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Abstract—There are a number of studies about extraction of bot-
tleneck (BN) features from deep neural networks (DNNs) trained
to discriminate speakers, pass-phrases, and triphone states for im-
proving the performance of text-dependent speaker verification
(TD-SV). However, a moderate success has been achieved. A re-
cent study presented a time contrastive learning (TCL) concept
to explore the non-stationarity of brain signals for classification of
brain states. Speech signals have similar non-stationarity property,
and TCL further has the advantage of having no need for labeled
data. We therefore present a TCL based BN feature extraction
method. The method uniformly partitions each speech utterance
in a training dataset into a predefined number of multi-frame seg-
ments. Each segment in an utterance corresponds to one class, and
class labels are shared across utterances. DNNs are then trained
to discriminate all speech frames among the classes to exploit the
temporal structure of speech. In addition, we propose a segment-
based unsupervised clustering algorithm to re-assign class labels to
the segments. TD-SV experiments were conducted on the RedDots
challenge database. The TCL-DNNs were trained using speech data
of fixed pass-phrases that were excluded from the TD-SV evaluation
set, so the learned features can be considered phrase-independent.
We compare the performance of the proposed TCL BN feature
with those of short-time cepstral features and BN features extracted
from DNNs discriminating speakers, pass-phrases, speaker+pass-
phrase, as well as monophones whose labels and boundaries are
generated by three different automatic speech recognition (ASR)
systems. Experimental results show that the proposed TCL-BN out-
performs cepstral features and speaker+pass-phrase discriminant
BN features, and its performance is on par with those of ASR de-
rived BN features. Moreover, the clustering method improves the
TD-SV performance of TCL-BN and ASR derived BN features with
respect to their standalone counterparts. We further study the TD-
SV performance of fusing cepstral and BN features.
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1. INTRODUCTION

UE to the quasi-periodic nature of speech, short-time
D acoustic cepstral features are widely used in speech and
speaker recognition. Recent development of deep neural net-
works (DNNs) [1] has ignited a great interest in using bottleneck
(BN) features [2]—[8] for speech classification tasks including
speaker verification (SV). The goal of SV is to verify a person
using their voice [9], [10]. SV methods can be broadly divided
into text-dependent (TD) and text-independent (TI) ones [11].
In TD-SV, speakers are constrained to speak the same pass-
phrase or sentence during both enrolment and test phases. In
TI-SV, speakers can speak any sentence during enrolment and
test phases, i.e. there is no constraint on what sentences to be
uttered. Since TD-SV makes use of a matched phonetic con-
tent during enrolment and test phases, it typically outperforms
TI-SV.

A classical speaker verification system in general involves dis-
criminative feature extraction, universal background modelling,
and training of Gaussian mixture model-universal background
model (GMM-UBM) or i-vector, which is a fixed- and low-
dimensional representation of a speech utterance [12]. DNNs
are applied to SV in all these three parts: 1) extracting dis-
criminative bottleneck features [4], 2) replacing GMM-UBM
for i-vector extraction [13], and 3) directly replacing i-vectors
with speaker embeddings [14], in addition to works aiming to
improve SV robustness against noise [15], [16] and domain vari-
ation [17]. When used for replacing UBM, a DNN that is trained
as an acoustic model of automatic speech recognition (ASR) re-
places the traditional GMM-UBM by predicting posteriors of
senones (e.g., tied-triphone states). This allows to incorporate
phonetic knowledge into i-vectors. DNNs are also used to di-
rectly replace i-vectors for speaker characterization with trained
speaker embeddings, which are the outputs of one or more DNN
hidden layers. In [18], the embeddings are also called d-vector.
Instead of equally weighting and averaging all frames as e.g.
in the d-vector approach, paper [19] uses an attention mecha-
nism to fuse phonetic and speaker representations so as to gen-
erate an utterance-level speaker representation. When used for
feature extraction, a DNN is trained to discriminate speakers,
pass-phrases, senones or a combination of them. Then the out-
puts of one or more DNN hidden layers are projected onto a low
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dimensional space called BN features. Previous studies [4]-[6],
[20]-[22] have demonstrated that BN features are useful either
for obtaining a better performance than cepstral features or for
providing complementary information when cepstral and BN
features are fused. However, training DNNs to extract these BN
features requires manual labels (e.g., speakers and pass-phrases),
or phonetic transcriptions based on ASR. Obtaining these labels
are time-consuming and expensive, and building ASR systems
requires large amounts of training data and expert knowledge
[23]. Beyond SV, some other works extract phonetic annotation
based BN features for speech recognition [24], [25] and spoken
language recognition [24], [26], [27].

Unsupervised representation learning is one of the biggest
challenges in machine learning and at the same time has a great
potential of leveraging the vast amount of often unlabeled data.
The primary approach to unsupervised deep learning is proba-
bilistic generative modeling, due to optimal learning objectives
that probabilistic theory is able to provide [1], [28]. Successful
examples are variational autoencoders (VAEs) [29] and genera-
tive adversarial networks (GANs) [30]. The study in [1] presents
a time contrastive learning (TCL) concept, a type of unsuper-
vised feature learning method, which explores the temporal non-
stantionarity of time series data. The learned features aim to
discriminate data from different time segments. It is shown that
what the TCL feature extractor computes is the log-probability
density function of the data points in each segment, and thus TCL
has a nice probabilistic interpretation [1]. The TCL method is
used for classifying a small number of different brain states that
generally evolve over the time and can be measured by mag-
netoencephalography (MEG) signals. Specifically, TCL trains a
neural network to discriminate each segment by using the seg-
ment indices as labels. The output of the last hidden layer is the
feature for classifying brain states [1].

Exploiting underlying structure of temporal data for unsu-
pervised feature learning has also been studied for video data.
In [31], features are learned in an unsupervised fashion by as-
suming that data points being neighbors in the temporal space
are likely to be neighbors in the latent space as well. Similarly,
the work in [32] exploits the structure of video data based on
two facts: (1) there is a temporal coherence in two successive
frames, namely they contain similar contents and represent the
same concept class, and (2) there are differences or changes
among neighbouring frames due to, e.g., translation and rota-
tion. Therefore, learning features by exploiting this structure
will be able to generate representations that are both meaningful
and invariant to theses changes [32].

Since speech is a non-stationary time series signal, there is
a contrast across speech segments. At the same time, neigh-
bouring frames likely represent the same concept class. Fur-
thermore, since in the TD-SV setting, same pass-phrases are
uttered by speakers multiple times in the training set, there are
certain structures in the data, e.g. matched contents across ut-
terances. Across the entire training dataset, segments assigned
with the same classes are of course most likely heterogeneous.
In [33], however, it is shown that deep neural networks trained
by stochastic gradient descent methods can fit well the training
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image data with random labels and this phenomenon happens
even if the true images are replaced by unstructured random
noise. Therefore, we hypothesize that training of networks with
random labels assigned by the TCL approach will converge and
if we choose bottleneck features from the proper hidden layer,
a useful feature can be extracted. All these motivate us to pro-
pose the TCL method for TD-SV. Speech and MEG signals,
however, are quite different in nature, namely speech signals
contain much richer information for which the tasks in hand of-
ten involve classification of much more classes. Furthermore,
the amount of available speech data including labelled data is
significantly larger than MEG data, leading to more alterna-
tive methods for speech feature learning. Therefore, extensive
study is required to explore the potential of TCL for speech
signals.

In [34] we proposed a TCL based BN feature for TD-SV. The
main strategy is to uniformly partition each utterance into a pre-
defined number of segments, e.g. IV, regardless of speakers and
contents. The first segment in an utterance is labelled as Class
1, the second as Class 2, and so on. Each segment is assumed to
contain a single content belonging to a class. The speech frames
within the nth segment,n € {1,2,..., N}, are assigned to Class
n. A DNN is then trained to discriminate each speech frame
among the different classes. The core idea of TCL learning is
to exploit temporally varying characteristics inherent in speech
signals. It has been shown in [34] that without using any label
information for DNN training, TCL-BN gives better TD-SV per-
formance than the Mel-frequency cepstral coefficient (MFCC)
feature and existing BN features extracted from DNNs trained to
discriminate speakers or both speakers and pass-phrases where
manual labels are exploited.

While no need for labelled data is an advantage, segmenta-
tion and labelling in TCL are arbitrary and the labels do not
carry any particular meaning. In this work, we therefore pro-
pose a segment-based statistical clustering method to iteratively
regroup the segments in an unsupervised manner with the goal
to maximize likelihood. The clustering method groups together
segments with similar phonetic content to form clusters, and
each cluster is considered a class. It is expected that the cluster-
ing process will lead to improved class labels for the segments,
which are then used to train DNNs, leading to improved BN
features.

As the TCL method trains DNNs to discriminate phonetic
content, one natural question to ask is how it compares with
segmentation and labelling obtained by a speech recognizer.
While senones or triphone states have been used as the target
classes for training DNNS to extract features, BN feature extrac-
tion based on discriminating phones is relatively unexplored in
the context of TD-SV. The motivation of investigating the use
of phones is that the time granularity or resolution for defin-
ing the classes is significantly smaller than that of using tri-
phone states (e.g. 3001 in [4]) and much closer to that of TCL
learning (e.g. tens in [34]). In [4], triphone states have been
used as the frame labels for training DNNs from which BN
features are extracted. It is shown that BN features extracted
from DNNs discriminating both speakers and phones performs
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similarly to BN features based on discrimination of either speak-
ers only or both speakers and phrases. In [13], bottleneck fea-
tures are extracted from DNNs trained to predict senone pos-
teriors. Experimental results show that the senone-discriminant
BN feature does not even outperform MFCCs, although being
complementary to MFCCs. The reason why using senones as
training targets does not improve the MFCC baseline might be
because the large number of senones requires to use a large
amount of data to train a large neural network in order to per-
form well. Instead of using tied tri-phone states/senones as the
DNN training targets as in [4], [13], this paper investigates two
speech recognition settings, one where a phoneme recognizer
is used to decode the phone sequences, for which two differ-
ent recognizers are investigated, and the other where the forced
alignments are used to obtain the phone sequences. The gen-
erated phone sequences and boundaries are used for training
phone-discriminant BN (PHN-BN) features. We compare their
performance against each other and that of TCL. To our knowl-
edge, the performance of using PHN-BN features for TD-SV
has not been reported in the literature. Context-independent
monophone states have been used as DNN training targets to
extract BN features for language identification in [35], where it
is experimentally shown that phone-state-discriminant BN per-
forms significantly better than the triphone-state-discriminant
BN. However, monophone states rather than phones themselves
are used and the application is language identification rather than
SV [35].

We conducted our TD-SV experiments on the RedDots Chal-
lenge 2016 database [36], [37]. We show that TCL-BN gives
better performance than MFCC features and BN features dis-
criminating speakers or both speakers and pass-phrases, while
being on par with using the phone sequences produced by an
ASR system. Clustering improves the performance especially
for TCL-BN, and TCL-BN with clustering performs the best
among all features. The TCL approach further has the flexibility
in choosing the number of target classes for DNN training.

The contributions of this paper are multi-fold. First, it pro-
poses a segment-based statistical clustering method to re-assign
class labels to the segments generated by TCL or speech recog-
nizers. Second, the paper extends the study of our previous work
on TCL-BN [34], to analyse the learned features through scatter
plots using the T-SNE method [38] and to conduct more exten-
sive experiments such as extracting BN features from different
DNN hidden layers with different numbers of DNN training
target classes. Third, the paper studies BN features that are ex-
tracted from DNNs trained to discriminate phones, which are
again based on segmentation and labeling generated by differ-
ent ASR systems, in contrast to training DNNs to discriminate
triphone states or senones as done in the literature. Fourth, the
performance of a wide range of BN features are compared un-
der the GMM-UBM and i-vector frameworks on the RedDots
database. Finally, the fusion of MFCCs and various BN features
at both score and feature levels is studied.

The rest of the paper is organized as follows. In Section II
we describe bottleneck features. The segment-based clustering
method is presented in Section III. Sections IV and V present two
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TD-SV methods and experimental set-ups, respectively. Results
and discussions are given in Section VI. The paper concludes in
Section VIL

II. BOTTLENECK FEATURES

Bottleneck features are features extracted from the hidden
layers of BN-DNNS (i.e. DNNs for BN feature extraction). In this
section, we present three phone-discriminant BN features, which
differ from the often used senone-discriminant BN features, and
two time-contrastive learning based BN features, in addition to
the commonly used speaker- and pass-phase-discriminant BN
features.

All BN-DNNSs in this work use Mel-frequency cepstral coef-
ficients [39] as the input. MFCCs are the most commonly used
features for speaker verification. In this work, we use 57 dimen-
sional MFCCs including C;-C19, A and AA coefficients with
RASTA filtering [40], which are extracted from speech signals
with a 20 ms Hamming window and a 10 ms frame shift. An
energy based voice activity detection is applied to select high
energy frames for MFCC feature extraction and further process-
ing, while low energy frames are discarded. This work does not
consider noisy speech signals and otherwise, it will be essential
to use a noise robust voice activity detection method. Finally,
the high energy frames are normalized to fit zero mean and unit
variance at utterance level.

A. Speaker- and Pass-Phrase-Discriminant BN Features

Two BN features are chosen as state-of-the-art baseline meth-
ods in this work. The first one is speaker-discriminant BN (SPK-
BN) [4], in which DNNs are trained to discriminate speakers
using the cross-entropy loss. Another feature is speaker+pass-
phrase discriminant BN (SPK+phrase-BN) [4], in which DNNs
are trained to discriminate both speakers and pass-phrases simul-
taneously. This involves two loss functions: one for discriminat-
ing speakers and the other for discriminating pass-phrases. The
average of the two losses is used as the final criterion in the DNN
multi-task learning procedure. We use the CNTK toolkit [41] for
all BN-DNN training.

B. Phone-Discriminant BN Features

In the literature, triphone states or senones have been used as
the BN-DNN target classes [4], [13]. This gives a large num-
ber of output neurons, e.g. 3001 tied-triphone-states in [4] and
the performance is not promising. In this work, instead, we in-
vestigate the use of phones as the training target classes, which
gives significantly lower class granularity. Specifically, DNNs
are trained to discriminate phones and the number of nodes in the
DNN output layer is equal to the number of phones as shown
in Fig. 1. We consider three different speech recognizers for
generating phone labels as detailed in the following.

For PHN-BN1, the phoneme recognizer based on [42] is used
to generate phoneme alignments for the RSR2015 database [43].
39 English phonemes are considered. The recognizer consists
of three artificial neural network (ANNs) and each ANN has
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Bottleneck feature extraction from a DNN trained to discriminate

a single hidden layer with 500 neurons. A total of 23 coeffi-
cients are extracted as Mel-scale filter bank energies and the
context of 31 frames are concatenated for long temporal analy-
sis. This context is split into left and right blocks (with one frame
overlap) [42]. Two front-end ANNs produce phoneme posterior
probabilities for the two blocks separately, and the third back-
end ANN merges the posterior probabilities from the two context
ANNES.

PHN-BN2 is based on an end-to-end segmental phoneme rec-
ognizer [44]. We use 40-dimensional log-Mel feature vectors as
the input to the segmental model. The segmental model con-
sists of a 3-layer bidirectional long short-term memory (LSTM)
with 256 cell units for each direction. The segmental features are
a combination of averaging over the hidden vectors of different
parts of the segments and the length of the segment (termed FCB
in [45]). The segmental model is trained on the TIMIT training
set [46] with the standard phone set including 47 phones and
one label for silence. The maximum phone duration is cap to
30 frames. Marginal log loss [47] is optimized with Stochastic
gradient descent (SGD) for 20 epochs with step size 0.1, gradi-
ent clipping of norm 5, and a batch size of one utterance. The
best model is chosen based on phone error rates from the first
20 epochs, and is trained for another 10 epochs in the same way
except with the step size 0.75 decayed by 0.75 after each epoch.
We then decode using the best segmental model to obtain phone
sequences for the utterances in the RSR2015 database [43].

PHN-BN3 is based on forced alignments generated from the
end-to-end segmental model [44]. Though trained end-to-end,
the segmental model is able to produce excellent alignments
without using any manual segmentation [45], [47].

It is noted that in the ASR based approaches, ‘sil’ or ‘pause’
is included in the phoneme list for speech recognition or gener-
ating phone sequences. However, they are excluded from sub-
sequently training DNNs that are used for BN feature extrac-
tion. In other words, a ‘sil’ or ‘pause’ model has the function
of detecting the less energized or silence frames and then re-
moving these frames from BN-DNN training. Table I lists the
phones available in different ASR systems, excluding ‘sil’ and
‘pause’.
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TABLE I
LISTS OF PHONES GENERATED FROM DIFFERENT SPEECH/PHONE
RECOGNITION SYSTEMS AND USED FOR TRAINING BN-DNNs

Phones

aa ae ah aw ay b ch d dh dx eh er ey
f g hh ih iy jh k 1 m n ng ow oy
prsshtthuhuwvwyz

aa ae ah ao aw ax ay b ch cl d dh dx
eh el en epi er ey f g hh ih ix iy jh
kImnngowoyprsshtth

uh uw v vel wy z zh

aa ae ah ao aw ay b ch d dh eh er ey
f g hh ih iy jh k 1 m n ng ow oy
prsshtthuhuwvwyzzh

System
PHN-BNI

PHN-BN2

PHN-BN3

# of segments/TCL classes n

Utterance 1 (pass—phrase A) L1 I 2 l 3 | length 1
"A huge power outage rarely occurs”! B |
Utterance 2 (pass—phrase D) I 1 I I 3 n I length 2
"No return address whatsover” o) o) < c
- ®
172} 172} 1723 w
................... ©w ©w 12 w
e [8) w =]
To train DNN

Fig.2. Segmentation of speech utterances for BN feature extraction in uTCL.

C. Time-Contrastive Learning Based BN Features

We recently proposed to apply TCL to extract BN features for
TD-SV [34]. There are two ways to implement the TCL method.
One is utterance-wise TCL (uTCL), in which each utterance
for training DNNs is uniformly divided into NV segments. The
number of segments N is equal to the number of classes IV in
TCL, i.e., the number of output nodes in DNNs. Speech frames
within a particular segment are assigned a class label as follows:

(xlv cee 71'1\1)7 ceey (x(n—l)]\/f—',-la e ;ng)
Class 1 Class n
yoo (TN M1 TND) (D

Class N

where n and M indicate the segment index (as well as the class
ID) and the number of frames within a segment, respectively.
Afterwards, DNNGs are trained to discriminate the frames among
the classes. We vary the value of IV in order to study the effect of
different numbers of classes in TCL on TD-SV. Fig. 2 illustrates
the segmentation of speech utterances for BN feature extraction
in uTCL.

The other way of realizing TCL for speech is called stream-
wise TCL (sTCL) [34]. It is similarly to uTCL, with the only
difference being that training data of the DNNs are first ran-
domly concatenated into a single speech stream. The single
speech stream is then partitioned into segments of 6 frames
each (chunk). While uTCL attempts to capture the structures
in a speech corpus, e.g. repeating sentences, STCL constructs
DNN training in much higher degree of randomness.
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Fig.3. Illustration of segment-based clustering for speech data with IV classes.

To obtain BN features in the respective systems, the output of
a DNN hidden layer at frame-level is projected onto a lower di-
mensional space by using principle component analysis (PCA).

III. SEGMENT-BASED CLUSTERING

As segment classes in TCL are defined or assigned by uni-
formly segmenting speech signals in unsupervised manner, seg-
ment contents in each class are inevitably heterogeneous. This
motivates us to devise a clustering algorithm to group similar
speech segments together and form new groups/classes. This
is expected to be beneficial for DNN training, thus leading to
improved BN features. In this section, we propose a segment-
based clustering method, which re-assigns labels to segments,
as follows.

Step 1: Pool together all speech segments belonging to a par-
ticular class c,, and derive the class specific GMM, A,,,
from the GMM-UBM (trained on the TIMIT dataset)
through maximum a posteriori (MAP) adaptation.
Classify each speech segment using newly-derived
class-specific GMMs based on the maximum likeli-
hood approach,

Step 2:

>

~

=arg max p(S;|4:)

@)
where S; denotes the set of feature vectors in the j'"
speech segment.

Check whether the stop criteria are met. If yes, go to
next step. Otherwise, go to Step I and repeat the pro-
cess.

Output the new class labels for speech segments (for
training the BN-DNN)

Fig. 3 illustrates the clustering method. In this work, the
method is used in combination with TCL-BN and PHN-BN. In
the experiment of this work, the stop criterion is that Step I and
Step 2 are repeated 5 iterations, which is found to give a stable
set of clusters, i.e. the clusters do not change much. This choice
is for simplicity and computational time efficiency. While the
proposed algorithm is for clustering, it differs from the conven-
tional K-means algorithm [48] by being based on probability
than Euclidean distance. It also differs from the expectation-
maximization (EM) algorithm for training GMMs [49]. First, it
is for clustering than density estimation. Secondly, it is based
on segments rather than single frames. Thirdly, cluster-specific
GMMs are updated from the GMM-UBM (a priori distribution)
through MAP adaptation in contrast to the maximization step in
the EM algorithm where cluster-specific Gaussian models are
directly calculated on the data belonging to each cluster.

Step 3:

Step 4:
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Fig. 4. GMM-UBM based speaker verification.

The way the proposed clustering method iteratively increases
the likelihood of segments shares some similarity to the gener-
ation of forced alignment in ASR training [50] where triphone
segments are gradually refined through an align-realign process.
There are also a number of differences between them as follows:
1) forced alignment is generated by using a given text transcrip-
tion (without time stamps) while the segment clustering method
does not use any transcription, 2) the forced alignment sequence
is fixed by the text while segments have no fixed ordering in the
segment clustering, 3) segment durations of forced alignment
change during the iterative process while they are fixed for the
segment clustering, and 4) hidden Markov models or hybrid
models are used for forced alignment while GMMs are used for
the segment clustering method.

IV. SPEAKER VERIFICATION METHODS

We consider two best-known methods for speaker verifica-
tion: GMM-UBM and i-vector.

A. The GMM-UBM Method

As per [9], a target speaker model is derived from GMM-
UBM with MAP adaptation using the training data of the target
speaker during the enrolment phase as illustrated in Fig. 4.

During the test phase, the feature vectors of a test utterance
Y ={y1,vy2,...,yr} is scored against the claimant model (i.e.
the target speaker model) A, and GMM-UBM A,,,. Finally, the
log likelihood ratio (LLR) value is calculated using the scores
between the two models

1 T
LLR(Y) = = >"{log plwlhs) —og p(uilhum)} ()
t=1

It is well established [4], [51] that GMM-UBM performs bet-
ter than i-vector for speaker verification using short speech ut-
terances.

B. The i-Vector Method

In this framework, a speech utterance is represented by a vec-
tor called i-vector [12]. The i-vector w is obtained by projecting
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Fig. 5. Illustration of i-vector based speaker verification.

the speech utterance onto a subspace T (called total variability
space or T-matrix) of a GMM-UBM super-vector, where speaker
and channel information is dense. It is generally expressed as,

M=m+Tw (€]

where w is an i-vector, M and m denote the utterance depen-
dent GMM super-vector, the speaker-independent GMM super-
vector obtained by concatenating the mean vectors from the
GMM-UBM, respectively, and T the total variability space. For
more details refer to [12].

During the enrolment, each target is represented by an aver-
age i-vector computed over his/her training utterance-wise (or
speech session-wise) i-vectors. In the test phase, the score be-
tween the i-vector of a test utterance and the claimant specific
i-vector (obtained during enrolment) is calculated using prob-
ability linear discriminate analysis (PLDA). Fig. 5 illustrates
the speaker enrolment and test phases of i-vector based speaker
verification.

PLDA represents an i-vector in the joint factor analysis (JFA)
framework as

W= by + Py+T2z+e€ 5)

where ® and I" are matrices denoting the eigen voice and eigen
channel subspaces, respectively. y and z are the speaker and
channel factors, respectively, with a priori normal distribution. €
represents the residual noise. @, I' and ¢ are iteratively updated
during the training process by pooling together a numbers of
i-vectors per speaker class from many speakers. During test, the
score between two i-vectors (w1, ws) is calculated as:

p(w1, w2|9tar)
p(wl, wlwnon)

where hypothesis 0y, states that w; and wy come from the
same speaker, and hypothesis 6,,,, states that they are from
different speakers. For more details about the PLDA based scor-
ing see [52]-[54]. Before scoring, i-vectors are conditioned to
reduce the session variability with two iterations of spherical
normalization (sph) as in [52].

score(wy, ws) = log 6)

V. EXPERIMENTAL SET-UPS

Experiments were conducted on the ‘m-part-01° task (male
speakers) of the RedDots database as per protocol [37]. There
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TABLE I
NUMBERS OF DIFFERENT TRIALS AVAILABLE FOR THE TD-SV
EVALUATION ON THE REDDOTS DATABASE

# of # of non-target trials

True Target Imposter | Imposter
trials -wrong -correct -wrong
3242 | 29178 120086 1080774

are 320 pass-phrase dependent target models for training. Each
target has three speech files for training. Each utterance is very
short in duration (approximately 2-3 s in duration). Three types
of non-target trials are available for the evaluation of text depen-
dent speaker verification system. Table II presents the number
of different trial available in evaluation.

True-trials: when a target speaker claims by pronouncing the
same pass-phrase as enrolment in the testing phase.

Target-wrong (TW): when a target speaker claims by pro-
nouncing a different pass-phrase in the testing phase.

Imposter-correct (IC): when an imposter speaker claims by
speaking the same pass-phrase as target in the enrolment phase.

Imposter-wrong (IW): when an imposter speaker claims by
speaking a wrong pass-phrase.

For BN feature extraction, DNNs are trained using data from
the RSR2015 [43] database, from which the pass-phrases that
also appear in the TD-SV evaluation set in the RedDots database
are removed. Therefore, there are no pass-phrase overlap be-
tween data for training BN-DNNs and data for TD-SV evalua-
tion. It gives ~ 72764 utterances over 27 pass-phrases (recorded
in 9 sessions) from 300 non-target speakers (157 male, 143
female). All DNN consists of 7 layer feed-forward networks
and use the same learning rate and the same number of epochs
in training. Each hidden layer consists of 1024 sigmoid units.
The input layer is of 627 dimensions, based on 57 dimensional
MFCC features with a context window of 11 frames (i.e. 5 frames
left, current frame, 5 frames right).

For speaker-discriminant DNN (SPK-BN), the number of out-
put nodes is equal to the number of speakers, i.e. 300. Whereas,
the speaker+pass-phrase (SPK+phrases-BN) discriminant DNN
consists of 327 output nodes (300 speakers + 27 pass-phrases).
To obtain the final BN feature, the output from a hidden layer,
a 1024 dimensional deep feature, is projected onto a 57 dimen-
sional space to align with the dimension of the MFCC feature for
a fair comparison. Allowing a higher dimension for BN can po-
tentially boost the performance as observed in [3]. Deep features
are normalized to zero mean and unit variance at utterance level
before using principle component analysis (PCA) for dimension
reduction.

A gender-independent GMM-UBM with 512 Gaussian com-
ponents having a diagonal covariance matrix is trained using the
6300 utterances from 630 non-target speakers (438 male, 192 fe-
male) of the TIMIT database [46]. Same GMM-UBM training
data are used for the PCA. In MAP adaptation, three iterations
are followed with value of relevance factor 10.

For the i-vector method, the data for training BN-DNNs are
also used for training a gender independent total variability space
and for training PLDA and sph. In PLDA, utterances of the same
pass-phrase from a particular speaker are treated as an individual



SARKAR et al.: TCL BASED DEEP BN FEATURES FOR TD-SV

1273

TABLE III
TD-SV RESULTS OF MFCCs AND BN FEATURES ON THE M-PART-01 TASK OF THE REDDOTS DATABASE USING THE GMM-UBM METHOD. GRAY-COLORED TEXT
SHOWS THE RESULTS OF BN FEATURES EXTRACTED FROM A NON-DEFAULT HIDDEN LAYER TO PROVIDE FURTHER INSIGHTS ABOUT THE BEHAVIOR OF THE
CORRESPONDING BN EXTRACTION METHODS, WHILE THOSE FEATURES WILL NOT BE USED IN REAL SYSTEMS

Feature DNN # of Clustering ~ Non-target type [%EER/(minDCFx 100)] Average
Lyr. classes  without: X Target- Impostor- Impostor- (EER
with: v/ wrong correct wrong /minDCF)
MFCC - 5.12/2.17 3.33/1.40 1.14/0.47 3.19/1.35
SPK-BN L2 300 - 4.81/1.66 3.28/1.39 1.29/0.43 3.13/1.16
L4 - 4.59/1.65 3.05/1.35 1.11/0.38 2.91/1.13
SPK+phrase-BN L2 327 4.79/1.66 3.20/1.40 1.30/0.42 3.10/1.16
L4 - 4.53/1.64 3.07/1.34 1.17/0.38 2.92/1.12
PHN-BN1 L2 38 X 2.31/0.71 3.14/1.29 0.61/0.20 2.02/0.73
L4 X 7.77/4.07 6.53/3.41 3.14/1.47 5.81/2.98
L2 v 2.32/0.74 2.96/1.22 0.64/0.18 1.97/0.72
L4 v 3.67/1.65 5.24/2.56 1.32/0.48 3.41/1.58
PHN-BN2 L2 47 X 2.25/0.78 2.89/1.30 0.61/0.22 1.92/0.77
L4 X 2.29/0.86 4.99/2.33 0.80/0.33 2.69/1.17
L2 v 2.14/0.79 2.68/1.21 0.61/0.22 1.81/0.74
L4 v 2.71/1.13 4.04/1.82 0.95/0.34 2.57/1.10
PHN-BN3 L2 39 X 1.79/0.72 3.08/1.41 0.55/0.15 1.81/0.76
(ASR force-alignment) L4 X 1.70/0.65 4.75/2.46 0.74/0.21 2.39/1.11
L2 v 2.08/0.70 2.83/1.18 0.55/0.18 1.82/0.69
L4 v 2.89/1.18 4.56/2.18 1.17/0.42 2.89/1.26
sTCL-BN L2 10 X 4.42/1.61 3.08/1.32 1.12/0.38 2.88/1.10
L4 X 4.68/1.68 3.23/1.39 1.23/0.40 3.05/1.16
L2 v 2.83/1.03 2.86/1.34 0.98/0.26 2.23/0.87
L4 v 9.57/6.26 7.80/4.06 3.89/2.37 7.09/4.23
uTCL-BN L2 10 X 1.88/0.65 3.14/1.44 0.64/0.19 1.89/0.76
L4 X 19.63/9.95  18.51/8.93 11.69/6.89 16.61/8.59
L2 v 1.91/0.60 2.7711.17 0.70/0.18 1.79/0.65
L4 v 5.98/3.61 7.44/3.91 2.52/1.35 5.31/2.96

speaker. It gives 8100 classes (4239 male and 3861 female) in
PLDA. Speaker and channel factors are kept full in PLDA, i.e.
equal to the dimension of i-vector (400) for all systems.
System performance is evaluated in terms of equal error rate
(EER) and minimum detection cost function (minDCF) [55].

VI. RESULTS AND DISCUSSIONS

This section presents the TD-SV results for different features,
followed by discussions.

A. Comparison of TD-SV Performance for a Number of BN
Features and MFCCs Under the GMM-UBM Framework

In this section, we present TD-SV results of sTCL and uTCL
with or without clustering, using 10 TCL classes and extracting
features from BN-DNN hidden layers L2 and L4, as well as
TD-SV results of phone-discriminant BN features. We compare
these results to those of speaker-discriminant BN features and
MEFCCs.

Table I1I shows the TD-SV results of different BN features and
MFCCs. Itis noticed that all BN features (except for PHN-BN1-
L4, sSTCL-L4 and uTCL-L4, but L2 should be used for these
methods as the training targets are phonetic content-related) give
lower average EERs and MinDCF than those of MFCCs, con-
firming the effectiveness of BN features for the TD-SV. The

behavior of sSTCL-L4 and uTCL-L4 is analyzed and discussed
in the next subsection. Concerning the hidden layer from which
features are extracted, L4 is be tter than L2 for SPK-BN and
SPK+phrase-BN, while the opposite is observed for the rest, in-
cluding sSTCL-BN, uTCL-BN, PHN-BN1, PHN-BN2 and PHN-
BN3. This can be well explained by the fact that the train-
ing target classes include speaker identities for SPK-BN and
SPK+phrase-BN and thus using later hidden layer as output is
favourable.

Among all features without clustering, PHN-BN3 gives the
lowest average EER followed by uTCL-BN. Among PHN-BN
features, the ranking in TD-SV performance is PHN-BN3, PHN-
BN2 and PHN-BNI1, in a descending order. This is also in line
with their speech recognition performance as PHN-BN3 uses
the forced-alignment decoding approach and thus provides the
most accurate phonetic transcriptions for training DNNs.

The clustering method is able to reduce the the average EER
and MinDCF of PHN-BN1 and PHN-BN2 with respect to their
standalone systems. However, it is unable to improve the per-
formance of PHN-BN3. This is because the already accurate
transcriptions provided by the forced-alignment decoding ap-
proach.

Among all the feature extraction methods, uTCL-BN with
clustering gives the lowest average EER and minDCF, followed
by PHN-BN3 with a minor margin.
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TABLE IV
TD-SV RESULTS OF TCL-BN FEATURES WITH/WITHOUT CLUSTERING ON THE M-PART-01 TASK OF THE REDDOTS DATABASE USING THE GMM-UBM METHOD.
THE AVERAGE PERCENTAGE OF EER AND MinDC'F' x 100 FOR MFCC ARE 3.19 AND 1.35, RESPECTIVELY

(a) STCL (b) uTCL
Feature DNN TCL Non-target type [%EER/(MinDCF x 100)] Feature DNN TCL Non-target type [%2EER/(MinDCF x 100)]
Lyr. classes  Target-  Impostor- Impostor- Average Lyr. classes Target-  Impostor- Impostor- Average
(N) wrong correct wrong EER/MinDCF (N) wrong correct wrong EER/MinDCF
sTCL L2 2 4.50/1.69  3.12/1.39 1.01/0.39 2.88/1.16 uTCL L2 2 2.12/0.71  3.28/1.48 0.70/0.22 2.03/0.80
3 4.60/1.67  3.13/1.40 1.20/0.40 2.98/1.16 3 2.00/0.73  3.43/1.50 0.77/0.21 2.07/0.81
4 4.57/1.65 3.14/1.38 1.17/0.40 2.96/1.14 4 2.06/0.73  3.20/1.51 0.78/0.21 2.02/0.81
5 4.53/1.65 3.16/1.39 1.06/0.40 2.91/1.15 5 2.05/0.64 3.30/1.51 0.58/0.21 1.98/0.79
6 4.38/1.64 3.14/1.37 1.07/0.39 2.86/1.13 6 2.39/0.88  3.39/1.54 0.74/0.28 2.17/0.90
7 4.62/1.69 3.10/1.34 1.29/0.41 3.00/1.15 7 4.75/1.66  3.33/1.38 1.43/0.43 3.17/1.16
8 4.44/1.63  3.17/1.39 1.11/0.40 2.90/1.14 8 2.59/1.02  3.60/1.63 0.92/0.35 2.37/1.00
10 4.42/1.61 3.08/1.32 1.12/0.38 2.88/1.10 10 1.88/0.65 3.14/1.44 0.64/0.19 1.89/0.76
12 4.50/1.66  3.14/1.41 1.14/0.41 2.93/1.16 12 1.88/0.64  3.39/1.54 0.80/0.211 2.02/0.80
15 4.33/1.66  3.02/1.38 1.14/0.39 2.83/1.14 15 4.47/1.62 3.14/1.38 1.26/0.37 2.96/1.13
20 4.35/1.66  3.10/1.38 1.14/0.39 2.86/1.14 20 4.38/1.59 3.13/1.33 1.35/0.38 2.95/1.10
40 4.38/1.65 3.17/1.38 1.15/0.39 2.90/1.14 40 4.56/1.67 3.11/1.38 1/32/0.41 3.00/1.15
L4 2 4.48/1.58 3.20/1.32 1.17/0.40 2.95/1.10 L4 2 13.73/8.33 13.64/6.60 8.06/4.23 11.81/6.39
3 4.44/1.64 3.36/1.38 1.29/0.42 3.03/1.15 3 19.82/9.96 17.63/9.93 11.25/8.01 16.23/9.30
4 4.65/1.65 3.23/1.38 1.17/0.40 3.02/1.14 4 22.29/9.99 19.74/9.97 13.97/9.83 18.66/9.93
5 4.52/1.67 3.08/1.40 1.23/0.39 2.94/1.15 5 15.79/9.98 13.69/8.73 8.18/6.61 12.55/8.44
6 4.50/1.63 3.23/1.36 1.24/0.40 2.99/1.13 6 11.66/7.90 10.71/5.67 5.53/3.33 9.30/5.63
7 4.45/1.67 3.02/1.33 1.11/0.39 2.90/1.13 7 4.62/1.63  3.14/1.36 1.07/0.41 2.95/1.13
8 4.65/1.66  3.20/1.38 1.04/0.40 2.97/1.15 8 10.17/7.40  9.50/5.40 4.44/2.88 8.04/5.22
10 4.68/1.68  3.23/1.39 1.23/0.40 3.05/1.16 10 19.63/9.95 18.51/8.93 11.69/6.89 16.61/8.59
12 4.50/1.65 3.14/1.38 1.26/0.38 2.97/1.14 12 16.77/9.96 15.94/8.52 8.90/6.08 13.87/8.19
15 4.44/1.73  3.11/1.38 1.20/0.39 2.92/1.17 15 4.43/1.62 3.17/1.32 1.14/0.38 291/1.11
20 4.47/1.67 3.20/1.38 1.13/0.40 2.93/1.15 20 4.62/1.63 3.10/1.34 1.29/0.39 3.00/1.12
40 4.59/1.72 3.17/1.40 1.23/0.41 3.00/1.17 40 4.41/1.65 3.11/1.37 1.13/0.38 2.88/1.13
+clustering L2 2 2.99/0.99  3.08/1.40 0.99/0.25 2.35/0.88 +clustering L2 2 2.37/0.73  3.07/1.31 0.69/0.24 2.04/0.76
3 2.80/0.97 3.00/1.43 0.83/0.27 2.21/0.89 3 4.50/1.62 3.11/1.35 1.20/0.36 2.94/1.11
4 4.34/1.66  3.17/1.39 1.32/0.39 2.95/1.15 4 4.41/1.62  3.05/1.36 1.41/0.39 2.96/1.12
5 3.39/1.16  3.36/1.44 1.07/0.32 2.61/0.97 5 2.06/0.69  2.94/1.30 0.70/0.20 1.90/0.73
6 3.32/1.14  3.23/1.46 1.05/0.31 2.53/0.97 6 2.25/0.72  2.99/1.32 0.82/0.24 2.02/0.76
7 4.44/1.67 3.17/1.27 1.41/0.39 3.01/1.14 7 2.12/0.74  2.89/1.28 0.74/0.23 1.92/0.75
8 3.14/1.17  3.05/1.40 0.95/0.33 2.38/0.97 8 1.99/0.65 2.74/1.26 0.61/0.19 1.78/0.70
10 2.83/1.03 2.86/1.34 0.98/0.26 2.23/0.87 10 1.91/0.60 2.77/1.17 0.70/0.18 1.79/0.65
12 3.14/1.10  3.11/1.41 1.02/0.31 2.43/0.94 12 1.94/0.63  2.74/1.19 0.58/0.17 1.75/0.66
15 3.33/1.07 3.20/1.37 0.98/0.31 2.50/0.92 15 1.88/0.59 2.81/1.23 0.67/0.16 1.79/0.66
20 3.05/1.13  2.93/1.36 0.92/0.30 2.30/0.93 20 2.25/0.75  2.74/1.25 0.64/0.19 1.88/0.73
40 4.25/1.58 3.17/1.37 1.07/0.36 2.83/1.11 40 2.73/0.93 2.83/1.31 0.89/0.25 2.15/0.83
L4 2 11.25/5.72 12.02/5.89 7.18/3.10 10.15/4.90 L4 2 9.21/5.20 11.45/5.46 4.91/2.52 8.52/4.39
3 18.07/9.92 17.98/8.34 12.46/6.21 16.15/8.16 3 4.46/1.61 2.96/1.31 1.07/0.34 2.83/1.09
4 4.38/1.69 3.10/1.36 1.20/0.42 2.89/1.16 4 4.34/1.57 2.99/1.33 1.14/0.35 2.82/1.08
5 18.53/9.34 17.76/7.64 14.15/5.50 16.82/7.50 5 12.27/9.66 11.25/6.20 5.89/3.87 9.80/6.58
6 15.39/9.33 14.12/6.55 9.74/4.65 13.08/6.84 6 16.20/9.90 16.13/8.32 9.70/6.00 14.01/8.07
7 4.59/1.67 3.08/1.26 1.41/0.42 3.03/1.12 7 15.88/9.85 15.49/8.27 8.91/5.91 13.43/8.01
8 11.53/7.33 10.05/5.06 5.71/2.87 9.10/5.09 8 11.60/9.07 10.13/5.88 4.96/3.68 8.90/6.21
10 9.57/6.26  7.80/4.06 3.89/2.37 7.09/4.23 10 5.98/3.61 7.44/391 2.52/1.35 5.31/2.96
12 7.75/4.05  6.72/3.29 2.81/1.53 5.76/2.96 12 5.15/2.59  7.00/3.37 2.02/1.00 4.72/2.32
15 7.74/4.50  6.05/3.15 2.84/1.64 5.54/3.10 15 4.44/2.39  5.89/2.93 1.91/0.79 4.08/2.04
20 6.90/3.62  6.14/2.92 2.93/1.39 5.32/2.64 20 4.00/2.00 5.52/2.71 1.57/0.68 3.70/1.80
40 4.82/1.79  3.57/1.45 1.29/0.46 3.23/1.23 40 4.28/1.98 4.87/2.39 1.51/0.65 3.55/1.67

B. TD-SV Performance of TCL-BN Features With Different
Configurations Under the GMM-UBM Framework

Table IV presents TD-SV results of sTCL and uTCL with or
without clustering, using different numbers of TCL classes and
extracting features from different BN-DNN hidden layers with
the purpose of providing insights about the behaviour of TCL
with different configurations.

We first compare the performance of extracting features from
different hidden layers for sTCL and uTCL. L2 clearly outper-
forms L4. This can be explained by the fact that the TCL training
target classes are related more to phonetic content than to speaker
identity, so that the earlier output layer is preferred for speaker
verification. The differences between L2 and L4 for sTCL are
marginal, while the differences for uTCL are very significant.
The performances of sSTCL do not change much across different
numbers of training target classes and different layers (L2 or

L4), and they are all better than the MFCC baseline. This sta-
ble performance of sTCL is primarily due to the fact that sSTCL
randomly assigns labels to segments. On the other hand, the per-
formance of uTCL varies much. An overall explanation to these
observations is that the training targets for uTCL are much more
meaningful and consistent than those for sTCL.

Concerning the number of TCL classes, N = 15and N = 10,
give the lowest average EERs for sSTCL and uTCL, respectively.
The performance of sTCL does not vary much for different num-
bers of classes, which is due to the nature of sSTCL randomly gen-
erating segments and assigning class labels. On the other hand,
uTCL is rather sensitive to varying the value N. Different from
sTCL, uTCL exploits the data structure of text-dependent pass-
phrases, which is the reason why it is sensitive to the number of
classes.

The behaviour of uTCL deserves extra attention. When the
number of classes N equals to 10, uTCL-L2 achieves the lowest
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Fig. 6.  Scatter plots of uTCL-BN-features for the L2 and L4 DNN layers. The
plots are extracted for three target speakers using the utterances available in the
training set (using the T-SNE toolkit [38] with same parameters). All features
use the same utterances of the three speaker for a better comparison.

EER (1.89%) and MinDCF (0.76/100) while uTCL-L4 gives
the second highest EER (16.61%) and the third highest MinDCF
(8.59/100), among all configurations without clustering, and
the differences are large. On the other hand, N = 7 gives the
worst performance (still slightly better than the MFCC base-
line) among uTCL-L2 while the third best among uTCL-L4.
The exactly opposite performance between L2 and L4 is an in-
teresting observation. To provide an insight about this behaviour,
we scatter-plot the uTCL-BN features for the L2 and L4 layers
for N = 10 using the T-SNE toolkit [38], as shown in Fig. 6.
From the Fig. 6, it can be seen that uTCL-L4 BN features all
mixed together and does not show any discrimination structure
or pattern in the feature space. On the other hand, uTCL-L2 fea-
tures form clusters for different speakers. This reflects on their
performance of TD-SV.

Similar behaviour to that of N = 10 is observed for N =
5. This is likely because N =5 and 10 match the underline
linguistic structure of utterances in the RSR2015 database so
that L4 strongly represents the linguistic information and the
network learns good feature representation for speech signal in
general at L2. Analysis shows that the minimal, maximal and
average number of words per sentence in the database are 4, 8
and 6.3. Average number of frames per utterance is 205, and
average number of frames per word is 32.5. Table IV shows that
N = T7and N = 15 behave in an opposite way to that of N =5
and N = 10, which deserves further investigation.

For larger values of N, e.g. 20 and 40, Table IV shows that
the differences in TD-SV performance among sTCL-L2, sTCL-
L4, uTCL-L2 and uTCL-L4 are rather small, with EER ranging
from 2.86% to 3.00%, which are rather consistent but higher
than that (1.89%) of uTCL-L2 for N = 10. This is because
small segments resulted from large N values increase the mis-
match among segments with the same label. When N = 40, the
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average number of frames per segment is around 5, so it is more
likely segments in the same class have different phonetic con-
tents, leading to less-well trained BN-DNN as compared with
smaller values of N, e.g. N = 10, as well as leading to similar
performances between sTCL and uTCL for L2 and L4. On the
other hand, clustering helps improve the performance of uTCL-
L2 much, by giving decent performances (1.79%, 1.88% and
2.15% for N = 10, 20, and 40 respectively).

The clustering method steadily improves the performance of
both sTCL and uTCL for L2. This indicates that the proposed
clustering method is able to assign similar speech segments to
the same class in an unsupervised manner. In other words, DNNs
get better labelled data and thus reduce intra-class variabilities
for DNN training, leading to better BN features for TD-SV. It is
worth to note that after applying the clustering method, uTCL-L2
provides both stable and good performance across the different
numbers of classes ranging from 5 to 20, which largely improves
the applicability of uTCL.

Itis observed that uTCL-L2 with clustering performs steadily
well when the number of training target class is equal to or larger
than the average number of words in utterances and it performs
the best at around two times the average number of words.

It should be noted that in all experiments in this work, the pass-
phrases in the DNN training data are different from the TD-SV
evaluation set, i.e. the learned feature is not phrase-specific.

C. Scatter Plots of BN Features and MFCCs

To obtain insights about the different features, we use T-SNE
toolkits [38] to scatter-plot the different features for 3 target
speakers (to limit the number for better visualization) using the
utterances available in the training set as in Fig. 7. It can been
seen that MFCC features are more compact and mixed together
with each other. SPK-BN is slightly better, but not significantly.
On the contrary, PHN-BN3 and uTCL+clustering BN features
are much more spread and demonstrate clear structures in the
data, indicating the superior discrimination and representation
ability. It is further noticed that clustering helps make the TCL
features more spread and structured. It is encouraging to see that
the level of spread and structure of features is well in-line with
their corresponding performance in TD-SV. This indicates that
the scatter plot generated by using T-SNE is a good means for
choosing features and thus the configurations to generate the
features.

D. Comparison of TD-SV Performance for a Number of BN
Features and MFCCs Under the i-Vector Framework

Table V compares the TD-SV performance of several fea-
tures under the i-vector framework [12] on the m-part-01 task
of the RedDots database. For simplicity, we only consider the
DNN layer for BN feature extraction, which gives the lowest
average EERs in Table III. It can be seen from the Table V that
average EER or MinDCF values of the TD-SV for most of BN
features are lower than those of MFCCs except for SPK-BN
and SPK+phrase-BN. This again confirms the usefulness of BN
features for TD-SV. Among all features, PHN-BN2 with clus-
tering performs the best, followed by PHN-BN1 with clustering.
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Scatter plots of MFCCs and BN-features extracted for three target speakers using the utterances available in the training set (using T-SNE toolkits [38]

with same parameters). All features use the same utterances of the three speaker for a better comparison.

TABLE V
TD-SV RESULTS OF MFCCs AND BN FEATURES ON THE M-PART-01 TASK OF THE REDDOTS DATABASE USING THE I-VECTOR METHOD

Feature DNN # of Clustering ~ Non-target type [%EER/(minDCFx 100)] Average
Lyr. classes  without: X Target- Impostor- Impostor- (EER

with: v/ wrong correct wrong /minDCF)

MFCC - - - 6.96/3.23  4.82/2.03 1.63/0.61 4.47/1.96
SPK-BN L4 300 - 7.19/3.02  5.76/2.29 2.33/0.81 5.10/2.04
SPK+phrase-BN L4 327 - 7.27/3.01  6.07/2.34 2.11/0.85 5.15/2.02
PHN-BN1 L2 38 X 2.68/1.04  4.57/1.94 0.89/0.26 2.71/1.08
v 2.76/1.31  4.13/1.79 0.67/0.25 2.52/1.12

PHN-BN2 L2 47 X 2.87/1.15  4.71/1.86 0.89/0.30 2.83/1.10
v 2.37/1.03  3.93/1.79 0.89/0.25 2.40/1.02

PHN-BN3 (ASR force-alignment) L2 39 X 2.25/0.83  4.65/1.90 0.89/0.26 2.59/1.00
v 2.89/1.16  4.16/1.82 0.92/0.31 2.66/1.10

sTCL-BN L2 10 X 6.60/2.97  5.51/2.25 1.80/0.74 4.63/1.99
v 3.92/1.67  4.31/1.82 1.07/0.38 3.10/1.29

uTCL-BN L2 10 X 2.74/0.97  5.27/2.08 0.95/0.32 2.991.12
v 2.73/1.11  4.19/1.86 0.92/0.27 2.61/1.08

PHN2-BN and uTCL-BN with clustering come after with small
margins. It is interesting to notice that it is not the one with most
accurate transcriptions gives the best TD-SV performance un-
der the i-vector framework, even though the margins are small.
Compared to the GMM-UBM framework with results shown
in Table III, the i-vector method gives much higher EER and
minDCF values. This is due to the use of short utterances for
speaker verification [4], [43], [51].

E. Fusion of MFCCs With BN Features

In this section, we study the fusion of MFCCs and BN features
at both score and feature levels under the GMM-UBM frame-
work. Only the GMM-UBM framework and BN features with
clustering are considered due to their good performance.

1) Score-Level Fusion: Table VI presents the TD-SV results
when scores of the MFCC based system are fused with the scores

of the respective BN feature based systems. Scores of the dif-
ferent systems are combined with weights as follows. First, the
inverse of the mean EER value (m?,,) of each system i is calcu-
lated. Second, inverse values are scaled so that the summation
of the weights (w; for the ith system) become unity. Finally the
fusion score is the weighted sum of component system scores.

The steps are detailed in the following equations.
1

Yi = —; (7N
Meer
Yi
wi = ®)
>im1 Vi
l
fusedscore = Z Wi * SCOT€sys; 9
i=1

From Table VI, it is noticed that all fusion systems perform
better than MFCCs alone. When combined with MFCCs, all
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TABLE VI
TD-SV RESULTS FOR THE SCORE-LEVEL FUSION OF MFCCS AND BN FEATURES ON THE M-PART-01 TASK OF THE REDDOTS
DATABASE USING THE GMM-UBM METHOD

Score fusion Non-target type [%2EER/(MinDCFx 100)] Average Without fusion
(#no.ofclasses) Target-wrong  Impostor-correct ~ Impostor-wrong [ EER/MinDCF Avg EER/MinDCF
MEFCC 5.12/2.17 3.33/1.40 1.14/0.47 3.19/1.35 3.19/1.35
MFCC & SPK-BN(300) 4.59/1.72 2.74/1.19 0.89/0.33 2.74/1.08 2.91/1.13
MFCC & SPK(300)+phrase(27)-BN 4.62/1.70 2.77/1.20 0.86/0.33 2.74/1.08 2.92/1.12
MFCC & PHN-BN1 (38) + clustering 2.56/0.85 2.69/1.15 0.57/0.17 1.94/0.72 1.97/0.72
MFCC & PHN-BN2 (47) + clustering 2.34/0.86 2.43/1.13 0.61/0.21 1.80/0.73 1.81/0.74
MFCC & PHN-BN3 (39) + clustering 2.25/0.79 2.49/1.11 0.56/0.16 1.77/0.69 1.82/0.69
MEFCC & sTCL-BN(NV = 10) + clustering 3.14/1.21 2.56/1.20 0.77/0.25 2.15/0.89 2.23/0.87
MFCC & uTCL-BN (N = 10) + clustering 2.06/0.71 2.54/1.10 0.59/0.17 1.73/0.66 1.79/0.65

-~-MFCC+PHN-BN1
——MFCC+PHN-BN3
--MFCC+sTCL-BN

-—MFCC+SPK-BN(300)
o~MFCC+PHN-BN2
-= MFCC+uTCL-BN
45 -

4 4

w
W
L

S}

(%) Avg. EER
o W

—_
W

30 35 40 45 50 55 60 65 70 75 80 85 90 114

w/o

PCA projected dim. rca

Fig. 8.  The TD-SV performance for various dimensions of PCA projected
augmented feature (MFCC+BN) of different systems on the m-part-01 task of
the RedDots database using GMM-UBM.

BN features obtain better performance compared to their stan-
dalone counterparts. This shows that BN features carry informa-
tion complementary to MFCCs when used for TD-SV. uTCL-
BN with clustering still gives the best performance followed by
PHN-BN3.

2) Feature-Level Fusion: Fig. 8 shows the TD-SV perfor-
mance (average EER over target-wrong, imposter-correct and
imposter-wrong cases) for various dimension of PCA projected
augmented feature (MFCC+BN) of different systems on the m-
part-01 task of the RedDots database using the GMM-UBM. It
is shown in [6] that simply augmenting features may degrade the
performance due to the redundancy between the features. PCA
is implemented as per [6]. From Fig. 8, it can be observed that
augmented feature +PCA gives slight reduction of average EER
except for the SPK-BN(300) with respect to the system without
PCA.

VII. CONCLUSIONS

In this paper, we presented a time-contrastive learning (TCL)
based bottleneck (BN) feature extraction method for the text-
dependent speaker verification (TD-SV). Specifically, a speech
utterance/signal is uniformly partitioned into a number of
segments of multiple frames (each corresponding to a class)
without using any label information and then a deep neural net-
work (DNN) is trained to discriminate speech frames among the
classes to exploit the temporal structure in the speech signal. In
addition, we proposed a segment-based clustering method that

iteratively regroups speech segments to maximize the likelihood
of all speech segments. It was experimentally shown that the
proposed TCL-BN feature with clustering gives better TD-SV
performance than Mel-frequency cepstral coefficients (MFCCs)
and existing BN feature extracted by discriminating speakers or
speakers and pass-phrases and it is further better than or on par
with phone-discriminant BN (PHN-BN) features that we inves-
tigated in this work. The clustering method is able to improve the
TD-SV performance for both TCL-BN and PHN-BN, except for
the type of PHN-BN that relies on forced-alignment to generate
transcriptions. All BN features are shown to be complementary
to MFCCs when score-level fusion is applied. Overall, the work
has shown the effectiveness of TCL approach for feature learn-
ing in the context of TD-SV and the usefulness of PHN-BN.
Future work includes the investigation of using TCL for text-
independent speaker verification.
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