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Abstract

Fake news is a widespread problem due to the ease of information spread online,
and its ability to deceive large populations with intentionally false information. The
damage it causes is exacerbated by its political links and loaded language, which
make it polarizing in nature, and preys on peoples’ psychological biases to make it
more believable and viral. In order to dampen the influence of fake news, organi-
zations have begun to manually tag, or develop systems to automatically tag, false
and biased information. However, manual efforts struggle to keep up with the rate at
which content is published, and automated methods provide very little explanation
to convince people of their validity. In an effort to address these issues, we present a
system to classify media sources’ political bias and factuality levels by analyzing the
language that gives fake news its contagious and damaging power. Additionally, we
survey potential approaches for increasing the transparency of black-box fake news
detection methods.
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Chapter 1

Introduction

Modern technology has enabled information to spread faster and reach a much broader

audience than ever before. Through social media, people can share news stories with

the click of a button and online resources have made it easier for people to create

websites that host information. This increased availability of information is a huge

benefit to society, as the general population is more informed, and it is easier for

people to collaborate and stay in touch. However, social media and online resources

have lowered the barrier to entry for publishing and spreading information to large

populations, which has enabled malicious actors to spread fake news. As the preva-

lence of fake news has grown, the field of fake news detection has spawned to combat

it.

In an article discussing its impact on the 2016 U.S. Presidential election, Allcott

and Gentzkow offer a concise definition of fake news: potentially misleading informa-

tion that is intentionally and verifiably false (Allcott and Gentzkow, 2017). As people

have been shown to be poor judges of false information (Kumar et al., 2016), factu-

ality prediction has become an essential component in fake news detection systems.

However, we believe that fact-checkers, alone, are not sufficient for stifling fake news,

and, in fact, they have been shown to potentially entrench people further in their

factually incorrect viewpoints (Nyhan and Reifler, 2010).

This problem is related to, if not exacerbated by, the politicization of news. A

study by Iyengar and Hahn shows that people prefer to consume media from sources
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that agree with their own political ideologies (Iyengar and Hahn, 2009). Furthermore,

due to confirmation bias, people are more receptive to information that confirms

their own views (Nickerson, 1998). These psychological tendencies, when coupled

together, result in people being more likely to believe in news that aligns with their

political ideologies, inherently linking the problem of fake news to political bias.

Ucinski, Klofstad, and Atkinson confirmed this link exists by showing that partisan

attachment is correlated with whether people believe information being presented to

them (Uscinski et al., 2016). This is extremely concerning, given that the context of

Allcott and Gentzkow’s article was the impact of fake news on a Presidential election,

and that other surveys of the field show that fake news is typically used for political

gain (Shu et al., 2017).

Several organizations have come to the same conclusion that both factuality and

political bias play a large role in the spread of fake news, and they have created web-

sites to manually annotate news for factuality and/or bias, including Media Bias/Fact

Check (Dave Van Zandt, 2015), Allsides (AllSides, 2020), and Politifact (PolitiFact,

2007). Despite the efforts of these organizations, though, public awareness of bias in

media remains low (Elejalde et al., 2018). We think this is partly due to a change in

how news is being consumed, with social media increasingly becoming the primary

news source for consumers (Shu et al., 2017). While social media is undoubtedly a

powerful tool for discovering news and sharing it with others, it has also vastly in-

creased the amount of published news and the speed at which it spreads. Manual

fact checking and bias labeling simply cannot keep up with rate of content creation

well enough to stem the damage of fake news. On top of that, fake news has actually

been shown to spread six times faster than real news (Vosoughi et al., 2018), which

makes the task of stopping fake news through manual labelling even more difficult.

The most obvious next step in preventing the spread of fake news is to automate fact

checking and bias prediction, and there are a growing number of benchmark tasks

being created to stimulate this field (e.g. FEVER for fact extraction and verification

(Thorne et al., 2018) and Hyperpartisan SemEval 2019 for political bias prediction

(Kiesel et al., 2019)).
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In our work, we leverage methods that have been developed on these benchmark

tasks to create a system for predicting media sources’ political bias and factuality

levels from natural language. Through political bias labeling, we aim to provide some

context on the partisan window that people may be viewing information from, and

through factuality labeling our goal is to identify misinformation. Additionally, we

study approaches that aim to provide transparency in fake news detection methods

in an effort to subvert the psychological biases humans have against viewpoints that

conflict with their own views. We discuss related methodology in the fields of both fake

news detection and rationalization in Chapter 2, before discussing the development

of our bias and factuality prediction system in Chapter 3. Chapter 4 describes our

experiments in providing transparency in fake news detection models, and we conclude

our work and note possible future directions to explore in Chapter 5.
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Chapter 2

Related Work

2.1 Bias and Factuality Prediction

In recent years, fake news has become very well-studied due to increasing public

awareness about the problems it poses. To provide a background on the current state

of the field, we first highlight previous and current methods for detecting fake news,

and justify why we focus on predicting bias and factuality at the media source-level

using only natural language. We then provide background on the methods that are

used in our study.

2.1.1 Previous Methods

The methods currently used to detect fake news fall into three general categories:

feature-based, graph-based, and propagation-based (Kumar and Shah, 2018). They

are defined as follows:

• Feature-Based: methods that rely on linguistic information extracted from

news-related text (Horne and Adali, 2017; Kumar et al., 2016; Potthast et al.,

2018)

• Graph-Based: methods that study networks of user interactions with news

(Akoglu et al., 2010; Beutel et al., 2013)
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• Propagation-Based: methods that model the differences between how real

vs. fake information spreads (Tripathy et al., 2010; Nguyen et al., 2012)

While all three of these methods have their merits and comparable performances,

we believe that graph and propagation-based methods rely on modeling fake news

indirectly and are not ideal as a result. The indirect features they are modeled on,

user graphs and information flow, are largely influenced by bot accounts (Nied et al.,

2017), which may even be what these models exploit to detect fake news. However,

it has been shown that bots are not actually responsible for the overall spread of fake

news - they only accelerate it (Davis et al., 2016). This makes graph and propagation-

based methods susceptible to adversaries who decide to change the behavior of these

bots. Due to these shortcomings, we decide to study feature-based models which focus

on the language that gives fake news its viral and damaging power as we believe it is

the most robust predictor of fake news.

Figure 2-1: An illustration of the different scopes that bias and factuality prediction
are performed on. The largest scope is the source-level, which consists of a collection
of articles from a media source. Next is the article-level, made up of a collection
of claims. Finally, the smallest scope is the claim-level, which is a single assertion.
(Note: In this figure we do not include external information that may be used to
perform predictions at each of the three levels.)

For bias and factuality prediction, feature-based models operate on three different
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levels of granularity. From smallest to largest scope, these are the claim-level, article-

level, and source-level, and an illustration of these scopes can be found in Figure

2-1.

Claim-Level

At the claim-level, previous methods are mostly centered around predicting factuality,

and heavily rely on stance-detection - whether ground-truth sources of information

agree or disagree with a claim. Some approaches have used manually fact-checked

claims as the ground-truth source for stance-detection (Mukherjee and Weikum,

2015), whereas others use comment-based discussion on social media as proxy for

the ground-truth (Kochkina et al., 2018; Dungs et al., 2018). Yet another avenue

for stance-detection draws relevant sources of information from the Web to serve as

the ground-truth to detect stance against (Mukherjee and Weikum, 2015; Baly et al.,

2018b). In the contexts of article-level and source-level scopes, stance-detection has

also been useful under the hypothesis that trustworthy articles and sources will tend

to agree with truthful claims and disagree with false claims (Mukherjee and Weikum,

2015; Popat et al., 2018). However, as we increase the size of our scope past the

claim-level, approaches begin to model bias in addition to factuality and make use of

extra information that is available at the larger scopes.

Article-Level

At the article-level, many methods for bias and factuality prediction rely on extracting

features from language. In a study across three datasets related to real vs. fake news,

Horne and Adali (Horne and Adali, 2017) found that fake news tends to use shorter,

simpler, and more repetitive language, and a later work from Horne et al. creates a

toolkit to exploit some of these tendencies (Horne et al., 2018b). The features they

analyze include complexity, structure, bias and others which we make use of in our

research and will describe in more detail in Section 2.1.2. Language is similarly used

by Potthast et al. to predict factuality through a stylometric analysis of fake news

using N-grams, readability scores, word frequencies, and features specific to the news
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domain (ratios of quoted words, number of external links, avg. paragraph length)

(Potthast et al., 2018). Other studies use only raw text to model factuality, feeding it

directly to an LSTM (Rashkin et al., 2017), or more recent language models. In some

of these studies on factuality prediction, not only is political bias a useful feature

(Horne et al., 2018b), but it is also predictable using some of the exact same methods

(Horne et al., 2018a). Furthermore, article-level bias prediction is a task that has also

been studied in its own right, using n-grams, lexical features, vocabulary richness,

and readability scores (Saleh et al., 2019), as well as through latent representations

of article language content extracted from attention-based models (Kulkarni et al.,

2018). For both article-level bias and factuality prediction, source-level reliability has

been found to be an informative feature (Karadzhov et al., 2017), and can incorporate

information external to articles like a source’s social media presence and third-party

descriptions of the source. However, the field of source-level reliability is understudied

compared to the two smallest granularities of bias and factuality prediction, which is

why we focus our study on it.

Source-Level

Not only are source-level bias and factuality predictions understudied and useful for

article-level predictions, but source-level predictions are also useful by themselves. As

noted by Baly et al. (Baly et al., 2020), bias and factuality prediction at the smaller

granularity levels can be a computational challenge, and potentially still too slow to

effectively prevent the spread of fake news. Profiling entire media sources, however,

can provide a good indication on whether newly published material is reliable or

not, without the need to verify each claim or each article. Besides this feature of

source-level prediction, it also allows us to draw information from more mediums to

inform predictions. A majority of the work done at the source-level was developed by

Baly et al. in 2018 and 2020 (Baly et al., 2018a, 2020), in which they train Support

Vector Machine classifiers on features not only extracted from articles, but also from

YouTube, Twitter, Facebook, and Wikipedia data. They hypothesize that YouTube

presents additional media published from a source that could be useful for predictions,
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that Twitter and Facebook can help analyze the audience of a media source, and that

Wikipedia provides a third-party view of a media source. Our work builds a system

using some of the methodology described by Baly et al. (Baly et al., 2020), and

we further describe some of the tools used for extracting features from these data

channels in Section 2.1.2.

2.1.2 Methods Used in our Work

Baly et al. use many of the same methods mentioned in the article-level approaches

to extract features from all of their selected data channels. These tools are comprised,

in part, by the lexicons described by Horne et al. (Horne et al., 2018b) in their News

Landscape (NELA) toolkit, but a majority of them rely on latent representations

extracted from language models - this is an increasingly used method as language

models have become much more powerful in recent years. We make use of both types

of feature extraction toolkits in our efforts to build a system based on the methods

from Baly et al., so we describe them in more detail here.

The NELA toolkit extracts features that have proven to be useful across a wide

range of studies in political bias and factuality prediction, and a discussion of these

studies can be found in the paper from Horne et al. (Horne et al., 2018b). NELA

extracts the following categories of features:

• Structure: Part of speech counts, linguistic features (function words, pro-

nouns, prepositions, etc.), and clickbait title classification (Chakraborty et al.,

2016)

• Sentiment: Sentiment scores from VADER (Hutto and Gilbert, 2015), and

emotion and happiness scores from other lexicons (Recasens and Jurafsky, 2013;

Mitchell et al., 2013)

• Topic-Dependent: Lexicons to differentiate scientific fields and others to dis-

tinguish personal concerns
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• Complexity: Lexical diversity, readability scores, avg. word and text lengths,

and # of cognitive process words

• Bias: Several bias lexicons (Recasens and Jurafsky, 2013; Mukherjee and Weikum,

2015) and subjectivity measures (Pang and Lee, 2004)

• Morality: Lexicon-based measures of morality (Lin et al., 2018) and features

from the Moral Foundation Theory (Graham et al., 2009)

While these features have previously been useful in other studies, and we include

them in our own, lexicon-based approaches are giving way to methods using neural

language models for feature extraction. Instead of using a rule or vocabulary-based

means of feature extraction, neural language models develop latent representations of

words which allow them to model some aspect of language (typically the probability of

seeing specific sequence of words). These latent representations can provide powerful

embeddings of semantics, syntax, and task-specific features at the word, sentence, or

even article level. In fact, neural language models that are used for factuality and bias

prediction may develop latent representations of the features extracted from lexical

based methods. Our study makes use of a few different methods for retrieving these

embeddings.

The first method, Global Vectors for Word Representation (GloVe) (Pennington

et al., 2014), leverages global vocabulary statistics, as well as local contexts, in a log-

bilinear regression model for the unsupervised learning of word representations. GloVe

is used by Baly et al. in their 2018 study, and is replaced by newer methods in their

2020 work. Though it is true that GloVe is an older approach for obtaining word

embeddings, and has since been outperformed on natural language understanding

tasks, we believe there is still some benefit in including it in our study as it has a

fundamental difference from the newer embedding methods we experiment with. This

difference is that GloVe produces static embeddings, meaning each word has a single,

fixed representation.

The newer embedding methods we explore, produce contextual embeddings - each

word can have different representations based on the contexts in which it is used.
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Figure 2-2: A visualization of the transformer encoder layers within BERT, and the
embedded representations that are input and output from each encoder. Embed-
dings for an input sequence can be retrieved at each encoder layer, and may behave
differently depending on which layer they are extracted from (Alammar, 2018).

Methods that we leverage for retrieving these contextual embeddings are based on

Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al.,

2019), a recently developed, transformer-based (Vaswani et al., 2017) model that

achieved state-of-the-art performance on a range of natural language understanding

tasks. BERT consists of 12 stacked transformer encoder layers, and is pre-trained

using two techniques which enable it to develop its powerful bidirectional represen-

tations. The first technique is masked language modeling, where BERT predicts

randomly masked tokens at any position in the input. A result of this pre-training

task is that BERT learns to use context before and after the masked word to make

its prediction, which gives BERT its bidirectional property. Additionally, BERT is

pre-trained on a next sentence prediction task - whether sentence A is followed by

sentence B. This technique encourages BERT to reason about the relationships be-

tween sentences as well. The resulting pre-trained model can be further fine-tuned to

a variety of natural language processing tasks, and we describe how we suit it to our

research when we go through our methods in Section 3.2.2.
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From either pre-trained or fine-tuned BERT models, token embeddings can be

retrieved from each of the 12 encoder layers within BERT, as seen in Figure 2-2.

At each layer, these embeddings incorporate information from all the other tokens

in the input window, which is what makes these representations contextualized (i.e.

dependent on the other tokens in the input text). In our work, we choose to extract

embeddings from the second-to-last layer, as it has been shown that deeper layers

offer more contextualized embeddings (Ethayarajh, 2019), and the last layer may be

biased towards BERT’s pre-training objectives (Baly et al., 2020).

Though BERT is very useful for producing embeddings for some of our data,

it is poorly-suited to some of the other data channels we use. For example, some

data is better suited to embeddings produced at the sentence-level rather than the

token-level embeddings offered by BERT. In these cases, we use Sentence-BERT

(SBERT) (Reimers and Gurevych, 2019), a variant of BERT, instead. SBERT is

trained using siamese and triplet networks on top of BERT that encourage it to

produce semantically-meaningful embeddings at the sentence-level.

In our work, we experiment with the a subset of the toolkits used by Baly et al.

in their 2018 and 2020 works (Baly et al., 2018a, 2020) in order to create a political

bias and factuality prediction system. We specifically avoid the toolkits and data

from the YouTube and Facebook data channels, as they did not contribute much in

the methodology they present. Our system, data, and experiments are described in

detail in Chapter 3.

2.2 Rationalization

In addition to building a system for political bias and factuality prediction, we also

study rationalization methods for explaining the predictions produced by models

relevant to fake news. We include rationale in our work because we believe that

without explanations on why an article as has been classified a certain way, whether

it is related to bias or factuality prediction, people are unlikely to believe anything

opposing their own views (Nyhan and Reifler, 2010). Therefore, in order for an
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automated bias and factuality prediction system to make a real impact on the spread

of fake news, we believe that it must offer some level of transparency to its users.

Though older language-based approaches to political bias and factuality prediction

have not explicitly studied rationalization for the purpose of presenting it alongside

predictions, the methods are well-suited for transparency. Methods that use part-of-

speech tagging, punctuation and stop-word counts, and measures of syntactic com-

plexity have found that fake news is simpler and more repetitive (Horne and Adali,

2017), and can highlight the structural and complexity-related features that are used

to classify real vs. fake news. Stance-based methods that reason about the factuality

of an article by comparing its claims to known factual claims (Popat et al., 2018)

can provide the stances of the articles and the facts they agree and disagree with.

Lexicon-based approaches have found that fake news tends to contain emotional,

praising, implicative, and perspective specific language (Recasens and Jurafsky, 2013;

Horne et al., 2018b). These methods can highlight vocabulary found within their lex-

icons to offer transparency on their predictions. Finally, n-gram-based models have

found that the most highly weighted phrases are those dealing with divisive topics like

"trump" and "liberals" and contain dramatic cues like "breaking" (Rashkin et al.,

2017). In order to provide an explanation of their predictions, they can list the most

predictive n-grams.

Unlike older language-based methods related to fake news detection, though,

newer embedding-based methods, like some we use to build our bias and factual-

ity prediction system, operate as black-boxes and are much less transparent as a

result. We aim to increase these models’ transparencies for fake news detection, and

specifically focus on explaining predictions from BERT using attention-based ratio-

nale, and gradient-based rationale. Both the attention and gradient-based methods

we use produce extractive rationales, meaning a model’s predictions are explained

using a subset of that model’s inputs.
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2.2.1 Attention

Attention has become a widely used mechanism within the field of natural language

processing due to its ability to model global dependencies better than older, hid-

den state-based recurrent neural network approaches. Conceptually, it operates by

computing a weighted sum of input representations which allows models to focus

on especially informative inputs, and ignore others, when making predictions (Bah-

danau et al., 2015). In addition to improving a range of neural language models’

performances, the input weightings that attention computes can be extracted to offer

some transparency on the model’s predictions (i.e. which inputs are highly weighted

when making a prediction). Many existing studies have used this property of atten-

tion to explain and interpret their models, including using it to highlight relevant

medical details alongside diagnosis prediction (Mullenbach et al., 2018), to provide

sentence summaries (Rush et al., 2015), among many other uses (Hermann et al.,

2015).

Figure 2-3: A visualization of how BERT’s attention heads highly weight relevant
tokens for a specific task. In these examples, created using the bertviz tool, the
attention heads show specializations towards coreference resolution (Vig, 2019).

Early attention-based models, which worked in combination with recurrent neural

networks, have since been replaced with models based only on attention. Vaswani

et al. introduced the Transformer, which involves stacked layers consisting of several

attention mechanisms (also known as attention heads) (Vaswani et al., 2017). The

model we use to study rationalizing predictions for fake news, BERT (Devlin et al.,

2019), consists of 12 of these Transformer layers, and we analyze the attention heads

within them. We are not the first to do so (though we are not aware of any other
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works operating in the context of fake news), as other studies have performed ex-

tensive analysis on how BERT’s attention heads specialize linguistically and behave

differently across layers of the model (Clark et al., 2019). Additionally, tools have

been created purely for the sake of visualizing BERT’s different attention heads and

increasing the model’s transparency (Vig, 2019). An example of these visualizations

can be seen in Figure 2-3. Although the news articles we use in our rationalization

study are too large to visualize in the same way as Figure 2-3, we create other visu-

alizations to demonstrate highly attended to regions of articles during classification.

Our attention-based methods and results are described in Section 4.1.

2.2.2 Gradient-Based Approaches

Though attention is a plausible route for rationalizing predictions related to fake news,

the faithfulness of attention distributions to model predictions is still a debated topic

in the field (Jain and Wallace, 2019; Wiegreffe and Pinter, 2019), which is why we

also explore gradient-based approaches as an alternative. In general, gradient-based

rationalization methods rely on estimating how much a change in a model’s input

will impact its output, where inputs that induce the largest changes are thought to

be more important in a model’s prediction. There are several different approaches

to estimating these gradients, but a survey of them by Adebayo et al. (Adebayo

et al., 2018) shows that several of these methods produce rationale that are invariant

under model and label randomization (i.e. unrelated to the prediction task), and

are inadequate as a result. However, pure gradients, involving simply calculating the

gradient of the output with respect to the input, are shown to provide legitimate

rationale, and the methods we explore are based on them.

We are not aware of other works that explore gradient-based approaches for ra-

tionalizing predictions in the domain of fake news detection, but these methods have

been used extensively for other tasks, especially in the field of computer vision. Some

studies have rationalized digit and object-recognition tasks (Baehrens et al., 2010;

Simonyan et al., 2014) to show validity in using pure gradients, and others have since

used them to explain predictions like medical imaging diagnosis (Margeloiu et al.,
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Figure 2-4: An example of pure gradients being used to provide transparency on
an image classification task. We can observe that the larger gradients (bottom)
correspond to the regions of the original images (top) that contain the object of
interest (Simonyan et al., 2014).

2020). In the field of computer vision, these methods produce nice visual rationale

for their predictions, as seen in Figure 2-4, but they are also being used to inter-

pret language models and visualize important linguistic inputs as well - the recently

released Language Interpretability Tool incorporates these methods (Tenney et al.,

2020). We describe our experiments using pure gradient rationales, and show some

of our own visualizations in Section 4.2.
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Chapter 3

Bias and Factuality Prediction

In this chapter, we describe the bias and factuality prediction system that we im-

plemented using the methodology described by Baly et al. (Baly et al., 2020). We

first explain the data and assumptions that the system relies on, before outlining the

process of training the necessary models for the system, and the experiments we con-

ducted in order to try and best replicate the results stated by Baly et al. (Baly et al.,

2020). However, when we present our results, we note that our findings do differ, and

provide some hypotheses of possible causes. Finally, using our trained models, we

outline the system’s process of making predictions on unseen data, using only media

sources’ URL’s as input.

3.1 Data and Assumptions

This system leverages three different channels of data to make its bias and factuality

predictions: what was written by the media source, who is in the media source’s

audience, and what was written about the media source. The first channel, what was

written by the media source, refers to articles that the source has published, and how

it defines itself on social media (if the source has a social media account). While it

is obvious that the material published by the media source will contain its inherent

biases and some level of factuality, we assume that we can find indications of this

bias and factuality from linguistic features in this data. For the next channel of data,
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who is in the media source’s audience, we use the followers of the source on social

media. More specifically, we analyze the bios of the media source’s followers with the

assumption that a source’s followers tend to agree with the views presented by the

source, and that the followers may express their own views within their bios. The

final channel of data, what was written about the media source, refers to the media

source’s Wikipedia page, if it has one. Here, we assume that Wikipedia presents an

independent view of the media source, and that this view may contain comments

about the media source’s bias and/or factuality.

The methodology that our work is based on (Baly et al., 2020) includes data from

the original media source, Twitter, YouTube, Facebook, and Wikipedia. However,

their work showed that the features extracted from YouTube and Facebook, about a

media source, did not have any significant benefit in the system’s predictive ability

for both bias and factuality. As a result, we decide to exclude those two data channels

from our experiments, and only use the original media, Twitter, and Wikipedia to

retrieve the necessary data.

In order to train our bias and factuality prediction system given the data chan-

nels explained above, we also need a dataset of media sources labeled by both bias

and factuality. Media Bias/Fact Check (MBFC) (Dave Van Zandt, 2015) provides a

database of media sources manually labeled for both these tasks, from which we ob-

tained 1,737 labeled media sources. Although manual annotation does add an element

of subjectivity, we find this problem unavoidable and believe that Media Bias/Fact

Check maintains a sufficient level of objectivity through its transparency and correc-

tion policies. The MBFC database ranks bias on a 7-point scale: extreme-left, left,

left-center, center, right-center, right, and extreme-right. Factuality is rated on a

6-point scale: very-low, low, mixed, mostly-factual, high, and very-high. Like Baly et

al.’s approach (Baly et al., 2020), we decide to condense both our bias and factuality

ratings to 3-point scales (bias: left, center, right - fact: low, mixed, high) due to

loosely defined conditions for the additional labels. After retrieving labels for these

sources, we then aggregated the URL’s of each media source’s homepage, and Twitter

and Wikipedia pages if they exist. A few examples from our labeled training dataset

32



are shown in Table 3.1.

Name Bias Fact URL Twitter Wikipedia
Huffington Post Left High huffingtonpost.com HuffPost wiki/HuffPost
CNN Left Mixed cnn.com cnni wiki/CNN
True Activist Left Low trueactivist.com TrueActivist N/A
Foreign Affairs Center High foreignaffairs.com foreignaffairs wiki/Foreign_Affairs
The Wrap Center Mixed thewrap.com thewrap wiki/TheWrap
The Onion Center Low theonion.com theonion wiki/The_Onion
Alt News Media Right High altnewsmedia.net AltNewsMedia N/A
Daily Mail Right Mixed dailymail.co.uk MailOnline wiki/MailOnline
News Wars Right Low newswars.com N/A N/A

Table 3.1: Examples from our dataset including the media sources, their bias and
factuality labels, and their corresponding URL’s.

3.2 Training the System

Figure 3-1: An outline of the training process for the bias and factuality prediction
system. First, we scrape relevant language data from the URL’s of the media sources
in our dataset, and fine-tune BERT models to extract features specific to the tasks of
bias and factuality prediction. Next, we use these fine-tuned BERT models, among
other pre-built tools, to extract features from the scraped language data. Finally, we
train Support Vector Machines to predict bias and factuality using these extracted
features.

Given the data described in the previous section, we can train the necessary models

for the bias and factuality prediction system through the process outlined in Figure
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3-1. As an overview of the process, we first scrape news articles, Twitter profiles,

and Wikipedia pages from the provided media sources’ URL’s. Next, we fine-tune

BERT models for predicting either bias or factuality from news articles, and use these

fine-tuned BERT models, among other pre-built toolkits, to extract features from

our scraped textual data. Finally, we use these extracted features to train Support

Vector Machine (SVM) classifiers for both tasks of bias and factuality prediction. We

describe this process in further detail in the next few sections, and break it down into

four main steps which are reflected in Figure 3-1. These steps are: 1) Data scraping

2) Fine-tuning BERT 3) Feature Extraction 4) Classifier training.

3.2.1 Data Scraping

In Section 3.1, we described the necessary inputs for our bias and factuality prediction

system - the media sources’ URL’s, and optionally the media sources’ Twitter and

Wikipedia URL’s. However, since our system’s models operate on natural language,

the first step of our system must be to retrieve forms of natural language from the

input URL’s.

From the media sources’ URL’s, we scrape news articles that the source has pub-

lished using the newspaper3k1 library. We further process each scraped article to

determine if they are suitable for predicting bias and factuality. Specifically, we focus

on articles containing political vocabulary, as these tend to be more representative

of a media source’s bias and factuality levels, and articles that we determine as non-

political are discarded. The other main condition that articles must satisfy is that

they are of some minimum length in order to have enough language for our models

to extract meaningful features from. After we scrape and filter articles from a media

source, we then decide if we have obtained enough information to include the me-

dia source in the training process. We believe it is possible to have a set of articles

that are not representative of a media source if we have less than five articles for

1The newspaper3k library provides functionality to crawl a media source’s website and download
articles from it that have been cleaned of any formatting and HTML (i.e. condensing information
down to natural language only).
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the source. So, if a media source does not meet this criteria, we remove it from our

dataset. From the original 1,737 sources obtained from MBFC, we have 1,197 sources

remaining after filtering. The class distributions amongst this dataset can be seen in

Table 3.2.

Bias Factuality
Left 405 Low 194
Center 363 Mixed 289
Right 429 High 714

Table 3.2: Our dataset’s distribution of classes for bias and factuality

After filtering our dataset, we then move on to scraping the Twitter and Wikipedia

pages for the media sources that have them2. From Twitter, we scrape the media

sources’ self-written descriptions, as well as other account metadata (e.g. is it verified,

how many followers, how many posts, etc.). Additionally, we scrape the bios of the

media sources’ followers. From Wikipedia, we scrape all the textual information

written about the media source. Across the 1,197 sources in our dataset, we obtained

Twitter data for 82.1% of them (983 sources), and Wikipedia data for 67.5% of them

(808 sources).

3.2.2 Fine-tuning BERT

Once the necessary data has been retrieved, we move on to preparing the tools that

will be used to extract features from this data. Similar to the methodology presented

by Baly et al., we make use of BERT (Devlin et al., 2019) to extract features from

the text we have collected. BERT has achieved state of the art performance across a

wide range of natural language understanding tasks, and has been shown to produce

powerful contextualized embeddings of language in deeper layers of the model (Etha-

yarajh, 2019). For this reason, we believe BERT offers a valuable avenue to featurize

our text data. Furthermore, we also have the ability to adapt BERT to the tasks of

bias or factuality prediction, which will provide us with features that are even more

2We use the python-twitter library for scraping Twitter and the wikipedia library for scraping
Wikipedia. Both libraries are python wrappers around the original organizations’ APIs.
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specialized to these tasks.

We adapt our BERT model to the task of bias or factuality prediction through a

process called fine-tuning. During fine-tuning, we train BERT to predict either the

bias or factuality of individual news articles (note that fine-tuning is at the article-

level, not the source-level), and since we are interested in both tasks (bias and fac-

tuality) we fine-tune two different BERT models - one for each task. To fine-tune

BERT using article-level data, we train the model with an additional linear layer and

softmax layer on top of the [CLS] token that is output from the final transformer as

seen in Figure 3-2. As input, we feed the first 510 WordPieces (BERT’s tokenization

method) of each article. For the task of bias prediction, we train BERT to classify

each article with the same three labels we are using for source classification - left,

center, and right. However, for predicting article-level factuality, we train BERT to

classify each article simply as high or low factuality - Baly et al. mention that the

mixed label does not make sense in the context of a single article.

Figure 3-2: Diagram of the fine-tuning architecture use to adapt BERT to the tasks of
bias and factuality prediction. We train a linear layer on top of the [CLS] embedding
output from the 12 transformer encoder layers of the pre-trained BERT model (Devlin
et al., 2019).
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In order for the features produced by the fine-tuned BERT models to generalize

well, we must draw the news articles for fine-tuning, and their corresponding labels,

from a dataset external to the sources used for training our final classifiers. There

are several options available for this dataset, and we find in our experiments that the

fine-tuning process has a significant impact on the system’s predictive ability, with the

main variations in the process being a result of our choice of dataset. The datasets we

try in our experiments include a partition of our 1,197 collected sources, data from

the Hyperpartisan SemEval task (Kiesel et al., 2019), and data from Allsides.com

(AllSides, 2020). Our labels for the first two options are derived using distant super-

vision, where articles are assigned the same label as the media source they come from

(a common method for labeling large news datasets (Nørregaard et al., 2019)), and

the labels for the latter option are on the article-level - Allsides labels the data they

provide at the article-level. The resulting differences between using these datasets for

fine-tuning are described during our experiments in Section 3.3.

3.2.3 Feature Extraction

After fine-tuning our BERT models, we move on to the feature extraction process,

which transforms the textual data we have scraped into numeric features that can be

used to train our final SVMs. In addition to the BERT (Devlin et al., 2019) models

we have fine-tuned for bias and factuality prediction, we make use of other feature ex-

traction toolkits out-of-the-box. These include the News Landscape Toolkit (NELA)

(Horne et al., 2018b), Global Vectors for Word Representation (GloVe) (Pennington

et al., 2014), and Sentence-Bert (SBERT) (Reimers and Gurevych, 2019). We de-

scribe each of these toolkits in further detail, as well as the feature extraction process

for each type of data, below.

News Articles

For extracting features from news articles published by a media source, we not only

make use of NELA and BERT, used in the work by Baly et al. (Baly et al., 2020)
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that our methods are based on, but also use GloVe, which is used in a previous work

by Baly et al. (Baly et al., 2018a). From each article, the NELA toolkit computes

features relating to structure, sentiment, topic, complexity, bias, and morality. After

computing these for each article, we average the extracted NELA features across all

articles for a specific media source to move from article-level features to the source-

level (we are interested in predicting bias and factuality of entire media sources).

To retrieve features from our BERT models, trained for bias or factuality classi-

fication, we average the word representations extracted from the second-to-last layer

of BERT - Baly et al. cite this as common practice as the final layer may be biased

to BERT’s pre-training objectives. Furthermore, to translate from the article-level to

the media source-level, we again average the retrieved embeddings across all articles

we have gathered for a specific media source.

GloVe, like BERT, is a method for extracting embeddings from our news articles.

However GloVe provides static embeddings, whereas BERT’s embeddings are contex-

tual. In their most recent work, Baly et al. state that using BERT embeddings instead

of GloVe embeddings produced a large boost in performance (Baly et al., 2020), but

we decide to include the static embeddings from GloVe in our experiments to see if

there is complementary information between the two embedding types. Just like the

processes of extracting features using NELA and BERT, GloVe provides embeddings

at the article-level, which we then average across all articles from a media source.

Twitter

Within our Twitter data, we have two different sets of information: the media source’s

own Twitter profile, and the bios of the media source’s followers. From the media

source’s Twitter profile, we first extract some metadata about the profile including

if it is verified, its followers and friends count, how many posts have been written

and favorited, where and when it was created, etc. - these are the only non-linguistic

features used in our system. Additionally, we embed the bio of the media source’s

account using SBERT. Unlike in the case of news articles, there is not enough data

among the media sources’ bios to fine-tune a BERT model to produce task specific
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embeddings. So instead, we rely on a sentence-level embedding produced by the

pre-trained SBERT model. Regarding the bios of a media source’s followers, we do

have enough data to fine-tune BERT, but we run into a different issue. The distant

supervision we used to retrieve bias and factuality labels for news articles is ill-suited

for classifying Twitter bios - there is much more variance on whether or not a media

source’s followers agree with the source’s views. As a result, we again embed these

bios using SBERT, and average them across a media source’s followers.

Wikipedia

The process for extracting features from a media source’s Wikipedia page is identical

to embedding news articles using BERT. Wikipedia pages tend to have a similar struc-

ture as the news articles written by the media sources. So, we embed the Wikipedia

pages using the BERT models that are fine-tuned for bias and factuality prediction

of news articles.

3.2.4 Classifier Training

After extracting numeric features from each of our data channels, we can now train our

two SVMs - one to classify media sources’ bias, and the other to classify media sources’

factuality. As input, we concatenate the extracted features from all or a subset of our

data channels (described in more detail in Section 3.3), using the features extracted

from BERT fine-tuned for bias prediction for training the bias classifier, and the

features extracted from BERT fine-tuned for factuality prediction for training the

factuality classifier.

Following the methodology from Baly et al., we train and evaluate our SVMs using

5-fold cross-validation, and perform a grid search over the cost parameter, 𝐶, and the

kernel coefficient, 𝛾, at each step of cross-validation. Finally, we select the best SVMs

using the macro-F1 score - the F1 score averaged across each class, as both the bias

and factuality datasets are not balanced.
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3.3 Experiments and Results

During development of this system, we try a few variations of our training process,

and we report our findings on them in this section. Our experiments broadly fit into

two groups. The first experiment we discuss relates to the dataset used in fine-tuning

our BERT models for feature extraction - we choose to vary this step because our

BERT models produce the most informative features for bias and factuality predic-

tion. Our second experiment determines which configuration of features results in

the best performing classifier for either bias or factuality prediction, and is helpful

for selecting which features to use in our final system.

Dataset Variation for Fine-tuning

As mentioned in Section 3.2.2, the datasets we use to fine-tune BERT include a

partition of our scraped MBFC dataset, the Hyperpartisan SemEval dataset, and the

Allsides.com dataset. However, for the task of factuality prediction, we are limited

to using the first two datasets, as Allsides does not provide factuality labels. We

also note that for generalization purposes, we exclude any media sources used in

fine-tuning from the data used to train the final classifiers.

To test which dataset was most useful during the fine-tuning process, we fine-tune

BERT models on each dataset of interest for the task of bias or factuality prediction,

and then measure how useful each BERT model is on the downstream task of source-

level prediction. Although we can measure the performance of the article-level bias or

factuality predictions during fine-tuning, we choose to measure the performance on

the downstream SVM classifiers because it directly aligns with our goal of source-level

bias or factuality prediction. Furthermore, measuring performance at the article-level

during fine-tuning may be misleading, as it is possible that BERT may overfit the

articles and media sources it is fine-tuned on, and not generalize well when extracting

features for unseen media sources. So, in order to examine the differences between

datasets used for fine-tuning, we fine-tune a BERT model on each dataset of interest,

carry out feature extraction from articles using each BERT variation, and finally
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train the bias or factuality classifier using the extracted features from each model.

We report the macro-F1 and accuracy of each variation in Tables 3.3 and 3.4.

Fine-tuning Dataset Macro-F1 Accuracy
MBFC Partition 74.57 74.53
Hyperpartisan SemEval 76.13 76.15
Allsides 70.20 70.30

Table 3.3: Source-level political bias prediction results with features extracted
from articles using BERT models fine-tuned on different datasets.

Table 3.3 reports the fine-tuning variation results for political bias prediction,

and we observe that fine-tuning on the Hyperpartisan SemEval dataset significantly

outperforms the others. We hypothesize that the differences in performance are due

to the number of different sources present in each fine-tuning set. The work from Baly

et al. reports using ∼30, 000 articles from 298 sources for fine-tuning, and we aimed

to use a similar amount of articles in our fine-tuning processes, but this resulted in

differing numbers of sources. Our dataset variations have the following statistics:

• MBFC Partition: ∼30, 000 articles, ∼700 sources

• Hyperpartisan SemEval: ∼27, 000 articles, ∼130 sources

• Allsides: ∼35, 000 articles, ∼70 sources

We believe that the BERT model fine-tuned on the Hyperpartisan SemEval dataset

is able to extract more generalizable features to the unseen sources at classification

time than the Allsides dataset, as there is a larger variety of sources present during

fine-tuning. The reason we do not observe the same trend between the Hyperpartisan

SemEval dataset and MBFC partition, is due to the exclusion of fine-tuning sources

during classifier training. When it comes to training the SVM for the MBFC parti-

tion, we hypothesize that excluding these 700 sources from fine-tuning significantly

reduces the information the classifier receives during training. As a result, the Hyper-

partisan SemEval dataset strikes a better balance than the other variations between

fine-tuning a generalizable BERT model, and providing enough sources to train the

SVM.
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Fine-tuning Dataset Macro-F1 Accuracy
MBFC Partition 60.97 70.94
Hyperpartisan SemEval 61.34 70.99

Table 3.4: Source-level factuality prediction results with features extracted from
articles using BERT models fine-tuned on different datasets.

Table 3.4 reports the fine-tuning variation results for factuality prediction, and

though the Hyperpartisan SemEval dataset still performs the best, we observe a

much smaller gap in performance than we did for bias prediction. We also believe

the cause of this smaller gap is due to the amount of sources present in the datasets.

Recall from Section 3.2.2 that we fine-tune BERT to predict either high or low for

article-level factuality. As a result, we exclude the sources from our datasets that

were labeled as mixed. Though Baly et al. do not report their dataset statistics after

this filtering, ours are as follows:

• MBFC Partition: ∼23, 000 articles, ∼540 sources

• Hyperpartisan SemEval: ∼18, 000 articles, ∼90 sources

We hypothesize that removing sources from the Hyperpartisan SemEval dataset

reduces the generalizability of the BERT model fine-tuned on it, but it still ends up

performing slightly better than the MBFC partition due to having more sources to

train the SVM.

Feature Ablation

To determine which combination of features extracted from our data channels (ar-

ticles, Twitter, and Wikipedia) results in the best classifiers for bias and factuality,

we conduct ablation studies for bias prediction and for factuality prediction (similar

to Baly et al.). We first examine which features and feature combinations are most

useful within each data channel. The combinations of article features are most inter-

esting to us, as we are curious about the impact of combining the static embeddings

from GloVe and the contextual embeddings from BERT (as mentioned in Section

3.2.3). After examining the features within each channel, we then combine the best
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performing features from each data channel to see if they contain complementary

information and result in a better classifier. Finally, we compare the results of our

classifiers trained on different feature combinations to the results of the most compa-

rable configurations presented by Baly et al. - our results differ from theirs and we

give hypotheses on possible causes.

Our Results Baly et al. Results
# Features Macro-F1 Accuracy Macro-F1 Accuracy
1 Articles: NELA 66.34 66.48 64.82 68.18
2 Articles: BERT 76.13 76.15 79.34 79.75
3 Articles: GloVe 68.56 68.64 N/A N/A
4 Articles: BERT+GloVe 75.45 75.49 N/A N/A
5 Articles: BERT+NELA 74.82 74.84 81.00 81.48
6 Articles: BERT+GloVe+NELA 74.33 74.37 N/A N/A
7 Twitter: Profile 49.93 50.23 59.23 60.88
8 Twitter: Followers 65.55 66.29 62.85 65.39
9 Twitter: Profile+Followers 62.98 63.66 N/A N/A
10 Wikipedia: BERT 53.47 54.37 64.36 66.09
11 A+T: rows 2 & 8 76.38 76.81 84.28 84.87
12 A+W: rows 2 & 10 75.12 75.21 81.53 81.98
13 A+T+W: rows 2, 8 & 10 75.61 75.77 83.53 84.02

Table 3.5: An ablation study of our features’ predictive ability on the task of political
bias prediction. In rows 11-13, we combine the best performing features from each
data channel - (A) stands for articles, (T) stands for Twitter, and (W) stands for
Wikipedia. We also include the results from Baly et al. (Baly et al., 2020) for
comparison (some of our features behave differently than Baly et al. but we still
report their best reported results in rows 11-13).

Table 3.5 shows the results from our ablation study on political bias prediction

and the comparable results from Baly et al.. In rows 1-10, we try features and feature

combinations within each data channel, and in rows 11-13, we combine the best

feature combinations from each channel.

Within the features extracted from articles, we find that only using BERT-extracted

features produces the best results (row 2), and that GloVe features, whether by them-

selves, or in conjunction with BERT, result in worse performance (rows 3-6). This

leads us to believe that for the task of political bias prediction, GloVe embeddings do

not offer any new information on top of what is provided by the BERT embeddings.

Our findings do agree with Baly et al. that the article data channel provides the

most predictive features for political bias. However, we contrastively observe that
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NELA features worsen performance when used in conjunction with BERT (rows 2

and 5), and that our BERT features significantly underperform their results (row 2).

We believe that differences in the dataset used for fine-tuning BERT are the cause of

both of these discrepancies. Though we do not know which specific dataset Baly et

al. used to fine-tune BERT, we do know that they had over 160 additional sources

present in their fine-tuning set without significantly reducing the information avail-

able for training their classifier. The BERT model fine-tuned on their dataset may

have generalized better than ours as a result, and could have potentially diverged

from extracting similar information as the NELA toolkit.

Regarding the Twitter data channel, we find that features from the media sources’

Twitter followers are much more informative than the media sources’ own Twitter

pages. The reason these features behave differently could be due to a high variance

within Twitter profiles. While each media source’s own profile may or may not express

their bias with high variance, this variance becomes much lower when averaging across

all the Twitter profiles of a media source’s followers. If this is the case, it also provides

a potential explanation on why our Twitter profile features underperform Baly et al.

(row 7) while our Twitter follower features outperform. Baly et al. collected Twitter

information for 72.5% of their media sources, whereas we collected it for 82.1%. The

additional high variance information of the media source’s Twitter profiles may have

further hurt performance, while the low variance, averaged media source Twitter

followers, may have helped performance.

The only observation regarding our Wikipedia data channel is that it underper-

forms Baly et al.’s results. Since we use the same fine-tuned BERT model to extract

features from Wikipedia as we used to extract features from articles, we believe that

our lower performance is also due to a difference in the dataset used for fine-tuning.

When testing feature combinations across data channels, we always included our

best performing article features (row 2), as they were by far the most predictive

features. We first tried combining article and Twitter features (row 11), which resulted

in the best performing classifier of political bias - the same is reported by Baly et al..

Although it is not reflected in our table, Baly et al. also found that classification only
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benefited from using Twitter follower features and not from media source’s Twitter

profile features. The additional feature combinations we tried (rows 12 and 13) follow

similar trends to those reported by Baly et al. and we attribute the performance gaps

to the causes we state for why individual data channels underperform.

Our Results Baly et al. Results
# Features Macro-F1 Accuracy Macro-F1 Accuracy
1 Articles: NELA 53.65 66.20 55.54 62.62
2 Articles: BERT 61.34 70.99 61.46 67.94
3 Articles: GloVe 60.09 70.89 N/A N/A
4 Articles: BERT+GloVe 63.20 73.05 N/A N/A
5 Articles: BERT+NELA 62.22 72.39 59.34 64.82
6 Articles: BERT+GloVe+NELA 63.40 73.05 N/A N/A
7 Twitter: Profile 42.35 61.31 49.96 56.71
8 Twitter: Followers 49.10 64.51 42.19 58.45
9 Twitter: Profile+Followers 55.11 65.73 N/A N/A
10 Wikipedia: BERT 39.87 62.44 45.74 55.32
11 A+T: rows 6 & 9 61.10 71.92 65.45 70.40
12 A+W: rows 6 & 10 61.37 71.92 67.25 71.52
13 A+T+W: rows 6, 9 & 10 62.75 72.77 64.14 69.36

Table 3.6: An ablation study of our features’ predictive ability on the task of fac-
tuality prediction. In rows 11-13, we combine the best performing features from
each data channel - (A) stands for articles, (T) stands for Twitter, and (W) stands
for Wikipedia. We also include the results from Baly et al. (Baly et al., 2020) for
comparison (some of our features behave differently than Baly et al. but we still
report their best reported results in rows 11-13).

Table 3.6 shows the results from our ablation study on factuality prediction and

the comparable results from Baly et al.. Similar to our political bias ablation study,

we try features and feature combinations within each data channel in rows 1-10, and

combine the best features from each channel in rows 11-13. Since our factuality

dataset is unbalanced, we make our comparisons between feature combinations using

macro-f1 as our performance metric.

Similarly to Baly et al. and our political bias prediction results, we also find that

our news article data channel provides the most informative features for factuality

prediction. In our study, a combination of all the article features (BERT, GloVe,

and NELA) produces the best classifier (row 6). Though our features extracted using

BERT still provide the best individual results (row 2), we observe that both NELA

and GloVe improve results (rows 4-6), unlike in our political bias prediction study.
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We believe that this is because our BERT model, fine-tuned for factuality prediction,

produces less powerful contextual embeddings than in the bias case - recall that our

factuality fine-tuning dataset contains fewer articles and sources than our bias fine-

tuning dataset. As a result, the NELA features and static, GloVe embeddings are

able to contribute new information to the classifier. We also note that our finding of

BERT and NELA features being additive (row 5) contradicts the results from Baly

et al., but we attribute that, as well as our better overall performance using article

features, to our BERT model learning different features than Baly et al.’s model

during fine-tuning.

Our results regarding the Twitter data channel trend similarly to those we re-

ported in our political bias study, with the media sources’ Twitter profiles being less

informative than the media sources’ Twitter followers - we again believe that Twitter

profile variance is the cause. We do see, though, that Twitter generally produces less

informative features for factuality prediction than it had for bias prediction.

The Wikipedia channel significantly underperforms relative to Baly et al.’s results.

Fine-tuning differences could again be the cause, like in the political bias prediction

case, but we are more skeptical of this as our results from BERT in the article data

channel are comparable to Baly et al. (row 2). Another possible cause for this

performance difference could be similar to the what we theorize for the Twitter case.

Specifically, how these Wikipedia pages describe media sources may have a high

variance in whether or not they offer any predictive information. As a result, different

cross-validation splits may result in significantly different performance.

Unlike in Baly et al.’s ablation study, combining features across data channels

only hurts performance relative to article-only features in our case, and our best

performing classifier only uses a combination of all article features. The differences

we cited for Twitter and Wikipedia discrepancies could be the cause.
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3.4 Making Predictions

After going through the process of training the necessary models and selecting the

most informative features for the bias and factuality prediction system, we can now

use it to predict on unseen sources. Making predictions on new data is very similar to

the training process, except instead of fine-tuning new BERT models, or training new

SVMs, we use the models already trained on our labeled datasets. First, our system

takes a media source’s homepage URL, and optionally its Twitter and Wikipedia

URL’s, as input, and uses these to scrape the relevant natural language data. Next,

we use the BERT models fine-tuned for bias and factuality, and the other best-

performing toolkits, to extract features from the scraped data. Finally, these features

are concatenated and fed through the bias or factuality SVM classifiers to obtain the

final predictions.
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Chapter 4

Rationalization

During our work in building a system to make source-level political bias and factuality

predictions, we noted that the field of fake news detection using language is becoming

decreasingly transparent because the newer, deep-learning based approaches are more

obfuscated than their lexicon-based predecessors. However, we believe that model

explainability, especially when it comes to fake news detection, may be crucial for

automated systems to be seen as credible in the eyes of the public. As a result,

though the rationalization methods we explore are not directly linked to the system

we describe in Chapter 3, we are hopeful that our analysis will encourage the field of

fake news detection to maintain its efforts in transparency.

Our study in rationalization focuses on extractive rationales, or rationales that

explain a model’s predictions using selected subsets of the input data. Unlike our

system that operates on the source-level, we choose to focus on article-level predictions

for our rationalization study. We reason that there is too much information being

aggregated at the source-level to offer an extractive rationale that is understandable

to a user, but at the article-level, we can, much more concretely, highlight specific

language that contributes the most to the prediction being made.

For our article-level predictions, we use a BERT model that is fine-tuned using

the same process described in Section 3.2.2. Instead of extracting embeddings from

this model, like we did in our source-level system, we simply use the article-level pre-

dictions from BERT itself. Additionally, since we are now working at the article-level
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for our predictions, we believe it is important to use article-level data for training our

model. So, we fine-tune our BERT model using the article-level labelled political bias

data from Allsides (AllSides, 2020), and ignore the datasets we obtained using distant

supervision when training our source-level system. Using Allsides data restricts our

rationalization study to the task of political bias prediction (Allsides does not contain

article-level factuality labels), but we believe that politically biased language lends

itself better to the qualitative analysis we perform anyways, and note that the same

extractive rationale methods we explore could be used for factuality prediction, given

the proper dataset.

4.1 Analysis of BERT’s Attention

We first explore extractive rationalization through an analysis of the attention heads

that compose BERT. Attention heads, intuitively, determine the relative weighting

of inputs that create the most informative outputs for a downstream task (in this

case political bias prediction). So, it is possible to interpolate which input words

within an article are most heavily weighted by each attention head. Our assumption

is that during fine-tuning, attention heads will learn to highly weight the words within

articles that are most relevant to the task of political bias prediction, and the most

heavily weighted words could serve as a viable explanation for the model’s prediction.

Examples of what these explanations might look like can be seen in Figures 4-1 and

4-2, where words in dark red have been more heavily weighted by a specific attention

head - this article was predicted as right-leaning.

For a given article we wish to classify and extract a rationale from, we feed the

maximum amount of possible tokens (512)1, starting from the beginning of the article,

into BERT. As the input article is run through BERT, each attention head computes

512 attention weights for each of the 512 tokens in the sequence (a total of 512x512

weights), and we save these computed weight values at each attention head in BERT.

1BERT can operate on a maximum of 512 tokens, and since we need to include two special tokens
([CLS] and [SEP]) at the start and end of our input, we can use 510 tokens from an article.
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Analyzing 512 weights for each of the 512 tokens in our sequence is infeasible though,

as this data contains too much information to provide a suitable explanation. How-

ever, we believe it is sufficient to only look at the weights of one specific token in our

input sequence, the special [CLS] token (1x512 weights). Recall from Section 3.2.2

that BERT is fine-tuned for classification by training a fully-connected layer on top

of the [CLS] embedding representation output from BERT’s transformer encoders.

Since this [CLS] representation is the only information the final layer in our classifier

uses to make its prediction, we believe that the attention weights used to calculate the

representation of the [CLS] token contain the most relevant information in making

political bias predictions.

Though we have retrieved the attention weights from BERT and reduced them

to an amount more tractable for analysis, there is still an abundance of informa-

tion, as we obtain weights from each of BERT’s 144 attention heads (there are 12

attention heads in each of BERT’s 12 transformer encoder layers). However, other

works analyzing BERT’s attention heads have shown that different heads learn to

specialize to specific components of syntax (Clark et al., 2019) - some heads focus on

structure, co-reference resolution, etc., while others specialize in semantics. Though

structure and other syntactical nuances may play a role in BERT’s predictions in

political bias, we focus on finding heads specializing in semantics, as these convey the

most human-understandable information.

While our visualizations across all attention heads on articles from different po-

litical ideologies is too much information to include, we show some examples of our

analysis for an article classified as right-learning by our model. The trends we high-

light for this example article hold for different articles we analyzed as well as across

the right, center, and left political ideologies. In Figures 4-1 and 4-2, we visualize

heavily weighted words from attention heads selected from the middle layer and last

layer of BERT respectively. We choose to show attention heads from different lay-

ers to compare how different layers of the model behave, and selected these specific

heads because the words they highly weight are semantically aligned with the criteria

Allsides uses for labelling right-learning articles. Specifically, defense-oriented words
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Figure 4-1: Attention visualization from 1st attention head in layer 6 on an article
classified as right-leaning (this is a truncated version of the full 512 token input fed
into BERT). This attention head highly attends to "president - elect donald trump"
and "defense" which align with the right-leaning criteria used by Allsides.

Figure 4-2: Attention visualization from 7th attention head in layer 12 on an article
classified as right-leaning (this is a truncated version of the full 512 token input fed
into BERT). This attention head highly attends to "president", "marine", "state",
and "economy" which align with the right-leaning criteria used by Allsides.
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like marine and defense are highly weighted, as well as the name of the right-learning

presidential elect (at the time), Donald Trump. However, between the different layers

of the model, we observe a significant difference in which words are heavily weighted.

In fact, even when comparing semantically-oriented attention heads within the same

layer we see a similar gap between which words are weighted. Figure 4-3 shows the

7 highest weighted tokens from each attention head in the last layer, and it shows

that there is a high variation between which words are highly attended to, and the

magnitude of those weightings.

Figure 4-3: The top 7 weighted tokens, and their magnitudes, from each attention
head in the final layer of BERT. Between attention heads we see a large amount of
variation besides a few common words like "about", "reform", and "state".

Due to the variance we see between attention heads, we believe that selecting

specific semantically-oriented attention heads from BERT does not serve as a good

explanation for the model’s prediction. However, we still believe there may be some

merit in analyzing BERT’s attention for extractive rationales. If, instead of comparing

attention weightings between specific heads, we use a more global view of attention

on the [CLS] token (across all heads and layers), we can see some trends emerge. In

Figure 4-4, we plot all 144 attention head’s weights for the [CLS] token, and observe

that later layers of the model do attend to the same tokens - this is shown by the hor-

izontal streaks. Though individual attention heads may attend to different subgroups
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of these tokens, which is potentially why we observe large differences when comparing

individual attention heads, there seem to be some agreed upon important tokens in

aggregate. Furthermore, we confirm that these agreed upon tokens for this example

(trump, marine, conservative, etc.) are aligned with the right-learning criteria speci-

fied by Allsides, and we believe that more studies on the aggregate attention of BERT

could be useful in determining a more robust method for extractive rationalization

than analyzing individual attention heads.

Figure 4-4: [CLS] token’s attention weights across all 144 attention heads within
BERT. In later layers, we observe some horizontal streaks, indicating that the same
tokens are being heavily weighted across different attention heads.
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While our study shows using an analysis on attention has potential for extractive

rationales, there are some drawbacks to the methodology as well. Not only are indi-

vidual attention heads poor avenues for rationalization because of their variance and

the work required to filter through 144 different attention heads, but there is also no

guarantee that the same attention heads will be useful between different articles. As

a result, we mentioned that viewing BERT’s attention heads in aggregate could help

alleviate these issues. However, even in aggregate, it is possible the attention may

not be suitable for extracting rationale, as the relationship between attention weights

and model predictions is still a debated topic. Jain and Wallace report that attention

weights are not correlated with other measures of input importance and that per-

turbing attention weights does not significantly alter predictions (Jain and Wallace,

2019). However, Wiegreffe and Pinter refute these claims in their own experiments,

and though they do not confirm that attention is useful for explanation, they show

that the experiments by Jain and Wallace do not disprove its use (Wiegreffe and

Pinter, 2019). So, until more research on attention’s faithfulness to model predictions

is conducted, other extractive rationalization methods are more preferable.

4.2 Gradient-Based Methods

The other methodology we explore for extractive rationalization, gradient saliency,

avoids the drawbacks of attention-based approaches and is a more direct measure

of input importance. To quantify gradient saliency, we use two different methods,

both based on calculating the gradients of our model’s outputs with respect to its

inputs, and then processing these gradients to retrieve a single importance score per

token. The computed importance scores represent how much changing each token

impacts the model’s output, with the intuition behind using these scores for extractive

rationalization being that tokens which can cause large changes in a model’s output

must be important in making its prediction. An additional advantage for gradient-

based approaches is that they provide a single measure of how important each input

token is, as opposed to the many channels of attention weights that need to be
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analyzed in attention-based approaches.

We will refer to the two highly-related, gradient saliency methods we explore for

rationalizing political bias predictions as the gradient norm and embed · gradient.

In order to calculate importance scores using either approach, we must define which

model outputs we calculate the gradient of, and which input representations we cal-

culate gradients with respect to - we use the same output and input definitions for

both approaches. For rationalization we choose to measure our output using the

maximum value of the unnormalized class probabilities (also known as logits) output

from our BERT classifier. Though it is common to use loss as a measure of output

when calculating gradients (as we do during fine-tuning BERT), we believe calculat-

ing gradients of the maximum logit with respect to the model’s input is more useful

for rationalization. Whereas the gradient of the loss measures how changing inputs

can improve the model’s performance, the gradient of the maximum logit measures

how much each input changes a model’s confidence in its current prediction. As a re-

sult, we believe using the maximum logit as our output measure is more aligned than

using the loss for rationalizing the model’s current prediction, whether it is correct

or not. Contrary to our output definition, there is only one option for the inputs we

calculate gradients with respect to that both faithfully represents the input tokens

and allows for differentiability - the embedded representations of each token in the

article currently being classified.

To calculate the gradients of the maximum logit with respect to the input embed-

dings for a sequence of tokens, 𝑥 (sequence length x 1), we first embed each token

in 𝑥 to a 768-dimensional space (sequence length x 768). Our embedded sequence is

then run through the fine-tuned BERT model to compute the logits, and, finally we

calculate the gradients of the maximum logit with respect to the input embeddings

using back-propagation. However, because our embedding space is 768-dimensional,

each token from 𝑥 will have an associated 768 gradients - one for each embedding

dimension. Since we want a single importance score per token, we must condense

these gradients into one representative value, and our two methods differ in how they

compute this overall score. The gradient norm method uses the euclidean norm of
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the gradients of the max logit with respect to the input embeddings, measuring the

overall magnitude of the gradients for each token. For the embed · gradient method,

we reason that gradients should contribute more towards importance along the em-

bedding dimensions of tokens which carry the most information. So, this method

uses the dot product of our gradients with their respective embeddings. We formalize

both these calculations below, where 𝐸𝑚𝑏(𝑥) is the embedded representation of our

input sequence 𝑥, and 𝜕𝐿
𝜕𝐸𝑚𝑏(𝑥)

are the gradients of the max logit with respect to the

input embeddings.

Gradient Norm: Gradient norm =

⃦⃦⃦⃦
𝜕𝐿

𝜕𝐸𝑚𝑏(𝑥)

⃦⃦⃦⃦

Embed · Gradient: Embed · gradient = 𝐸𝑚𝑏(𝑥) · 𝜕𝐿

𝜕𝐸𝑚𝑏(𝑥)

Figure 4-5: The top 7 most important tokens, and their importance scores, using
both of our gradient-based methods. Both methods output very similar results.

In Figure 4-5, we compare the top 7 most important tokens, and their magnitudes,

as computed by our two different methods. We observe that they are highly similar in

the words they deem important, and only have slight differences in magnitudes. Fur-

thermore, when visualizing the importance weighting of words within articles we also

see a similarity between the two methods. Figure 4-6 shows the importance weighting

for an article using the embed · gradient method, and the highlighted words align well

with Allsides’ criteria for a right-leaning article, showing that defense is important,

rejecting public funding for healthcare, and discussing right-learning president-elect

at the time, Donald Trump. However, even though these gradient-based methods

seem like a useful strategy for extractive rationalization from a qualitative observa-

tion, further studies confirming their validity are still needed. A next step confirming
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these results, for example, could be training a simple Support Vector Machine clas-

sifier on top of only the words that were highlighted as important by these methods,

and confirming that the classifier still operates with comparable accuracy.

Figure 4-6: Gradient-based importance visualization, using embed · gradient method,
on an article classified as right-leaning (this is a truncated version of the full 512 token
input fed into BERT). This method finds "donald trump" and "repealing obamacare"
as particularly important phrases in classifying this article as right-learning.

4.3 Shortcomings of Extractive Rationales

Even though the extractive rationales in some of our studies were qualitatively good,

and even if their validity is further verified, there are still some inherent limitations

to using extractive rationales, as well as issues in our own study. While extractive

rationales do increase transparency into why models make certain predictions, there is

no guarantee that the information which models are using follows the same reasoning

that humans use and, as a result, the extracted rationales may be incomprehensible

or have different meanings than expected (e.g. exploiting grammatical tendencies, or

correlations unrelated to the prediction task). In fact, we believe this is likely what

happened in our own study. Though extractive rationales appeared to be reasonable

explanations for our model’s predictions, other experiments of ours showed that dur-

ing article-level fine-tuning, BERT was not actually learning predictive language for

political bias, but was somehow memorizing the media sources which published the

articles.
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Macro-F1 Accuracy
Random Split 88.78 88.09
Media Split 32.64 36.45

Table 4.1: Random vs. Media split article-level classification. In the random split
experiment, articles were randomly selected across all media sources for the train,
development, and test splits. For the media split, we ensured that articles were
selected from disjoint sets of media sources for the train, development, and test splits.

We realized this issue in our study when fine-tuning two different versions of

our BERT model, one where the articles in the train, development, and test sets were

randomly selected across all media sources (Random Split), and another where articles

were selected from disjoint sets of media sources between the train, development, and

test sets (Media Split). Table 4.1 shows the large gap in performance between the

two models, where the model fine-tuned on the media source partition is essentially

randomly guessing2. Through further analysis, we found that named entities, which

we masked out of articles using named-entity recognition (we wanted to ensure media

sources did not include their own names within articles for this very reason), were

selected as highly important tokens using our methods. Out of the articles that

contained some masked named-entity, we found that about 61% contained this mask

within the top 10 most important tokens in their extracted rationales (15,799 out of

25,718 articles). Though we attempted to mask out the named-entities within our

articles, we suspect that either there was some leakage in the named-entity recognition

or the model learned to associate writing styles with specific media sources, and was

relying on this to make predictions. As a result, we need to test our extractive

rationale methods on other, proven methodologies in the future in order to see how

they perform on a robust model.

2Note: Using BERT to extract features during our source-level study (Chapter 3) did not appear
to have this issue, as we excluded any media sources used during fine-tuning from our classification
step, and the classifiers still performed well.
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Chapter 5

Conclusion

The general goal of our work is to study potential methods for preventing the spread

of fake news. Specifically, we focus on building a system to predict the political bias

and factuality of media, as we believe these two properties are crucially linked to the

problem of fake news. Several previous works address bias and factuality prediction

at smaller scopes like the claim and article-levels, but we center our work around the

source-level because it is relatively understudied, useful in predicting at the smaller

scopes, and can be used for detecting likely fake news in the instant it is published.

Furthermore, the system we develop makes its predictions based on linguistic features,

as we believe the viral and damaging power of fake news is derived from its language,

and it is the most robust predictor as a result.

The methodology for the source-level political bias and factuality prediction sys-

tem we build is based on work done by Baly et al. (Baly et al., 2020), and it operates

on data from the media sources’ websites, and optionally the media sources’ Twitter

and Wikipedia pages. During development of the system, we experiment with train-

ing the necessary models on different subsets of these data sources, and compare our

results to a similar ablation study done by Baly et al.. Similarly to their findings,

we observe that articles published by a media source produce the most important

features for predicting both bias and factuality. However, our system tends to under-

perform the one described by Baly et al., and differs in which data channels are useful

for predictions. We hypothesize that these discrepancies are a result of differences
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between the datasets used for training the system’s models, and believe that our re-

sults could be improved by using a dataset containing more labeled media sources.

Nevertheless, our system obtains adequate accuracies of 76.81% and 73.05% for the

tasks of political bias and factuality prediction respectively, with news articles and

Twitter data being the most predictive input combination for the bias task, and only

article data being the most informative for the factuality task.

In addition to our development of a system for predicting political bias and fac-

tuality, we also study how different rationalization methods can be used to provide

transparency in automated fake news detection methods. We believe it is unlikely

for people to blindly trust a model’s predictions on such a polarizing subject, and

that presenting a model’s reasoning is a critical step for these systems establishing

credibility with the public. The methods we study focus on rationalizing a model’s

predictions on an article-level, political bias task, as politically-weighted language is

well-defined for the qualitative analysis we perform. Using attention and gradient-

based approaches, we highlight subsets of a model’s input that are deemed important

in the prediction it makes. During initial observations, the rationales we extract seem

reasonably aligned with left-leaning and right-leaning political ideologies, and both

the attention and gradient-based methods appear to produce simple, understandable

explanations of a model’s predictions. However, further analysis shows significant is-

sues in our article-level bias prediction model which make us skeptical about believing

the extracted explanations, and we believe further research is necessary, as a result,

to prove the validity of the methods we use.

5.1 Future Work

In our study, we focus on using language to predict bias and factuality, but we believe

that combining our methods with graph and propagation-based approaches could

further augment our system. Additionally, as we have mentioned, we believe that

our system can be improved by providing more labeled media sources for training

its models, and, with this in mind, we design our system to be easily retrained on
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new data. Though there are likely a vast number of other avenues to explore for

improving our system’s performance, we believe that studying model explainability

in the domain of fake news is the most important next step for the field.

Our rationalization study concentrates on extractive rationale methods, but a new

field of research, natural language explanation, could potentially provide more under-

standable explanations behind a model’s predictions. The field of natural language

explanation aims to model human-like reasoning alongside a prediction task, and this

usually takes the form of generating a textual explanation which is later used to make

a prediction. With the future goal of applying natural language explanation to fake

news detection, we experimented with our own approach to producing explanations

on a question answering task.

Figure 5-1: Our model architecture for generating natural language explanations
during a question answering task. The explainer component takes the question and
answer choices as input, and generates an explanation using gumbel-softmax to sam-
ple. This explanation is then used by the predictor to select the proper answer choice
to answer the question.

Figure 5-1 shows the architecture of the model we developed for generating expla-
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nations during a question answering task1. It consists of an explanation component

which leverages a language model to generate human-like explanations, and a pre-

diction component that uses these explanations to answer questions. We maintain

differentiability through the sampling process of generating an explanation by using

the gumbel-softmax (Jang et al., 2017) to allow for task-specific loss to propagate

information to the explanation component. Though our model uses a supervised

approach to generating its explanations, natural language generation methods are

increasingly being refined (Latcinnik and Berant, 2020; Wiegreffe et al., 2020), and

our hope is unsupervised methods will be available in the future and can be applied

to fake news detection.

1We trained this model on the Common Sense Explanations dataset, which extends the Common
Sense Question Answering dataset with human annotated explanations (Rajani et al., 2019).
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