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Abstract
In the past several years, language modeling has made significant advances on artificial
benchmarks. However, despite these advancements, language models still face significant
issues when deployed in real-world settings. In particular, these models tend to hallucinate
facts and demonstrate significant harmful societal biases that render them impractical in the
real-world. This thesis introduces datasets, models, and methodologies for studying how
language models incorporate world factuality into their decision making processes. First, I
study how neural language models can be used to prove or disprove facts, and show that
language models can be used for fact verification. Motivated by the results, I subsequently
study how the choice of training tasks affects the stance detection model. In order to study
the acquisition of harmful knowledge, I build a dataset to probe models for their societal
stereotypes. Finally, I extend this evaluation to language generation, and study how the
choice of sampling algorithm affects model factuality. Taken together, this thesis provides a
comprehensive analysis of how language models capture world factuality via the pre-training
process.
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Chapter 1

Introduction

“The greatest enemy of knowledge is not ignorance, it is the illusion of

knowledge.“

- Stephen Hawking

1.1 Motivation

If one believes that benchmarks are a reasonable measure of progress, then Natural Lan-

guage Processing (NLP) has exhibited record progress over the past several years. The

General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2019b) is a

compilation of ten datasets that collectively measure language understanding capabilities.

Within a year, the state-of-the-art model improved from a macro-average 60.3 points to 90.6

points, notably outperforming the human-level performance of 87.1 points. Afterwards, the

community introduced the more difficult SuperGLUE benchmark in May 2019 (Wang et al.,

2019a). For SuperGLUE, models had achieved human-level performance by December

2020, slightly more than a year after its introduction.

However, despite the significant increase in accuracy of these systems on artificial

leaderboards, they still present significant problems when deployed in real-world settings.

In particular, these models exhibit significant hallucation of facts (Rohrbach et al., 2018)

and demonstrate significant harmful societal biases (Nadeem et al., 2020a). Motivated by
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this gap, this thesis examines how neural language models incorporates world factuality in

their decision making processes. We explore how models can help prove real-world facts

(Chapter 1), how multi-task learning can improve factuality (Chapter 2), and how large-scale

language models learn undesirable facts (Chapter 3).

While all of these problems tackle factuality in natural language understanding, there

are equivalent problems that surround natural language generation, in particular, how can

we make generative models factual? We examine how sampling algorithms can impact

generation performance, and thereby factuality, in Chapter 4. Taken together, these chapters

provide a multi-faceted analysis of how language models capture knowledge from the

surrounding world.

1.2 Thesis Outline

Each chapter begins by examining a different approach to incorporating factuality into

language models, which brings its own set of challenges. Concretely, we organize the

chapters as follows:

• Chapter 2 explores how automated fact-checking can be performed with neural

language models.

• Chapter 3 considers a multi-task learning approach to improve factual language

understanding.

• Chapter 4 investigates how biased training procedures may introduce undesirable facts

into language models.

• Chapter 5 examines how sampling algorithms may affect language generation perfor-

mance, with downstream implications on factual language generation.

1.3 Related Publications

Portions of this thesis appears in the following publications:
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• Chapter 2: M Nadeem, W Fang, B Xu, M Mohtarami, J Glass. "FAKTA: An automatic

end-to-end fact checking system," In Proceedings of NAACL 2019.

• Chapter 3: W Fang, M Nadeem, M Mohtarami, J Glass. "Neural multi-task learning

for stance prediction," In Proceedings of the Second Workshop on Fact Extraction

and Verification at EMNLP 2019.

• Chapter 4: M Nadeem, A Bethke, S Reddy. "StereoSet: Measuring stereotypical bias

in pretrained language models," Under submission to EACL 2021.

• Chapter 5: M Nadeem, T He, K Cho, J Glass. "A Systematic Characterization of

Sampling Algorithms for Open-ended Language Generation," In Proceedings of the

AACL 2020.
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Chapter 2

Fact-Checking with Neural Language

Models

“Facts are stubborn things; and whatever may be our wishes, our inclina-

tions, or the dictates of our passion, they cannot alter the state of facts and

evidence.“

- John Adams

2.1 Introduction

With the rapid increase of fake news in social media and its negative influence on people

and public opinion (Mihaylov et al., 2015; Mihaylov and Nakov, 2016; Vosoughi et al.,

2018), various organizations are now performing manual fact checking on suspicious claims.

However, manual fact-checking is a time consuming and challenging process. As an alter-

native, researchers are investigating automatic fact checking which is a multi-step process

and involves: (i) retrieving potentially relevant documents for a given claim (Mihaylova

et al., 2018; Karadzhov et al., 2017), (ii) checking the reliability of the media sources from

which documents are retrieved, (iii) predicting the stance of each document with respect to

the claim (Mohtarami et al., 2018a; Xu et al., 2018), and finally (iv) predicting factuality

This chapter was based in part on Nadeem et al. (2019).
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Figure 2-1: FAKTA consists of three submodules: a document retrieval model, a neural
re-ranker, and a stance detection model.

of given claims (Mihaylova et al., 2018). While previous works separately investigated

individual components of the fact checking process, in this work, we present a unified

framework titled FAKTA that integrates these components to not only predict the factuality

of given claims, but also provide evidence at the document and sentence level to explain

its predictions. To the best of our knowledge, FAKTA is the only system that offers such a

capability.

2.2 FAKTA

Figure 2-1 illustrates the general architecture of FAKTA. The system is accessible via a Web

browser and has two sides: client and server. When a user at the client side submits a textual

claim for fact checking, the server handles the request by first passing it into the document

retrieval component to retrieve a list of top-K relevant documents (see Section 2.2.1) from

four types of sources: Wikipedia, highly-reliable, mixed reliability and low reliability

mainstream media (see Section 2.2.2). The retrieved documents are passed to the re-ranking

model to refine the retrieval result (see Section 2.2.1). Then, the stance detection component

detects the stance/perspective of each relevant document with respect to the claim, typically

modeled using labels such as agree, disagree and discuss. This component further provides

rationales at the sentence level for explaining model predictions (see Section 2.2.3). Each

document is also passed to the linguistic analysis component to analyze the language of the

document using different linguistic lexicons (see Section 2.2.4). Finally, the aggregation

component combines the predictions of stance detection for all the relevant documents and
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makes a final decision about the factuality of the claim (see Section 2.2.5). We describe the

components below.

2.2.1 Document Retrieval & Re-ranking Model

We first convert an input claim to a query by only considering its verbs, nouns and adjec-

tives Potthast et al. (2013). Furthermore, claims often contain named entities (e.g., names of

persons and organizations). We use the NLTK package to identify named entities in claims,

and augment the initial query with all named entities from the claim’s text. Ultimately,

we generate queries of 5–10 tokens, which we execute against a search engine. If the

search engine does not retrieve any results for the query, we iteratively relax the query by

dropping the final tokens one at a time. We also use Apache Lucene1 to index and retrieve

relevant documents from the 2017 Wikipedia dump (see our experiments in Section 2.3).

Furthermore, we use the Google API2 to search across three pre-defined lists of media

sources based on their factuality and reliability as explained in Section 2.2.2. Finally, the

re-ranking model of Lee et al. (2018) is applied to select the top-K relevant documents. This

model uses all the POS tags in a claim that carry high discriminating power (NN, NNS,

NNP, NNPS, JJ, CD) as keywords. The re-ranking model is defined as follows:

𝑓𝑟𝑎𝑛𝑘 =
|𝑚𝑎𝑡𝑐ℎ|
|𝑐𝑙𝑎𝑖𝑚|

× |𝑚𝑎𝑡𝑐ℎ|
|𝑡𝑖𝑡𝑙𝑒|

× 𝑠𝑐𝑜𝑟𝑒𝑖𝑛𝑖𝑡, (2.1)

where |𝑐𝑙𝑎𝑖𝑚|, |𝑡𝑖𝑡𝑙𝑒|, and |𝑚𝑎𝑡𝑐ℎ| are the counts of such POS tags in the claim, title of

a document, both claim and title respectively, and 𝑠𝑐𝑜𝑟𝑒𝑖𝑛𝑖𝑡 is the initial ranking score

computed by Lucene or ranking from Google API.

2.2.2 Sources

While current search engines (e.g., Google, Bing, Yahoo) retrieve relevant documents for

a given query from any media source, we retrieve relevant documents from four types

of sources: Wikipedia, and high, mixed and low factual media. Journalists often spend

1https://lucene.apache.org
2https://developers.google.com/custom-search
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Figure 2-2: A user interface depicting stance detection and linguistic analysis for the claim
“ISIS infilitrates the United States.", with interactive features to provide interpretability.

considerable time verifying the reliability of their information sources Popat et al. (2017);

Nguyen et al. (2018), and some fact-checking organizations have been producing lists of

unreliable online news sources specified by their journalists. FAKTA utilizes information

about news media listed on the Media Bias/Fact Check (MBFC) website3, which contains

manual annotations and analysis of the factuality of 2, 500 news websites. Our list from

MBFC includes 1, 300 websites annotated by journalists as high or very high, 700 websites

annotated as low and low-questionable, and 500 websites annotated as mixed (i.e., containing

both factually true and false information). Our document retrieval component retrieves

documents from these three types of media sources (i.e., high, mixed and low) along with

Wikipedia that mostly contains factually-true information.

2.2.3 Stance Detection & Evidence Extraction

In this work, we use our best model presented in Xu et al. (2018) for stance detection. To the

best of our knowledge, this model is the current state-of-the-art system on the Fake News

Challenge (FNC) dataset.4 Our model combines Bag of Words (BOW) and Convolutional

3https://mediabiasfactcheck.com
4http://www.fakenewschallenge.org
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Neural Networks (CNNs) in a two-level hierarchy scheme, where the first level predicts

whether the label is related or unrelated (see Figure 2-2, the top-left pie chart in FAKTA),

and then related documents are passed to the second level to determine their stances, agree,

disagree, and discuss labels (see Figure 2-2, the bottom-left pie chart in FAKTA). Our model

is further supplemented with an adversarial domain adaptation technique which helps it

overcome the limited size of labeled data when training through different domains.

To provide rationales for model prediction, FAKTA further processes each sentence in

the document with respect to the claim and computes a stance score for each sentence. The

relevant sentences in the document are then highlighted and color coded with respect to

stance labels (see Figure 2-2). FAKTA provides the option for re-ordering these rationales

according to a specific stance label.

2.2.4 Linguistic Analysis

We analyze the language used in documents using the following linguistic markers:

—Subjectivity lexicon Riloff and Wiebe (2003): which contains weak and strong subjective

terms (we only consider the strong subjectivity cues),

—Sentiment cues Liu et al. (2005): which contains positive and negative sentiment cues, and

—Wiki-bias lexicon Recasens et al. (2013): which involves bias cues and controversial

words (e.g., abortion and execute) extracted from the Neutral Point of View Wikipedia

corpus Recasens et al. (2013).

Finally, we compute a score for the document using these cues according to Equa-

tion equation 2.2, where for each lexicon type 𝐿𝑖 and document 𝐷𝑗 , the frequency of the

cues for 𝐿𝑖 in 𝐷𝑗 is normalized by the total number of words in 𝐷𝑗:

𝐿𝑖(𝐷𝑗) =

∑︀
𝑐𝑢𝑒∈𝐿𝑖

𝑐𝑜𝑢𝑛𝑡(𝑐𝑢𝑒,𝐷𝑗)∑︀
𝑤𝑘∈𝐷𝑗

𝑐𝑜𝑢𝑛𝑡(𝑤𝑘, 𝐷𝑗)
(2.2)

These scores are shown in a radar chart in Figure 2-2. Furthermore, FAKTA provides

the option to see a lexicon-specific word cloud of frequent words in each documents (see

Figure 2-2, the right side of the radar chart which shows the word cloud of Sentiment cues

in the document).
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2.2.5 Aggregation

Stance Detection and Linguistic Analysis components are executed in parallel against all

documents retrieved by our document retrieval component from each type of sources. All

the stance scores are averaged across these documents, and the aggregated scores are shown

for each agree, disagree and discuss categories at the top of the ranked list of retrieved

documents. Higher agree score indicates the claim is factually true, and higher disagree

score indicates the claim is factually false.

2.3 Evaluation and Results

We use the Fact Extraction and VERification (FEVER) dataset (Thorne et al., 2018a) to

evaluate our system. In FEVER, each claim is assigned to its relevant Wikipedia documents

with agree/disagree stances to the claim, and claims are labeled as supported (SUP, i.e.

factually true), refuted (REF, i.e. factually false), and not enough information (NEI, i.e.,

there is not any relevant document for the claim in Wikipedia). The data includes a total of

145K claims, with around 80K, 30K and 35K SUP, REF and NEI labels respectively.

Document Retrieval: Table 2.1 shows results for document retrieval. We use various

search and ranking algorithms that measure the similarity between each input claim as

query and Web documents. Lines 1–11 in the table show the results when we use Lucene

to index and search the data corpus with the following retrieval models: BM25 (Robert-

son et al., 1994) (Line 1), Classic based on the TF.IDF model (Line 2), and Divergence

from Independence (DFI) (Kocabaş et al., 2014) (Line 3). We also use Divergence from

Independence Randomness (DFR) (Amati and Van Rijsbergen, 2002) with different term

frequency normalization, such as the normalization provided by Dirichlet prior (DFR𝐻3)

(Line 4) or a Zipfian relation prior (DFR𝑧) (Line 5). We also consider Information Based

(IB) models (Clinchant and Gaussier, 2010) with Log-logistic (IB𝐿𝐿) (Line 6) or Smoothed

power-law (IB𝑆𝑃𝐿) (Line 7) distributions. Finally, we consider LMDirichlet (Zhai and

Lafferty, 2001) (Line 8), and LMJelinek (Zhai and Lafferty, 2001) with different settings

for its hyperparameter (Lines 9–11). According to the resulting performance at different

ranks {1–20}, we select the ranking algorithm DFR𝑧 (Lucene𝐷𝐹𝑅𝑍
) as our retrieval model.

24



Model R@1 R@5 R@10 R@20

1. BM25 28.84 38.66 62.34 70.10
2. Classic 9.14 23.10 31.65 40.70
3. DFI 40.93 66.98 74.84 81.22
4. DFRH3 43.67 71.18 78.32 83.16
5. DFRZ 43.14 71.17 78.60 83.88
6. IBLL 41.86 68.02 75.46 81.13
7. IBSPL 42.27 69.55 77.03 81.99
8. LMDirichlet 39.00 68.86 77.39 83.04
9. LMJelinek0 .05 37.39 59.75 67.58 74.15
10. LMJelinek0 .10 37.30 59.85 67.58 74.44
11. LMJelinek0 .20 37.01 59.60 67.60 74.62

using Query Generation
12. Lucene𝐷𝐹𝑅Z

40.70 68.48 76.21 81.93
13. Google API 56.62 71.92 73.86 74.89

using Re-ranking Model
14. Lucene𝐷𝐹𝑅Z

62.37 78.12 80.84 82.11
15. Google API 57.80 72.10 74.15 74.89

Table 2.1: FEVER Document Retrieval results, which highlight that re-ranking queries with
a tuned DFR algorithm can outperform Google Search.

In addition, Lines 12–13 show the results when claims are converted to queries as

explained in Section 2.2.1. The results (Lines 5 and 12) show that Lucene performance

decreases with query generation. This might be because the resulting queries become more

abstract than their corresponding claims which may introduce some noise to the intended

meaning of claims. However, Lines 14–15 show that our re-ranking model, explained in

Section 2.2.1, can improve both Lucene and Google results.

FAKTA Full Pipeline: The complete pipeline consists of document retrieval and re-

ranking model (Section 2.2.1), stance detection and rationale extraction5 (Section 2.2.3) and

aggregation model (Section 2.2.5). Table 2.2 shows the results for the full pipeline. Lines

1–3 show the results for all three SUP, REF, and NEI labels (3lbl) and Randomly Sampled

(RS) documents from Wikipedia for the NEI label. We label claims as NEI if the most

relevant document retrieved has a retrieval score less than a threshold, which was determined

by tuning on development data. Line 1 is the multi-layer perceptron (MLP) model presented

in (Riedel et al., 2017a). Lines 2–3 are the results for our system when using Lucene (L)

and Google API (G) for document retrieval. The results show that our system achieves the

highest performance on both F1(𝑀𝑎𝑐𝑟𝑜) and accuracy (Acc) using Google as retrieval engine.

We repeat our experiments when considering only SUP and REF labels (2lbl) and the results

5We used Intel AI’s Distiller (Zmora et al., 2018) to compress the model.
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Model Settings F1(𝑆𝑈𝑃/𝑅𝐸𝐹/𝑁𝐸𝐼) F1(𝑀𝑎𝑐𝑟𝑜) Acc.

1. MLP 3lbl/RS - - 40.63
2. FAKTA L/3lbl/RS 41.33/23.55/44.79 36.56 38.76
3. FAKTA G/3lbl/RS 47.49/43.01/28.17 39.65 41.21
4. FAKTA L/2lbl 58.33/57.71/- 58.02 58.03
5. FAKTA G/2lbl 58.96/59.74/- 59.35 59.35

Table 2.2: FAKTA full pipeline results on FEVER show that it is difficult to ascertain discuss
labels.

are significantly higher than the results with 3lbl (Lines 4–5).

2.4 The System in Action

The current version of FAKTA6 and its short introduction video7 and source code8 are

available online. FAKTA consists of three views:

—The text entry view: to enter a claim to be checked for factuality.

—Overall result view: includes four lists of retrieved documents from four factuality types

of sources: Wikipedia, and high-, mixed-, and low-factuality media (Section 2.2.2). For

each list, the final factuality score for the input claim is shown at the top of the page

(Section 2.2.5), and the stance detection score for each document appears beside it.

—Document result view: when selecting a retrieved document, FAKTA shows the text of

the document and highlights its important sentences according to their stance scores with

respect to the claim. The stance detection results for the document are further shown as pie

chart at the left side of the view (Section 2.2.3), and the linguistic analysis is shown at the

bottom of the view (Section 2.2.4).

2.5 Related Work

Automatic fact checking (Xu et al., 2018) centers on evidence extraction for given claims,

reliability evaluation of media sources (Baly et al., 2018a), stance detection of documents

with respect to claims (Mohtarami et al., 2018a; Xu et al., 2018; Baly et al., 2018b), and fact

6http://fakta.mit.edu
7http://fakta.mit.edu/video
8https://github.com/moinnadeem/fakta
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checking of claims (Mihaylova et al., 2018). These steps correspond to different Natural

Language Processing (NLP) and Information Retrieval (IR) tasks including information

extraction and question answering (Shiralkar et al., 2017). Veracity inference has been

mostly approached as text classification problem and mainly tackled by developing linguistic,

stylistic, and semantic features (Rashkin et al., 2017; Mihaylova et al., 2018; Nakov et al.,

2017), as well as using information from external sources (Mihaylova et al., 2018; Karadzhov

et al., 2017).

These steps are typically handled in isolation. For example, previous works (Wang, 2017;

O’Brien et al., 2018) proposed algorithms to predict factuality of claims by mainly focusing

on only input claims (i.e., step (iv) and their metadata information (e.g., the speaker of the

claim). In addition, recent works on the Fact Extraction and VERification (FEVER) (Thorne

et al., 2018a) has focused on a specific domain (e.g., Wikipedia).

To the best of our knowledge, there is currently no end-to-end systems for fact checking

which can search through Wikipedia and mainstream media sources across the Web to fact

check given claims. To address these gaps, our FAKTA system covers all fact-checking

steps and can search across different sources, predict the factuality of claims, and present a

set of evidence to explain its prediction.

2.6 Chapter Summary

This chapter has presented FAKTA–an online system for automatic end-to-end fact checking

of claims. FAKTA can assist individuals and professional fact-checkers to check the

factuality of claims by presenting relevant documents and rationales as evidence for its

predictions. In the next chapter, we attempt to improve FAKTA’s stance detection system by

pre-training on multiple tasks.
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Chapter 3

Multi-task learning for Factuality

3.1 Introduction

For journalists and news agencies, fact checking is the task of assessing the veracity of

information and claims. Due to the large volume of claims, automating this process is of

great interest to the journalism and NLP communities. A main component of automated

fact-checking is stance detection which aims to automatically determine the perspective

(stance) of given documents with respect to given claims as agree, disagree, discuss, or

unrelated.

Previous work (Riedel et al., 2017b; Hanselowski et al., 2018; Baird et al., 2017; Chopra

et al., 2017; Mohtarami et al., 2018b; Xu et al., 2018) presented various neural models

for stance prediction, including Chapter 2. One of the challenges for these models is the

limited size of human-labeled data, which can adversely affect the resulting performance for

this task. To overcome this limitation, we propose to supplement data from other similar

Natural Language Processing (NLP) tasks. However, this is not a straightforward process

due to differences between NLP tasks and data sources. We address this problem using an

effective multi-task learning approach which shows sizable improvement for the task of

stance prediction on the Fake News Challenge benchmark dataset. The contributions of this

chapter are as follows:

This chapter was based in part on Fang et al. (2019).
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Figure 3-1: Our multi-task learning model consists of a Transformer encoder that takes in a
claim/paragraph tuple and outputs a similarity score for stance prediction.

• To the best of our knowledge, we are the first to apply multi-task learning to the

problem of stance prediction across different NLP tasks and data sources.

• We present an effective multi-task learning model, and investigate the effectiveness of

different NLP tasks for stance prediction.

• Our model outperforms the state-of-the-art baselines on a publicly-available bench-

mark dataset with a substantial improvement.

3.2 Multi-task Learning Framework

We propose a multi-task learning framework which utilizes the commonalities and differ-

ences across existing NLP datasets and tasks to improve stance prediction performance.

More specifically, we use both unsupervised and supervised pre-training on multiple tasks,

and then fine-tune the resulting model on our target stance prediction task.
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3.2.1 Model Architecture

The architecture of our model is shown in Figure 3-1. We use a transformer encoder (Vaswani

et al., 2017) that is shared across different tasks to encode the inputs before feeding the

contextualized embeddings into task-specific output layers. In what follows, we explain

different components of our model.

Input Representation The input sequence 𝑥 = {𝑥1, . . . , 𝑥𝑙} of length 𝑙 is either a single

sentence or multiple texts packed together. The input is first converted to word piece

sequences (Wu et al., 2016) and, in the case of multiple texts, a special token [SEP] is

inserted between the tokenized sequences. Another special token [CLS] is inserted at the

beginning of the sequence, which corresponds to the representation of the entire sequence.

Transformer Encoder We use a bidirectional Transformer encoder that takes 𝑥 as in-

put and produces contextual embedding vectors C ∈ R𝑑×𝑙 via multiple layers of self-

attention (Devlin et al., 2019a).

Task-specific Output Layers For single-sentence classification tasks, we take the vector

from the first column in C, corresponding to the special token [CLS], as the semantic

representation of the input sentence 𝑥. We then feed this vector through a linear layer

followed by softmax to obtain the prediction probabilities.

For pairwise classification tasks, we use the answer module from the stochastic answer

network (SAN) (Liu et al., 2018) as the output classifier. It performs 𝐾-step reasoning

over the two pieces of text with bi-linear attention and a recurrent mechanism, producing

output predictions at each step and iteratively refining its predictions. At training time,

some predictions are randomly discarded (stochastic dropout) before averaging, and during

inference all output probabilities are utilized.

3.2.2 Unsupervised Pre-training

To utilize large amounts of text data, we use the BERT model which pre-trains the trans-

former encoder parameters with two unsupervised learning tasks: masked language model-
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ing, for which the model has to predict a randomly masked out word in the sequence, and

next sentence prediction, where two sentences are packed and fed into the encoder and the

embedding corresponding to the [CLS] token is used to predict whether they are adjacent

sentences (Devlin et al., 2019a).

3.2.3 Multi-task Supervised Pre-training

In addition to learning contextual representations under an unsupervised setting with large

data, we investigate whether existing NLP tasks that are conceptually similar to stance

prediction can improve performance. We introduce four types of such tasks for pre-training:

Textual Entailment: Given two sentences, a premise and an hypothesis, the model deter-

mines whether the hypothesis is an entailment, contradiction, or neutral with respect to the

premise. Since stance prediction could be cast as a textual entailment task, we investigate if

the addition of this task will benefit our model.

Paraphrase Detection: Given a pair of sentences, the model should predict whether they

are semantically equivalent. This task is considered because we may be able to benefit from

detecting document sentences that are equivalent to claims.

Question Answering: Question answering is similar to the stance prediction task in that

the model has to make a prediction given a question and a passage containing several

sentences.

Sentiment Analysis: Fake claims or articles may exhibit stronger sentiment, thus we

explore if pre-training on this task would be beneficial.

3.2.4 Training Procedure and Details

There are two stages in our training procedure: multi-task supervised pre-training, and fine-

tuning on stance prediction. Before the training stages, the transformer encoder is initialized

with pre-trained parameters to take advantage of knowledge learned from unlabeled data1.

During multi-task pre-training, we randomly pick an ordering on tasks between each

epoch, and train on 10% of a task’s training data for each task in that order. This process

1In this work we use the pre-trained BERT weights released by the authors.
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is repeated 10 times in each epoch so that all the training examples are trained once. The

shared encoder is learned over all tasks while each task-specific output layer is learned only

for its corresponding task.

For fine-tuning, the task-specific output layers for pre-training are discarded, and a

randomly initialized output layer is added for stance prediction. Then the entire model is

fine-tuned over the training set for stance prediction.

For both multi-task pre-training and fine-tuning, we train with cross-entropy loss at each

output layer. We use the Adam optimizer (Kingma and Ba, 2014) with learning rate of 3𝑒-5,

𝛽1 = 0.9, 𝛽2 = 0.999, and mini-batch size of 16 for 10 epochs. For the SAN answer module

we set 𝐾 = 5 and use stochastic dropout rate of 0.1.

3.3 Experiments

3.3.1 Data

The BERT model was pre-trained on the BooksCorpus (Zhu et al., 2015a) and English

Wikipedia. For multi-task pre-training, we use the following datasets:

SNLI Stanford Natural Language Inference is the standard entailment classification task

that contains 549K training sentence pairs after removing examples with no gold labels (Bow-

man et al., 2015). The relation labels are entailment, contradiction, and neutral.

MNLI Multi-genre Natural Language Inference is a large-scale entailment classification

task from a diverse set of sources with the same relation classes as SNLI (Williams et al.,

2018). We use its training set that contains 393K pairs of sentences.

RTE Recognizing Textual Entailment is a binary entailment task with 2.5K training

examples (Wang et al., 2019b).

QQP Quora Question Pairs2 is a QA dataset for binary classification where the goal is

to predict whether two questions are semantically equivalent. We use its 364K training

examples for pre-training.

MRPC Microsoft Research Paraphrase Corpus consists of automatically extracted sen-

2https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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tence pairs from new sources, with human annotations for whether the pairs are semantically

equivalent (Dolan and Brockett, 2005). The training set used for pre-training contains 3.7K

sentence pairs.

QNLI Question Natural Language Inference (Wang et al., 2019b) is a QA dataset which

is derived from the Stanford Question Answering Dataset (Rajpurkar et al., 2016) and used

for binary classification. For a given question-sentence pair, the task is to predict whether

the sentence contains the answer to the question. QNLI contains 108K training pairs.

SST-2 Stanford Sentiment Treebank is used for binary classification for sentences extracted

from movie reviews (Socher et al., 2013). We use the GLUE version that contains 67K

training sentences (Wang et al., 2019b).

IMDB The Large Movie Review Dataset contains 50K movie reviews which are catego-

rized as either positive or negative in terms of sentiment orientation (Maas et al., 2011).

For fine-tuning on stance prediction, we use the dataset provided by the Fake News

Challenge Stage 1 (FNC-1)3, consisting of a total of 75K claim-document pairs collected

from a variety of sources such as rumor sites and social media. The claim-document relation

classes are: agree, disagree, discuss, and unrelated. The FNC-1 dataset has an imbalanced

distribution over stance labels, especially lacking data for agree (7.3%), and disagree (1.7%)

classes.

3.3.2 Evaluation Metrics

For evaluation, the standard measures of accuracy and macro-F1 are used. Additionally,

as per previous work, weighted accuracy is also reported, which is a two-level scoring

scheme that gives 0.25 weight to predicting examples as related v.s. unrelated correctly, and

an additional 0.75 weight to classifying related examples as agree, disagree, and discuss

correctly.

3http://www.fakenewschallenge.org

34

http://www.fakenewschallenge.org


Model Auxiliary Data Weigh. Acc. Acc. Macro-F1
1 Gradient Boosting - 75.2 86.3 46.1
2 TALOS - 82.0 89.1 57.8
3 UCL - 81.7 88.5 57.9
4 Memory Network - 81.2 88.6 56.9
5 Adversarial Adaptation FEVER 80.3 88.2 60.0
6 TransLinear - 84.9 89.3 66.3
7 TransSAN - 85.1 90.3 67.9

Textual Entailment
8 MTransSAN SNLI 86.7 91.9 72.3
9 MTransSAN MNLI 86.4 90.8 71.0
10 MTransSAN RTE 85.6 90.7 69.3
11 MTransSAN SNLI, MNLI, RTE 86.1 91.3 71.6

Paraphrase Detection
12 MTransSAN QQP 87.6 92.1 74.1
13 MTransSAN MRPC 87.0 92.0 73.5
14 MTransSAN QQP, MRPC 88.0 92.3 74.4

Question Answering
15 MTransSAN QNLI 86.5 91.2 71.9

Sentiment Analysis
16 MTransSAN SST 86.7 91.8 70.0
17 MTransSAN IMDB 85.6 91.2 70.4
18 MTransSAN SST, IMDB 86.5 91.7 71.1

Joint
19 MTransSAN SNLI, MNLI, QNLI 84.7 90.6 70.1
20 MTransSAN MNLI, RTE, QQP, MRPC, QNLI, SST 87.0 91.6 71.8
21 MTransSAN SNLI, MNLI, RTE, QQP, 86.5 91.6 72.1

MRPC, QNLI, SST, IMDB

Table 3.1: Results on the FNC test data. TransLinear, TransSAN and MTransSAN show our
model where the first two are based on a transformer followed by a MLP or neural model,
and the later further uses multi-task learning.

3.3.3 Baselines

We compare our model with existing state-of-the-art stance prediction models including the

top-ranked models from FNC-1 and neural models:

Gradient Boosting This baseline4 uses a gradient-boosting classifier with hand-crafted

features including 𝑛-gram features, and indicator features for polarity and refutation.

TALOS (Baird et al., 2017) An ensemble of gradient-boosted decision trees and a convo-

lutional neural network.

4https://github.com/FakeNewsChallenge/fnc-1-baseline
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UCL (Riedel et al., 2017b) A Multi-Layer Perceptron (MLP) with Bag-of-Words and

similarity features extracted from claims and documents.

Memory Network (Mohtarami et al., 2018b) A feature-light end-to-end memory network

that attends over convolutional and recurrent encoders.

Adversarial Domain Adaptation (Xu et al., 2018) This baseline uses a domain classifier

with gradient reversal on top of a convolutional network and TF-IDF features to perform

adversarial domain adaptation from another fact-checking dataset (Thorne et al., 2018b) to

FNC.

3.3.4 Results and Discussion

The performance of the existing models are shown in Table 3.1 from rows 1–5, and our

models (MTransSAN) are in rows 8–21. All variants of MTransSAN consistently outperform

existing models on all three metrics by a considerable margin. In particular, our best

MTransSAN (row 14) achieves 6.0 and 14.4 points of absolute improvement in terms

of weighted accuracy and macro-F1, respectively, over existing state-of-the-art results.

We also compare MTransSAN versus a model with the same architecture but without pre-

training on the NLP tasks (TransSAN), shown in row 7, and another version of that model

with a linear layer instead of the SAN answer module (TransLinear), shown in row 6. Using

the SAN answer module improves over a linear layer for all three metrics, and generally most

MTransSAN models outperform the TransSAN model. Our best MTransSAN model exceeds

TransSAN by 3.1 and 6.5 points in weighted accuracy and macro-F1, respectively, justifying

the effectiveness of model pre-training with NLU tasks. Note that even the TransLinear

model outperforms previously state-of-the-art models by a wide margin, suggesting that

a neural model pre-trained on large amounts of unlabeled data and fine-tuned on stance

prediction is superior to models that require hand-crafted features.

Additionally, we conduct experiments where we use different combinations of language

understanding tasks for pre-training. We pre-train with single tasks, multiple tasks with the

same task type, and joint learning across multiple task types. For textual entailment (rows 8–

11), we see that pre-training on SNLI gives us best improvement, and that pre-training across
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all three entailment tasks did not improve compared to just training on SNLI. However, for

paraphrase detection (rows 12–14) the combination of QQP and MRPC gives us the best

results across all MTransSAN models. This suggests that the paraphrase detection might

be the most useful task type among the NLP tasks in terms of boosting stance prediction

performance. Question answering and sentiment analysis (rows 15–18), on the other hand,

give lower performance improvements compared to paraphrase detection. Models trained

on joint tasks (rows 19–21) do not outperform our best model either.

Overall, we find that utilizing the BERT model results in large improvements compared

to the baselines, which is not unexpected given the success of BERT. We also show that

our multi-task learning approach gives even further improvements upon BERT by a wide

margin.

3.4 Related Work

Stance Prediction. This task is an important component for fact checking and veracity

inference. To address stance prediction, (Riedel et al., 2017b) used a Multi-Layer Per-

ceptron (MLP) with bag-of-words and similarity features extracted from input documents

and claims, and (Hanselowski et al., 2018) presented a deep MLP trained using a rich

feature representation, based on unigrams, non-negative matrix factorization, latent semantic

indexing. (Baird et al., 2017) presented an ensemble of gradient-boosted decision trees

and a deep convolutional neural network, while (Chopra et al., 2017) proposed a model

based on bi-directional LSTM and attention mechanism. While, these works utilized a

rich hand–crafted features, (Mohtarami et al., 2018b, 2019) proposed strong end-to-end

feature-light memory networks for stance prediction in mono- and cross-lingual settings.

Recently, (Xu et al., 2018) presented a state-of-the-art model based on adversarial domain

adaptation with more labeled data, but they limited their model to only using data from the

same stance prediction task. In this work, we remove this limitation and used labeled data

from other tasks that are similar to stance prediction through multi-task learning.
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Multi-task and Transfer Learning. Multi-task and transfer learning have been long-

studied problems in machine learning and NLP (Caruana, 1997; Collobert and Weston,

2008; Pan and Yang, 2010). More recently, numerous methods on unsupervised pre-training

of deep contextualized models for transfer learning have been proposed (Peters et al., 2018a;

Devlin et al., 2019a; Yang et al., 2019; Radford et al., 2019a; Dai et al., 2019; Liu et al.,

2019), and (Conneau et al., 2017; McCann et al., 2017) presented supervised pre-training

methods for NLI and translation. Recent work on multi-task learning has focused on

designing effective neural architectures (Hashimoto et al., 2017; Søgaard and Goldberg,

2016; Sanh et al., 2018; Ruder et al., 2017). Combining these two lines of work, (Liu

et al., 2019; Clark et al., 2019) explored fine-tuning the contextualized models with multiple

natural language understanding tasks. In this work, we depart from previous works by

specifically studying the effects of multi-task fine-tuning for the stance prediction task with

pre-trained models.

3.5 Chapter Summary

In this chapter, we present an effective multi-task learning model that transfers knowledge

from existing NLP tasks to improve stance prediction. Our model outperforms state-of-

the-art systems by 6.0 and 14.4 points in weighted accuracy and macro-F1 respectively

on the FNC-1 benchmark dataset. In future, we plan to further investigate our model to

more specifically identify and illustrate its source of improvement, improve our transfer

learning approach for better fine-tuning, and investigate the utility of our model in other

fact-checking sub-problems such as evidence extraction.

Until now, we have studied how we can use language models to extract facts about the

world, but these facts may cause harm. The next chapter studies the scenarios where harmful

facts are contained in the model, and to what extent these can be quantified.
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Chapter 4

Stereotypical Bias in Pretrained

Language Models

“We all see only that which we are trained to see.“

- Robert Wilson

4.1 Introduction

A key idea behind the current success of neural network models for language is pretrained

representations such as word embeddings (Mikolov et al., 2013; Pennington et al., 2014) and

pretrained language models (Peters et al., 2018b; Howard and Ruder, 2018; Devlin et al.,

2019b; Radford et al., 2019b; Liu et al., 2019). These are widely used to initialize neural

models, which are then fine-tuned to perform a task at hand. Typically, these are learned

from massive text corpora using variants of language modeling objective (i.e., predicting a

word given its surrounding context). In the recent years, these representations empowered

neural models to attain unprecedented levels of performance gains on multiple language

tasks. These models are being deployed as services on platforms like Google Cloud and

Amazon AWS to serve millions of users.

While this growth is commendable, there are concerns about the fairness of these models.

This chapter was based in part on Nadeem et al. (2020a).
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Choose the appropriate word:

Domain: Gender Target: Girl

Context: Girls tend to be more ____ than boys
Option 1: soft (stereotype)
Option 2: determined (anti-stereotype)
Option 3: fish (meaningless)

(a) The Intrasentence Context Association Test

Choose the appropriate sentence:

Domain: Race Target: Arab

Context: He is an Arab from the Middle East.
Option 1: He is probably a terrorist with bombs.
(stereotype)
Option 2: He is a pacifist. (anti-stereotype)
Option 3: My dog wants a walk. (meaningless)

(b) The Intersentence Context Association Test

Figure 4-1: Context Association Tests (CATs) measure both bias and language modeling
ability of language models.

Since pretrained representations are obtained from learning on massive text corpora, there is

a danger that stereotypical biases in the real world are reflected in these models. For example,

GPT2 (Radford et al., 2019b) has shown to generate unpleasant stereotypical text when

prompted with context containing certain races such as African-Americans (Sheng et al.,

2019). In this chapter, we assess the stereotypical biases of popular pretrained language

models. We define a stereotype to be an over-generalized belief about a particular group of

people, e.g., Asians are good at math.

The seminal works of Bolukbasi et al. (2016) and Caliskan et al. (2017) show that word

embeddings such as word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014)

contain stereotypical biases using diagnostic methods like word analogies and association

tests. For example, Caliskan et al. show that male names are more likely to be associated

with career terms than female names where the association is measured using embedding

similarity.

Recently, studies have attempted to evaluate bias in contextual word embeddings where

a word is provided with artificial context (May et al., 2019; Kurita et al., 2019), e.g., the
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contextual embedding of man is obtained from the embedding of man in the sentence This

is a man. However, these have a few limitations. First, the context does not reflect the

natural usage of a word. Second, they require stereotypical attribute terms to be predefined

(e.g., pleasant and unpleasant terms). Third, they focus on single word terms and attributes

and ignore multiword terms like construction worker. Lastly, they study bias of a model

independent of its language modeling ability which could lead to misleading trust on a

model even if it is a poor language model.

In this chapter, we propose methods to evaluate stereotypical bias of pretrained language

models. These methods do not have the aforementioned limitations. Specifically, we design

two different association tests, one for measuring bias at sentence level (intrasentence), and

the other at discourse level (intersentence) as shown in Figure 4-1.. In these tests, each target

term (e.g., Arab) is provided with a natural context in which it appears, along with three

possible associative contexts. The associative contexts help us to evaluate the biases of the

model, as well as measure its language modeling performance. We crowdsource StereoSet,

a dataset for associative contexts in English containing 4 target domains, 321 target terms

and 16,995 test instances (triplets).

4.2 Task Formulation

We design our formulation around the desiderata of an ideal language model. An ideal

language model should be able to perform the task of language modeling, i.e., it should

rank meaningful contexts higher than meaningless contexts. For example, it should tell us

that Our housekeeper is a Mexican is more probable than Our housekeeper is a banana.

Second, it should not exhibit stereotypical bias, i.e., it should avoid ranking stereotypical

contexts higher than anti-stereotypical contexts, e.g., Our housekeeper is a Mexican and Our

housekeeper is an American should be equally possible. We desire equally possible instead

of anti-stereotype over stereotype because any kind of overgeneralized belief is known

to hurt target groups (Czopp et al., 2015). If the model consistently prefers stereotypes

over anti-stereotypes, we can say that the model exhibits stereotypical bias. An alternative

approach would be to rank a neutral context higher over stereotypical or anti-stereotypical
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context. In practice, we found that collecting neutral contexts are prone to implicit biases

and has low inter-annotator agreement (Section 4.4).

Based on these observations, we develop the Context Association Test (CAT), a test

that measures the language modeling ability as well as the stereotypical bias of pretrained

language models. Although language modeling has standard evaluation metrics such as

perplexity, due to varying vocabulary sizes of different pretrained models, this metric

becomes incomparable across models. In order to analyse the relationship between language

modeling ability and stereotypical bias, we define a simple metric that is appropriate for our

task. Evaluating the full language modeling ability of models is beyond the scope of this

work.

In CAT, given a context containing a target group (e.g., housekeeper), we provide

three different ways to instantiate this context. Each instantiation corresponds to either

a stereotypical, anti-stereotypical, or a meaningless association. The stereotypical and

anti-stereotypical associations are used to measure stereotypical bias, and the meaningless

association is used to measure language modeling ability.

Specifically, we design two types of association tests, intrasentence and intersentence

CATs, to assess language modeling and stereotypical bias at sentence level and discourse

level. Figure 4-1 shows an example for each.

4.2.1 Intrasentence

Our intrasentence task measures the bias and the language modeling ability at sentence-level.

We create a fill-in-the-blank style context sentence describing the target group, and a set of

three attributes, which correspond to a stereotype, an anti-stereotype, and a meaningless

option (Figure 4-1a). In order to measure language modeling and stereotypical bias, we

determine which attribute has the greatest likelihood of filling the blank, i.e., which of the

instantiated contexts is more likely.
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4.2.2 Intersentence

Our intersentence task measures the bias and the language modeling ability at the discourse-

level. The first sentence contains the target group, and the second sentence contains an

attribute of the target group. Figure 4-1b shows the intersentence task. We create a

context sentence with a target group that can be succeeded with three attribute sentences

corresponding to a stereotype, an anti-stereotype and a meaningless option. We measure the

bias and language modeling ability based on which attribute sentence is likely to follow the

context sentence.

4.3 Related Work

Our work is inspired from related attempts that aim to measure bias in pretrained representa-

tions such as word embeddings and language models.

4.3.1 Bias in word embeddings

The two popular methods of testing bias in word embeddings are word analogy tests and

word association tests. In word analogy tests, given two words in a certain syntactic or

semantic relation (man → king), the goal is generate a word that is in similar relation to a

given word (woman → queen). Mikolov et al. (2013) showed that word embeddings capture

syntactic and semantic word analogies, e.g., gender, morphology etc. Bolukbasi et al. (2016)

build on this observation to study gender bias. They show that word embeddings capture

several undesired gender biases (semantic relations) e.g. doctor : man :: woman : nurse.

Manzini et al. (2019) extend this to show that word embeddings capture several stereotypical

biases such as racial and religious biases.

In the word embedding association test (WEAT, Caliskan et al. 2017), the association

of two complementary classes of words, e.g., European and African names, with two other

complementary classes of attributes that indicate bias, e.g., pleasant and unpleasant attributes,

are studied to quantify the bias. The bias is defined as the difference in the degree with

which European names are associated with pleasant and unpleasant attributes in comparison
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with African names being associated with those attributes. Here, the association is defined

as the similarity between the name and attribute word embeddings. This is the first large

scale study that showed word embeddings exhibit several stereotypical biases and not just

gender bias. Our inspiration for CAT comes from WEAT.

4.3.2 Bias in pretrained language models

May et al. (2019) extend WEAT to sentence encoders, calling it the Sentence Encoder

Association Test (SEAT). For a target term and its attribute, they create artificial sentences

using generic context of the form "This is [target]." and "They are [attribute]." and obtain

contextual word embeddings of the target and the attribute terms. They repeat Caliskan et al.

(2017)’s study using these embeddings and cosine similarity as the association metric but

their study was inconclusive. Later, Kurita et al. (2019) show that cosine similarity is not

the best association metric and define a new association metric based on the probability of

predicting an attribute given the target in generic sentential context, e.g., [target] is [mask],

where [mask] is the attribute. They show that similar observations of Caliskan et al. (2017)

are observed on contextual word embeddings too. We also go beyond intrasentence to

propose intersentence CATs, since language modeling is not limited at sentence level.

4.3.3 Measuring bias through extrinsic tasks

Another method to evaluate bias in pretrained representations is to measure bias on extrinsic

tasks like coreference resolution (Rudinger et al., 2018; Zhao et al., 2018) and sentiment

analysis (Kiritchenko and Mohammad, 2018). This method fine-tunes pretrained repre-

sentations on the target task. The bias in pretrained representations is estimated by the

target task’s performance. However, it is hard to segregate the bias of task-specific training

data from the pretrained representations. Our CATs are an intrinsic way to evaluate bias in

pretrained models.
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4.4 Dataset Creation

In StereoSet, we select four domains as the target domains of interest for measuring bias:

gender, profession, race and religion. For each domain, we select terms (e.g., Asian)

that represent a social group. For collecting target term contexts and their associative

contexts, we employ crowdworkers via Amazon Mechanical Turk.1 We restrict ourselves to

crowdworkers in USA since stereotypes could change based on the country. Table 4.1 shows

the overall statistics of StereoSet. We also provide a full data statement in Appendix B.1

(Bender and Friedman, 2018).

4.4.1 Target terms selection

We curate diverse set of target terms for the target domains using Wikidata relation triples

(Vrandečić and Krötzsch, 2014). A Wikidata triple is of the form <subject, relation, object>

(e.g., <Brad Pitt, P106, Actor>). We collect all objects occurring with the relations P106

(profession), P172 (race), and P140 (religion) as the target terms. We manually filter terms

that are either infrequent or too fine-grained (assistant producer is merged with producer).

We collect gender terms from Nosek et al. (2002). A list of target terms is available in

Appendix B.2.2.

4.4.2 CATs collection

In the intrasentence CAT, for each target term, a crowdworker writes attribute terms that

correspond to stereotypical, anti-stereotypical and meaningless associations of the target

term. Then, they provide a context sentence containing the target term. The context is a

fill-in-the-blank sentence, where the blank can be filled either by the stereotype term or the

anti-stereotype term but not the meaningless term.

In the intersentence CAT, they first provide a sentence containing the target term. Then,

they provide three associative sentences corresponding to stereotypical, anti-stereotypical

and meaningless associations. These associative sentences are such that the stereotypical

1Screenshots of our Mechanical Turk interface and details about task setup are available in the Ap-
pendix B.1.
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and the anti-stereotypical sentences can follow the target term sentence but the meaningless

ones cannot follow the target term sentence.

We also experimented with a variant that asked crowdworkers to provide a neutral

association for the target term, but found that crowdworkers had significant trouble remaining

neutral. In the validation step (next section), we found that many of these neutral associations

are often classified as stereotype or anti-stereotype by multiple validators. We conjecture

that attaining neutrality is hard is due to anchoring bias (Tversky and Kahneman, 1974),

i.e., stereotypical associations are easy to think and access and could implicitly affect

crowdworkers to tilt towards them. Therefore, we discard the notion of neutrality. Some

examples are shown in Appendix B.2.6.

4.4.3 CATs validation

In order to ensure that stereotypes reflect common views, we validate the data collected in

the above step with additional workers. For each context and its associations, we ask five

validators to classify each association into a stereotype, an anti-stereotype or a meaningless

association. We only retain CATs where at least three validators agree on the labels.

This filtering results in selecting 83% of the CATs, indicating that there is regularity in

stereotypical views among the workers.

4.4.4 Dataset analysis

Are people prone to view stereotypes negatively? To answer this question, we classify

stereotypes into positive and negative sentiment classes using a two-class sentiment classifier

(details in Appendix B.2.4). As evident in Table 4.2, people do not always associate

stereotypes with negative associations (e.g., Asians are good at math has positive sentiment).

However, people associate stereotypes with relatively more negative associations than

anti-stereotypes (41% vs. 33%).

We also extract keywords in StereoSet to analyze which words are most commonly

associated with the target groups. We define a keyword as a word that is relatively frequent

in StereoSet compared to the natural distribution of words (Kilgarriff, 2009; Jakubicek et al.,
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Domain # Target # CATs Avg Len
Terms (triplets) (# words)

Intrasentence

Gender 40 1,026 7.98
Profession 120 3,208 8.30
Race 149 3,996 7.63
Religion 12 623 8.18
Total 321 8,498 8.02

Intersentence

Gender 40 996 15.55
Profession 120 3,269 16.05
Race 149 3,989 14.98
Religion 12 604 14.99
Total 321 8,497 15.39

Overall 321 16,995 11.70

Table 4.1: Statistics of StereoSet’s dataset show the data distribution between genders,
professions, races, and religions.

Positive Negative

Stereotype 59% 41%
Anti-Stereotype 67% 33%

Table 4.2: Percentage of positive and negative sentiment instances in StereoSet.

2013). Table 4.3 shows the top keywords of each domain. These keywords indicate that

target terms in gender and race are associated with physical attributes such as beautiful,

feminine, masculine, etc., professional terms are associated with behavioural attributes such

as pushy, greedy, hardwork, etc., and religious terms are associated with belief attributes

such as diety, forgiving, reborn, etc. This falls in line with our expectations and indicates

that multiple annotators use similar attributes.

4.5 Experimental Setup

In this section, we describe the data splits, evaluation metrics and the baselines.
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Gender

stepchild masculine bossy ma
uncare breadwinner immature naggy
feminine rowdy possessive manly
polite studious homemaker burly

Profession

nerdy uneducated bossy hardwork
pushy unintelligent studious dumb
rude snobby greedy sloppy
disorganize talkative uptight dishonest

Race

poor beautiful uneducated smelly
snobby immigrate wartorn rude
industrious wealthy dangerous accent
impoverish lazy turban scammer

Religion

commandment hinduism savior hijab
judgmental diety peaceful unholy
classist forgiving terrorist reborn
atheist monotheistic coworker devout

Table 4.3: The frequent keywords that characterize each domain.

4.5.1 Development and test sets

We split StereoSet based on the target terms: 25% of the target terms and their instances for

the development set and 75% for the hidden test set. We ensure terms in the development

set and test set are disjoint. We do not have a training set since this defeats the purpose of

StereoSet, which is to measure the biases of pretrained language models (and not the models

fine-tuned on StereoSet).

4.5.2 Evaluation Metrics

Our desiderata of an ideal language model is that it excels at language modeling while

not exhibiting stereotypical biases. In order to determine success at both these goals, we

evaluate both language modeling and stereotypical bias of a given model. We pose both

problems as ranking problems.

Language Modeling Score (lms) In the language modeling case, given a target term con-

text and two possible associations of the context, one meaningful and the other meaningless,

the model has to rank the meaningful association higher than meaningless association. The
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meaningful association corresponds to either the stereotype or the anti-stereotype option.

We define the language modeling score (𝑙𝑚𝑠) of a target term as the percentage of

instances in which a language model prefers the meaningful over meaningless association.

We define the overall 𝑙𝑚𝑠 of a dataset as the average 𝑙𝑚𝑠 of the target terms in the split.

The 𝑙𝑚𝑠 of an ideal language model is 100, i.e., for every target term in a dataset, the model

always prefers the meaningful association of the term.

As discussed in Section 4.2, the goal of this metric is not to evaluate the full scale

language modeling ability, but only to provide an reasonable metric that allows comparison

between different models to analyze the relationship between language modeling ability and

stereotypical bias.

Stereotype Score (ss) Similarly, we define the stereotype score (𝑠𝑠) of a target term as

the percentage of examples in which a model prefers a stereotypical association over an

anti-stereotypical association. We define the overall 𝑠𝑠 of a dataset as the average 𝑠𝑠 of the

target terms in the dataset. The 𝑠𝑠 of an ideal language model is 50, i.e., for every target

term, the model prefers neither stereotypical associations nor anti-stereotypical associations.

4.5.3 Baselines

IDEALLM We define this model as the one that always picks correct associations for a

given target term context. It also picks equal number of stereotypical and anti-stereotypical

associations over all the target terms. So the resulting 𝑙𝑚𝑠 and 𝑠𝑠 scores are 100 and 50

respectively.

STEREOTYPEDLM We define this model as the one that always picks a stereotypical

association over an anti-stereotypical association. So its 𝑠𝑠 is 100 irrespective of its 𝑙𝑚𝑠.

RANDOMLM We define this model as the one that picks associations randomly, and

therefore its 𝑙𝑚𝑠 and 𝑠𝑠 scores are both 50.
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SENTIMENTLM In Section 4.4.4, we saw that stereotypical instantiations are more

frequently associated with negative sentiment than anti-stereotypes. In this baseline, we

assess if sentiment can be used to detect a stereotypical association. For a given a pair

of context associations, the model always picks the association with the most negative

sentiment.

4.6 Main Experiments

In this section, we evaluate popular pretrained models such as BERT (Devlin et al., 2019b),

ROBERTA (Liu et al., 2019), XLNET (Yang et al., 2019) and GPT2 (Radford et al., 2019b)

on StereoSet.

4.6.1 BERT

In the intrasentence CAT (Figure 4-1a), the goal is to fill the blank of a target term’s context

sentence with an attribute term. This is a natural task for BERT since it is pretrained in a

similar fashion. We use BERT to compute the log probability of an attribute term filling the

blank. If the term consists of multiple subwords, in order to compute a subword’s probability,

we unmask all its left subwords, and compute the average log probability over all subwords.

We rank a given pair of attribute terms based on these probabilities.

For intersentence CAT (Figure 4-1b), the goal is to select a follow-up attribute sentence

given the target term sentence. This is similar to the next sentence prediction (NSP) task of

BERT. While BERT includes a pre-trained NSP head, the other models do not. In order

to provide a consistent experimental setup between models, we train a classification head

ourselves on common data (details in Appendix B.2.3). Resultingly, any differences in

results between models will be due to the representational differences of the original models.

Our NSP classification head achieves an accuracy of 97.2% using BERT-base, and 97.9%

using BERT-large. Finally, given a pair of attribute sentences, we rank them based on the

probability of an attribute sentence to follow a target term sentence.
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4.6.2 ROBERTA

Since ROBERTA is based off of BERT, the corresponding scoring mechanism remains

remarkably similar. Similar to BERT, we pretrain a NSP classification head (details in

Appendix B.2.3). Our NSP classification head achieves a 94.6% accuracy with ROBERTA-

base, and a 97.1% accuracy with ROBERTA-large on a held-out test set.2 We follow the

same ranking procedure as BERT for both intrasentence and intersentence CATs.

4.6.3 XLNET

For the intrasentence CAT, we use the pretrained XLNET model. For the intersentence CAT,

we train an NSP head (Appendix B.2.3) which obtains a 93.4% accuracy with XLNET-base

and 94.1% accuracy with XLNET-large.

4.6.4 GPT2

Unlike above models, GPT2 is a generative model in an auto-regressive setting. For

the intrasentence CAT, we instantiate the blank with an attribute term and compute the

probability of the full sentence. Given a pair of associations, we rank each association

using this score. For the intersentence CAT, we train a NSP classification head on the

mean-pooled representation (Appendix B.2.3). Our NSP classifier obtains a 92.5% accuracy

with GPT2-small, 94.2% with GPT2-medium, and 96.1% with GPT2-large.

4.7 Results and Discussion

Table 4.4 shows the overall results of baselines and models on StereoSet test set (development

results are in Appendix B.2.1). The results exhibit similar trends on the development and

test sets.

Baselines vs. Models As seen in Table 4.4, all pretrained models have higher 𝑙𝑚𝑠 values

than RANDOMLM indicating that these are better language models as expected. Among
2For reference, BERT-base obtains an accuracy of 97.8%, and BERT-large obtains an accuracy of 98.5%.

Our test set consists of 3.5M Wikipedia sentence pairs.
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Model Language Stereotype
Model Score Score (𝑠𝑠)
(𝑙𝑚𝑠)

Test set

IDEALLM 100 50.0
STEREOTYPEDLM - 100
RANDOMLM 50.0 50.0
SENTIMENTLM 65.1 60.8

BERT-base 86.4 60.4
BERT-large 86.5 59.3

ROBERTA-base 68.2 50.5
ROBERTA-large 75.8 54.8

XLNET-base 67.7 54.1
XLNET-large 78.2 54.0

GPT2 83.6 56.4
GPT2-medium 85.9 58.2
GPT2-large 88.3 60.1

ENSEMBLE 90.5 62.5

Table 4.4: Performance of pretrained language models on the StereoSet test set.

models, GPT2-large is the best performing language model (88.3) followed by GPT2-

medium (85.9).

Coming to stereotypical bias, all pretrained models demonstrate more stereotypical

behavior than RANDOMLM. While GPT2-large is the most stereotypical model of all

pretrained models (60.1), ROBERTA-base is the least stereotypical model (50.5). SEN-

TIMENTLM achieves the highest stereotypical score compared to all pretrained models,

indicating that sentiment can indeed be exploited to detect stereotypical associations. How-

ever, its language model performance is worse, which is expected, since sentiment alone

isn’t sufficient to distinguish meaningful and meaningless sentences.

Relation between lms and ss All models exhibit a strong correlation between 𝑙𝑚𝑠 and

𝑠𝑠. As the language model becomes stronger, its stereotypical bias (𝑠𝑠) does too. We build

the strongest language model, ENSEMBLE, using a linear weighted combination of BERT-

large, GPT2-medium, and GPT2-large, which is also found to be the most biased model
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Domain Language Stereotype
Model Score Score (𝑠𝑠)
(𝑙𝑚𝑠)

GENDER 92.4 63.9
mother 97.2 77.8
grandfather 96.2 52.8

PROFESSION 88.8 62.6
software developer 94.0 75.9
producer 91.7 53.7

RACE 91.2 61.8
African 91.8 74.5
Crimean 93.3 50.0

RELIGION 93.5 63.8
Bible 85.0 66.0
Muslim 94.8 46.6

Table 4.5: Domain-wise results of the ENSEMBLE model, along with most and least stereo-
typed terms per domain.

(𝑠𝑠 = 62.5). The correlation between 𝑙𝑚𝑠 and 𝑠𝑠 is unfortunate and perhaps unavoidable

as long as we rely on the real world distribution of corpora to train language models since

these corpora are likely to reflect stereotypes (unless carefully selected).

Impact of model size For a given architecture, all of its pretrained models are trained on

the same corpora but with different number of parameters. For example, both BERT-base

and BERT-large are trained on Wikipedia and BookCorpus (Zhu et al., 2015b) with 110M

and 340M parameters respectively. As the model size increases, we see that its language

modeling ability (𝑙𝑚𝑠) increases, and correspondingly its stereotypical score.

Impact of pretraining corpora BERT, ROBERTA, XLNET and GPT2 are trained on

16GB, 160GB, 158GB and 40GB of text corpora. Surprisingly, the corpora size does not

correlate with either 𝑙𝑚𝑠 or 𝑠𝑠. This could be due to the differences in architectures and

corpora types. A better way to verify this would be to train the same model on increasing

amounts of corpora. Due to lack of computing resources, we leave this work for the

community. We conjecture that the high performance of GPT2 (high 𝑙𝑚𝑠 and low 𝑠𝑠) is due

to the nature of its training data. GPT2 is trained on documents linked from Reddit. Since
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Reddit is moderated and has several subreddits related to target terms in StereoSet (e.g.,

relationships, religion), GPT2 is likely to be exposed to unbiased contextual associations.

Domain-wise bias Table 4.5 shows domain-wise results of the ENSEMBLE model on the

test set. The model is relatively less biased on race than on others (𝑠𝑠 = 61.8). We also

show the most and least biased target terms for each domain from the development set. We

conjecture that the most biased terms are the ones that have well established stereotypes in

society and are also frequent in language. This is the case with mother (attributes: caring,

cooking), software developer (attributes: geek, nerd), and Africa (attributes: poor, dark).

The least biased are the ones that do not have well established stereotypes, for example,

producer and Crimean. The outlier to this observation is Muslim which we requires further

investigation.

Intrasentence vs Intersentence CATs Table 4.6 shows the results of intrasentence and

intersentence CATs on the test set. Since intersentence tasks has more number of words per

instance, we expect intersentence language modeling task to be harder than intrasentence.

This is the case with most models (except BERT).

Which model to choose? StereoSet motivates a question around how practitioners should

prefer models for real-world deployment. Just because a model has low stereotypical bias

does not mean it is preferred over others. For example, although RANDOMLM exhibits the

lowest stereotypical bias (𝑠𝑠 = 50) it is the worst language model (𝑙𝑚𝑠 = 50). While model

selection desiderata is often task-specific, we introduce a simple point-estimate called the

idealized CAT (𝑖𝑐𝑎𝑡) score for model comparison assuming equal importance to language

modeling ability and stereotypical bias. We define the 𝑖𝑐𝑎𝑡 score as 𝑙𝑚𝑠 * 𝑚𝑖𝑛(𝑠𝑠,100−𝑠𝑠)
50

centered around the idea that an ideal language model has an 𝑖𝑐𝑎𝑡 score of 100 and a

stereotyped model has a score of 0. Appendix B.2.7 presents a detailed formulation. Among

the models, GPT2 exhibits more unbiased behavior than other models (𝑖𝑐𝑎𝑡 score of 73.0 as

shown in Table B.2 of Appendix B.2.7). This metric is not intended to be used as the sole

criteria for model selection. Further research is required in designing better metrics.
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4.8 Chapter Summary

In this chapter, we study how language models could learn harmful facts during the training

procedure. We develop the Context Association Test (CAT) to measure the stereotypical

biases of pretrained language models in contrast with their language modeling ability. We

crowdsource StereoSet, a dataset containing 16,995 CATs to test biases in four domains:

gender, profession, race and religion. We show that current pretrained language models

exhibit strong stereotypical biases. We also find that language modeling ability correlates

with the degree of stereotypical bias. This dependence has to be broken if we are to achieve

unbiased language models. We hope that StereoSet will spur further research in evaluating

and mitigating bias in language models.
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Model Language Stereotype
Model Score Score (𝑠𝑠)
(𝑙𝑚𝑠)

Intrasentence Task

BERT-base 82.5 57.5
BERT-large 82.9 57.6

ROBERTA-base 71.9 53.6
ROBERTA-large 72.7 54.4

XLNET-base 70.3 53.6
XLNET-large 74.0 51.8

GPT2 91.0 60.4
GPT2-medium 91.2 62.9
GPT2-large 91.8 63.9

ENSEMBLE 91.7 63.9

Intersentence Task

BERT-base 88.3 61.7
BERT-large 90.0 60.6

ROBERTA-base 64.4 47.4
ROBERTA-large 78.8 55.2

XLNET-base-cased 65.0 54.6
XLNET-large-cased 82.5 56.1

GPT2 76.3 52.3
GPT2-medium 80.5 53.5
GPT2-large 84.9 56.1

ENSEMBLE 89.4 60.9

Table 4.6: Performance on the Intersentence and Intrasentence CATs on the StereoSet test
set.
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Chapter 5

Sampling Algorithms for Language

Generation

“In God we trust. All others must bring data.“

- W. Edwards Deming

5.1 Introduction

While our previous chapters have studied how language models may store facts in their pa-

rameters, we have not studied how a sampling algorithm may affect generation performance,

and thereby factuality. In this chapter, we focus on examining the role of the sampling

algorithm for such tasks.

Given a trained LM, finding the best way to generate a sample from it has been an

important challenge for NLG applications. Decoding, i.e., finding the most probable output

sequence from a trained model, is a natural principle for generation. The beam-search

decoding algorithm approximately finds the most likely sequence by performing breadth-

first search over a restricted search space. It has achieved success in machine translation,

summarization, image captioning, and other subfields.

However, in the task of open-ended language generation (which is the focus of this

This chapter was based in part on Nadeem et al. (2020b).
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Figure 5-1: Human evaluation (y-axis: quality, x-axis: diversity, both are the bigger the
better) shows that the generation performance of existing sampling algorithms are on par
with each other.

work), a significant degree of diversity is required. For example, conditioned on the prompt

“The news says that ...”, the LM is expected to be able to generate a wide range

of interesting continuations. While the deterministic behavior of decoding algorithms could

give high-quality samples, they suffer from a serious lack of diversity.

This need for diversity gives rise to a wide adoption of various sampling algorithms.

Notably, top-𝑘 sampling (Fan et al., 2018), nucleus sampling (Holtzman et al., 2020),

and tempered sampling (Caccia et al., 2020) have been used in open-ended generation

(Radford et al., 2018; Caccia et al., 2020), story generation (Fan et al., 2018), and dialogue

response generation (Zhang et al., 2020b). However, the sampling algorithm and the

hyperparameter are usually chosen via heuristics, and a comprehensive comparison between

existing sampling algorithm is lacking in the literature. More importantly, the underlying
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reasons behind the success of the existing sampling algorithms still remains poorly

understood.

In this chapter, we begin by using the quality-diversity (Q-D) trade-off (Caccia et al.,

2020) to compare the three existing sampling algorithms. For automatic metrics, we use the

BLEU score for quality and n-gram entropy for diversity. We also correlate these automatic

metrics with human judgements. The first observation we draw is that top-𝑘 , nucleus and

tempered sampling perform on par in the Q-D trade-off, as shown in Figure 5-1. Motivated

by this result, we extract three key properties by inspecting the transformations defined

by the sampling algorithms: (1) entropy reduction, (2) order preservation and (3) slope

preservation. We prove all three properties hold for the three existing sampling algorithms.

We then set out to systematically validate the importance of the identified properties.

To do so, we design two sets of new sampling algorithms in which each algorithm either

violates one of the identified properties, or satisfies all properties. Using the Q-D trade-off,

we compare their efficacy against existing algorithms, and find that violating these identified

properties could result in significant performance degradation. More interestingly, we find

that the set of sampling algorithms that satisfies these properties has generation performance

that matches the performance of existing sampling algorithms.

5.2 Sampling Algorithms for

Autoregressive Language Models

5.2.1 Autoregressive Language Modeling

The task of autoregressive language modeling is to learn the probability distribution of the

(𝑙+1)-th word 𝑊𝑙+1 in a sentence 𝑊 conditioned on the word history 𝑊1:𝑙 := (𝑊1, . . . ,𝑊𝑙)

and context 𝐶. Here, we use 𝑊𝑖 ∈ 𝑉 to denote a discrete random variable distributed

across a fixed vocabulary 𝑉 . In this work, the vocabulary is constructed on sub-word level

(Sennrich et al., 2016).

Given a training set 𝐷, maximum likelihood estimation (MLE) has been the most popular

framework to train an autoregressive LM (Mikolov et al., 2010). MLE training minimizes
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the negative log-likelihood (NLL) objective below:

𝐿MLE =
1

|𝐷|
∑︁

(𝑊,𝐶)∈𝐷

−Σ𝐿−1
𝑙=0 log𝑃𝜃(𝑊𝑙+1|𝑊1:𝑙, 𝐶), (5.1)

where 𝜃 denotes model parameters, and 𝑃𝜃(· | 𝑊1:𝑙) denotes the conditional model distri-

bution of 𝑊𝑙+1 given a prefix 𝑊1:𝑙. For simplicity, we assume all sentences are of length

𝐿 in the formulations. Since this work focuses on sampling from a given model instead of

training it, in the rest of the paper, we abbreviate 𝑃𝜃(·) as 𝑃 (·) for brevity.

5.2.2 Existing Sampling Algorithms

Given a trained LM and a context 𝐶, an ancestral sampling algorithm seeks to generate

a sequence from 𝑃 (𝑊 |𝐶) by sampling token-by-token from a transformed version of

𝑃 (𝑊𝑙+1|𝑊1..𝑙, 𝐶). We now review and formulate three popular sampling algorithms: top-𝑘

(Fan et al., 2018), nucleus (Holtzman et al., 2020), and tempered (Ackley et al., 1985; Caccia

et al., 2020) sampling.

We view these algorithms as different transformations applied to the distribution 𝑃 (𝑊𝑙+1|𝑊1..𝑙, 𝐶).

First, we treat the conditional distribution 𝑃 (𝑊𝑙+1|𝑊1..𝑙, 𝐶) as a sorted vector 𝑝 of length

|𝑉 |. By sorting, we rearrange the elements such that if 𝑖 < 𝑗 → 𝑝𝑖 >= 𝑝𝑗 .1 We list the

transformations and their intuition below:

Definition 5.2.1. (Top-𝑘) In top-𝑘 sampling, we only sample from the top 𝐾 tokens:

𝑝𝑖 =
𝑝𝑖 · 1{𝑖 ≤ 𝐾}∑︀𝐾

𝑗=1 𝑝𝑗
, (5.2)

where 1 is the indicator function, and 𝐾 (1 ≤ 𝐾 ≤ |𝑉 |) is the hyperparameter.

Definition 5.2.2. (Nucleus) With a hyperparameter 𝑃 (0 < 𝑃 ≤ 1), in nucleus sampling,

we sample from the top-𝑃 mass of 𝑝:

𝑝𝑖 =
𝑝′𝑖∑︀|𝑉 |
𝑗=1 𝑝

′
𝑗

, (5.3)

1The token indexes are also permutated accordingly.
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where 𝑝′𝑖 = 𝑝𝑖 · 1{
∑︀𝑖−1

𝑗=1 𝑝𝑗 < 𝑃}.

Definition 5.2.3. (Tempered) In tempered sampling, the log probabilities are scaled by 1
𝑇

:

𝑝𝑖 =
exp(log(𝑝𝑖)/𝑇 )∑︀|𝑉 |
𝑗=1 exp(log(𝑝𝑗)/𝑇 )

. (5.4)

In this work, we assume 0 < 𝑇 < 1, i.e., the distribution is only made sharper2.

We additionally experiment with a combined version of top-𝑘 and tempered sampling:

Definition 5.2.4. (Tempered Top-𝑘) We combine the transformation defined by top-𝑘 and

tempered sampling:

𝑝𝑖 =
𝑝′𝑖∑︀|𝑉 |
𝑗=1 𝑝

′
𝑗

, (5.5)

where 𝑝′𝑖 = exp(log(𝑝𝑖)/𝑇 ) · 1{𝑖 ≤ 𝐾}. We set 1 ≤ 𝐾 ≤ |𝑉 | and 0 < 𝑇 < 1.

Throughout this work we use 𝑝 to denote the normalized version of the transformed

distribution. All algorithms have hyperparameters to control the entropy of the transformed

distribution. For example, 𝐾 in top-𝑘 sampling controls the size of the support of the

resulting distribution. We will formalize this statement in Property 1 below.

5.3 Properties of Sampling Algorithms

As we will show in Section 5.5.1 (also Figure 5-1), top-𝑘, nucleus and tempered sampling

perform on par with each other under our evaluation. This key observation makes us

question: What are the core principles underlying the different algorithms that lead to their

similar performance?

To answer this question, in this section, we identify three core properties that are provably

shared by the existing sampling algorithms. We then design experiments to validate their

importance.

2One could also use 𝑇 > 1, but it does not work well in practice.
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5.3.1 Identifying Core Properties

By inspecting the transformations listed in Definition 5.2.1, 5.2.2 and 5.2.3, we extract the

following three properties:

Property 1. (Entropy Reduction): The transformation strictly decrease the entropy of the

distribution. Formally, ℋ(𝑝) < ℋ(𝑝), where ℋ(𝑝) = −
∑︀|𝑉 |

𝑖=1 𝑝𝑖 log 𝑝𝑖.

Property 2. (Order Preservation): The order of the elements in the distribution is pre-

served. Formally, 𝑝𝑖 ≥ 𝑝𝑗 → 𝑝𝑖 ≥ 𝑝𝑗 .

Property 3. (Slope Preservation): The “slope” of the distribution is preserved. Formally,

∀𝑝𝑖 > 𝑝𝑗 > 𝑝𝑘 > 0 (i.e., they are not truncated), we have log 𝑝𝑖−log 𝑝𝑗
log 𝑝𝑗−log 𝑝𝑘

=
log 𝑝𝑖−log 𝑝𝑗
log 𝑝𝑗−log 𝑝𝑘

.

The order preservation property implies that truncation can only happen in the tail of the

distribution, which aligns with top-𝑘 and nucleus sampling. The slope preservation property

is stronger than the order preservation property in that not only the ordering, but also the

relative magnitude of the elements in the distribution needs to be somewhat preserved by

the transformation.

All these three properties are shared by the three existing sampling algorithms:

Proposition 1. Property 1, 2 and 3 hold for the top-𝑘, nucleus and tempered sampling

transformations formulated in Definitions 5.2.1, 5.2.2 and 5.2.3.

Proof. See Appendix A.2.

We then set out to validate the importance of these identified properties in the aspects of

necessity and sufficiency. To do so, we design two sets of new sampling algorithms in which

each algorithm either violates one of the identified properties, or satisfies all properties. We

list them in the next section.

5.3.2 Designed Sampling Algorithms

Property-violating algorithms To validate the necessity of each property, we design

several sampling algorithms which violate at least one of the identified properties. In
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our experiments, we check whether that violation leads to a significant degradation in

performance. We list them below:

Definition 5.3.1. (Target Entropy) Based on tempered sampling, target entropy sampling

tunes the temperature 𝑡 such that the transformed distribution has entropy value equal to the

hyperparameter 𝐸 (0 < 𝐸 ≤ log |𝑉 |). We formulate it below:

𝑝𝑖 =
exp(log(𝑝𝑖)/𝑡)∑︀|𝑉 |
𝑗=1 exp(log(𝑝𝑗)/𝑡)

, (5.6)

where 𝑡 is selected such that 𝐻(𝑝) = 𝐸.

Target entropy sampling violates entropy reduction, because when 𝐻(𝑝) < 𝐸, the

entropy will be tuned up (i.e., 𝐻(𝑝) > 𝐻(𝑝)).

Definition 5.3.2. (Random Mask) In random mask sampling, we randomly mask out

tokens in the distribution with rate 𝑅. We formluate it below:

𝑝𝑖 =
𝑝′𝑖∑︀|𝑉 |
𝑗=1 𝑝

′
𝑗

, (5.7)

where 𝑝′𝑖 = 𝑝𝑖 · 1{𝑖 = 1 or 𝑢𝑖 > 𝑅} and 𝑢𝑖 ∼ 𝑈(0, 1). The hyperparameter 𝑅 (0 < 𝑅 ≤ 1)

controls the size of the support of the resulting distribution. In Appendix A.1, we show it is

crucial that the token which is assigned the largest probability (𝑝1) is never be masked.

Random mask sampling is different from top-𝑘 or nucleus sampling in that the masking

not only happens in the tail of the distribution. Therefore, it violates the order preservation

property.

Definition 5.3.3. (Noised Top-𝑘) We add a sorted noise distribution to the result from top-

𝐾 transformation, and the weight of the noise distribution is controlled by a hyperparameter

𝑊 (0 ≤ 𝑊 ≤ 1). We formulate it below:

𝑝 = (1−𝑊 )𝑝top-K +𝑊𝑝noise-K, (5.8)

where 𝑝noise-K is a uniformly sampled sorted K-simplex, which satisfies
∑︀𝐾

𝑖=1 𝑝
noise-K
𝑖 = 1

and 𝑖 < 𝑗 → 𝑝noise-K
𝑖 ≥ 𝑝noise-K

𝑗 ≥ 0.
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The sorted nature of the noise distribution 𝑝noise-K maintains order preservation. However,

it violates slope preservation, and the noise weight 𝑊 controls the degree of the violation.

Property-satisfying algorithms To validate the sufficiency of the identified properties,

we design two new sampling algorithms for which all three properties hold. And in our

experiments we check whether their performance is on par with the existing sampling

algorithms. We list them below:

Definition 5.3.4. (Random Top-𝑘) We design a randomized version of top-𝑘 sampling: At

each time step, we sample a uniformly random float number 𝑢 ∼ 𝑈(0, 1), and use it to

specify a top-𝑘 truncation:

𝑝𝑖 =
𝑝𝑖 · 1{𝑖 ≤ 𝑘}∑︀𝑘

𝑗=1 𝑝𝑗
, (5.9)

where 𝑘 = ⌊1 +𝑀 · 𝑢⌋. The hyperparameter 𝑀 (1 ≤ 𝑀 < |𝑉 |) controls the maximum

truncation threshold.

Definition 5.3.5. (Max Entropy) Max entropy sampling is similar to target entropy sam-

pling (Definition 5.3.1). However to match entropy reduction (Property 1), we only tune the

temperature when ℋ(𝑝) > 𝐸, where 𝐸 is the hyperparameter (0 < 𝐸 ≤ log |𝑉 |):

𝑝𝑖 =

⎧⎪⎪⎨⎪⎪⎩
exp(log(𝑝𝑖)/𝑡)∑︀|𝑉 |

𝑗=1 exp(log(𝑝𝑗)/𝑡)
, if ℋ(𝑝) > 𝐸

𝑝𝑖, otherwise
, (5.10)

where 𝑡 is selected so that ℋ(𝑝) = 𝐸.

It is easy to prove that Property 1, 2, and 3 holds for the transformations defined by

random top-𝑘 and max entropy sampling, and we omit the proof for brevity.

5.4 Experiment Setup

In this section, we first establish evaluation protocols, and then describe the model and data

we use for the open-ended language generation task.
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5.4.1 Evaluation via the Q-D Trade-off

How to efficiently measure the generation performance of a NLG model has been an

important open question. Most existing metrics either measure the quality aspect (e.g.

BLEU score) or the diversity (e.g. n-gram entropy) aspect. To make the situation more

complicated, each sampling algorithm has its own hyperparameters which controls the

trade-off between quality and diversity.

To address the challenges above, we adopt the quality-diversity trade-off proposed by

Caccia et al. (2020). In the Q-D trade-off, we perform a fine-grained sweep of hyperpa-

rameters for each sampling algorithm, and compute the quality and diversity score for each

configuration. We report two pairs of Q/D metrics, with one pair using automatic evaluation

and the other using human evaluation. In the next two sections, we describe the metrics we

use, and refer readers to Caccia et al. (2020) for more intuition behind the Q-D trade-off.

Automatic Evaluation

For automatic metrics, we adopt the corpus-BLEU (Yu et al., 2016) metric to measure

quality and the self-BLEU (Zhu et al., 2018) metric to measure diversity. We formulate

them below.

Given a batch of generated sentences 𝑆gen and a batch of sentences from ground-truth

data as references 𝑆ref, corpus-BLEU returns the average BLEU score (Papineni et al., 2002)

of every model generated sentence against the reference set:

corpus-BLEU(𝑆gen, 𝑆ref) =
1

|𝑆gen|
∑︁

𝑊∈𝑆gen

BLEU(𝑊,𝑆ref). (5.11)

A higher corpus-BLEU score means that the generated sequences has better quality in that it

has higher ngram-level overlap with the reference data. Based on the same intuition, we

define the self-BLEU metric to quantify the diversity aspect:

self-BLEU(𝑆gen) = corpus-BLEU(𝑆gen, 𝑆gen), (5.12)

where a lower self-BLEU score means that the samples have better diversity.

In our experiments, we feed the first ten subwords of every sample from test set to

the model, and compare the model-generated sequences to the reference samples in the
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validation set. We use 10,000 samples to compute corpus-BLEU or self-BLEU, i.e., |𝑆gen| =

|𝑆ref| = 10, 000.

Automatic evaluation enables us to do a fine-grained sweep of the hyperparameters for

each sampling algorithm, and compare them in the quality-diversity trade-off. However,

observations from automatic evaluation could be misaligned with human evaluation (Belz

and Reiter, 2006). Therefore, we confirm our key observations with human evaluation.

Human Evaluation

Quality We ask a pool of 602 crowdworkers on Amazon Mechanical Turk to evaluate

various sampling configurations in the quality aspect. Each worker is presented a set of

ten samples along with the prompts (prefixes). They are then asked to rate how likely the

sentence would appear in a news article between 0 and 5 (Invalid, Confusing, Unspecific,

Average, Expected, and Very Expected respectively).

We focus on the Gigaword dataset for human evaluation since news articles are ubiqui-

tous and do not often require expert knowledge for quality judgement. For each configuration

(sampling algorithm and hyperparameter pair) we ask crowdworkers to rate 200 samples in

total. To get an accurate rating for each sample, we enlist 25 different crowdworkers to rate

each sample. We report mean and standard deviation from 5 independent runs (each with 40

samples) as error bar.

By manual inspection, we find that the time spent in the annotations is a good indicator

of the quality of the rating. Therefore, we estimate the human judgement score for a sample

as the average rating of the 20 crowdworkers (out of 25) who took the most time to rate the

samples. We provide further details about our setup in Appendix A.3 and A.4.

Diversity It is difficult for human annotators to estimate diversity of text Hashimoto et al.

(2019). Therefore, we use the n-gram entropy metric (Zhang et al., 2018; He and Glass,

2019) . Given 𝑆gen which contains a large number of samples, we measure its diversity using

the following formulation:

ℋ𝑛-gram(𝑆gen) =
∑︁
𝑔∈𝐺𝑛

−𝑟(𝑔) log 𝑟(𝑔), (5.13)
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where 𝐺𝑛 is the set of all n-grams that appeared in 𝑆gen, and 𝑟(𝑔) refers to the ratio (fre-

quency) of n-gram 𝑔 w.r.t. all n-grams in the 𝑆gen. For the estimation of n-gram entropy, we

generate 50,000 samples from each sampling configuration.

We will report human quality score either paired with n-gram entropy or with self-BLEU

as diversity metric. We find they give similar observations.

5.4.2 Model and Datasets

We separately fine-tune GPT2-small Radford et al. (2018); Wolf et al. (2019) (110M

parameters) on the Gigaword (Graff et al., 2003; Napoles et al., 2012) and the Wikitext-103

(Merity et al., 2017) datasets. We use the same tokenization as GPT-2, and add additional

padding and end-of-sequence tokens ([EOS]) to the sentences.

To generate a sequence, we feed a length-10 prefix from test data into the fine-tuned

GPT-2 model, and use a sampling algorithm to complete the sentence. Since shorter samples

are more difficult to judge in quality (Ippolito et al., 2020), we filter all generated sentence

completions to be between 40 and 50 subwords, and filter our validation and test set to meet

the same requirements. To permit validation and test sets that are large enough to prefix

10,000 sentences for the corpus-BLEU metric, we re-chunk the first 80% of the Gigaword

dataset for the training set, 15% for validation, and the last 5% for the test set. Similarly, we

re-chunk the first 97% of the Wikitext-103 dataset for training, and leave 1.5% for validation

and 1.5% for test.

5.5 Empirical Results

First, we compare existing sampling algorithms, and then move on to validate the necessity

and sufficiency of the identified properties.

5.5.1 Comparison of Existing Algorithms

We compare top-𝑘, nucleus, and tempered sampling via automatic and human evaluation. We

do a fine-grained sweep of hyperparameters for each sampling algorithm on the Gigaword
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Figure 5-2: The performance (x-axis: quality, y-axis: diversity, both are the smaller the
better) of top-𝑘, nucleus, tempered and tempered top-𝑘 sampling are on par on the Gigaword
dataset, as shown by automatic evaluation.
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Figure 5-3: Automatic evaluation of the noised top-𝑘, target entropy, and random mask
sampling proposed to validate the necessity of the identified properties. The results show
that violation of entropy reduction and slope preservation could lead to drastic performance
degradation, while the order preservation property could be further relaxed.

dataset. The results are shown in Figure 5-1 (human evaluation) and Figure 5-2 (automatic

evaluation). We also show the quality and diversity score for human text in the test data for

reference, which is labeled as gold.

Both automatic and human evaluations demonstrate that the performance of top-𝑘,

nucleus and tempered sampling are on par with each other, with no significant gap. When

the hyperparameters (𝐾, 𝑃 and 𝑇 ) are tuned so that different sampling has the same diversity

(measured by self-BLEU or n-gram entropy), their quality (measured by corpus-BLEU or

human rating) are close.

Additionally, we compare tempered top-𝑘 sampling with the existing algorithm also in

Figure 5-2. We find that adding the tempered transformation only moves top-𝑘 sampling

along the Q-D trade-off, instead of yielding a better or a worse sampling algorithm. For

example, the performance of the 𝐾 = 500, 𝑇 = 0.8 configuration for tempered top-𝑘

sampling is very close to the 𝐾 = 30 configuration for the top-𝑘 sampling.
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Motivated by these observations, we identify three core properties (elaborated in Section

5.3.1) that are shared among the sampling algorithms: entropy reduction, order preservation

and slope preservation. In the following two sections, we present experiments validating the

necessity or sufficiency aspect of the properties.

5.5.2 Property-violating Algorithms

In Figure 5-3, we compare the generation performance of the property-violating sampling

algorithms (designed in Section 5.3.2), against the existing algorithms using automatic

evaluation on the Gigaword dataset. We make the following observations: First, the target

entropy sampling, which violates entropy reduction, has significantly worse performance;

Second, even with small noise weight 𝑊 , the performance of noised top-𝑘 sampling degrades

from the original top-𝑘 sampling, and the gap becomes larger as 𝑊 increases; Last, the

random mask sampling is on par with the existing sampling algorithms in performance. We

further confirm this observation with human evaluation in Figure 5-5.

These results suggest that the violation of entropy reduction or slope preservation could

lead to drastic performance degradation. On the other hand, the competitive performance of

random mask sampling suggests that order preservation could be further relaxed.

In the next section, we investigate the sufficiency aspect of the identified properties.

5.5.3 Property-satisfying Algorithms

We now compare the generation performance of the property-satisfying sampling algorithms

(designed in Section 5.3.2) with the existing sampling algorithms. The results from the

Gigaword dataset are shown in Figure 5-3 (for automatic evaluation) and Figure 5-5 (for

human evaluation). For completeness, we also replicate Figure 5-5 with self-BLEU as the

diversity measure in Appendix A.6. We also present results from automatic evaluation on

the Wikitext-103 dataset in Figure 5-6, with consistent observations.

The evaluations consistently show that the performance of random top-𝑘 and max entropy

sampling (and random mask sampling in last section) is on par with top-𝑘, nucleus, and

tempered sampling. These results strengthen the importance of the identified properties in
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Sampling Conditional Samples
Existing Sampling Algorithms

Top-𝑘
(K = 30)

steven spielberg’s dreamworks movie studio said monday it was filing a lawsuit,
accusing us studio executives of defrauding hundreds of thousands of dollars in
refunds and other damages.

Nucleus
(P = 0.80)

steven spielberg’s dreamworks movie studio has failed to attract the kind of business
and development investors that jeffrey hutchinson dreamed up in the past.

Tempered
(T = 0.85)

steven spielberg’s dreamworks movie studio plans to spend the rest of the year pro-
ducing the high-speed thriller "the earth’s path" and an upcoming sequel, the studio
announced on wednesday.

Property-satisfying Sampling Algorithms
Random Top-
𝑘
(R = 90)

steven spielberg’s dreamworks movie studio is planning to make a movie about a
young man who is a <unk>, a man who has a dream of being the first man to be born
with the ability to walk on water.

Max Entropy
(E = 2.75)

steven spielberg’s dreamworks movie studio has agreed to pay $ #.# million to director
john nichols (£ #.# million, ###, a record in the studio circulation ), the studio
announced sunday..

Property-violating Sampling Algorithms
Random
Mask
(R = 0.75)

steven spielberg’s dreamworks movie studio scored a big win with a $ ##.# million (
euro ##.# million ) direct-to-video ( dvds ) deal to develop the #### short story "the
rose garden".

Noised Top-𝑘
(K=50,
W=5e-3)

steven spielberg’s dreamworks movie studio is in disarray and has a few directors and
a lot of stock involved, leaving it only a matter of time before spielberg’s departure
from the nobel peace prize.

Target En-
tropy
(E = 2.75)

steven spielberg’s dreamworks movie studio production scored an action boost m
boom, nabbing an ’d after the ##th instal specialization with nominations of fritz, ika,
ivan english ape and evlyn mcready.

Table 5.1: Generated sequences with the same prefix steven spielberg’s dreamworks movie
studio by different sampling algorithms. The hyperparameters are chosen such that the
algorithms yield roughly the same diversity measured by self-BLEU. The poor-quality spans
are higlighted in red.
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Figure 5-4: The proposed random top-𝑘 and max entropy schedulers, which meet the
identified properties, are on par in performance with existing methods in automatic evaluation
on the Gigaword dataset.

that, new sampling algorithms could get competitive generation performance as long as they

meet the identified properties.

5.5.4 Qualitative Analysis

We list samples from the proposed sampling algorithms and compare them with the existing

ones in Table 5.1. We choose the hyperparameter of each sampling algorithm so that each

algorithm exhibits a similar level of diversity (as measured by self-BLEU). By manual

inspection, we find that the quality of samples from property-satisfying sampling algorithms

is on par with samples from the existing algorithms. In particular, the samples from random

top-𝑘, max entropy, and random masked sampling are all coherent and informative.

In contrast, the samples from noised top-𝑘 and target entropy algorithms, tend to be less
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Figure 5-5: Human evaluation also shows that the proposed sampling algorithms has
performance on par with the existing methods on the Gigaword dataset. Appendix A.6
repeats this plot with self-BLEU.

semantically and syntatically coherent. In particular, the target entropy sampling algorithm,

which obtains the lowest quality score measured by corpus-BLEU, lacks basic language

structure. In comparison to target entropy, noised top-𝑘 is syntatically coherent, but exhibits

logical and factual inconsistencies. These observations aligns with the results we get from

automatic evaluation.

5.6 Related Work

Despite the popularity of sampling algorithms in natural language generation, a rigorous

comparison or scrutiny of existing algorithms is lacking in the literature. Holtzman et al.

(2020) proposes nucleus sampling, and compare it with top-𝑘 sampling (Fan et al., 2018).

However, only a few hyperparameter configurations are tested. In Hashimoto et al. (2019)
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Figure 5-6: Automatic evaluation on the Wikitext-103 dataset: The performance of proposed
sampling algorithms are on par with top-𝑘, nucleus, and tempered sampling.

and Caccia et al. (2020), temperature sampling is used and the hyperparameter 𝑇 is tuned

to trade-off between diversity and quality, but it lacks comparisons with other sampling

algorithms. Welleck et al. (2020) studies the consistency of existing sampling and decoding

algorithms, without comparing the generation performance.

In this chapter we mainly use the quality-diversity trade-off (Caccia et al., 2020) to

conduct a comparison of different sampling algorithms. Parallel to our work, Zhang et al.

(2020a) also uses the quality-diversity trade-off to compare top-𝑘, nucleus, and tempered

sampling. Their observation is similar to ours: The performance of the existing algorithms

are close with no significant gap.

More importantly, the underlying reasons for the success of various sampling algorithms

remain poorly understood. Zhang et al. (2020a) proposes the selective sampling algorithm,

which fails to outperform existing approaches. This failed attempt suggests the need for a
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better understanding of the strengths and weaknesses of existing methods. To the best of our

knowledge, our work provides the first systematic characterization of sampling algorithms,

where we attribute the success of existing sampling algorithms to a shared set of properties.

We show that we can propose novel sampling algorithms based on the identified properties,

and reach competitive generation performance as measured by both automatic and human

evaluation.

5.7 Limitations and Future Work

Our core contribution is the three properties of sampling algorithms that we conjecture are

crucial for competitive generation performance. While we design a set of experiments to

validate their necessity and sufficiency, the observations we make are still empirical. We

emphasize that it is completely possible that there exists some crucial property, that

is yet to be discovered, and can lead to significantly better generation performance.

Therefore, the exploration of novel sampling algorithms (Zhang et al., 2020a) should still be

encouraged.

On the other hand, to provide a comprehensive study, we focus on the open-ended

language generation task with the GPT-2 model. As future work, it would be interesting to

check whether our observations also hold on other tasks such story generation or dialogue

response generation, or with weaker language models in low-resource setting.

5.8 Chapter Summary

In this chapter, we study sampling algorithms for the open-ended language generation task.

We show that the existing algorithms, namely top-𝑘, nucleus, and tempered sampling, have

similar generation performance as measured by the quality-diversity trade-off evaluation.

Motivated by this result, we identify three key properties that we prove are shared by the

existing algorithms. To validate the importance of these identified properties, we design a

set of new sampling algorithms, and compare their performance with the existing sampling

algorithms. We find that violation of the identified properties may lead to drastic performance
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degradation. On the other hand, we propose several novel algorithms, namely random top-𝑘

and max entropy sampling, that meet the identified properties. We find that their generation

performance is on par with the existing algorithms.
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Chapter 6

Conclusion

This work was concerned with ascertaining how language models capture facts about the

real-world. We started by understanding the intrinsic ability for pretrained language models

to capture factuality when augmented with an external knowledge base (Chapter 2). The

body of this work focused on understanding how this factuality changes under various

experimental settings. Chapter 3 studies how various pre-training tasks affect memorization

and retrieval of knowledge. In order to understand how much harmful knowledge is

captured, Chapter 4 studies how language models may learn stereotypical biases with

harmful impacts on the population. Finally, with a nod towards generative language models,

Chapter 5 dissects how the choice of sampling algorithms may affect downstream generation

performance, with BLEU score serving as a proxy for factuality.

The combined results of these three chapters suggest that language models intrinsically

capture a significant amount of world knowledge. However, these methods are not without

their faults. In closing, I would like to entertain several directions for future study that

address the limitations of these models.

6.1 Future Work

Sampling from Human-Feedback for Natural Language Generation Chapter 5 exam-

ined desirable properties for sampling from an autoregressive language model for language

generation. However, there seems to be an inherent misalignment between the language
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Figure 6-1: Illustrating how Euclidean embeddings cause distortion for hierarchical relation-
ships.

modeling objective function (greedily maximizing the probability of the next token) and

the desired probability distribution for generation. Instead of attempting to find a universal

objective funcion, one could train a policy agent that resamples from the LM. This policy

agent would be trained via reinforcement learning by providing model samples and corre-

sponding human rating of the sample (for instance, on a Likert scale), and the agent would

learn a "human-aligned" probability distribution.

Splitting Up Pre-Training The Scaling Law Hypothesis (Kaplan et al., 2020) argues

that language models will continually achieve lower perplexities as model size increases.

While this has been shown to be true, it is undesirable for deployment of these models in

practical settings. Instead of pretraining an extremely large model on an LM loss function,

we should disentangle the knowledge of a model from its cognition. In practice, this will

create a parametric model (such as a language network) that is responsible for cognition,

and a non-parametric datastore that is responsible for knowledge.

Furthermore, there needs to be significant interplay between the cognition model and

the datastore. One method to accomplish this is via a graph-based structure, where graph

attention networks can be viewed as iteratively reasoning over data, and nodes can be

directly updated without requiring re-training from the model. Since models have to

explicitly retrieve data, this paradigm should avoid hallucination.

Hyperbolic Embeddings for Hierarchical Data For explicit graph structures, adding

new data requires traversing all existing nodes in order to predict new edges. While
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embedding nodes permits clustering algorithms for link prediction, these methods fail when

distances between embeddings becomes meaningless. To highlight such a scenario, consider

that the leaf nodes in tree-like structures have inadvertently small distances between them, as

illustrated in Figure 6-1. However, the vast majority of the literature predominantly explores

knowledge graphs in Euclidean space.

In contrast, hyperbolic embeddings do not suffer from distortion due to inherent proper-

ties of the space, and could prove fruitful for knowledge graphs. This requires significant

fundamental work: for instance, Query2Box (Ren et al., 2020) provides the ability for

models to reason over embedding spaces when links between embeddings are non-explicit.

Developing equivalent embedding-based frameworks for hyperbolic spaces might prove to

be a challenging task.
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Appendix A

Supplementary Materials for Sampling

Algorithms for Language Generation

A.1 Auxiliary Plots

We show the importance of preserving the token with the largest probability (𝑝1) in the

proposed random mask sampling. For comparison, we relax the constraint and define the

random mask-all sampling:

Definition A.1.1. (Random Mask-all) The only difference between random mask-all sam-

pling and random mask sampling is that we allow the 𝑝1 token to be masked. We formulate

it below:

𝑝𝑖 =
𝑝′𝑖∑︀|𝑉 |
𝑗=1 𝑝

′
𝑗

, (A.1)

where 𝑝′𝑖 = 𝑝𝑖 · 1{𝑢𝑖 > 𝑅} and 𝑢𝑖 ∼ 𝑈(0, 1).

In Figure A-1, we show that if 𝑝1 is allowed to be masked, the generation performance

will be seriously degraded.

A.2 Proof for Proposition 1

In this section we prove Proposition 1.
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Figure A-1: The random mask-all sampling, where 𝑝1 is allowed to be masked, is shown to
have worse performance than the random mask sampling. The dataset is Giagword.

Firstly, it is straightforward to prove that Property 2 (order preservation) holds for the

top-𝑘, nucleus and tempered sampling and we omit the proof here.

For Property 3 (slope preservation), it holds trivially for nucleus and top-𝑘 sampling.

We prove it for tempered sampling in the following lemma:

Lemma A.2.1. Property 3 holds for tempered sampling (Definition 5.2.3).

Proof. Remember that the tempered sampling with hyperparameter 𝑇 defines the follow

transformation: 𝑝𝑖 =
𝑝′𝑖∑︀
𝑗 𝑝

′
𝑗
, where 𝑝′𝑖 = exp(log(𝑝𝑖)/𝑇 ) . We set 𝑍 =

∑︀
𝑗 𝑝

′
𝑗 , then
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∀𝑝𝑖 > 𝑝𝑗 > 𝑝𝑘 > 0 we have

log 𝑝𝑖 − log 𝑝𝑗
log 𝑝𝑗 − log 𝑝𝑘

=
log 𝑝′𝑖 − log𝑍 − log 𝑝′𝑗 + log𝑍

log 𝑝′𝑗 − log𝑍 − log 𝑝′𝑘 + log𝑍

=
log 𝑝′𝑖 − log 𝑝′𝑗
log 𝑝′𝑗 − log 𝑝′𝑘

(log𝑍 is cancelled)

=
log(𝑝𝑖)/𝑇 − log(𝑝𝑗)/𝑇

log(𝑝𝑗)/𝑇 − log(𝑝𝑘)/𝑇

=
log(𝑝𝑖)− log(𝑝𝑗)

log(𝑝𝑗)− log(𝑝𝑘)

(A.2)

Only Property 1 (entropy reduction) is left. We now prove it holds for top-𝑘 / nucleus

sampling:

Lemma A.2.2. Property 1 holds for transformations defined by top-𝑘 or nucleus sampling

(Definition 5.2.1 and 5.2.2).

Proof. We first consider the change of entropy when the token with the smallest probability
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(𝑝|𝑉 |) is removed from the original distribution (𝑝𝑖 = 𝑝𝑖∑︀|𝑉 |−1
𝑗=1 𝑝𝑖

, 1 ≤ 𝑖 < |𝑉 |):

−ℋ(𝑝) =
𝑉∑︁
𝑖=1

𝑝𝑖 log 𝑝𝑖

=
𝑉−1∑︁
𝑖=1

𝑝𝑖 log 𝑝𝑖 + 𝑝|𝑉 | log 𝑝|𝑉 |

= (1− 𝑝|𝑉 |)

𝑉−1∑︁
𝑖=1

𝑝𝑖
1− 𝑝|𝑉 |

log 𝑝𝑖 + 𝑝|𝑉 | log 𝑝|𝑉 |

=
𝑉−1∑︁
𝑖=1

𝑝𝑖
1− 𝑝|𝑉 |

log
𝑝𝑖

1− 𝑝|𝑉 |
+ log(1− 𝑝|𝑉 |)⏟  ⏞  

<0

+ 𝑝|𝑉 |

⎛⎝log 𝑝|𝑉 | −
𝑉−1∑︁
𝑖=1

𝑝𝑖
1− 𝑝|𝑉 |

log 𝑝𝑖

⎞⎠
<

𝑉−1∑︁
𝑖=1

𝑝𝑖 log 𝑝𝑖 + 𝑝|𝑉 |

⎛⎜⎝log 𝑝|𝑉 | −
𝑉−1∑︁
𝑖=1

𝑝𝑖
1− 𝑝|𝑉 |

log 𝑝𝑖⏟ ⏞ 
>𝑝|𝑉 |

⎞⎟⎠

<
𝑉−1∑︁
𝑖=1

𝑝𝑖 log 𝑝𝑖 + 𝑝|𝑉 |

⎛⎜⎜⎜⎜⎜⎝log 𝑝|𝑉 | −
𝑉−1∑︁
𝑖=1

𝑝𝑖
1− 𝑝|𝑉 |

log 𝑝|𝑉 |⏟  ⏞  
=log 𝑝|𝑉 |

⎞⎟⎟⎟⎟⎟⎠
=

𝑉−1∑︁
𝑖=1

𝑝𝑖 log 𝑝𝑖 = −ℋ(𝑝)

(A.3)

Therefore, we get ℋ(𝑝) < ℋ(𝑝).

By induction (iteratively removing the last token), it is now easy to see that the top-𝑘 or

nucleus transformation strictly decrease the entropy of the sampling distribution.

Finally, we prove Property 1 (entropy reduction) holds for tempered sampling:

Lemma A.2.3. Property 1 holds for the transformation defined by tempered sampling

(Definition 5.2.3).

Proof. For convenience, we first rewrite the Temperature transformation:

𝑝𝑖 = 𝑝𝛼𝑖 =
exp(−𝛼𝑒𝑖)∑︀
𝑗 exp(−𝛼𝑒𝑗)

(A.4)
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where 𝑒𝑖 = − log(𝑝𝑖) and 𝛼 = 1
𝑇

. The entropy can be written as:

ℋ(𝑝𝛼) = −
∑︁
𝑖

exp(−𝛼𝑒𝑖)∑︀
𝑗 exp(−𝛼𝑒𝑗)

log
exp(−𝛼𝑒𝑖)∑︀
𝑗 exp(−𝛼𝑒𝑗)

= log
∑︁
𝑗

exp(−𝛼𝑒𝑗) + 𝛼
∑︁
𝑖

𝑒𝑖
exp(−𝛼𝑒𝑖)∑︀
𝑗 exp(−𝛼𝑒𝑗)

(A.5)

Next, we take derivative w.r.t 𝛼:

𝜕ℋ
𝜕𝛼

= −
∑︁
𝑖

𝑒𝑖
exp(−𝛼𝑒𝑖)∑︀
𝑗 exp(−𝛼𝑒𝑗)

+
∑︁
𝑖

𝑒𝑖
exp(−𝛼𝑒𝑖)∑︀
𝑗 exp(−𝛼𝑒𝑗)⏟  ⏞  

=0

+ 𝛼
𝜕

𝜕𝛼

∑︁
𝑖

𝑒𝑖
exp(−𝛼𝑒𝑖)∑︀
𝑗 exp(−𝛼𝑒𝑗)

= 𝛼
∑︁
𝑖

𝑒𝑖

[︃
𝜕

𝜕𝛼
log

exp(−𝛼𝑒𝑖)∑︀
𝑗 exp(−𝛼𝑒𝑗)

]︃[︃
exp(−𝛼𝑒𝑖)∑︀
𝑗 exp(−𝛼𝑒𝑗)

]︃
⏟  ⏞  

log-derivative trick

= 𝛼
∑︁
𝑖

𝑒𝑖

⎡⎣−𝑒𝑖 +
∑︁
𝑗′

𝑒𝑗′
exp(−𝛼𝑒𝑖)∑︀
𝑗 exp(−𝛼𝑒𝑗)

⎤⎦
[︃

exp(−𝛼𝑒𝑖)∑︀
𝑗 exp(−𝛼𝑒𝑗)

]︃
= −𝛼E𝑝𝛼

[︁
𝑒2𝑖 − 𝑒𝑖E𝑝𝛼 [𝑒𝑖]

]︁
= − 𝛼⏟ ⏞ 

>0

(︁
E𝑝𝛼 [𝑒

2
𝑖 ]− E𝑝𝛼 [𝑒𝑖]

2
)︁

⏟  ⏞  
=Var𝑝𝛼 [𝑒𝑖]≥0

< 0

(A.6)

We can now easily get 𝜕ℋ
𝜕𝑇

= 𝜕ℋ
𝜕𝛼

𝜕𝛼
𝜕𝑇

> 0. Therefore, when we apply a tempered transforma-

tion with 𝑇 < 1, the entropy will strictly decrease comaparing to the original distribution

(where 𝑇 = 1).

A.3 Mechanical Turk Setup

Our crowdworkers were required to have a HIT acceptance rate higher than 95%, and be

located in the United States. In total, 602 crowdworkers completed our tasks. In order to

ensure that we had quality data, we filtered the crowdworker annotations for workers that

spent at least 45 seconds on the aggregate task (or 4.5 seconds rating each sentence). 51
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crowdworkers were filtered out through this process. Screenshots of our instructions and

task are available in Figure(s) A-2 and A-3 respectively.

Figure A-2: Our instructions for crowdworker task.

Figure A-3: An example of the task given to crowdworkers.

A.4 Convergence of Human Evaluation

When we conduct human evaluation, we provide crowdworkers with 200 generated samples

for some configuration, and ask 25 different crowdworkers to evaluate the same sample.

However, a reasonable question is whether our human evaluations are converging to some

underlying true rating, or whether we need more samples or replicas.

Figure A-4 and A-5 show that the average scores have roughly converged around 150

samples per configuration, or around 15 replicas per sample. The two figures demon-
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strate this for nucleus sampling, and this holds true for human evaluations of all sampling

algorithms.

Figure A-4: We see that we obtain a reasonable estimate of sample quality around 150
samples per configuration.

A.5 Additional Model-Generated Samples

Table A.1 shows some additional samples from each of the sampling algorithms described in

the paper. Similarly, we have chosen hyperparameters for each sampling method that yields

a similar diversity (measured by self-BLEU) to the top-𝑘 configuration where 𝐾 = 15. We

observe that all sampling algorithms except for noised top-𝑘 and target entropy, yield similar

quality samples. For noised top-𝑘 and target entropy, we see that these samples tend to

degenerate towards the end of the sentence, indicating violation of the identified properties

may possibly lead towards degraded performance.
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Sampling Conditional Samples
Existing Sampling Algorithms

Top-K
(K = 15)

as the rest of his denver broncos teammates prepared for the game against denver,
jay kasey could not help but think of his teammates and friends who worked hard in
preparation for that night’s game.

Nucleus
(P = 0.65)

as the rest of his denver broncos teammates slumped and buried themselves in their
work, broncos quarterback leon johnson moved to the locker room monday and called
his parents.

Temperature
(T = 0.7)

as the rest of his denver broncos teammates gathered in an auditorium to watch more
stretching drills, ben holtz gave an emotional speech : we’re running out of time to
win a championship ring.

Property-satisfying Sampling Algorithms
Random Top-
K
(R = 30)

as the rest of his denver broncos teammates battled through their own stretch of the nfl
playoffs, the quarterback began throwing the ball in the fourth quarter.

Max Entropy
(E = 2.75)

steven spielberg’s dreamworks movie studio has agreed to pay $ #.# million to director
john nichols (£ #.# million, ###, a record in the studio circulation ), the studio
announced sunday..

Property-violating Sampling Algorithms
Random
Mask
(R = 0.75)

as the rest of his denver broncos teammates connect with a player that the team didn’t
expect to become a starter, quarterback james crosby speaks out about colin peterson’s
passion for the game.

Noised Top-K
(K=20,
W=5e-3)

as the rest of his denver broncos teammates start making room for nerdy bundles or
twiggy pitchers, coach william perez might have to cut a big, bold note cut ready to
console wife join them in iraq.

Target En-
tropy
(E = 2.5)

as the rest of his denver broncos teammates scratched out their locker rooms, clean-
Death Yo Communities wander edge extingustretched cords429 Mohnegie wildfires.

Table A.1: The samples conditioned on as the rest of his denver broncos teammates, and the
hyperparameters for a given sampling algorithm. The poor quality spans are higlighted in
red.
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Figure A-5: We see that we obtain a reasonable estimate of sample quality with around 15
ratings per sample.

A.6 Human Evaluation with Self-BLEU as Diversity Met-

ric

Figures 5-1 and 5-5 measures diversity in terms of 3-gram entropy, while the rest of our

work measures diversity in terms of self-BLEU. For completeness, we provide Figure A-6

where self-BLEU is used for diversity metric. This figure demonstrates that similar trends

can be observed using either 3-gram entropy or self-BLEU.
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Figure A-6: Using self-BLEU as a diversity metric provides similar conclusions as to using
n-gram entropy.
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Appendix B

Supplementary Materials for

Stereotypical Bias in Pretrained

Language Models

B.1 Data Statement

Curation Rationale

StereoSet is a crowdsourced dataset that was created as a benchmark for stereotypical biases

in pretrained language models. This dataset consists of 4 target domains, 321 target terms,

and 16,995 test instances. StereoSet is in English and is tailored for the stereotypes that

exist in the United States. The data was explicitly curated with a goal of creating a set of

stereotypical and anti-stereotypical examples, and therefore is highly offensive.

Each example in the dataset consists of a triple. Each triple consists of a target con-

text, with a corresponding stereotypical, anti-stereotypical, or unrelated association that

stereotypes the target or combats stereotypes about the target.

We collected this data via Amazon Mechanical Turk (AMT), where each example was

written by one crowdworker and validated by four other crowdworkers. We required all

crowdworkers to be in the United States and have a HIT acceptance rate greater than 97%.

We paid all workers with a minimum wage of $15 an hour in compliance with our funding
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agencies’ AMT policy.

Language Variety

We require crowdworkers to be within the United States, and therefore all examples are

written in US English (en-US). However, we do not enforce any constraints on, nor do we

collect, the dialect that is used. An inspection of the dataset by the authors has shown no

single dialect to dominate the annotations.

Speaker & Annotator Demographic

Our speakers and annotators (validators) came from Amazon Mechanical Turk (AMT), and

we provided no filters beyond the 97% HIT acceptance rate. Difallah et al. (2018) shows

that the Amazon Mechanical Turk population is 55% women and 45% men, with 80% of the

populous under the age of 50. The median income of workers on AMT is $47k; in contrast,

the United States has a median income of $57k.

Speech Situation

All speech was written in English, and was never edited after the speaker wrote it. The time

and place were unconstrained. We prompted the speaker to stereotype and anti-stereotype a

given target word. We informed them that their work would be used for a scientific study

and they were encouraged to explicitly stereotype target groups.

Text Characteristics

StereoSet measures stereotypical biases in gender, profession, race, and religion. The

intrasentence task (Figure B-2) lends itself to a "fill-in-the-blank" nature, while the intersen-

tence task (Figure B-3) asks annotators to contextualize a pair of sentences. We have found

that the type of task has influenced the choice of vocabulary.

Recording Quality

The data was only written, and never recorded.
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Other

In total, 475 and 803 annotators completed the intrasentence and intersentence tasks respec-

tively. Restricting crowdworkers to the United States helps account for differing definitions

of stereotypes based on regional social expectations, though limitations in the dataset remain

as discussed in Section 4.8. Screenshots of our Mechanical Turk interface are available in

Figure B-2 and B-3.

We strongly caution against the misuse of this dataset for any purpose other than as a

benchmark of stereotypical biases in pretrained language models. We remind users that

decreased scores on our benchmarks does not imply that bias is mitigated, but rather that

StereoSet cannot detect it.

Provenance Appendix

This dataset was not built out of existing datasets.

B.2 Appendix

B.2.1 Detailed Results

Table B.5 presents the overall results of models on the StereoSet development set. Table B.6

and Table B.7 show detailed results on the Context Association Test for the development

and test sets respectively.

B.2.2 List of Target Words

Table B.8 list our target terms used in the dataset collection task.

B.2.3 General Methods for Training a Next Sentence Prediction Head

Given some context 𝑐, and some sentence 𝑠, our intersentence task requires calculating the

likelihood 𝑝(𝑠|𝑐), for some sentence 𝑠 and context sentence 𝑐.
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While BERT has been trained with a Next Sentence Prediction classification head to

provide 𝑝(𝑠|𝑐), the other models have not. In this section, we detail our creation of a Next

Sentence Prediction classification head as a downstream task.

For some sentences 𝐴 and 𝐵, our task is simply determining if Sentence 𝐴 follows

Sentence 𝐵, or if Sentence 𝐵 follows Sentence 𝐴. We trivially generate this corpus from

Wikipedia by sampling some 𝑖𝑡ℎ sentence, 𝑖+ 1𝑡ℎ sentence, and a randomly chosen negative

sentence from any other article. We maintain a maximum sequence length of 256 tokens,

and our training set consists of 9.5 million examples.

We train with a batch size of 80 sequences until convergence (80 sequences / batch *

256 tokens / sequence = 20,480 tokens/batch) for 10 epochs over the corpus. For BERT,

We use BertAdam as the optimizer, with a learning rate of 1e-5, a linear warmup schedule

from 50 steps to 500 steps, and minimize cross entropy for our loss function. Our results are

comparable to Devlin et al. (2019b), with each model obtaining 93-98% accuracy against

the test set of 3.5 million examples.

Additional models maintain the same experimental details. Our NSP classifier achieves

an 94.6% accuracy with ROBERTA-base, a 97.1% accuracy with ROBERTA-large, a 93.4%

accuracy with XLNET-base and 94.1% accuracy with XLNET-large.

In order to evaluate GPT-2 on intersentence tasks, we feed the mean-pooled represen-

tations across the entire sequence length into the classification head. Our NSP classifier

obtains a 92.5% accuracy on GPT2-small, 94.2% on GPT2-medium, and 96.1% on GPT2-

large. In order to fine-tune GPT2-large on our machines, we utilized gradient accumulation

with a step size of 10, and mixed precision training from Apex.

B.2.4 Fine-Tuning BERT for Sentiment Analysis

In order to evaluate sentiment, we fine-tune BERT Devlin et al. (2019b) on movie reviews

Maas et al. (2011) for seven epochs. We used a maximum sequence length of 256 Word-

Pieces, batch size 32, and used Adam with a learning rate of 1e−4. Our fine-tuned model

achieves an 92% test accuracy on the Large Movie Review dataset. It is important to note

that the classifier also classifies neutral sentiment such as My housekeeper is a Mexican as
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positive.

B.2.5 Reproducibility Checklist

We used 2 RTX 2080 Ti to fine-tune all of the models for the next sentence prediction task,

although this could have been done with one GPU as well. The only exception to this is

GPT2-large, which required 2 Tesla V100s (with 32GB of RAM) to fine-tune. We will

release all pretrained models to encourage reproducibility, and each model’s biases is able

to be evaluated within 5 minutes.

Since we are using standardized models, the sizes of every single model is available

online. For convenience, we report it here:

1. BERT-base: 110M parameters

2. BERT-large: 340M parameters

3. GPT2-small: 117M parameters

4. GPT2-medium: 345M parameters

5. GPT2-large: 774M parameters

6. ROBERTA-base: 125M parameters

7. ROBERTA-large: 355M parameters

8. XLNET-base: 110M parameters

9. XLNET-large: 340M parameters

B.2.6 Collecting Neutral Associations

We also experimented with testing whether models endorse a contextually neutral association

over the stereotypical or anti-stereotypical context. However, we found that crowd workers

had a poor inter-annotator agreement when asked to write neutral continuations. Table B.1

highlights some collected sentences that were neutral.
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Target Neutral Sentence
Ethiopia The Ethiopian woman had never

been so angry.
Chess player The chess player was bearded.
Schoolgirl Schoolgirls are so cute in every

movie I watch.
Afghanistan People from Afghanistan are

curious.
Tailor A tailor is relaxed when talking

to me.

Table B.1: A collection of neutral associations from crowdworkers.

Many of the contextually neutral associations in Table B.1 show highly stereotypical

behavior. For instance, "the ethiopian woman had never been so angry" characterizes

the Angry Black Woman stereotype Collins (2004). Furthermore, we hold that some of

these neutral sentences aren’t truly neutral; the chess player was bearded may inadvertently

conceal stereotypes, since both chess players and bearded men are commonly seen as wise.

Hence, a model may endorse a neutral sentence for the wrong reasons.

B.2.7 Motivating the ICAT score

To address situations where a point estimate that combines 𝑙𝑚𝑠 and 𝑠𝑠 is required (ie.

ranking models), we develop the idealized CAT (𝑖𝑐𝑎𝑡) score. We recognize that various

applications have different trade-offs between fairness and accuracy. We address a generic

case where accuracy and fairness are equally important. We derive the 𝑖𝑐𝑎𝑡 score from the

following axioms:

• An ideal model has an 𝑖𝑐𝑎𝑡 score of 100, i.e., when its 𝑙𝑚𝑠 is 100 and 𝑠𝑠 is 50, its

𝑖𝑐𝑎𝑡 score is 100.

• A fully biased model has an 𝑖𝑐𝑎𝑡 score of 0, i.e., when its 𝑠𝑠 is either 100 (always

prefer a stereotype over an anti-stereotype) or 0 (always prefer an anti-stereotype over

a stereotype), its 𝑖𝑐𝑎𝑡 score is 0.

• A random model has an 𝑖𝑐𝑎𝑡 score of 50, i.e., when its 𝑙𝑚𝑠 is 50 and 𝑠𝑠 is 50, its 𝑖𝑐𝑎𝑡

score must be 50.
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Figure B-1: The range of the idealized CAT score as a function of the LM score and SS
score.

Therefore we define 𝑖𝑐𝑎𝑡 score as

𝑖𝑐𝑎𝑡 = 𝑙𝑚𝑠 * 𝑚𝑖𝑛(𝑠𝑠, 100− 𝑠𝑠)

50

This equation satisfies all the axioms. Here 𝑚𝑖𝑛(𝑠𝑠,100−𝑠𝑠)
50

∈ [0, 1] is maximized when the

model prefers neither stereotypes nor anti-stereotypes for each target term and is minimized

when the model favours one over the other. We scale this value using the language modeling

score. An interpretation of 𝑖𝑐𝑎𝑡 is that it represents the language modeling ability of a model

to behave in an unbiased manner while excelling at language modeling.

Figure B-1 depicts the values that the 𝑖𝑐𝑎𝑡 score may take on. We include Tables B.2,

B.3, and B.4 as replicas of Tables 4.4, 4.5, 4.6 with the inclusion of an optional 𝑖𝑐𝑎𝑡 score.
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Figure B-2: A screenshot of our intrasentence task collection interface.

Model Language
Model
Score
(𝑙𝑚𝑠)

Stereotype
Score
(𝑠𝑠)

Idealized
CAT
Score
(𝑖𝑐𝑎𝑡)

Test set

IDEALLM 100 50.0 100
STEREOTYPEDLM - 100 0.0
RANDOMLM 50.0 50.0 50.0
SENTIMENTLM 65.1 60.8 51.1

BERT-base 86.4 60.4 68.3
BERT-large 86.5 59.3 70.4

ROBERTA-base 68.2 50.5 67.5
ROBERTA-large 75.8 54.8 68.5

XLNET-base 67.7 54.1 62.1
XLNET-large 78.2 54.0 72.0

GPT2 83.6 56.4 73.0
GPT2-medium 85.9 58.2 71.7
GPT2-large 88.3 60.1 70.5

ENSEMBLE 90.5 62.5 68.0

Table B.2: 𝑖𝑐𝑎𝑡 scores of pretrained language models on the StereoSet test set.
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Domain Language
Model
Score
(𝑙𝑚𝑠)

Stereotype
Score
(𝑠𝑠)

Idealized
CAT
Score
(𝑖𝑐𝑎𝑡)

GENDER 92.4 63.9 66.7
mother 97.2 77.8 43.2
grandfather 96.2 52.8 90.8

PROFESSION 88.8 62.6 66.5
software developer 94.0 75.9 45.4
producer 91.7 53.7 84.9

RACE 91.2 61.8 69.7
African 91.8 74.5 46.7
Crimean 93.3 50.0 93.3

RELIGION 93.5 63.8 67.7
Bible 85.0 66.0 57.8
Muslim 94.8 46.6 88.3

Table B.3: Domain-wise 𝑖𝑐𝑎𝑡 scores of the ENSEMBLE model, along with most and least
stereotyped terms.
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Model Language
Model
Score
(𝑙𝑚𝑠)

Stereotype
Score
(𝑠𝑠)

Idealized
CAT
Score
(𝑖𝑐𝑎𝑡)

Intrasentence Task

BERT-base 82.5 57.5 70.2
BERT-large 82.9 57.6 70.3

ROBERTA-base 71.9 53.6 66.7
ROBERTA-large 72.7 54.4 66.3

XLNET-base 70.3 53.6 65.2
XLNET-large 74.0 51.8 71.3

GPT2 91.0 60.4 72.0
GPT2-medium 91.2 62.9 67.7
GPT2-large 91.8 63.9 66.2

ENSEMBLE 91.7 63.9 66.3

Intersentence Task

BERT-base 88.3 61.7 67.6
BERT-large 90.1 60.6 71.0

ROBERTA-base 64.4 47.4 61.0
ROBERTA-large 78.8 55.2 70.6

XLNET-base-cased 65.0 54.6 59.0
XLNET-large-cased 82.5 56.1 72.5

GPT2 76.3 52.3 72.8
GPT2-medium 80.5 53.5 74.9
GPT2-large 84.9 56.1 74.5

ENSEMBLE 89.4 60.9 69.9

Table B.4: 𝑖𝑐𝑎𝑡 scores on the Intersentence and Intrasentence CATs on the StereoSet test set.
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Model Language
Model
Score
(𝑙𝑚𝑠)

Stereotype
Score
(𝑠𝑠)

Idealized
CAT
Score
(𝑖𝑐𝑎𝑡)

Development set

IDEALLM 100 50.0 100
STEREOTYPEDLM - 100 0.0
RANDOMLM 50.0 50.0 50.0
SENTIMENTLM 65.5 60.2 52.1

BERT-base 86.2 60.1 68.7
BERT-large 87.0 60.6 68.4

ROBERTA-base 69.0 49.9 68.8
ROBERTA-large 76.6 56.0 67.4

XLNET-base 67.3 54.2 61.6
XLNET-large 78.0 54.4 71.2

GPT2 83.7 57.0 71.9
GPT2-medium 87.1 59.0 71.5
GPT2-large 88.9 61.9 67.8

ENSEMBLE 90.7 62.0 69.0

Table B.5: Performance of pretrained language models on the StereoSet development set.
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Intersentence Intrasentence

Model Domain Language
Model
Score (𝑙𝑚𝑠)

Stereotype
Score (𝑠𝑠)

Idealized
CAT Score
(𝑖𝑐𝑎𝑡)

Language
Model
Score (𝑙𝑚𝑠)

Stereotype
Score (𝑠𝑠)

Idealized
CAT Score
(𝑖𝑐𝑎𝑡)

SENTIMENTLM gender 85.78 58.76 70.75 36.45 42.02 30.64
profession 80.70 65.20 56.16 45.61 45.28 41.31
race 84.90 70.48 50.13 49.10 70.14 29.32
religion 87.35 68.79 54.53 44.78 50.62 44.23
overall 83.51 66.93 55.24 46.01 56.40 40.12

BERT-base gender 92.86 59.74 74.77 82.50 61.48 63.56
profession 86.15 61.82 65.79 82.31 60.85 64.45
race 88.84 62.16 67.22 83.82 56.30 73.27
religion 95.52 60.98 74.56 82.16 56.28 71.85
overall 88.66 61.69 67.92 83.02 58.68 68.61

BERT-large gender 94.37 61.04 73.54 83.10 64.04 59.77
profession 88.94 62.66 66.42 83.04 60.30 65.94
race 89.90 62.60 67.26 84.02 57.27 71.80
religion 95.53 58.54 79.22 85.98 50.16 85.70
overall 90.36 62.21 68.30 83.60 59.01 68.54

GPT2 gender 85.95 53.38 80.14 93.28 62.67 69.65
profession 72.79 52.39 69.31 92.29 63.97 66.50
race 76.50 51.49 74.22 89.76 60.35 71.18
religion 75.83 56.93 65.33 88.46 58.02 74.27
overall 76.26 52.28 72.79 91.11 61.93 69.37

GPT2-medium gender 86.76 52.80 81.89 93.58 65.58 64.42
profession 79.95 60.83 62.63 91.76 63.37 67.22
race 82.20 50.93 80.68 92.36 61.44 71.22
religion 86.45 60.80 67.78 90.46 62.57 67.71
overall 82.09 55.30 73.38 92.21 62.74 68.71

GPT2-large gender 89.91 60.72 70.62 95.32 65.29 66.17
profession 84.88 61.73 64.97 92.36 65.68 63.39
race 84.21 57.02 72.38 91.89 63.00 67.99
religion 88.50 62.98 65.53 91.61 61.61 70.34
overall 85.35 59.50 69.12 92.49 64.26 66.12

XLNET-base gender 75.27 59.33 61.22 69.57 46.54 64.76
profession 67.53 52.66 63.93 67.75 58.47 56.27
race 61.25 55.13 54.97 69.19 52.14 66.22
religion 69.54 51.66 67.22 74.90 55.72 66.32
overall 65.72 54.59 59.69 68.91 53.97 63.43

XLNET-large gender 89.87 57.61 76.18 74.16 53.99 68.23
profession 79.98 55.05 71.90 73.15 56.05 64.30
race 81.90 54.92 73.84 73.64 50.42 73.02
religion 87.51 66.68 58.31 77.95 49.61 77.34
overall 82.39 55.76 72.90 73.68 52.98 69.29

ROBERTA-base gender 59.62 46.76 55.76 71.36 54.21 65.35
profession 69.75 45.31 63.21 72.49 55.94 63.87
race 66.80 43.28 57.82 70.03 56.07 61.52
religion 60.55 50.15 60.37 70.60 40.83 57.65
overall 66.78 44.75 59.77 71.15 55.21 63.74

ROBERTA-large gender 80.98 56.49 70.47 75.63 56.99 65.06
profession 76.21 57.21 65.21 73.71 55.42 65.72
race 82.45 56.73 71.36 71.71 56.34 62.63
religion 91.23 49.48 90.29 69.93 39.86 55.75
overall 80.23 56.61 69.63 72.90 55.45 64.96

ENSEMBLE gender 93.42 63.10 68.94 95.19 64.18 68.19
profession 86.19 63.52 62.87 92.34 65.44 63.83
race 89.49 57.44 76.17 92.47 62.20 69.91
religion 90.11 56.74 77.96 91.61 59.13 74.89
overall 88.76 60.44 70.22 92.73 63.56 67.57

Table B.6: The per-domain performance of pretrained language models on the development
set. 102



Intersentence Intrasentence

Model Domain Language
Model
Score (𝑙𝑚𝑠)

Stereotype
Score (𝑠𝑠)

Idealized
CAT Score
(𝑖𝑐𝑎𝑡)

Language
Model
Score (𝑙𝑚𝑠)

Stereotype
Score (𝑠𝑠)

Idealized
CAT Score
(𝑖𝑐𝑎𝑡)

SENTIMENTLM gender 86.11 57.59 73.03 40.69 47.16 38.39
profession 80.69 61.32 62.42 46.07 43.41 40.00
race 84.45 70.32 50.13 49.57 69.16 30.57
religion 89.36 71.54 50.86 42.78 57.17 36.64
overall 83.44 65.44 57.67 46.92 56.41 40.90

BERT-base gender 91.44 58.82 75.30 82.78 61.23 64.19
profession 86.06 62.52 64.51 82.89 57.32 70.75
race 88.43 61.05 72.09 82.14 57.02 70.61
religion 93.66 65.91 63.87 82.86 52.69 78.40
overall 88.28 61.68 67.64 82.52 57.49 70.16

BERT-large gender 93.53 60.68 73.21 82.80 61.23 64.21
profession 88.51 61.83 67.57 82.55 57.33 70.45
race 89.86 59.73 72.37 83.10 57.00 71.47
religion 93.04 59.04 76.21 84.30 56.04 74.11
overall 90.01 60.58 70.97 82.90 57.61 70.29

GPT2 gender 84.68 49.62 84.03 92.01 62.65 68.74
profession 72.03 53.22 67.39 90.74 61.31 70.22
race 76.72 52.24 73.28 90.95 58.90 74.76
religion 85.21 52.04 81.74 91.21 63.26 67.02
overall 76.28 52.27 72.81 91.01 60.42 72.04

GPT2-medium gender 84.47 49.17 83.07 91.65 66.17 62.01
profession 78.93 56.65 68.43 90.03 63.04 66.55
race 80.40 52.12 77.00 91.81 61.70 70.33
religion 85.44 53.64 79.23 93.43 65.83 63.85
overall 80.55 53.49 74.92 91.19 62.91 67.65

GPT2-large gender 88.43 54.52 80.44 92.92 67.64 60.13
profession 84.66 59.33 68.86 90.40 64.43 64.31
race 83.87 53.77 77.55 92.41 62.35 69.58
religion 88.57 59.46 71.82 93.69 66.35 63.06
overall 84.91 56.14 74.47 91.77 63.93 66.21

XLNET-base gender 74.26 54.80 67.14 72.09 54.75 65.24
profession 67.99 54.18 62.30 69.73 55.31 62.33
race 60.14 54.75 54.42 70.34 52.34 67.04
religion 65.58 57.30 56.00 70.61 49.00 69.20
overall 65.01 54.64 58.98 70.34 53.62 65.25

XLNET-large-cased gender 87.07 54.99 78.39 74.85 56.69 64.84
profession 81.90 55.59 72.75 74.20 52.61 70.33
race 81.24 56.24 71.10 73.43 50.11 73.27
religion 89.23 62.04 67.74 75.96 49.40 75.05

kj ROBERTA-base gender 56.86 45.96 52.27 73.90 53.54 68.66
profession 67.97 48.46 65.87 71.07 52.63 67.33
race 63.37 46.99 59.55 72.16 54.59 65.54
religion 66.15 46.74 61.83 71.23 51.79 68.69
overall 64.38 47.40 61.02 71.94 53.63 66.72

ROBERTA-large gender 81.50 52.00 78.23 75.34 53.58 69.94
profession 75.75 54.12 69.52 72.69 54.79 65.73
race 79.40 56.94 68.38 72.16 54.73 65.33
religion 93.70 56.08 82.32 71.88 49.32 70.91
overall 78.84 55.24 70.57 72.74 54.41 66.33

ENSEMBLE gender 92.59 60.68 72.82 92.15 67.12 60.61
profession 87.26 60.84 68.34 90.40 64.29 64.56
race 90.00 61.08 70.06 92.41 62.45 69.40
religion 92.78 60.88 72.58 94.30 66.70 62.80
overall 89.40 60.93 69.86 91.70 63.87 66.26

Table B.7: The per-domain performance of pretrained language models on the test set.
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Figure B-3: A screenshot of our intersentence task collection interface.
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Gender

stepfather male she stepmother ladies man
brother female woman mother grandfather girl
father gentlemen grandmother boy schoolboy wife
bride sir groom her lady mommy
him son boyfriend himself gentleman hers
girlfriend he husband his sister daddy
daughter herself ma’am schoolgirl

Profession

barber coach businessperson football player construction worker manager
CEO accountant commander firefighter mover software developer
guard baker doctor athlete artist dancer
mathematician janitor carpenter mechanic actor handyman
musician detective politician entrepreneur model opera singer
chief lawyer farmer writer librarian army
real-estate developer broker scientist butcher electrician prosecutor
banker cook hairdresser prisoner plumber attourney
boxer chess player priest swimmer tennis player supervisor
attendant housekeeper maid producer researcher midwife
judge umpire bartender economist physicist psychologist
theologian salesperson physician sheriff cashier assistant
receptionist editor engineer comedian painter civil servant
diplomat guitarist linguist poet laborer teacher
delivery man realtor pilot professor chemist historian
pensioner performing artist singer secretary auditor counselor
designer soldier journalist dentist analyst nurse
tailor waiter author architect academic director
illustrator clerk policeman chef photographer drawer
cleaner pharmacist pianist composer handball player sociologist

Race

Nigerian Ethiopia Europe European Russian Ukraine
Sudan Afghanistan Iraq Yemen Ukrainian Russia
Italy Somali Iran Afghan Indian Italian
Australian Spanish Guatemalan Hispanic Venezuela Sudanese
Oman Finnish Swedish Venezuelan Puerto Rican Ghanaian
Moroccan Somalia Saudi Arabian Syria Chinese Pakistani
China India Irish Britain France Greece
Scotland Mexican Paraguayan Brazil African Eritrean
Sierra Leonean Africa Jordan Indonesia Vietnam Pakistan
German Romania Brazilian Ecuadorian Mexico Puerto Rico
Kenyan Liberian Cameroonian African Americans Kenya Liberia
Sierra Leon Qatari Syrian Arab Saudi Arabia Lebanon
Indonesian French Norweigan South Africa Jordanian Korea
Singapore Romanian Crimean Native American Germany Ireland
Ecuador Morocco Omani Iranian Iraqi Qatar
Turkey Vietnamese Nepali Laos Bangladesh British
Polish Greek Scottish Bolivian Guatemala Ghana
Cameroon Japanese Taiwanese Bengali Nepal Albanian
Albania Columbian Peruvian Argentian Spain Paraguay
Ethiopian Egyptian Persian people Sweden Crimea Portuguese
Argentina Chile Cape Verdean Turkish Yemeni Taiwan
Austrian White people Finland Australia South African Eriteria
Egypt Korean Dutch people Peru Poland Chilean
Columbia Bolivia Laotian Lebanese Japan Norway
Cape Verde Portugal Austria Singaporean Netherlands

Religion

Sharia Jihad Christian Muslim Islam Hindu
Mohammed church Bible Quran Brahmin Holy Trinity

Table B.8: The set of terms that were used to collect StereoSet, ordered by frequency in the
dataset.
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