ENls − enls FRls − frls ENswc − enswc DEswc − deswc ENls − enswc ENswc − enls

Average P@k P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5

Alignment-based approach with cross-modal supervision (parallel dictionary)

A∗ 52.6 66.9 46.6 69.4 47.4 62.5 49.2 63.7 41.3 54.2 39.0 49.4

Alignment-based approaches without cross-modal supervision (our approach)

A 43.2 57.0 42.4 58.0 36.3 50.4 32.6 48.8 33.9 47.5 33.4 45.7
B 35.0 48.2 35.4 50.4 33.8 44.6 29.3 45.4 30.0 42.9 31.1 40.7
C 27.7 37.3 26.4 35.7 21.1 30.3 26.2 34.5 22.4 28.9 17.1 26.3
D 26.7 35.2 27.2 36.3 21.1 28.2 25.3 33.2 21.2 29.3 18.7 25.1
E 17.7 24.2 20.8 28.4 17.3 21.8 18.3 23.0 15.2 21.1 11.2 17.8
F 3.5 5.7 5.2 6.9 3.8 5.8 2.7 4.9 3.2 5.7 2.9 4.4

We define word synonyms retrieval to also consider synonyms as valid results, as

opposed to the word recognition. The synonyms were derived using another language

as a pivot. Using the cross-lingual dictionaries provided by Conneau et al. [2018],

we looked up the acceptable word translations, and for each of those translations, we

took the union of their translations back to the original language. For example, in

English, each word has 3.3 synonyms on average. Table 3.5 shows the results of word

synonyms retrieval. We see that our approach performs better at retrieving synonyms

than classifying words, an evidence that the system is learning the semantics rather

than the identities of words. This showcases the strength of our semantics-focused

approach.

Spoken Word Translation. Table 3.6 presents the results on spoken word trans-

lation. Similar to spoken word recognition, configurations with more supervision yield

better performance than those with less supervision. Furthermore, we observe that

translating using the same corpus outperforms those using different corpora (refer
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Table 3.6: Results on spoken word translation. We measure how many times one
of the correct translations of the input speech segment is retrieved, and report
precision@k for k = 1, 5.

Corpora ENls − frls FRls − enls ENswc − deswc DEswc − enswc ENls − deswc FRls − deswc

Average P@k P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5

Alignment-based approach with cross-modal supervision (parallel dictionary)

A∗ 47.9 56.4 49.1 60.1 40.2 51.9 43.3 55.8 34.9 46.3 33.8 44.9

Alignment-based approaches without cross-modal supervision (our approach)

A 40.5 50.3 39.9 50.9 32.8 43.8 33.1 43.4 31.9 42.2 30.1 42.1
B 36.0 44.9 35.5 44.5 27.9 38.3 30.9 40.9 26.6 35.3 25.4 38.2
C 24.7 35.4 23.9 37.3 22.0 30.3 20.5 29.1 19.2 26.1 14.8 23.1
D 25.4 33.1 24.4 34.6 23.5 29.1 20.7 31.3 20.8 25.9 14.5 22.4
E 15.4 20.6 16.7 19.9 14.1 15.9 16.6 17.0 14.8 16.7 9.7 11.8
F 4.3 5.6 6.9 7.5 4.9 6.5 5.3 6.6 4.2 5.9 1.8 2.6

Majority Word Baseline

Major-Word 1.1 1.5 1.6 2.2 1.2 1.5 2.0 2.7 1.1 1.5 1.6 2.2

to ENswc − deswc versus ENls − deswc). We attribute this to the higher structural

similarity between the embedding spaces learned from the same corpora.

3.6 Conclusions

In this chapter, we proposed a framework capable of aligning speech and text embed-

ding spaces in a completely unsupervised manner. The method learns the alignment

from independent corpora of speech and text, without requiring any cross-modal su-

pervision, which is especially important for low- or zero-resource languages that lack

parallel data with both audio and text. We demonstrate the effectiveness of our

unsupervised alignment by showing comparable results to its supervised alignment

counterpart that uses full cross-modal supervision (see A vs. A∗ in Tables 3.3, 3.5,

and 3.6) on the tasks of spoken word recognition and translation.

In the next chapter, we describe how our cross-modal alignment framework could

be used to develop real-world speech-to-text sequence transduction systems. Specif-

ically, we take the task of speech-to-text translation as an example application and

build a completely unsupervised system of it using the alignment framework as a

fundamental building block.
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Chapter 4

Unsupervised Speech-to-Text

Translation

In Chapter 3, we proposed a completely unsupervised approach capable of learning

an alignment between speech and text embedding spaces inferred from monolingual

corpora of speech and text without relying on any forms of supervision. In this

chapter, we apply this unsupervised cross-modal alignment approach in a real-world

downstream task as an example application. Specifically, we present a framework

for building speech-to-text translation (ST) systems using only monolingual speech

and text corpora, in other words, speech utterances from a source language and

independent text from a target language. As opposed to traditional cascaded systems

and end-to-end architectures, our system does not require any labeled data (i.e.,

transcribed source audio or parallel source and target text corpora) during training,

making it especially applicable to language pairs with very few or even zero bilingual

resources. The framework initializes the ST system with a cross-modal bilingual

dictionary inferred from the monolingual corpora, that maps every source speech

segment corresponding to a spoken word to its target text translation. For unseen

source speech utterances, the system first performs word-by-word translation on each

speech segment in the utterance. The translation is further improved by leveraging

a language model and a sequence denoising autoencoder to provide prior knowledge

about the target language. Experimental results show that our unsupervised system
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achieves comparable BLEU scores to supervised end-to-end models despite the lack

of supervision. We also provide an ablation analysis to examine the utility of each

component in our system. The content of this chapter was published in Chung et al.

[2019c].

4.1 Background

4.1.1 Speech-to-Text Translation

Conventional speech-to-text translation (ST) systems typically cascade automatic

speech recognition (ASR) and machine translation (MT), and therefore impose sig-

nificant requirements on training data [Waibel and Fugen, 2008]. They usually require

hundreds of hours of transcribed audio and millions of words of parallel text from the

source and target languages to train individual components, which makes it difficult

to use this approach on low-resource languages. Although recent works have shown

the feasibility of building end-to-end systems that directly translate source speech

to target text without using any intermediate source language transcriptions, they

still require data in the form of source audio paired with target text translations for

end-to-end training [Weiss et al., 2017, Bansal et al., 2018, Bérard et al., 2018, 2016].

4.1.2 Unsupervised Machine Translation

In contrast to ST, which requires paired data for training, recent research in MT

has explored fully unsupervised settings—relying only on monolingual corpora from

each language. They have shown that unsupervised MT models can achieve com-

parable (sometimes even superior) results to supervised ones [Lample et al., 2018b,

Artetxe et al., 2018b]. A key principle behind these unsupervised MT approaches is

to initialize a MT model with a bilingual dictionary inferred from monolingual cor-

pora, without using cross-lingual signals [Conneau et al., 2018, Artetxe et al., 2018a].

Given a source word, the initial MT model is able to perform word-by-word transla-

tion by looking up the dictionary, and can be further improved by leveraging other
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techniques such as back translation [Sennrich et al., 2016].

4.1.3 Towards Unsupervised Speech-to-Text Translation

In Chapter 3, we showed that the unsupervised bilingual dictionary induction algo-

rithms originally proposed for unsupervised MT could also be applied to scenarios

where the source and target corpora are of different modalities, namely speech and

text. The learned cross-modal bilingual dictionary, as we will show here, is capable

of performing word-by-word translation, with the difference being that the input,

instead of text, is a speech segment corresponding to a spoken word in the source

language. In this chapter we propose a framework for building a ST system using

only independent monolingual corpora of speech and text. The two corpora can be

collected independently which greatly reduces human labeling efforts. Our framework

starts by initializing a ST system with a cross-modal bilingual dictionary inferred from

the monolingual corpora to perform word-by-word translation. To further improve

the quality of the translations, we incorporate a pre-trained language model (LM)

and sequence denoising autoencoder (DAE) [Sutskever et al., 2014, Vincent et al.,

2008] that contain prior knowledge about the target language; their primary function

is to consider context in lexical choices and handle local reordering and multi-aligned

words. To the best of our knowledge, this is the first work that tackles ST in an

unsupervised setting. More importantly, experiments show that our unsupervised

system achieves comparable results to supervised end-to-end models [Bérard et al.,

2018] despite the lack of supervision.

4.2 Proposed Framework

Our framework builds on several recently developed techniques for unsupervised

speech processing and MT. We first derive a ST system that can perform simple

word-by-word translation. Next, we integrate a language model into the frame-

work to introduce contextual information during the translation process. Finally,

we post-process the translated results using a DAE to handle local reordering and
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multi-aligned words. Below we describe each step in detail.

4.2.1 Word-by-Word Translation

In our framework, a speech corpus from the source language is first pre-processed using

an unsupervised speech segmentation algorithm [Kamper et al., 2017b] to generate

speech segments corresponding to spoken words. We then apply Speech2Vec to learn

a speech embedding space from the set of speech segments such that each vector

corresponds to a word whose semantics has been captured. A text embedding space

that captures word semantics can be learned by training Word2Vec [Mikolov et al.,

2013b] on a text corpus from the target language. Based on the assumption that

monolingual word embedding spaces are approximately isomorphic, since languages

are used to convey thematically similar information in similar contexts [Barone, 2016],

it is theoretically possible to align these two spaces.

To achieve this, one can use an unsupervised bilingual dictionary induction (BDI)

algorithm to learn a cross-lingual mapping from the source embedding space to the

target embedding space. Two of the most representative BDI algorithms are MUSE [Con-

neau et al., 2018] and VecMap [Artetxe et al., 2018a], neither of which rely on cross-

lingual signals. Note that both these BDI algorithms were originally proposed for

aligning two embedding spaces learned from text. In Chapter 3, we show that MUSE

can also be applied to learn a cross-modal alignment between embedding spaces

learned from speech and text. In our experiments, we include the results of both

algorithms for comparison.

We obtain a rudimentary ST system after deriving a cross-modal and cross-lingual

mapping from speech to the text corpora, which is essentially a linear transforma-

tion W . Given an unseen speech utterance, we first segment it into several speech

segments using the speech segmentation algorithm previously mentioned. Then, for

each speech segment that potentially corresponds to a spoken word, we map it from

the speech embedding space to the text embedding space via W and apply nearest

neighbor search to decide its text translation. However, the translations generated

by this preliminary system are far from acceptable since nearest neighbor search does
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not consider the context of the current word. In many cases, the correct translation

is not the nearest target word but synonyms or other close words with morphological

variations, prompting us to incorporate further improvements.

4.2.2 Language Model for Context-Aware Beam Search

We incorporate contextual information into word-by-word translation by introducing

a LM during the decoding process [Kim et al., 2018]. Let ws be the word vector

mapped from speech to the text embedding space and wt the word vector of a possible

target word. Given a history h of target words before wt, the score of wt being the

translation of ws is computed as:

LM(wt;ws, h) = log
f(ws, wt) + 1

2
+ λLM log p(wt|h), (4.1)

where λLM is the weight parameter that decides how context-aware the system is,

and f(ws, wt) ∈ [−1, 1] is the cosine similarity between ws and wt, linearly scaled to

the range [0, 1] to make it comparable with the output probability of the LM. Empiri-

cally, we found that setting λLM to 0.1 yields the best performance. Accumulating the

scores per position, we perform a beam search to allow only reasonable translation

hypotheses.

4.2.3 Sequence Denoising Autoencoder

We may achieve semantic correctness through learning an appropriate cross-modal

bilingual dictionary and using a LM. However, to further improve the quality of

the translations, it is also necessary to consider syntactic correctness. To this end,

we apply a sequence DAE to correct the translated outputs. By injecting noise to

the input sequence during the training process, the DAE learns to output the origi-

nal (clean) sequence given a corrupted, noisy input. In our framework, we adopt three

noise simulation techniques proposed in Kim et al. [2018]: word insertion, deletion

and permutation. We seek to simulate the noise introduced during the word-by-word

translation process with these three techniques. Readers can refer to Kim et al. [2018]
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for more details. Along with the context-aware LM, we found that adopting a DAE

further boosts translation performance.

4.3 Experiments

4.3.1 Data and Preprocessing

We used an English-to-French speech translation dataset [Kocabiyikoglu et al., 2018]

augmented from the LibriSpeech ASR corpus [Panayotov et al., 2015]. The dataset

is split into train, dev, and test sets; all come with a collection of English speech ut-

terances and their corresponding French text translations. The train set contains 100

hours of speech, which was used to train Speech2Vec to obtain the speech embed-

ding space. For the text embedding space, we trained Word2Vec on two different

corpora—the parallel corpus that contains the text translations, and an independent

corpus crawled from French Wikipedia. For evaluation, we merged the dev and test

sets, resulting in speech data of about 6 hours. BLEU scores [Papineni et al., 2002]

were used as the evaluation metric.

4.3.2 Model Implementation and Setup

We trained Speech2Vec following the same procedure used in Chapter 3. The text

embedding space was trained by Word2Vec using the fastText implementation [Bo-

janowski et al., 2017] with default settings without subword information. The dimen-

sion of both speech and text embeddings is 100. For both VecMap [Artetxe et al.,

2018a] and MUSE [Conneau et al., 2018], we followed the default settings of the im-

plementations released by their original authors. For the LM, we trained a 5-gram

count-based LM using KenLM [Heafield, 2011] with its default settings. Finally, we

implemented the DAE, structured as a 6-layer Transformer [Vaswani et al., 2017],

with embedding and hidden layer size of 512, a feedforward sublayer size of 2,048,

and 8 attention heads.
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4.3.3 Results and Discussions

We first study the similarities between different pairs of embedding spaces to be

aligned. We then present the main ST results.

Table 4.1: Embedding similarity of different speech and text embeddings pair evalu-
ated by eigenvector similarity. We denote the embedding training method and corpus
name in upper and lower case, respectively. For the pair, we denote the speech and
text embedding space at the left and right side, respectively. For example, Alibri -
Twiki represents the speech embedding space trained on the LibriSpeech corpus us-
ing Audio2Vec and the text embedding space trained on Wikipedia corpus. A, S,T
indicates Audio2Vec, Speech2Vec and text (Word2Vec) embedding.

Speech & text embedding spaces pair Eigenvector similarity

Alibri - Tlibri 14.74
Alibri - Twiki 15.02
Slibri - Tlibri 6.43
Slibri - Twiki 7.17

Having approximately isomorphic embedding spaces is important for BDI. To

quantify whether the embedding spaces are isomorphic, or similar in structure, we

computed the eigenvector similarity, which is derived from Laplacian eigenvalues.

Both our study and Søgaard et al. [2018] demonstrate that the eigenvector similarity

metric is correlated to the performance of the translation task, which implies that

the metric reflects the distance between embedding spaces in a meaningful way. The

similarity is computed as follows. Let L1 and L2 be the Laplacians of two nearest

neighbor embedding graphs. We search for the smallest value of k for each graph

such that the sum of largest k Laplacian eigenvalues is smaller than 90% of the

Laplacian eigenvalues. Then, we select the smallest k across two graphs and compute

the squared differences between the largest k Laplacian eigenvalues in two graphs.

The differences is the eigenvector similarity we use to measure the similarity between

embedding spaces. Note that a higher value of the eigenvector similarity metric

indicates that the given two embedding spaces are less similar.

Table 4.1 presents the eigenvector similarity of different speech-text pairs. The

eigenvector similarity of speech and text embedding space pairs is smaller when

we trained the speech embedding using the Speech2Vec algorithm than the Au-
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dio2Vec [Chung et al., 2016] algorithm. These results are expected since Speech2Vec

utilizes semantic context of the speech corpus, similarly to how Word2Vec uses that

of the text corpus. Furthermore, we applied skipgrams as a training methodology for

both algorithms, resulting in isomorphic embedding spaces. In contrast, Audio2Vec

focuses on similarities in acoustics rather than semantics, thus the learned embedding

space differs fundamentally. Embedding space pairs learned from comparable corpora

also yield higher similarity, since the word distributions are more similar; for example,

the distribution of English LibriSpeech speech embeddings is more similar to that of

the French LibriSpeech text embeddings than French Wikipedia text embeddings.

Table 4.2: Different configurations for speech-to-text translation and their perfor-
mance. The numbers in the section of unsupervised methods denoted as BLEU score
(%) of VecMap / BLEU score (%) of MUSE. The notation used in the Table is the
same as Table 4.1. For cascaded systems, we followed the ASR and MT pipeline
in Bérard et al. [2018]. E2E stands for end-to-end.

System Best Average

Cascaded and end-to-end ST systems (supervised)

(a) Cascaded + greedy 13.7 13.0
(b) Cascaded + beam 14.2 13.2
(c) E2E + greedy 12.3 11.6
(d) E2E + beam 12.7 12.1

Our alignment-based ST systems (unsupervised)

(e) Alibri - Tlibri 0.0 / 0.0 0.0 / 0.0
(f) Alibri - Twiki 0.0 / 0.0 0.0 / 0.0
(g) Slibri - Tlibri 4.5 / 4.6 4.2 / 2.7
(h) Slibri - Twiki 3.7 / 2.1 3.0 / 0.9
(i) (g) + LMlibri 5.2 / 5.0 4.7 / 2.9
(j) (g) + LMwiki 9.5 / 8.8 9.0 / 5.7
(k) (g) + LMwiki + DAEwiki 12.2 / 11.8 11.3 / 7.3
(l) (h) + LMwiki + DAEwiki 11.5 / 9.1 10.8 / 6.2

We present the results of our unsupervised approach as well as supervised baselines

in Table 4.2. We trained every system 10 times and report both the best and average

performance. In configurations (a-d), we replicate state-of-the-art supervised algo-

rithms and arrived at the conclusion that cascaded systems perform better than their

end-to-end counterparts and beam search performs better than greedy search. Note

60



that cascaded systems require more supervision than end-to-end systems, whereas

our approach makes no assumptions of having speech-text or language pairs of the

comparable corpora.

In configurations (e-l), we showcase the performance of our unsupervised approach,

denoted as (BLEU score of VecMap / BLEU score of MUSE) in the columns of

Table 4.2.

Alignment Quality Configurations (e-h) demonstrate that eigenvector similarity

of speech and text embedding space pairs have strong positive correlation, namely

comparing the relative performances to those shown in Table 4.1, with the BLEU score

of alignment-based ST tasks. The results, from configurations (g) and (h), illustrates

that using comparable corpora, and thus better alignment, affects the quality of ST.

It also hints that there may exist a threshold of usefulness in alignment performances.

Since configurations (e) and (f) lie underneath that threshold, they achieve scores of

zero. These findings indicate that eigenvector similarity of embedding spaces could

serve as an indicator of unsupervised ST performance.

Unsupervised BDI In all of our unsupervised experiments, we compared the per-

formance between two unsupervised BDI algorithms, VecMap and MUSE. VecMap

outperforms MUSE in all but one experiment, demonstrating that VecMap can be

applied to more difficult scenarios through weak, fully unsupervised initialization

with iterative mapping improvements, whereas MUSE, which maps embeddings to

the shared space through adversarial training, could only succeed on a more limited

set of conditions. Additionally, VecMap trains more stably and faster than MUSE,

which has a similar best performance but much lower average performance.

Language Model Integration Integrating a LM improves the performance of ST

in all experimental configurations, regardless of the selection of corpus, configurations

(g) versus (i) and (j); configurations (h) versus (l) generalize this result to different

embedding spaces. By comparing configurations (i) and (j), we discover that the

text corpus used to train the LM does not need to be the same as the one used for
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Word2Vec text embedding space training. In fact, adopting the LM trained on the

Wikipedia corpus (LMwiki) produces better performance than using that trained on

the LibriSpeech corpus (LMlibri). Since introducing the LM grounds words into a

context based on the previous word, the much larger LMwiki, containing more words,

topic contexts, and sentence structures, serves as a better approximation of the French

language than LMlibri.

Sequence DAE In configurations (j) versus (k), we show that applying DAE on

top of the baseline alignment architecture and LM can further enhance performance

in unsupervised ST; the performance is now comparable to end-to-end supervised

systems. This also justifies our alignment and post-processing approach since config-

uration (k) essentially has the same degree of supervision as configurations (c) and

(d) and performs similarly well while employing a completely different approach. We

attribute this to the DAE’s ability to reconstruct corrupted data after translation.

Since the semantic alignment method we used may retrieve synonyms based on con-

text, rather than the exact syntactically correct word, it is possible that the output

even when taking the LM into account is still syntactically incorrect. Moreover, one

of the key obstacles in training Speech2Vec lies in the limited performance of un-

supervised speech segmentation methods. By incorporating a DAE, we could limit

these negative effects after translation. Last but not least, the DAE was trained on

LMwiki rather than LMlibri. This design decision follows from the observation of the

LM corpus choice: since the DAE should learn the French language, a larger, more

diverse dataset would perform better than the same dataset used for Word2Vec text

embeddings.

Scenario of Real-World ST In configuration (l), we conducted experiments mod-

eling a real-world setting where there exists no comparable speech and text corpora.

Instead, we need to collect them independently from different sources. Text data ex-

ists in more abundance than speech data and thus we usually adopt the text embed-

ding learned from larger corpus such as Wikipedia, which configuration (h) replicates
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to our best efforts. By comparing configurations (k) and (l), we demonstrate that

the performance of our proposed framework under no supervision is only slightly in-

ferior to the best performance achieved using unsupervised alignment, which requires

comparable corpora for speech and text embedding spaces and should be consid-

ered supervised. The proposed unsupervised ST framework is thus promising for low

language resource ST.

4.4 Conclusions

In this chapter, we propose a framework capable of performing speech-to-text trans-

lation in a completely unsupervised manner. Since the system translates using an in-

ferred cross-modal bilingual dictionary trained without parallel data between speech

and text, it could be applied to low or zero-resource languages. By incorporating

knowledge of the target language, through adding a LM and a DAE, both are in-

trinsically unsupervised, our system greatly enhances the translation performance:

We achieve comparable performance with state-of-the-art end-to-end systems using

parallel corpora and only slightly lower scores without it. These results indicate

that our approach could serve as a promising first step towards fully unsupervised

speech-to-text translation.
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Chapter 5

Conclusions and Future Work

5.1 Summary of Contributions

In this thesis, we explore unsupervised learning of automatic sequence transduction

between speech and text. The framework relies only on monolingual corpora of speech

and text that do not need to be parallel, and is hence applicable to low- and zero-

resource languages. Specifically, the framework consists of the following three steps

where each step is by itself unsupervised:

1. Individually learn two embedding spaces of speech and text that both reveal

word semantics and relationships of languages.

2. Exploit the geometrical similarity exhibited in the two embedding spaces and

learn a cross-modal alignment between them via adversarial training followed

by a refinement procedure.

3. With the alignment learned in the previous step, one can map a spoken word

in the speech domain into the text domain (and theoretically, vice versa) and

retrieve its recognized result or translation in another language.

For the first step, in Chapter 2, we draw inspiration from Word2Vec [Mikolov

et al., 2013b], which learns word embeddings from text, and design a novel Speech2Vec

model that shares the same training methodologies with Word2Vec but with archi-
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tecture adapted to handle speech data. One may think that speech and text are

just two different ways for expressing languages and thus underestimate the power of

the proposed Speech2Vec. In fact, factors like vocal tract differences across speakers,

speaking styles, contextual differences, and environmental conditions all make speech

signal much more complicated than pure text. It is therefore surprising and exciting

to see our proposed Speech2Vec is able to, at least to some extent, factor out these

inherent variability in speech production and preserve the semantic information of

spoken words in a latent space [Chrupa la et al., 2019], as shown by the results on

word similarity benchmarks and visualization of the learned embeddings.

For the second and third steps, in Chapter 3, we propose a framework for learning

a linear transformation that maps a vector corresponding to a spoken word from the

speech embedding space to its correspondence in the text embedding space. The

core idea is to use adversarial training—a two-player game between a generator and

a discriminator—so as to make the two embedding spaces indistinguishable. The

learned alignment were used to perform spoken word recognition and translation as

example applications. From the experimental results, it is noteworthy that word

embedding spaces not only exhibit similar structures across languages [Mikolov et al.,

2013a], but also across different modalities (speech and text).

To show how we could use the proposed cross-modal alignment framework for real-

world applications, in Chapter 4, we present a completely unsupervised speech-to-text

translation system developed using only monolingual speech and text corpora. We

combine the alignment framework, which can already perform speech-to-text trans-

lation at a word level, with a language model pre-trained on large corpora of text

in the source language to generate full sentences. To produce more robust results,

we further incorporate a sequence denoising autoencoder that is pre-trained to de-

noise three types of artificial noises. We achieve performance only slightly worse than

the state-of-the-art supervised end-to-end systems. The results indicate that our ap-

proach could serve as a promising first step towards fully unsupervised speech-to-text

translation.
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5.2 Future Work

This thesis work can be extended in several directions.

First of all, speech embeddings learned by Speech2Vec contain semantic informa-

tion about the underlying spoken words, making them potentially useful for down-

stream tasks that require language understanding from speech input such as spoken

question answering [Lee et al., 2018a,b] and machine comprehension of spoken con-

tent [Tseng et al., 2016, Chung et al., 2018a]. The pre-trained speech embeddings,

which we have already released online along with our source code, can be used in

a similar fashion as how we use pre-trained word vectors (e.g., those learned by the

Word2Vec model) in NLP tasks.

The Speech2Vec model itself also requires more studies. As pointed out in Chap-

ter 2, unlike pure text, speech signals inherently contain plenty of complex variabili-

ties caused by speakers and environmental conditions. It is still not clear to us how

Speech2Vec is able to remove those variabilities (at least to some degree) and preserve

only the word semantics. Furthermore, an interesting aspect of Speech2Vec we did

not investigate in this thesis is to use the Speech2Vec decoder as a generative model.

Given a speech embedding, being able to reconstruct meaningful acoustic feature se-

quence (e.g., spectrogram) would make Speech2Vec an invertible function (encoding

and decoding), allowing Speech2Vec to be applied to an even wider range of applica-

tions.

Regarding our unsupervised cross-modal alignment framework, as indicated in

our experimental results in Chapter 3, an essential step to obtain a high-quality

mapping is to devise unsupervised speech segmentation approaches that produce more

accurate word segments. However, although unsupervised speech segmentation has

attracted quite a few attention recently [Godard et al., 2018, Kamper et al., 2017b,

2016a], it remains one of the most challenging tasks in the field of zero-resource speech

processing and requires more future effort. Additionally, in this thesis, we obtained

the speech embeddings in two steps: we first segmented all the speech utterances in a

speech corpus into word segments—either by referring to word boundaries obtained
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by forced alignment with respect to the reference transcriptions, or by applying off-

the-shelf unsupervised speech segmentation algorithms—and Speech2Vec was trained

on those pre-segmented speech segments. We are currently working on designing

a model that jointly optimizes the estimation on word boundaries and Speech2Vec

training.

Last but not least, we seek to explore other applications of our unsupervised cross-

modal alignment framework besides speech-to-text translation presented in this thesis.

Theoretically, the framework can be applied to any task whose goal is to transcribe

a sequence of tokens from a source domain to another in the target domain, where

one domain belongs to speech and the other belongs to text. With the proposed

framework, one only needs to collect non-parallel corpora that are sufficiently large

from the two domains to build the sequence transduction system. We are currently

interested in unsupervised speech recognition and text-to-speech synthesis for low- or

zero-resource languages.
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Appendix A

Word Similarity

A.1 Basic Idea

The method of measuring word semantic similarity is based on the idea that the

distances between words in an embedding space can be evaluated through human

judgments on the actual semantic distances between these words. For instance, the

distance between “cup” and “mug” defined in an continuous interval [0, 1] would

be 0.8 since these words are synonymous, but not really the same thing. When

collecting a word similarity dataset, the human assessor is given a set of pairs of

words and asked to assess the degree of similarity for each pair by assigning it a real

value within a certain interval. The distances between these pairs are also collected

in a word embeddings space, where the similarity between a given pair of words is

measured by the cosine similarity1 between their corresponding word embeddings. A

rank correlation (e.g., Spearman’s rank correlation coefficient [Myers and Well, 1995])

between the two obtained distance sets is calculated. The higher the rank is, the more

similar the two distance sets are, and thus the better the embeddings are at capturing

word semantics.

1cos(u,v) = u·v
‖u‖‖v‖ , where u and v are the word embeddings of the two words.
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A.2 Benchmarks

The 13 word similarity benchmark datasets used in Chapter 2 are listed here with

their size (number of word pairs) and scale (the range of the similarity value assigned

by human assessor when collecting the dataset). There are quite a few publicly

available toolkits that include all these benchmarks. The one we used in this thesis

is https://github.com/mfaruqui/eval-word-vectors.

1. WordSim-353: 353 pairs of words, scale ∈ [0, 10]

2. WordSim-353-REL: 252 pairs, a subset of WordSim-353

3. WordSim-353-SIM: 203 pairs, a subset of WordSim-353

4. RG-65: 65 pairs of words, scale ∈ [0, 4]

5. MC-30: 30 pairs, a subset of RG-65

6. Rare-Word: 2034 pairs of words with low occurrences, scale ∈ [0, 10]

7. MEN: 3000 pairs of words, scale ∈ {0, 1, 2, ..., 50}

8. MTurk-287: 287 pairs of words, scale ∈ [0, 5]

9. MTurk-771: 771 pairs of words, scale ∈ [0, 5]

10. YP-130: 130 pairs of verbs, scale ∈ [0, 4]

11. SimLex-999: 999 pairs of words, scale ∈ [0, 10]

12. Verb-143: 143 pairs of verbs, scale ∈ [0, 4]

13. SimVerb-3500: 3500 pairs of verbs, scale ∈ [0, 4]
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Arne Köhn, Florian Stegen, and Timo Baumann. Mining the spoken wikipedia for
speech data and beyond. In LREC, 2016.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin Choi, and Luke Zettlemoyer.
Neural amr: Sequence-to-sequence models for parsing and generation. In ACL,
2017.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. Neural architectures for named entity recognition. In NAACL-
HLT, 2016.

Guillaume Lample, Ludovic Denoyer, and Marc’Aurelio Ranzato. Unsupervised ma-
chine translation using monolingual corpora only. In ICLR, 2018a.

Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio
Ranzato. Phrase-based & neural unsupervised machine translation. In EMNLP,
2018b.

Thomas Landauer, Peter Foltz, and Darrell Laham. An introduction to latent seman-
tic analysis. Discourse Processes, 25(2-3):259–284, 1998.

Chia-Hsuan Lee, Shang-Ming Wang, Huan-Cheng Chang, and Hung-Yi Lee. ODSQA:
Open-domain spoken question answering dataset. In SLT, 2018a.

76



Chia-Hsuan Lee, Szu-Lin Wu, Chi-Liang Liu, and Hung-Yi Lee. Spoken SQuAD: A
study of mitigating the impact of speech recognition errors on listening compre-
hension. In Interspeech, 2018b.

Chia-Ying Lee and James Glass. A nonparametric bayesian approach to acoustic
model discovery. In ACL, 2012.

Chia-Ying Lee, Timothy O’Donnell, and James Glass. Unsupervised lexicon discovery
from acoustic input. Transactions of the Association for Computational Linguistics,
3:389–403, 2015.

Keith Levin, Katharine Henry, Aren Jansen, and Karen Livescu. Fixed-dimensional
acoustic embeddings of variable-length segments in low-resource settings. In ASRU,
2013.

Bo Li, Tara Sainath, Arun Narayanan, Joe Caroselli, Michiel Bacchiani, Ananya
Misra, Izhak Shafran, Hasim Sak, Golan Pundak, Kean Chin, Khe Chai Sim, Ron
Weiss, Kevin Wilson, Ehsan Variani, Chanwoo Kim, Olivier Siohan, Mitchel Wein-
traub, Erik McDermott, Richard Rose, and Matt Shannon. Acoustic modeling for
google home. In Interspeech, 2017.

Thang Luong, Hieu Pham, and Christopher Manning. Effective approaches to
attention-based neural machine translation. In EMNLP, 2015.

Vince Lyzinski, Gregory Sell, and Aren Jansen. An evaluation of graph clustering
methods for unsupervised term discovery. In Interspeech, 2015.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 9(Nov):2579–2605, 2008.

Tomas Mikolov, Quoc Le, and Ilya Sutskever. Exploiting similarities among languages
for machine translation. arXiv preprint arXiv:1309.4168, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In NIPS, 2013b.

Benjamin Milde and Chris Biemann. Unspeech: Unsupervised speech context em-
beddings. In Interspeech, 2018.

Jerome Myers and Arnold Well. Research design and statistical analysis. Routledge,
1 edition, 6 1995.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech:
an ASR corpus based on public domain audio books. In ICASSP, 2015.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A method
for automatic evaluation of machine translation. In ACL, 2002.

77



Alex Park and James Glass. Unsupervised pattern discovery in speech. IEEE Trans-
actions on Audio, Speech, and Language Processing, 16(1):186–197, 2008.

Santiago Pascual, Mirco Ravanelli, Joan Serrà, Antonio Bonafonte, and Yoshua Ben-
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