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Abstract

Much recent work on Spoken Language Understanding (SLU) falls short in at least
one of three ways: models were trained on oracle text input and neglected the
Automatics Speech Recognition (ASR) outputs, models were trained to predict
only intents without the slot values, or models were trained on a large amount of in-
house data. We proposed a clean and general framework to learn semantics directly
from speech with semi-supervision from transcribed speech to address these. Our
framework is built upon pretrained end-to-end (E2E) ASR and self-supervised
language models, such as BERT, and fine-tuned on a limited amount of target SLU
corpus. In parallel, we identified two inadequate settings under which SLU models
have been tested: noise-robustness and E2E semantics evaluation. We tested the
proposed framework under realistic environmental noises and with a new metric,
the slots edit F1 score, on two public SLU corpora. Experiments show that our
SLU framework with speech as input can perform on par with those with oracle
text as input in semantics understanding, while environmental noises are present,
and a limited amount of labeled semantics data is available.

1 Introduction
Spoken Language Understanding (SLU)3 is at the frontend of many modern intelligent home devices,
virtual assistants, and socialbots [68, 19]: given a spoken command, an SLU engine should extract
relevant semantics4 from spoken commands for the demanded downstream tasks. Since the debut of
the Airline Travel Information System (ATIS) project [27], the field has progressed from knowledge-
based [63, 53, 21] to data-driven approaches, notably those based on neural networks. In the
seminal paper on ATIS by Tur et al. [59], incorporating linguistically motivated features for NLU
and improving ASR noise robustness were underscored as the research emphasis for the coming
years. Now, a decade later, the progress arose by self-supervised language models (LMs), such
as BERT [20], and E2E SLU [54, 42] seem to have responded to those problems posed in [59].
Nevertheless, we found the current research agenda lacks in several perspectives: model training
when limited semantics labels are available, model robustness under realistic noisy environments, and
model evaluation with E2E intent classification (IC) and slot labeling (SL) evaluation. In this paper,
we proposed an SLU framework that (1) learns with limited semantics labels, (2) is end-to-end, and
(3) is robust under environmental noises. The framework consists of an ASR, and a masked language
model pretrained on audio-text pairs without semantics labels and is evaluated with an E2E evaluation
metric. We break our arguments down into two parts: Modeling and Evaluation (see Table 1 for a
comparison of our framework with previous work).
∗Work performed during an internship at Amazon AI.
†Corresponding author.
3SLU typically consists of Automatic Speech Recognition (ASR) and Natural Language Understanding

(NLU). ASR maps audio to text, and NLU maps text to semantics. Here, we are interested in learning a mapping
directly from raw audio to semantics.

4Semantics is commonly formulated as intent and slots in common benchmarking datasets like ATIS.
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Figure 1: Our proposed semi-supervised E2E learning framework with ASR and BERT for joint
intent classification (IC) and slot labeling (SL) directly from speech. (A) shows the E2E approach, in
which E2E ASR and BERT are trained jointly by predicting text and IC/SL. (B) shows the 2-stage
baseline, where text and IC/SL are obtained successively. (C) shows the SpeechBERT baseline,
where BERT is adapted to take audio as input by first pretraining with Audio MLM loss and then
fine-tuning for IC/SL. A separate ASR is still needed for (B) and (C).

Why do we want semi-supervised learning for SLU? Neural networks benefit from large quanti-
ties of labeled training data, and one could train SLU models end-to-end with them [49, 19, 24, 54].
However, curating labeled IC/SL data is expensive, and often time only a limited amount of labels
are disposable. Semi-supervised learning could be a useful scenario for training SLU models for
various domains whereby model components are pretrained on large amounts of unlabeled data and
then fine-tuned with target semantic labels. Despite some work already implemented this pretraining
then fine-tuning scheme, they were limited such that (1) models require a separate ASR or some form
of "feedback" from ASR, (2) models were designed to only predict intents without the slot values,
or (3) models did not take advantage of the generalization capacity of self-supervised LMs, such as
BERT, where we found to be essential to obtain competitive results if limited semantics labels are
present. In contrast, our framework provides a clean and general solution to the above limitations.
Our semi-supervised framework is a direct product of the self-supervised trend in speech and au-
dio processing which takes the form of: predictive objectives [16, 13, 14, 17, 47, 11], contrastive
objectives [43, 34, 3, 2, 1, 52, 40, 9, 30, 41, 38, 35], grounded learnings [51, 36, 18, 26, 25], and
self-trainings [28, 67, 8, 46, 31]. Different from the above settings is that this work does not concern
with learning general representations for several downstream tasks, nor does it rely on multiple
modalities or pseudo labeling techniques. Our focus is on designing a better learning framework
distinctly for semantics understanding under limited labels.

What’s wrong with the current SLU evaluation setting? Two significant bottlenecks of deploy-
ing SLU models into production are how prior work has evaluated them. First, SLU models were not
trained and evaluated for noise-robustness. For example, benchmarking datasets ATIS and Fluent
Speech Commands [42] are very clean; conversely, SLU engines often operate under noises, such as
environmental noises. Secondly, given that not until recently SLU has been composed of separately
developed ASR and NLU components, there is little work on an E2E evaluation criterion. Previous
SL evaluation criterion does not consider a naturally occurring scenario where ASR hypothesis
and human transcriptions have different lengths. Taking these into account, we proposed noise
augmentation training for SLU and the slot edit F1 score.
Key contributions of this paper are summarized as follows:

• We introduced a semi-supervised framework for semantics understanding directly from
speech to alleviate: (1) the need for a large amount of in-house, homogenous data [49,
19, 24, 54] by pretrained components on transcribed speech (2) the limitation of only
intent classification [42, 29, 54] by predicting text, slots, and intents. (3) any additional
manipulation on labels or loss, such as label projection [5], output serialization [58, 24, 22],
ASR n-best hypothesis, or asr-robust training losses [29, 39]. Figure 1 illustrates our
approach.

• The framework is trained with explicit noise augmentation such that it is robust to envi-
ronmental noises and is evaluated with the slot edit F1 score for end-to-end semantics
evaluation.
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• Our framework improves upon previous work in Word Error Rate (WER) and IC/SL F1,
and even rivaled its NLU counterpart with oracle text input [7]. Experiments are conducted
on public SLU corpora, ATIS, and SNIPS. We released the dataset used in this work.

Table 1: Comparison of our approaches with prior E2E SLU work. Work indicated by a * formulated
SL as an intent detection task (See Appendix A for details). Full summary table is in Appendix B.

Model Modeling Evaluation

Output Noise/Error Semi-Supervised E2E E2E Noise Robustness

Proposed
End-to-End text, intent, slots 3 3 3 3 3

Our Baselines
2-Stage text, intent, slots 3 3 7 3 3
SpeechBERT text, intent, slots 3 3 7 3 3

Prior Work
[54]∗ intent only 3 7 3 7 3
[42, 62, 10]∗ intent only 7 3 3 7 7
[48]∗ intent only 7 7 3 7 7
[22] text, intent, slots 3 3 3 7 7
[24] text, intent, slots 7 7 3 3 7
[58] text, intent, slots 7 3 3 7 7
[49] text, intent, slots 7 3 3 3 7

2 Proposed Learning Framework

Problem Formulation We now formulate the mapping from speech to semantics (IC/SL). Con-
sider some target SLU dataset D = {A(i),W (i),S(i), I(i)}Mi=1 consisting of M i.i.d. sequences,
where A(i),W (i),S(i) are the audio, word and slots sub-sequences respectively and I(i) is their
corresponding intent label. Note that W and S are sub-sequences of the same length, and I is a one
hot vector. We are interested in finding the model θ∗SLU where,

θ∗SLU = argmax
θ
LSLU (θSLU ;D) = argmax

θ
E(A,W ,S,I)∼D

[
lnP (W ,S, I | A; θSLU )

]
(1)

At test time, an input audio sequence a = a1:T and the sets of all possible word tokensW , slots S,
and intents I are given. We are then interested in decoding for its target word sequence w∗ = w1:N ,
its slots sequence s∗ = s1:N , and its intent label i∗, where N is the number of word/slots tokens. In
the following subsections, we will describe an end-to-end implementation of our framework and its
two baseline variants, depending on how θSLU is formalized5.

2.1 End-to-End: Joint E2E ASR and BERT Fine-Tuning.

To implement the end-to-end SLU model θSLU , we take a pretrained E2E ASR and a pretrained deep
contextualized LM, such as BERT, and jointly predict W , S and I on D. In this case, the pretraining
objectives are ASR subword prediction for the ASR [42, 58] and Masked Language Modeling (MLM)
for BERT. During fine-tuning on D, outputs from the ASR and BERT are concatenated to predict
S and I with loss LNLU , while W is predicted with loss LASR. The main benefit this formulation
brings is that now S and I do not solely depend on an ASR top-1 hypothesis W ∗ during training,
and the end-to-end fine-tuning objective is thus,

LSLU (θSLU ;D) = LASR(θSLU ;D) + LNLU (θSLU ;D). (2)

Model Building Blocks: E2E ASR and BERT A visualization of the model building blocks is
in Figure 2, where θSLU = {θASR, θBERT , θIC , θSL}. θASR is the model parameter for the E2E
ASR. The choice of E2E ASR over hybrid ASR here is due to later on, the whole SLU model can
backprop the errors from S and I through A. The ASR objective LASR is formulated to maximize
sequence-level log-likelihood,

LASR(θSLU ;D) = LASR(θASR;D) = E(A,W )∼D

[
lnP (W | A; θASR)

]
(3)

5We abuse some notations by representing models by their model parameters, e.g. θASR for the ASR model
and θBERT for BERT.
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Contextualized LM plays a critical role in the context of semantics understanding, and in this work,
we opted to use BERT [20], θBERT , as the basis for jointly predicting S and I . Following [7], S is
predicted via an additional CRF/linear layer on top of BERT, and I is predicted on top of the BERT
output of the [CLS] token. The additional model parameters for predicting SL and IC are θSL and
θIC , respectively. Before writing down LNLU , we describe a masking operation because ASR and
BERT typically employ different subword tokenization methods6.

SL lossIC lossASR loss

[CLS]

(A) E2E ASR (B) Joint IC/SL with BERT

Reference text

BertTokenBPE

Figure 2: E2E ASR and BERT. Note that θASR and θBERT have different subword tokenizations:
SentencePiece (BPE) [37] and BertToken. Dotted shapes are pretrained.

concat
(
(

Ma

)T ·

Ha

+(

Mb

)T ·

Hb )
=

Hcat

(4)

Differentiate Through Subword Tokenizations To concatenate θASR and θBERT outputs along
the hidden dimension, we need to make sure they have the same length along the token dimension7. We
stored the first indices where W are broken down into subword tokens into a matrix: Ma ∈ IRN

a×N

for θASR and M b ∈ IRN
b×N for θBERT , where N be the number of tokens for W and S, Na be

the number of ASR subword tokens, and N b for BERT. Let Ha be the θASR output matrix before
softmax, and similarly Hb for θBERT . The concatenated matrix Hcat ∈ IRN×(512+768) is given
as Hcat = concat(

[
(Ma)THa, (M b)THb

]
, dim=1), where 512 and 768 are hidden dimensions for

θASR and θBERT . A visualization of this process is Eq. 4. We are now ready to describe LNLU :

LNLU (θSLU ;D) = E
[
lnP (S | Hcat; θSL) + lnP (I | Hcat; θIC),

]
(5)

where sum of cross entropy losses for IC and SL are maximized, and θASR and θBERT are updated
through Hcat. Note here that ground truth W is used instead of W ∗ due to teacher forcing.

Inference Having obtained θ∗SLU and given an audio sequence a, the decoding procedure is,

w∗ = argmax
wn∈W

N∏
n=1

p(wn | wn−1:n−e,a; θ∗SLU ), (6)

i∗, s∗ = argmax
i∈I

p(i | w∗,a; θ∗SLU ), argmax
sn∈S

N∏
n=1

p(sn | w∗,a; θ∗SLU ) (7)

This two step decoding procedure, first w∗ then (i∗, s∗) is necessary for our framework even if it is
trained end-to-end, given that no explicit serialization on W and S are imposed, like [58, 24]. w∗
decoding has wn−1:n−e since there can be an optional (e+ 1)-gram LM, though we did not find it
helpful and omitted it in the experiments; while decoding for (i∗, s∗), additional input a is given and
we have w∗ given the context from self-attention in BERT. Note that here and throughout the work,
we only take top-1 hypothesis w∗ (instead of top-N) to decode for (i∗, s∗).

6Alternatively, it may be possible to pretrain ASR and BERT with the same tokenization method; yet, this
implies that one can not use the pretrained models already available.

7Here, we opted for the more straightforward operation possible. There are other more sophisticated solutions,
such as attention mechanisms to align the two outputs, or gumbel softmax to backprop through the tokenizations.
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Figure 3: Illustration of SpeechBERT Audio MLM and IC/SL fine-tuning setup.

2.2 Baselines

Two slight variations, 2-stage and SpeechBERT, for constructing θSLU are presented (refer to Figure 1
for illustration). They will be the baselines for the end-to-end approach.

2.2.1 2-Stage: Cascading ASR Outputs to BERT
A natural baseline to the end-to-end approach is separately pretrain and fine-tune θASR and θBERT ,
and during inference, cascade the top-1 ASR hypothesis W ∗ as input to BERT.

2.2.2 SpeechBERT: BERT in Joint Speech-Text Embedding Space
Another sensible way to construct θSLU is to somehow "adapt" the BERT model such that it can take
audio has inputs and outputs IC/SL, while not compromising its original semantics learning capacity.
SpeechBERT [12] was initially proposed for Spoken Question Answering (SQA), but we found
the core idea of training BERT with audio-text pairs fitting as another baseline for our end-to-end
approach. Three steps are involved in predicting semantics from speech with SpeechBERT. First,
align audio segments to word tokens with a segmentation function Fseg(a) : wn ↔ au:v, where a
word token wn is mapped to an audio segment au:v of the audio sequence a. Although there is a line
of work on unsupervised audio-text alignment, for example [15, 32], we opted to use force alignment
as Fseg. The quality of Fseg’s audio segment boundaries is vital, as it creates the input/output pairs
for SpeechBERT’s pretraining and fine-tuning. Figure 3 illustrates the audio-text and audio-IC/SL
pairs for SpeechBERT.
Pretraining: Mapping Audio Segments to Text SpeechBERT is pretrained with Audio MLM on
a separate dataset where paired audio-text pairs are available but not semantics labels. Audio MLM is
similar to MLM in BERT [20], but with audio segments au:v as input and word token wn as the target.
Similar to MLM’s dynamic masking policy [20], parts of the audio segments are masked during
training. An audio segment summarizer is needed to produce a single vector to represent variable-
length audio segments, and following [12], we implemented it with an encoder-decoder LSTM. This
pretraining step gradually adapts a pretrained BERT to a phonetic-semantic joint embedding space.
As before, we define θSLU = {θASR, θBERT , θIC , θSL}. Unlike the end-to-end approach, though,
θASR is kept frozen throughout the SpeechBERT pretraining and fine-tuning phases. Finally, note
that as in Figure 1, we make a to be the last hidden output from θASR as opposed to MFCCs, as the
original work was aimed at single speaker SQA.
Fine-tuning: Mapping Audio Segments to IC/SL The fine-tuning step is similar to Eq. 5, but
θ∗ASR is frozen and Fseg and W are needed to align audio segments to their IC/SL:

LNLU (θSLU ;D) = E
[
lnP (S | A,W , Fseg; θ

∗
ASR, θBERT , θSL)

+ lnP (I | A,W , Fseg; θ
∗
ASR, θBERT , θIC),

]
(8)

3 Experimental Setup
Datasets Experiments are done on ATIS and SNIPS since their recordings are considerably smaller
than those in-house SLU data used in [49, 19, 24, 54]. ATIS [27] contains 8hr of audio recordings of
people making flight reservations with corresponding human transcripts. A total of 5.2k utterances
with more than 600 speakers are present. SNIPS is another popular dataset (10.5hr), and given
that the original training audio data was not released [19], we used a commercial TTS service8 to
synthesize audio from text data, similar to [29]. Different from [29], we synthesized SNIPS audio

8Synthesized audios can potentially make pronunciation errors on proper nouns or technical terms that are
probably out-of-vocabulary, inducing another error source in SLU modeling.
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with 15 speakers, which we refer to as SNIPS-Multi9. Audios in ATIS and SNIPS-Multi are sampled
at 16kHz. For the unlabeled data, we selected Librispeech 960hr (LS-960) [44] and MS-SNSD
(2.8hr) [50]. Besides the clean ATIS and SNIPS-Multi, models are evaluated on their noisy partition
(augmented with MS-SNSD). We made sure the noisy train and test splits in MS-SNSD do not
overlap. Lastly, while transcriptions are provided in ATIS and SNIPS, they are not normalized for
ASR. Text normalization is applied with an open-source software10. For ATIS, utterances are ignored
if they contain words with multiple slot labels [59]. The full details of our dataset statistics are in
Appendix E.
Hyperparameters and Compute Budget All speech is represented as sequences of 83-
dimensional Mel-scale filter bank with pitch, computed every 10ms. Global mean normalization is
applied. E2E ASR is implemented in ESPnet [65], where it has 12 Transformer encoder layers and
6 decoder layers. The choice of the Transformer architecture [60] is due to its empirical successes
in [33] and concurrent SLU work [48]. The E2E ASR is trained with hybrid CTC/attention loss [64]
(CTC weight is 0.3, attention weight is 0.7) with label smoothing. During ASR decoding, the beam
size is set to 5 throughout this work, with scores from CTC, attention decoder, and an RNN-LM.
SpecAugment [45] is used by default for data augmentation. SentencePiece (BPE) vocabulary size
is set to 1k for ATIS and SNIPS-Multi. Model is optimized with noam [60] and trained until con-
vergence. BERT is a bert-base-uncased from HuggingFace [66]. All experiments were done on a
single Nvidia V100. Training took a few hours to complete for our ASR and SLU models. For NLU
(jointBERT [7]), training takes a few minutes.

3.1 E2E Evaluation with Slots Edit F1 score.
Our framework is evaluated with an end-to-end evaluation metric, termed the slots edit F1. Unlike
slots F1 score, slots edit F1 accounts for instances where predicted sequences have different lengths
as the ground truth. To calculate the score, we first aligned the predicted text and oracle text. For
each slot label v ∈ V , where V is the set of all possible slot labels except for the "O" tag, we calculate
the insertion (false positive, FP), deletion (false negative, FN), and substitution (FN and FP) of its
slots value. Slots edit F1 is the harmonic mean of precision and recall over all slots:

slots edit F1 =

∑
v∈V 2× TPv∑

v∈V

[
(2× TPv) + FPv + FNv

] (9)

We notice that there were only two prior works evaluated their models with E2E evaluation criteria [49,
24]. Although slots edit F1 is not perfect11, we encourage readers to look at Table 6 in the Appendix
for why these E2E evaluations are needed.

3.2 Two-Stage Fine-tuning
The default training method for our end-to-end approach is to first pretrain the ASR component on
LS-960 (noted as D̃) before fine-tuning the whole model θSLU on the target SLU corpus D. An
observation from the experiment was that ASR is harder than IC/SL. See Figure 8b in the Appendix
for reference, where IC/SL losses converge much faster than ASR loss. Therefore, alternatively, we
train the end-to-end approach in two-stage: pretrain ASR, then fine-tune ASR onD, and finally jointly
fine-tune for ASR and IC/SL on D: LASR(θASR; D̃) −→ LASR(θASR;D) −→ LSLU (θSLU ;D).

3.3 Main Results on Clean and Noisy SLU
We benchmarked our proposed framework with several prior works on ATIS and SNIPS, and Table 2
presents their WER, slots edit F1 and intent F1 results. All experimental results were averaged over
at least three trials with random seeds. JointBERT [7] is our NLU baseline, where BERT is jointly
fine-tuned for IC/SL, and it gets around 95% slots edit F1 and over 98% IC F1. Since JointBERT
has access to the oracle text, this is the upper bound to our SLU models with speech as input. CLM-
BERT [5] explored using in-house conversational LM for NLU. We replicated [58], where an E2E
ASR (Listen, Attend and Spell [6]) directly predicts interleaving word and slots tokens (serialized
output), and optimized with CTC over words and slots. We also experimented with replacing E2E
ASR with a Kaldi hybrid ASR.

9https://github.com/aws-samples/aws-lex-noisy-spoken-language-understanding
10https://github.com/EFord36/normalise
11Slots edit F1 score double-penalizes substitution errors, or English phrases that contains multiple words.
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Table 2 presents results on clean test data. Both our proposed end-to-end and baselines approach
surpassed prior SLU work in terms of WER, slots edit F1, and intent F1. We did not compare to E2E
SLU work if SL is not modeled, see Table 1. We hypothesize the performance gain originates from
our choices of (1) adopting pretrained E2E ASR and self-supervised LM like BERT, (2) applying
text-norm on target transcriptions for training the ASR, and (3) joint fine-tuning text and IC/SL.

To quantify model robustness under noisy settings, we augmented ATIS and SNIP-Multi with
environmental noise from MS-SNSD, which is a common scenario where users utter their spoken
commands. The incentive here is how ’noise’ was abused in some SLU literature, where ASR errors
were treated as the noise source instead of modeling error, see [29, 61]. Results on noisy test reveal
that those work well on ATIS or SNIPS may break under realistic noises. Although our models are
trained with SpecAugment [45], there is still a 5% and 10% relative drop on ATIS and SNIPS for the
E2E approach, and a 4-27% drops for the baselines. This consequence directly motivated Section 3.4.

Table 2: WER, slots edit F1 and intent F1 on ATIS and SNIPS-Multi (clean test). Models use
Librispeech 960h (LS-960) and MS-SNSD as additional unlabeled training data. ATIS and SNIPS-
Multi are augmented with real environmental noises (noisy test) to evaluate model noise-robustness.
We compared our proposed end-to-end and baseline approaches with prior SLU work and the NLU
counterpart, where oracle text is assumed. Results indicate that our semi-supervised framework is
effective in data scarcity setting, exceeding prior work in WER and IC/SL while approaching the
NLU upper bound.

Frameworks Unlabelled clean test noisy test

Semantics Data WER slots edit F1 intent F1 WER slots edit F1 intent F1

ATIS with Oracle Text
JointBERT [7] - 95.64 98.99 - - -

Proposed E2E on ATIS
End-to-End w/ two-stage fine-tune LS-960 2.18 95.88 97.26 9.62 91.54 96.14
Proposed Baseline on ATIS
2-Stage Baseline LS-960 1.38 93.69 97.01 8.98 90.09 95.74
SpeechBERT Baseline LS-960 1.4 92.36 97.4 9.0 81.72 94.05

Prior Work on ATIS
ASR-Robust Embed [29] WSJ 15.55 - 95.65 - - -
Kaldi Hybrid ASR+BERT LS-960 13.31 85.13 94.56 44.72 69.55 88.94
ASR+CLM-BERT [5] in-house 18.4. 93.812 97.1 - - -
LAS+CTC [58] LS-460 8.32 86.85 - - - -

SNIPS with Oracle Text
JointBERT [7] - 94.71 98.43 - - -

Proposed E2E on SNIPS
End-to-End w/ two-stage fine-tune LS-960 11.86 83.41 98.65 20.9 74.22 95.90

Proposed Baseline on SNIPS
2-Stage Baseline LS-960 11.87 81.51 98.18 21.2 72.39 95.59
Prior Work on SNIPS
ASR-Robust Embed [29] WSJ 45.56 - 89.55 - - -
Kaldi Hybrid ASR+BERT LS-960 30.89 68.35 94.76 52.28 49.46 76.98
ASR+CLM-BERT [5] in-house 16.2 89.3 98.6 - - -

3.4 Environmental Noise Augmentation
To further improve the noise-robustness of our learning framework, we augment our framework
training with MS-SNSD. Although there is much work on E2E speech enhancement [57], we found
that merely augmenting the training data with a diverse set of environmental noises works well. We
followed the noise augmentation protocol described in [50], where for each training sample, five
noise files are randomly sampled and added to the clean file with SNR levels of [0, 10, 20, 30, 40]dB,
resulting in a five-fold data augmentation. Table 3 shows our proposed models trained with noise
augmentation. We first observe that compared to Table 2, now there is a minimal performance
drop when these noises are present (noisy test). On ATIS, our E2E approach reaches 95.46% for
SL and 97.4% for IC, which is merely a 1-2% drop from the clean test data. Compared to models
trained without noises, there is a 4% SL improvement over its clean counterpart, and almost 40%
improvement over Kaldi’s hybrid ASR. We also observe that on ATIS, the E2E model now performs

12For ASR+CLM-BERT [5], model predictions are evaluated only if its ASR hypothesis and human transcrip-
tion have the same number of tokens.
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on par with the NLU model with oracle text as input. On SNIPS, a similar trend is observed, despite
there is still a large gap between our SLU models and their NLU upper bound. The 13% WER could
explain the performance gap on SNIP (c.f. 2% on ATIS), which motivated our next modification.

Table 3: Noise augmentation reduces model degradation when environmental noises are present.

Frameworks clean test noisy test

WER slots edit F1 intent F1 WER slots edit F1 intent F1

ATIS with Oracle Text
JointBERT [7] - 95.64 98.99 - - -

Proposed on ATIS w/ Noise Aug.
End-to-End w/ two-stage fine-tune 2.13 96.38 97.65 3.6 95.46 97.40
2-Stage Baseline 1.73 93.41 96.79 3.5 92.52 96.49
SpeechBERT Baseline 1.8 92.66 96.91 3.6 88.7 96.15

SNIPS with Oracle Text
JointBERT [7] - 94.71 98.43 - - -

Proposed on SNIPS w/ Noise Aug.
End-to-End w/ two-stage fine-tune 13.5 82.12 98.28 15.3 80.02 97.90
2-Stage Baseline 13.37 79.65 97.82 15.23 77.58 97.59

3.5 Recovering Domain-Specific Words via Knowledge-Base (KB) Refinement
Another observation in our experiments was that many domain-specific words are hard to predict
perfectly even for humans. For example, in SNIPS, there is an extensive list of artists and album
names. A refinement step is further added after text w∗ and slot s∗ sequences are decoded to "correct"
the wrongly decoded words by replacing them with the closest matched words from the target corpus.
First, for each slot s∗, we construct a knowledge-base KBs∗ that contains all words s∗ matched in
D. Then, for each predicted pair (w∗, s∗), w∗ is replaced with w∗r from KBs∗ that has the highest
embedding similarity with w∗. Embeddings are retrieved from a pretrained BERT. Succinctly,

(w∗, s∗) −→ (w∗r = argmax
m∈KBs∗

dot
(

BERT(w∗),BERT(m)
)
, s∗) (10)

Table 4 shows the effectiveness of KB refinement on SNIPS, where although the WER remained
the same, slots edit F1 greatly improved. Our E2E approach now reaches 90% on SL, less than 5%
from the NLU upper bound and around a 9% improvement over the E2E baseline. Theoretically, we
could have an iterative refinement process and potentially reach even higher F1 scores.

Table 4: KB refinement "correct" decoded text where many domain-specific entities are present.

Frameworks clean test noisy test

WER slots edit F1 intent F1 WER slots edit F1 intent F1

Proposed on SNIPS w/ KB refinement
End-to-End w/ two-stage fine-tune 11.86 83.41 98.65 20.9 74.22 95.90

+ KB refinement 90.86 81.96
+ noise augmentation 13.5 82.12 98.28 15.3 80.02 97.90

+ KB refinement 89.46 87.51

4 Conclusions and Future Work

This work attempts to respond to a classic paper "What is left to be understood in ATIS? [59]", and to
the advancement put forward by contextualized LM and end-to-end methods up against semantics
understanding. We proposed a learning framework that works well under data scarcity and noisy
settings while re-examining the current paradigm in terms of how SLU is modeled and evaluated. We
compared our semi-supervised methods against prior work quantitatively with a new E2E evaluation
metric, the slots edit F1 score, on two public SLU corpora.

We showed for the first time that an SLU model with speech as input could perform on par
with NLU models on ATIS, entering the 5% "corpus error/ambiguities" range noted in [59, 4].
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However, have we solved the task once and for all? Referencing the SNIPS results, the answer is a
resounding no. Unsolved questions remain, such as the prospect of building a single framework for
multi-lingual SLU [23], or the need for a more spontaneous SLU corpus that is not limited to short
segments of spoken commands. For future work, we plan to relax the semi-supervised constraints
with unsupervised speech representations [3].

Broader Impact
In this work, we have shown that in the data scarcity regime, our semi-supervised frameworks can
still achieve competitive performance as those where oracle text is present. Looking further ahead,
we hope this will motivate a line of work on building multilingual SLU models with little to no
transcriptions, making the SLU technology available to the 7,000 languages and dialects around the
world.

Acknowledgments and Disclosure of Funding
The SpeechBERT experiments in this paper are run by Yung-Sung Chuang from National Taiwan
University (NTU). We thank the regular advice from Hung-yi Lee from NTU. We thank Su Zhu from
Shanghai Jiao Tong University, Alice Coucke from Sonos, Inc., and Chao-Wei Huang from NTU for
the various spontaneous exchanges with us. We thank Nanxin Chen from Johns Hopkins University,
Erica Cooper from National Institute of Informatics, and Alexander H. Liu, Wei Fang, Fan-Keng Sun,
and Jim Glass from MIT for their comments on the paper presentation. We also thank the anonymous
reviewers for their comments.

References
[1] A. Baevski, M. Auli, and A. Mohamed. Effectiveness of self-supervised pre-training for speech

recognition. arXiv preprint arXiv:1911.03912, 2019.
[2] A. Baevski, S. Schneider, and M. Auli. vq-wav2vec: Self-supervised learning of discrete speech

representations. arXiv preprint arXiv:1910.05453, 2019.
[3] A. Baevski, H. Zhou, A. Mohamed, and M. Auli. wav2vec 2.0: A framework for self-supervised

learning of speech representations. arXiv preprint arXiv:2006.11477, 2020.
[4] F. Béchet and C. Raymond. Is atis too shallow to go deeper for benchmarking spoken language

understanding models? 2018.
[5] J. Cao, J. Wang, W. Hamza, K. Vanee, and S.-W. Li. Style attuned pre-training and parameter

efficient fine-tuning for spoken language understanding. arXiv preprint arXiv:2010.04355,
2020.

[6] W. Chan, N. Jaitly, Q. Le, and O. Vinyals. Listen, attend and spell: A neural network for
large vocabulary conversational speech recognition. In 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 4960–4964. IEEE, 2016.

[7] Q. Chen, Z. Zhuo, and W. Wang. Bert for joint intent classification and slot filling. arXiv
preprint arXiv:1902.10909, 2019.

[8] Y. Chen, W. Wang, and C. Wang. Semi-supervised asr by end-to-end self-training. arXiv
preprint arXiv:2001.09128, 2020.

[9] P.-H. Chi, P.-H. Chung, T.-H. Wu, C.-C. Hsieh, S.-W. Li, and H.-y. Lee. Audio albert: A lite bert
for self-supervised learning of audio representation. arXiv preprint arXiv:2005.08575, 2020.

[10] W. I. Cho, D. Kwak, J. Yoon, and N. S. Kim. Speech to text adaptation: Towards an efficient
cross-modal distillation. arXiv preprint arXiv:2005.08213, 2020.

[11] J. Chorowski, R. J. Weiss, S. Bengio, and A. van den Oord. Unsupervised speech representation
learning using wavenet autoencoders. IEEE/ACM transactions on audio, speech, and language
processing, 27(12):2041–2053, 2019.

[12] Y.-S. Chuang, C.-L. Liu, and H.-Y. Lee. Speechbert: Cross-modal pre-trained language model
for end-to-end spoken question answering. arXiv preprint arXiv:1910.11559, 2019.

[13] Y.-A. Chung and J. Glass. Generative pre-training for speech with autoregressive predictive
coding. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 3497–3501. IEEE, 2020.

9



[14] Y.-A. Chung and J. Glass. Improved speech representations with multi-target autoregressive
predictive coding. arXiv preprint arXiv:2004.05274, 2020.

[15] Y.-A. Chung, W.-H. Weng, S. Tong, and J. Glass. Unsupervised cross-modal alignment of
speech and text embedding spaces. In Advances in Neural Information Processing Systems,
pages 7354–7364, 2018.

[16] Y.-A. Chung, W.-N. Hsu, H. Tang, and J. Glass. An unsupervised autoregressive model for
speech representation learning. arXiv preprint arXiv:1904.03240, 2019.

[17] Y.-A. Chung, H. Tang, and J. Glass. Vector-quantized autoregressive predictive coding. arXiv
preprint arXiv:2005.08392, 2020.

[18] A. Conneau, A. Baevski, R. Collobert, A. Mohamed, and M. Auli. Unsupervised cross-lingual
representation learning for speech recognition. arXiv preprint arXiv:2006.13979, 2020.

[19] A. Coucke, A. Saade, A. Ball, T. Bluche, A. Caulier, D. Leroy, C. Doumouro, T. Gissel-
brecht, F. Caltagirone, T. Lavril, et al. Snips voice platform: an embedded spoken language
understanding system for private-by-design voice interfaces. arXiv preprint arXiv:1805.10190,
2018.

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[21] J. Dowding, J. M. Gawron, D. Appelt, J. Bear, L. Cherny, R. Moore, and D. Moran. Gemini: A
natural language system for spoken-language understanding. arXiv preprint cmp-lg/9407007,
1994.

[22] S. Ghannay, A. Caubriere, Y. Esteve, A. Laurent, and E. Morin. End-to-end named entity
extraction from speech. arXiv preprint arXiv:1805.12045, 2018.

[23] J. Glass, G. Flammia, D. Goodine, M. Phillips, J. Polifroni, S. Sakai, S. Seneff, and V. Zue.
Multilingual spoken-language understanding in the mit voyager system. Speech communication,
17(1-2):1–18, 1995.

[24] P. Haghani, A. Narayanan, M. Bacchiani, G. Chuang, N. Gaur, P. Moreno, R. Prabhavalkar,
Z. Qu, and A. Waters. From audio to semantics: Approaches to end-to-end spoken language
understanding. In 2018 IEEE Spoken Language Technology Workshop (SLT), pages 720–726.
IEEE, 2018.

[25] D. Harwath, A. Torralba, and J. Glass. Unsupervised learning of spoken language with visual
context. In Advances in Neural Information Processing Systems, pages 1858–1866, 2016.

[26] D. Harwath, W.-N. Hsu, and J. Glass. Learning hierarchical discrete linguistic units from
visually-grounded speech. arXiv preprint arXiv:1911.09602, 2019.

[27] C. T. Hemphill, J. J. Godfrey, and G. R. Doddington. The atis spoken language systems pilot
corpus. In Speech and Natural Language: Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27, 1990, 1990.

[28] W.-N. Hsu, A. Lee, G. Synnaeve, and A. Hannun. Semi-supervised speech recognition via local
prior matching. arXiv preprint arXiv:2002.10336, 2020.

[29] C.-W. Huang and Y.-N. Chen. Learning asr-robust contextualized embeddings for spoken
language understanding. In ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 8009–8013. IEEE, 2020.

[30] D. Jiang, X. Lei, W. Li, N. Luo, Y. Hu, W. Zou, and X. Li. Improving transformer-based speech
recognition using unsupervised pre-training. arXiv preprint arXiv:1910.09932, 2019.

[31] J. Kahn, A. Lee, and A. Hannun. Self-training for end-to-end speech recognition. In
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 7084–7088. IEEE, 2020.

[32] H. Kamper. Truly unsupervised acoustic word embeddings using weak top-down constraints in
encoder-decoder models. In ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6535–3539. IEEE, 2019.

[33] S. Karita, N. Chen, T. Hayashi, T. Hori, H. Inaguma, Z. Jiang, M. Someki, N. E. Y. Soplin,
R. Yamamoto, X. Wang, et al. A comparative study on transformer vs rnn in speech applications.
In 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pages
449–456. IEEE, 2019.

10



[34] K. Kawakami, L. Wang, C. Dyer, P. Blunsom, and A. van den Oord. Unsupervised learning of
efficient and robust speech representations. 2019.

[35] E. Kharitonov, M. Rivière, G. Synnaeve, L. Wolf, P.-E. Mazaré, M. Douze, and E. Dupoux. Data
augmenting contrastive learning of speech representations in the time domain. arXiv preprint
arXiv:2007.00991, 2020.

[36] S. Khurana, A. Laurent, and J. Glass. Cstnet: Contrastive speech translation network for
self-supervised speech representation learning. arXiv preprint arXiv:2006.02814, 2020.

[37] T. Kudo and J. Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226, 2018.

[38] C.-I. Lai. Contrastive predictive coding based feature for automatic speaker verification. arXiv
preprint arXiv:1904.01575, 2019.

[39] C.-H. Lee, Y.-N. Chen, and H.-Y. Lee. Mitigating the impact of speech recognition errors on
spoken question answering by adversarial domain adaptation. In ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7300–
7304. IEEE, 2019.

[40] A. T. Liu, S.-W. Li, and H.-y. Lee. Tera: Self-supervised learning of transformer encoder
representation for speech. arXiv preprint arXiv:2007.06028, 2020.

[41] A. T. Liu, S.-w. Yang, P.-H. Chi, P.-c. Hsu, and H.-y. Lee. Mockingjay: Unsupervised speech
representation learning with deep bidirectional transformer encoders. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
6419–6423. IEEE, 2020.

[42] L. Lugosch, M. Ravanelli, P. Ignoto, V. S. Tomar, and Y. Bengio. Speech model pre-training for
end-to-end spoken language understanding. arXiv preprint arXiv:1904.03670, 2019.

[43] A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

[44] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: an asr corpus based on public
domain audio books. In 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5206–5210. IEEE, 2015.

[45] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V. Le. Specaug-
ment: A simple data augmentation method for automatic speech recognition. arXiv preprint
arXiv:1904.08779, 2019.

[46] D. S. Park, Y. Zhang, Y. Jia, W. Han, C.-C. Chiu, B. Li, Y. Wu, and Q. V. Le. Improved noisy
student training for automatic speech recognition. arXiv preprint arXiv:2005.09629, 2020.

[47] S. Pascual, M. Ravanelli, J. Serrà, A. Bonafonte, and Y. Bengio. Learning problem-agnostic
speech representations from multiple self-supervised tasks. arXiv preprint arXiv:1904.03416,
2019.

[48] M. Radfar, A. Mouchtaris, and S. Kunzmann. End-to-end neural transformer based spoken
language understanding. arXiv preprint arXiv:2008.10984, 2020.

[49] M. Rao, A. Raju, P. Dheram, B. Bui, and A. Rastrow. Speech to semantics: Improve asr and nlu
jointly via all-neural interfaces. arXiv preprint arXiv:2008.06173, 2020.

[50] C. K. Reddy, E. Beyrami, J. Pool, R. Cutler, S. Srinivasan, and J. Gehrke. A scalable noisy
speech dataset and online subjective test framework. arXiv preprint arXiv:1909.08050, 2019.

[51] A. Rouditchenko, A. Boggust, D. Harwath, D. Joshi, S. Thomas, K. Audhkhasi, R. Feris,
B. Kingsbury, M. Picheny, A. Torralba, et al. Avlnet: Learning audio-visual language represen-
tations from instructional videos. arXiv preprint arXiv:2006.09199, 2020.

[52] S. Schneider, A. Baevski, R. Collobert, and M. Auli. wav2vec: Unsupervised pre-training for
speech recognition. arXiv preprint arXiv:1904.05862, 2019.

[53] S. Seneff. Tina: A natural language system for spoken language applications. Computational
linguistics, 18(1):61–86, 1992.

[54] D. Serdyuk, Y. Wang, C. Fuegen, A. Kumar, B. Liu, and Y. Bengio. Towards end-to-end spoken
language understanding. In 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5754–5758. IEEE, 2018.

11



[55] D. Snyder, G. Chen, and D. Povey. Musan: A music, speech, and noise corpus. arXiv preprint
arXiv:1510.08484, 2015.

[56] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur. X-vectors: Robust dnn
embeddings for speaker recognition. In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5329–5333. IEEE, 2018.

[57] A. S. Subramanian, X. Wang, M. K. Baskar, S. Watanabe, T. Taniguchi, D. Tran, and Y. Fujita.
Speech enhancement using end-to-end speech recognition objectives. In 2019 IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics (WASPAA), pages 234–238. IEEE,
2019.

[58] N. Tomashenko, A. Caubrière, Y. Estève, A. Laurent, and E. Morin. Recent advances in end-to-
end spoken language understanding. In International Conference on Statistical Language and
Speech Processing, pages 44–55. Springer, 2019.

[59] G. Tur, D. Hakkani-Tür, and L. Heck. What is left to be understood in atis? In 2010 IEEE
Spoken Language Technology Workshop, pages 19–24. IEEE, 2010.

[60] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in neural information processing systems,
pages 5998–6008, 2017.

[61] H. Wang, S. Dong, Y. Liu, J. Logan, A. K. Agrawal, and Y. Liu. Asr error correction with
augmented transformer for entity retrieval.

[62] P. Wang, L. Wei, Y. Cao, J. Xie, and Z. Nie. Large-scale unsupervised pre-training for end-to-
end spoken language understanding. In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 7999–8003. IEEE, 2020.

[63] W. Ward and S. Issar. Recent improvements in the cmu spoken language understanding system.
Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER
SCIENCE, 1994.

[64] S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi. Hybrid ctc/attention architecture
for end-to-end speech recognition. IEEE Journal of Selected Topics in Signal Processing, 11(8):
1240–1253, 2017.

[65] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno, N. E. Y. Soplin, J. Heymann,
M. Wiesner, N. Chen, et al. Espnet: End-to-end speech processing toolkit. arXiv preprint
arXiv:1804.00015, 2018.

[66] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language processing.
ArXiv, pages arXiv–1910, 2019.

[67] Q. Xu, T. Likhomanenko, J. Kahn, A. Hannun, G. Synnaeve, and R. Collobert. Iterative
pseudo-labeling for speech recognition. arXiv preprint arXiv:2005.09267, 2020.

[68] D. Yu, M. Cohn, Y. M. Yang, C.-Y. Chen, W. Wen, J. Zhang, M. Zhou, K. Jesse, A. Chau,
A. Bhowmick, et al. Gunrock: A social bot for complex and engaging long conversations. arXiv
preprint arXiv:1910.03042, 2019.

[69] S. Zhu and K. Yu. Encoder-decoder with focus-mechanism for sequence labelling based spoken
language understanding. In 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5675–5679. IEEE, 2017.

12



Appendices

A Formulating Slot Labeling as Intent Detection – Why is it Problematic?

A recent trend in end-to-end SLU is to formulate it solely as an intent detection problem. The idea is
simple, slot labels with all their possible slot values combinations are flattened into one-hot vectors
as the classification objective. Therefore, the optimization objective of the network is cross-entropy
loss, as classification is easier than regression in most cases. This trend was likely brought up by
the release of the new Fluent Speech Corpus (FSC), as that was how the corpus was designed [42].
Nevertheless, this is not scalable! Imagine if there are 10 slot labels and each slot has 1000 slot values
(this is not ridiculous as a working SLU model should handle as many users queries as possible),
there are 100010 possible combinations if slot labeling is formulated as intent classification! For
example, the slot label ’destination_city’ could have slot values ’New York City,’ ’Boston,’ ’San
Francisco,’ ’Toronto,’ etc. It can take on slots values of any cities in the world. Therefore, one of the
design notes we kept in mind in coming up with these frameworks is to have both IC and SL as the
output target sequences.

B Full Summary Table of Previous Work

Table 5: Full comparison of our proposed framework with prior work in terms of modeling and
evaluation. In addition to previous work on E2E SLU, we included here some NLU work with oracle
text as input.

Model Modeling Evaluation

Input Output Noise/Error Semi-Supervised E2E E2E evaluation Noise Robustness

Proposed
2-Stage speech text, intent, slots 3 3 7 3 3
End-to-End speech text, intent, slots 3 3 3 3 3
SpeechBERT speech text, intent, slots 3 3 7 3 3

Prior Work
[54]∗ speech intent only 3 7 3 7 3
[42, 62, 10]∗ speech intent only 7 3 3 7 7
[48]∗ speech intent only 7 7 3 7 7
[22] speech text, intent, slots 3 3 3 7 7
[24] speech text, intent, slots 7 7 3 7 7
[58] speech text, intent, slots 7 3 3 7 7
[29] text intent only 3 7 7 7 7
[7] text intent, slots 7 3 7 7 7
[69] text intent, slots 7 7 7 7 7
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C Model Architectures

Attendion
Decoder

Encoder

BERT

text

BertToken

SL loss

Reference text

SentencePiece

linear/CRF

IC loss

CTC

CTC loss Attention loss

linear

Pretrained

[CLS]

(A) E2E ASR: Hybrid CTC/Attention (C) Joint IC/SL with BERT

beam search

SP detokenize

hypothesis text

Attendion
DecoderCTC

LM

(B) E2E ASR Decoding w/ LM

Figure 4: Basic building blocks: E2E ASR θASR and fine-tuned BERT θBERT . (A) illustrates E2E
ASR with hybrid CTC/Attention losses. (B) shows beam search decoding for E2E ASR with scores
from CTC, Attention decoder and LM. (C) shows fine-tuned BERT with joint IC and SL losses.
Intent is predicted on top of the [CLS] token. Note that θASR and θBERT have different subword
tokenizations: SentencePiece (BPE) [37] and BertToken. Shapes in dotted lines are pretrained.
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D Illustrated Example: How does Slots Edit F1 Score fit in?

Table 6: Examples to illustrate why an end-to-end IC/SL evaluation protocol is needed and how it is
computed. (A.1) shows a sentence with perfect text recognition does not capture any semantics. (A.2)
shows that despite a sentence that has high WER, semantics are captured! (A.3) shows the issue of
evaluating with only slots F1: although slots types are correct, their values are not.
(B) A word-slot pair is shown as a word[tag]. Words highlighted in grey are ignored in evaluation
since they are labeled as ’O.’ Highlighted words: insertion, deletion, substitution and correct, signified
the word-level differences per slot between the ground-truth and predicted sequences after alignment
during evaluation. Insertion is counted as FP, deletion as FN, substitution as both FP and FN, correct
as TP. Slots edit F1 is calculated according to Eq. 10. The table is best when viewed in color.

[(A) Ground Truth] The potato[food] and cauliflower[food] are both in season to make combo[food]
breads[food], mounds[food], or pads[food]. =⇒intent: baking
[(A.1) Sample Prediction] The potato[food] potato[sports] and cauliflower[food] cauliflower[sports] are
both in season to make combo[food] combo[sports] breads[food] breads[sports], mounds[food]
mounds[sports], or pads[food] pads[sports]. =⇒intent: baking sports
[(A.2) Sample Prediction] blaw potato[food] blaw cauliflower[food] blaw blaw blaw blaw blaw blaw
combo[food] breads[food], mounds[food], blaw pads[food]. =⇒intent: baking
[(A.3) Sample Prediction] The tomato[food] and cabbage[food] are both in season to make sour[food]
breads[food], mud[food], or pets[food]. =⇒intent: baking

[(B) Ground Truth] please find a flight round[B-roundtrip] trip[I-roundtrip] from los[B-fromloc.city]
angeles[I-fromloc.city] to tacoma[B-toloc.city] washington[B-toloc.state] with a stopover in
san[B-stoploc.city] francisco[I-stoploc.city] not[B-cost.relative] exceeding[I-cost.relative] the price of
three[B-fare] hundred[I-fare] dollars[I-fare] for june[B-depart.month] tenth[B-depart.day]
nineteen[B-depart.year] ninety[I-depart.year] three[I-depart.year] =⇒intent: flight
[(B) Sample Prediction] * find a flights round[B-roundtrip] trip[I-roundtrip] from los[B-fromloc.city]
angeles[I-fromloc.city] to tacoma[B-toloc.city] taco[B-toloc.city] ma[I-toloc.city]
washington[B-toloc.state] with a stopover in san[B-stoploc.city] francisco[I-stoploc.city]
francisco[I-toloc.city] not[B-cost.relative] exciting[I-cost.relative] the price of three[B-fare]
hundred[I-fare] dollar[I-fare] for june[B-depart.month] tenth[B-depart.day] nineteen[B-depart.year]
nineteen[I-depart.year] three[I-depart.year] =⇒intent: flight
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E Dataset Statistics

The detailed statistics of the corpora used in this work are presented. ATIS and SNIPS are standard
SLU corpora. However, given that the SNIPS training data is not released to the public (Section 2.1
of [19]), SNIPS audios are synthesized with a commercial TTS service. The SNIPS audios were
synthesized with 15 speakers13 and is referred to as SNIPS-Multi here. We also randomly selected
a single speaker, Emma, as SNIPS-Single, and evaluated our framework on that. The noise corpus
and noise augmentation procedure is based on MS-SNSD [50], where nine types14 of environmental
noises are present. For noise augmentation, we made sure that train, valid, and test partition do not
have overlapping noise files. ATIS-Noise is ATIS augmented with MS-SNSD, and SNIPS-Multi-
Noise is SNIPS-Multi augmented with MS-SNSD. Lastly, LibriSpeech 960 (LS-960) is used for the
pretraining, only paralleled audio-text data D̃ is required in our work.

Why did we not choose MUSAN for noise augmentation? MUSAN [55]is a widely-adopted
speech, music, and noise corpora now widely incorporated for training SOTA speaker recognition
system [56], and it does meet our purpose here. Our original goal was to focus on the noise robustness
for SLU, where potential secondary background speakers may be present. To design a model that
does direct noise suppression, we had in mind a controllable corpus that is designed for speech
enhancement, like MS-SNSD.

SNIPS-Multi has 160 hours of data. That is a lot! 160 hours of audio data is indeed a lot;
however, it is not that much compared to what some of the previous work used in their settings, see,
for example, [19]. Besides, keep in mind that SNIPS-Multi has the same content as SNIPS-Single.
The only difference between them is speaker variability, which should be learned to be ignored by the
model (see section 3.2 Speaker Adaptive Training (SAT) in [58]). Therefore, the same mistake that
was made in SNIPS-Single supposedly would likely re-occur in SNIPS-Multi.

Type Corpus Train Valid Test Speakers Unique Transcriptions

D ATIS 8 hr 1 hr 1.5hr 678 5.2k
D SNIPS-Single 10.5 hr 35 min 35 min 1 14.5k
D SNIPS-Multi 160 hr 8.5 hr 8.5hr 15 14.5k
DN MS-SNSD 2.8 hr 30 min 40 min - -
D +DN ATIS-Noise 50 hr 5 hr 7hr 678 5.2k
D +DN SNIPS-Multi-Noise 800 hr 42.5 hr 42.5 hr 15 14.5k
D̃ LS-960 960 hr 10 hr 10 hr 2338 -

13Speaker lists: Aditi, Amy, Brian, Emma, Geraint, Ivy, Joey, Justin, Kendra, Kevin, Kimberly, Matthew,
Nicole, Raveena, Russell, Salli.

14MS-SNSD noise types: vacuum cleaner, typing, copy machine, shutting door, neighbor speaking, munching,
babble, announcement, air conditioner.
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F Training plots

(a) Training Loss

(b) Training Accuracy

(c) Training CTC Character Error Rate (CER)

Figure 5: Plots for our E2E ASR training on ATIS.
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(a) Training Loss

(b) Training Accuracy

(c) Training CTC CER

Figure 6: Plots for our E2E ASR training with noise-augmentation on ATIS.
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(a) Training Loss

(b) Training Accuracy

Figure 7: Plots for our end-to-end approach with two-stage fine-tuning on ATIS. Note that here we
fine-tuned without CTC loss, so there is not a CTC CER plot.
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(a) Training Loss

(b) Training Accuracy

(c) Training CTC CER

Figure 8: Plots for our end-to-end approach without two-stage fine-tuning on ATIS. Note the curves
in 8b suggests that ASR is a much harder task than IC/SL.
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