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Abstract

Neuropsychological exams are commonly used
to diagnose various kinds of cognitive impair-
ment. They typically involve a trained exam-
iner who conducts a series of cognitive tests
with a subject. In recent years, there has been
growing interest in developing machine learn-
ing methods to extract speech and language
biomarkers from exam recordings to provide
automated input for cognitive assessment. In-
spired by recent findings suggesting that the ex-
aminer’s language can influence cognitive im-
pairment classifications, in this paper, we study
the influence of the examiner on automatic de-
mentia identification decisions in real-world
neuropsychological exams. To mitigate the in-
fluence of the examiner, we propose a system-
atic three-stage pipeline for detecting dementia
from exam recordings. In the first stage, we
perform audio-based speaker diarization (i.e.,
estimating who spoke when?) by incorporating
speaker discriminative features. In the second
stage, we employ text-based language models
to identify the role of the speaker (i.e., exam-
iner or subject). Finally, in the third stage, we
employ text- and audio-based models to detect
cognitive impairment from hypothesized sub-
ject segments. Our studies suggest that incor-
porating audio-based diarization followed by
text-based role identification helps mitigate the
influences from the examiner’s segments. Fur-
ther, we found that the text and audio modalities
complement each other, and the performance
improves when we use both modalities. We
also perform several carefully designed exper-
imental studies to assess the performance of
each stage.

1 Introduction

Cognitive impairment is the condition where a hu-
man may experience cognitive decline in mental
ability (e.g., Dementia and Alzheimer’s disease).
Alzheimer’s disease is the most common form of
dementia. Early detection of cognitive impairment

may lead to a better lifestyle and pathways to treat-
ment (Szekely et al., 2004; Chuang et al., 2016).
Neuropsychological exams are a widely used and
effective technique in assessing a subject’s cogni-
tive status (Kurlowicz and Wallace, 1999). These
exams often serve as the first-stage screening tool
to identify cognitive impairment before performing
more expensive laboratory tests (e.g., brain imag-
ing) (Weinstein et al., 2014) with an average esti-
mated cost of $5,000 per brain scan. An accurate
first-stage assessment is crucial as it helps avoid-
ing additional cost and time burdens on healthcare
system and the patient.

For a typical cognitive interview evaluation, a
trained examiner interacts with a subject (patient)
by conducting a series of tasks that are designed
to assess the memory, attention, visuoperceptual,
reasoning, language, and verbal skills of the sub-
ject (Alhanai et al., 2018; Alhanai, 2019). Dur-
ing this evaluation session, the examiner asks a
series of questions related to different cognitive do-
mains. These questions include identifying objects
in an image, repeating the numbers, words, or story
narrated by the examiner. Based on the answers
to the questions posed by the examiner, the inter-
view exam is assigned a set scores that reflect the
subject’s cognitive status. This is a long process,
and each interview typically lasts for more than an
hour, with interview recordings typically contain-
ing approximately equal amounts of speech from
the examiner and subject.

1.1 Motivation

Recently, there is a growing interest in the speech
community on learning speech-based biomarkers
for cognitive impairment. Despite the success of
existing automatic speech/text-based cognitive as-
sessment models in (Alhanai et al., 2017; Pappa-
gari et al., 2020; Balagopalan et al., 2020; Haulcy
and Glass, 2021; Pérez-Toro et al., 2021), they
are mostly based on either manually curated sub-
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Task Examiner Subject
Healthy Dementia

Question And how far did you go in school? College. <um> four-year college
Question And what was that in? I got an associates degree and a bachelor of fine arts. let’s see bachelor’s degree, what did take that for,

<um> this was, it was with children.
Repeating
story

Anna Thompson of South Boston, employed as a
scrub woman in an office building, reported at the
City Hall Station that she had been held up on State
Street the night before and robbed of fifteen dollars...

Anna Thompson who lived in South Boston, who
worked in a state house was on her way home from
work and she got robbed and she has...

Anna Thompson <um> was walking down State
Street and she was <um> robbed of her purse and
the policeman, she had four children with her, and
the police didn’t want, and <um>...

Repeating
numbers

Three, nine, two, four, eight, seven. Three, nine, two, four, eight, seven Four, nine, three, eight, two, seven.

Table 1: Interview question and answer samples. Key observations: (i) Examiner and subject, in general, speak
differently. (ii) Vocabulary between examiner and subject in multiple sentences may be similar, especially in the
story/number “repeating” tasks. (iii) Subjects with dementia uses more filler words (e.g., “<um>”) compared to
healthy subject and they tend to speak broken sentences in non-fluent manner while repeating certain words.

ject speech or the entire interview exam, including
the examiner’s speech. Also, (Pérez-Toro et al.,
2021) recently found that merely using the seg-
ments from the examiner sections can also lead
to high accuracy for cognitive impairment iden-
tification. They observe this behaviour on the
Alzheimer’s Dementia Recognition through Spon-
taneous Speech (ADReSS) challenge dataset (Luz
et al., 2020) which consists of manually curated
short speech segments, typically around one minute
long, with the text transcriptions for the task of
cookie theft description. The examiner’s influence
is potentially due to the examiner’s reaction con-
taining cues for cognitive impairment assessment.
For instance, the examiner may provide some help-
ing clues to cognitively impaired subjects to arrive
at the correct answers (Egan et al., 2010). However,
an automatic cognitive identification system should
make decisions based on the subject, not the exam-
iner. Hence it is desirable to process the segments
of the exam belonging only to the subject.

Our goal in this work is to automatically identify
dementia using text and audio from a long neu-
ropsychological interview exam consisting record-
ings of both, the examiner and the subject. A re-
lated previous work by (Alhanai et al., 2018) pro-
posed a two-stage approach using role-specific lan-
guage models (LMs) to (i) diarize and identify the
subject segments, and (ii) use handcrafted acous-
tic features with logistic regression for dementia
identification. However, they did not consider the
possibility of the examiner’s influence on the final
cognitive identification decision and ended up em-
ploying a sub-optimal diarization module. We use
the work by (Alhanai et al., 2018) as our baseline.

1.2 Our Contributions

To address the aforementioned problems, we pro-
pose a three-stage pipeline where we aim to: (i)

Diarize (“who spoke when”?) the neuropsycho-
logical exam, (ii) identify the regions belonging
to subject and examiner (Role ID), and then (iii)
detect cognitive impairment (Cognitive ID) using
hypothesised subject’s segments. Our work defers
from the baseline system and we propose several
enhancements as follows:

• Text-speech force alignment: The authors in
(Alhanai et al., 2018) use ground truth speaker
boundaries that have only speaker start times-
tamps. They assume the speaker’s end times-
tamp as the start timestamp of the next speaker.
This assumption is not optimal as there can be
an inter-speaker silence regions. This is also
insufficient for an accurate evaluation of the
performance of diarization. We obtain a better
speaker segmentation by force aligning text
and audio.

• Study: We study examiner’s influence on cog-
nitive ID in full long interview exams and
propose a system to mitigate this influence.

• Diarization: (Alhanai et al., 2018) used a
single-stage role-specific language model for
performing both diarization and role ID. This
is sub-optimal because, (i) As shown in Ta-
ble 1, although there are differences in exam-
iner’s and subject’s vocabulary, there are mul-
tiple segments in the interview exam where
the vocabulary of examiner and subject might
be similar (e.g., a task of repeating a story
or numbers). The language models may fail
to properly distinguish the roles while doing
segment-wise diarization. (ii) Speaker dis-
criminative information present in audio is
not used in diarization.

Hence, unlike previous work by (Alhanai
et al., 2018), we propose to decouple this sin-
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Figure 1: The proposed 3-stage cognitive ID system. (i) Audio-based diarization using ECAPA-TDNN embeddings
and spectral clustering. (ii) Text-based role ID (examiner/subject) using LMs trained on manual or ASR decoded
transcripts. (iii) Text- and audio-based cognitive ID with LMs and EfficientNet model, respectively. The scores
from text and audio are fused in the late score fusion stage for making the final cognitive decision.

gle stage into two separate stages. We pro-
pose the diarization stage using audio, and
the role identification stage using text-based
role-specific language models.

• Models: For the diarization stage, we em-
ploy Emphasized Channel Attention, Propa-
gation and Aggregation in Time Delay Neu-
ral Network (ECAPA-TDNN) to obtain ro-
bust speaker discriminative embeddings from
audio (Desplanques et al., 2020). Apart
from text-based role-specific LMs for role
identification, we also employ wav2vec 2.0
self-supervised model to convert audio to
text for training role-specific language mod-
els (Baevski et al., 2020).

• Cognitive ID: Motivated by differences in vo-
cabulary of healthy subjects and the subjects
with dementia (Table 1, observation (iii)), we
propose text-based cognitive ID using LMs
trained along with the filler words. Further,
we propose cognitive ID from audio using
EfficientNet model (Gong et al., 2022). Fi-
nally we merge cluster-level scores from the
text and audio modalities in using late score
fusion to further improve the performance.

• Dataset curation: Our system automatically
curates the conversation dataset at all stages,
i.e., diarization (speaker segmentation), role
ID (speaker identity), ASR (speech to text),
and cognitive ID (subject’s cognitive condi-
tion) which is useful for research in these do-
mains.

2 Text and speech forced alignment

We use the gold standard Framingham Heart Study
(FHS) dataset as used by (Alhanai et al., 2018).
FHS dataset comprises a total of 92 interview
recordings with orthographically transcribed text.
In the original (orig) annotations for the FHS
dataset, only the start timestamps of the speaker’s
segments are marked by the annotators. The end
timestamp for the current speaker segment is as-
sumed to be the same as the start timestamp of
the next speaker segment. However, this is in-
sufficient for an accurate evaluation of diarization
performance as silence regions are considered as
speech. Hence, we force align text and speech for
each of the orig segment to obtain the word level
alignments FAligned.

To force align text and speech, we employ
Gaussian Mixture Model/ Hidden Markov Model
(GMM/HMM) Automatic Speech Recognition
(ASR) pipeline using Montreal Forced Aligner
(MFA) toolkit (McAuliffe et al., 2017). During
training, mono-phone GMM models are iteratively
trained to generate primary alignments. Then tri-
phone GMMs are trained to account for the context
phones. We obtain the end timestamps of each of
the orig segments as the end timestamp of the last
word in corresponding FAligned word sequence.
This removes the inter-speaker silences. The final
boundaries are used for evaluation purpose. An
illustration is given in the Appendix (Figure 8).

3 Methodology

Figure 1 shows the proposed three stages for detec-
tion of dementia from the long neuropsychological
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interview examinations, including (i) Diarization
using audio, (ii) Role ID using text, and (iii) Cog-
nitive ID using both text and audio.

The diarization stage takes input long interview
recording and divides it into smaller chunks and
processes using the ECAPA-TDNN model to ex-
tract speaker discriminative embeddings. These
embeddings are clustered using spectral clustering
to obtain two clusters. Both clusters are fed to the
role ID module to identify the cluster belonging
to the subject. The hypothesized subject cluster is
then used to identify dementia using text and audio.
The scores from text and audio are fused to make
the final cognitive ID decision.

3.1 Speaker diarization using audio

In order to partition different speakers into different
clusters, the audio segment representations must
capture speaker discriminative information. The
ECAPA-TDNN model (Desplanques et al., 2020)
has shown impressive performance on speaker
diarization of meeting recordings (Dawalatabad
et al., 2021). We extend the ECAPA-TDNN model
embeddings to diarize the FHS neuropsycholog-
ical exams. The long recording is segmented
into smaller chunks such that each segment can
be of length maxSegLen or smaller. The ex-
tracted ECAPA-TDNN embeddings from these
short chunks are clustered using spectral clustering
as given in (Dawalatabad et al., 2021).

3.2 Role ID using text

The output of the diarization system consist of rela-
tive cluster labels (cluster-0 and cluster-1). Hence,
we need a role ID module to identify which clus-
ter belongs to the subject. Due to differences in
vocabulary of the examiner and subject, we train
an n-gram word-based role-specific LM for each
of the roles (i.e., examiner and subject) using the
text sentences. The LMs are trained using the
KenLM toolkit (Heafield, 2011). Classification
of the diarized clusters into examiner and subject is
done using Log-Likelihood Ratio (LLR) test at the
cluster-level. A score for a cluster is estimated by
averaging all the scores of segments in that cluster.
The decision threshold on the development set is
tuned based on the standard Youden’s J statistics
as:

thr = arg max
t

(Sensitivityt +Specificityt �1)

(1)

where, thr is the best score threshold, t 2
{t1, . . . , tn}, and ti is the i-th score threshold.

We employ two strategies for role identifica-
tion: (i) Text Transcripts: The given manually tran-
scribed text is used to train LMs and role identifica-
tion. (ii) ASR Decoded Text Transcripts: Here, we
use a popular wav2vec 2.0 model (Baevski et al.,
2020) to convert audio into text. The decoded text
is used to train LMs and for role identification.

3.3 Cognitive ID using text and audio

Text: We observe that subjects with cognitive
impairments often use some filled pause words (for
example “<um>”, “<uh>”). Apart from these differ-
ences, the subjects with dementia tend to speak sen-
tences in a broken form and a non-fluent manner as
they slowly try to recall the story/words/numbers,
as shown in Table 1 (observation (iii)). These sen-
tences are different from fluent sentences spoken by
healthy subjects. Hence, we propose to use n-gram
LMs to capture these differences between dementia
and healthy subjects using the text transcriptions
along with the filled pauses. A hypothesized sub-
ject cluster is used to calculate a classification score
with respect to the dementia class.

Audio: Apart from the text cues as used above,
audio contains biomarkers that distinguish demen-
tia subjects from healthy subjects (Alhanai et al.,
2017). Hence we also use audio for cognitive
ID. Unlike previous works that use handcrafted
features, we propose to use Convolutional Neural
Network (CNN) based model (LeCun and Bengio,
1995; Trigeorgis et al., 2016) to learn these features
automatically from the audio. Specifically, we use
an EfficientNet model (Tan and Le, 2019) that has
shown impressive performance for speech and vo-
cal sound classification tasks (Gong et al., 2021,
2022).

Text+Audio: A score for hypothesised subject
cluster (text- and audio-based) is obtained by av-
eraging scores over segments in the cluster. We
merge the scores obtained from the text- and audio-
based classifier using a late score fusion approach:

fscore = w.tscore + (1 � w)ascore (2)

where tscore, and ascore are scores from text and
audio respectively. fscore denotes fused score and
w is weight assigned to the text score such that w
2 [0,1]. The final cognitive impairment decision is
taken on the fused scores.
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4 Experimental Setup

4.1 Data split

There are 92 interview recordings with orthograph-
ically transcribed text in the FHS dataset (Alhanai
et al., 2018). We use a development set (dev
set) with 42 recordings (with nine dementia cases)
for tuning hyperparameters of the diarization sys-
tem, training role-specific LMs, and finetuning the
wav2vec 2.0 model. The evaluation set (eval set)
with 50 recordings (with 12 dementia cases) is kept
blind for evaluation purposes. Interview record-
ings were randomly selected to be part of the Dev
or Eval sets. Due to very few recordings for the
dementia class (overall 21/92 cases), similar to (Al-
hanai et al., 2018) we employ leave-one-out cross-
validation (Loocv) for evaluating the cognitive ID
module.

4.2 Evaluation setup

Diarization setup

Diarization performance is evaluated under two
conditions: (i) Oracle VAD (OrcVAD): speech/non-
speech details are obtained from the ground truth,
and (ii) Estimated VAD (EstVAD): A Voice Ac-
tivity Detection (VAD) system is used to obtain
speech/non-speech details from audio. Diariza-
tion Error Rate (DER) is a sum of Missed Speech
(MS), False Alarms (FA), and Speaker Error Rate
(SER) (Xavier Anguera, 2008). MS and FA de-
note errors made by the VAD system. Since our
goal is to improve clustering in diarization, follow-
ing a standard procedure similar to (Alhanai et al.,
2018; Pal et al., 2019; Dawalatabad et al., 2021),
the speech/non-speech labels are taken from the
ground truth for the OrcVAD case. For the EstVAD
case, we tune robust VAD (rVAD) system (Tan
et al., 2020) such that MS is very small and we al-
lowed false alarm silence. This is important in our
context as for the role ID and cognitive ID stage, we
are primarily concerned with the spoken content,
and hence we do not miss any speech regions. We
use SER for evaluating the diarization module us-
ing an open-source National Institute of Standards
and Technology (NIST) evaluation toolkit (Neville
Ryant, 2018). The configuration used for the evalu-
ation toolkit is the same as (Alhanai et al., 2018).

Role ID and cognitive ID setup

We conducted experiments for role ID using given
text transcripts (denoted as Text) and also using text

generated from the ASR wav2vec 2.0 model (de-
noted as ASR). For cognitive ID, we use Text as the
ASR system may not generate filled pause words
accurately. For both role ID and cognitive ID, we
use Area Under the Receiver Operating Character-
istic Curve (AUC) as evaluation metric (Huang and
Ling, 2005) which is also used by (Alhanai et al.,
2018). It gives a complete picture of the system’s
performance under different thresholds unlike other
metrics (accuracy or F1-score) that operate only on
specific thresholds. As diarized cluster may also
contain segments from the other speaker, the tar-
get cluster labels for AUC calculation (for role ID)
are obtained by mapping the diarized clusters and
the actual clusters using a duration-based cluster
matching algorithm provided in the NIST evalu-
ation toolkit (Neville Ryant, 2018). Since the di-
arized cluster may have segments from the other
speaker, for an accurate estimate of the subject
cluster, we also report the cluster purity of the hy-
pothesized subject’s clusters. The percentage of
examiner’s segments present in the cluster is con-
sidered as the impurity for that cluster. Notice that
the cluster purity is a better measure in this context
compared to segment-wise accuracy, as the latter
does not account for the varying duration nature of
the segments.

5 Results, Analysis and Discussion

5.1 Baseline system

The evaluations for the baseline system by (Alhanai
et al., 2018) are performed under the following
three cases: [B0]: Oracle (also topline): The role-
specific language models are trained on the whole
dataset (92 exams), and utterances were segmented
according to the ground truth speaker turns. Test-
ing is performed on the same dataset. [B1]: Leave-
one-out (Loocv+oracleseg): A language model is
trained on all transcripts except the one being pro-
cessed (i.e., 91 exams), and utterance speaker turns
are again taken from the ground truth. [B2]: Leave-
one-out+autoseg (Loocv+autoseg): The language
model is trained on all transcripts except the one
being processed. The segmentation is estimated
using the ASR system.

Note that a strong assumption is used by all the
above mentioned baseline systems that there are
no silence regions during the whole interview con-
versation. This may finally lead to over-optimistic
cognitive ID decisions. Although it is incorrect
to use the test data during training by the baseline
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Figure 2: Analysis on subject segments taken from
ground truth for role ID and cognitive ID. The AUC
when decision using LMs is taken based on (i) All the
segments smaller than certain length (say, y sec). (ii)
Only using segment with a specific length. The former
condition (i.e. (i)) show better AUC.

work (i.e., B0), it gives an estimate of the hypothet-
ical best performance that can be achieved by the
baseline system (i.e., a topline performance).

5.2 Study on role ID and cognitive ID
The primary motivation for our work is (i) Exam-
iner’s segments influence the final cognitive ID
decision, so we need to mitigate this influence. (ii)
The baseline work by (Alhanai et al., 2018) does
not consider the examiner’s influence and ends-up
employing a poor diarization system. We designed
the following two experiments to study this.

Analysis on role ID
This experimental study assumes text transcripts,
segmentation, and speaker IDs from the ground
truth. Experiments are performed under two con-
ditions: (i) Role ID score is estimated using all
segments less than a certain length. (ii) Role ID
score is calculated on segment of specific length
(say, y sec). Segment lengths are quantized to 1
sec. For example, the segment of 5 seconds means
segments in the range of 4-5 seconds. This study

Segments from Subject Examiner All

AUC 0.816 0.865 0.871

Table 2: A study on cognitive ID. Examiner’s segments
contain cues for cognitive ID.

is designed to understand if role ID can reliably be
performed only using some segments.

We consider examiner/subject clusters from
ground truth and use n-gram word-based LMs for
the role ID of a given cluster. The AUC versus seg-
ment length is shown in Figure 2a. There are two
key observations for condition when role ID score
is calculated on segment of specific length: (i) It
can be seen that the segments of different lengths
behave differently. The AUC is high for smaller
segments. This is expected as most short-length
segments from the examiner are question-type sen-
tences like “what is your highest degree?” which
are quite different from the subject’s vocabulary.
(ii) The longer segments (though very few in num-
ber), on the other hand, show low AUC. This is
due to the fact that the vocabulary of the examiner
and subject can be very similar in longer segments,
e.g., the task of repeating the story narrated by the
examiner (see Table 1, point (ii)). Therefore, text-
based role-specific LMs used in baseline system
might not be an optimal approach to diarization.
This is also evident from the baseline’s poor di-
arization performance (as discussed later in Table
3). Hence, we propose diarization using speaker
discriminative characteristics in audio.

It can be seen that the AUC stays high (1.0)
for the condition when the decision is taken over
multiple segments (or even all segments) of dif-
ferent lengths. Hence, we propose a text-based
role-specific LMs for role ID using all segments in
a cluster obtained from diarization module.

Analysis on cognitive ID

We repeat a similar experimental study for cogni-
tive ID (Figure 2b) in leave-one-out (Loocv) setup.
Cognitive ID is relatively difficult to estimate com-
pared to role ID. The highly peaky nature of the
curve when using exact segment length (green
curve) indicates that the subject does not express
dementia features all the time. Making a decision
on multiple segments shows improved AUC. Hence
we make collective decision using a score averaged
over all segments.

Table 2 shows performance of cognitive ID using
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System/Condition Dev-set Eval-set Combined-set

Baseline

B0: Oracle (topline) - - 31.7
B1: Loocv+oracleseg - - 32.9
B2: Loocv+autoseg - - 36.7

Ours

Oracle VAD 19.25 18.45 18.82
Estimated VAD 28.5 26.1 27.2

Table 3: Performance of diarization system in SER. The
lower SER value is better.

segments from different roles (Subject/ Examiner/
All). This experiment analyzes the influence of
the examiner’s segments on cognitive ID decision.
It can be seen that the cognitive ID can be esti-
mated from the examiner’s segments with a reason-
ably high AUC. When the examiner’s segments are
mixed with the subject (All), it still shows a high
AUC. Hence, the final cognitive ID performance
can be sub-optimal (or over-optimistic) if examiner
segments get mixed with subject segments. To mit-
igate the examiner’s influence, we propose a better
diarization system that helps to partition the exam-
iner’s and subject’s segment with high accuracy.

5.3 Diarization performance

Table 3 shows the results obtained by our audio-
based diarization module for different VAD condi-
tions. It can be seen that our systems outperform
baseline systems by a significant margin. Figure 3
shows performance of the diarization system under
different maximum segment lengths (maxSegLen
as defined in Section 3.1). Diarization with or-
acle VAD (OrcVAD) segments shows improved
performance with increasing maxSegLen. This is
because of the TDNN layer in ECAPA-TDNN, the
longer-range dependencies help retain speaker’s in-
formation. For the estimated VAD (EstVAD) case,
we obtain the best performance with 7-second seg-
ments as too long segments tend to contain silences
and other sounds, possibly corrupting the speaker
embeddings. The proposed systems outperform
baseline systems irrespective of segment length.

It is important to check if there are enough seg-
ments in each of the diarized clusters to make sure
diarization does not yield an empty cluster or a
cluster with too few segments. In Figure 4 we show
the ratio of the duration of the large cluster to the
duration of the smaller cluster. It can be seen that
both proposed systems show cluster duration ratios
similar to that in the ground truth irrespective of

Maximum segment length: maxSegLen (seconds)
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Figure 3: Diarization performance: SERs for different
maximum segment lengths under oracle and estimated
VAD segmentation. Increasing segment length improves
SER for OrcVAD while best SER for EstVAD is ob-
served at 7 secs. Lower SER value is better.
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Figure 4: The ratio of the average duration of the large
cluster and the smaller cluster on dev set. Both oracle
and estimated VAD cases show comparable duration
ratios and closer to the ground truth duration ratio.

maxSegLen. For the estimated VAD case, a very
high ratio for the segment size of more than 25 sec
is observed. This is due to more silence/noise get-
ting included in the segment, potentially corrupting
the speaker embedding. Hence, for the estimated
VAD case, we use shorter segments of 7 secs that
give the best performance on the dev set.

5.4 Role ID performance

Figure 5 shows AUC for role ID using the segments
from the diarized clusters. Due to the differences in
the segmentation across audio and text transcripts,
the following are the valid cases: Case Ro-1: Di-
arization using oracle VAD and role ID using given
text transcripts ([Di]:OrcVAD, [Ro]: Text). Case
Ro-2: Diarization using estimated VAD and role ID
using ASR-decoded text transcripts ([Di]:EstVAD,
[Ro]: ASR-text). It can be seen that the trend in
the AUC for both the conditions is similar to the
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Figure 6: Role ID performance: Purity of hypothesized
subject cluster vs. number of interviews. Both the dis-
tributions are left-skewed, i.e., most of the hypothesized
subject clusters have high average purity of 70% and
above. Hence, the cognitive decisions taken in the next
stage are majorly based on the subject’s segments.

ground truth (as earlier discussed in Figure 2a). For
the case Ro-1, we obtain the best AUC of 1.0 on
dev set with cluster-level accuracy of 98% on the
eval set using all segments in a cluster. For the case
Ro-2, we obtain an AUC of 0.978 on the dev set
with an accuracy of 93.5% on the eval set.

The average subject cluster purity for case Ro-1
on dev set and eval set are 72.73% and 74.03%
respectively. The average subject cluster purity for
the case Ro-2 for dev set and eval set are 68.41%
and 69.8% respectively. The distributions of the
subject cluster purities shown in Figure 6 are left-
skewed for both the cases. It can be seen that
most diarized interviews have highly pure subject
clusters with the purity ranging between 70% and
100%. This ensures that the cognitive decision
taken in the next stage is majorly based on the
subject’s segments.
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Figure 7: Cognitive ID performance: Text- and audio-
based cognitive ID in Loocv setup. The sum of weights
assigned to text and speech is 1. Fusing text and audio
scores help to improve the performance.

Sys. VAD Role ID
Cognitive ID AUC (Eval / Combined)
Text Audio Text+Audio

P0 Topline Text 0.875 / 0.816 0.811 / 0.789 0.875 / 0.853
P1 Oracle Text 0.721 / 0.767 0.825 / 0.783 0.825 / 0.830
P2 Estim. ASR - 0.781 / 0.763 -

Table 4: Performance on cognitive ID. Hypothesized
subject’s segments are used for cognitive ID.

5.5 Cognitive ID performance
The best performing cognitive ID baseline systems
are based on B0 (oracle), B1 (loocv+oracleseg) and
B2 (loocv+autoseg) with an AUC of 0.72, 0.75, and
0.76 as described in Section 5.1, respectively. As
the baseline has a strong assumption that there are
no silences in the whole conversation, we compare
these results with our oracle VAD case. Table 4
shows AUC obtained using the proposed cognitive
ID for different systems on eval and combined sets.
It can be seen that our system performs better than
the baseline system.

Further, we merge the text and audio scores at
the cluster level using late score fusion. Figure 7
shows the AUC on the combined set under dif-
ferent score fusion weights. It can be seen that
merging text and audio scores helps to improve the
performance. This shows that the text and the au-
dio modalities contain complementary information.
As shown in Table 4, the best performance for the
proposed system P1 obtained using text and audio
score fusion is 0.825 and 0.830 on eval and com-
bined set, respectively. This is close to performance
on the best possible P0 system (topline). Finally, on
fully audio-based proposed system P2, we obtain a
competitive AUC of 0.781 and 0.763 on eval and
combined sets, respectively. It is worth mentioning
that the proposed system P2 does not make any
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assumptions about silences in the recording. Also,
note that cognitive ID decisions are less influenced
by examiner’s segments due to a better partitioning
of subject and examiner by audio-based diarization
module.

6 Conclusions

In this study, we found that the examiner’s segment
influence the cognitive ID performance in long ex-
ams. To mitigate the examiner’s influence, we pro-
pose a three-stage cognitive identification system
for long neuropsychological interviews. Our sys-
tem achieves state-of-the-art performance on the
FHS dataset. More importantly, the following are
the main conclusions from our study:

• Force alignment: Proper segmentation is es-
sential for accurate evaluation of performance.

• Diarization: Audio-based diarization focuses
on speaker discriminative features and is more
suitable compared to text-based role-specific
LMs as multiple text sentences can be similar
between examiner and subject.

• Role ID and cognitive ID: decision using
multiple segments gives better performance as
opposed to using some segments of particular
lengths. Merging text and audio scores for
cognitive ID improves performance.

Finally, our system automatically curates the con-
versation dataset at all stages, i.e., diarization
(who spoke when?), ASR (speech to text), role
ID (speaker identity), and cognitive ID (cognitive
condition of a subject) which is useful for research.

7 Limitations

Since the proposed (and also the baseline) system
have multiple stages (pipeline/cascaded system),
there is a possibility of error propagation through
these stages. However, using the best possible mod-
ules in the pipeline may reduce the possibility of
error propagation.

8 Open directions for future research

• Our pipeline-based cascaded system has inter-
pretable intermediate outputs. This is an im-
portant factor in healthcare applications. How-
ever, as mentioned in Section 7, it may suffer
from error propagation when improper mod-
ules are used. End-to-End (E2E) deep neural

network based systems on the other hand, are
difficult to interpret but can reduce the possi-
bility of error propagation. Considering the
scarcity of clinical datasets, it is challenging to
build such an E2E model that can handle mul-
tiple tasks and simultaneously mitigate the ex-
aminer’s influence on cognitive ID decisions.
We believe this can be a potential direction
for the future research to have such an E2E
system without losing the interpretability of
intermediate outputs.

• We focus on mitigating the examiner’s influ-
ence by eliminating examiner’s sections from
the final cognitive ID decision. It will also be
an interesting study to analyse how much ex-
aminer can influence the decision and find the
sections that are responsible for the influence.
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A General challenges with clinical
interview data

Information such as “who is speaking when”,
“what is spoken?”, and “cognitive condition” are of
interest to the clinical research community. Even
though recording an audio of the exam is an easy
task, automatically obtaining such information of
interest, on the other hand, is not trivial (especially
for clinical data). Automatically obtaining such in-
formation from clinical data involves several chal-
lenges that are different from other conversational
interviews (Sell et al., 2018; Alhanai et al., 2018;
Pal et al., 2021). For example, neuropsychological
interview exams have significant variations in terms
of speaker turn-taking, have significant background
noise, and some times improper text transcriptions.
Further, the amount of clinical data (in general) is
an order of magnitude smaller compared to other
datasets. All these conditions make it highly chal-
lenging to process such real-world conversational
clinical data.

A.1 FHS dataset, recording conditions and
annotations

We use the gold standard Framingham Heart Study
(FHS) dataset (Alhanai et al., 2018) in this paper.
It includes a total of 92 real-world neuropsycholog-
ical interview exam recordings in English with 100
hours of total duration. There are 20 examiners,
and all exams have a unique subject. In total, there
are 21 cognitively impaired subjects, accounting
for 22.8% of the total dataset size. The average
length of each recording is around 65 mins. The
mean age of subjects under evaluation is 68 years,
and the gender ratio is 49:51 (female:male). Exams
were recorded at different sampling rates of 8kHz,
16kHz, and 44kHz. We re-sampled all recordings
to 16kHz for consistency. The exam recordings
have various background noise, e.g., some record-
ings are recorded in open settings, and sound from
background speakers also gets recorded. In addi-
tion, the quality and placement of microphones
used are inconsistent across the exams. All these
variations of real clinical interviews are challenging
compared to other general conversation datasets.
These variations make our task more challenging.

All the recordings have been transcribed ortho-
graphically by human annotators. Annotators were
also asked to mark non-speech filled pauses (e.g.,
<um>, <uh>).

B Text and speech forced alignment

Figure 8 shows an illustration of the text and
speech forced alignment. The orig represents
speaker boundaries in the original annotation,
FAligned are the word boundaries obtained using
MFA (McAuliffe et al., 2017). The impr are the
final output boundaries. Each orig segment is pro-
cessed separately to obtain the end timestamp of
that segment as described in Section 2.

C Spectral clustering for diarization

Spectral clustering is a graph-based approach to
clustering (von Luxburg, 2007) and widely used
backend clustering approach to cluster speaker em-
beddings (Dawalatabad et al., 2021; Park et al.,
2022). The affinity matrix representing the simi-
larities between the pairs of the embeddings is cal-
culated. Smaller values of similarities are pruned
using pruning threshold. The Laplacian matrix is
estimated using the affinity matrix as described
in (von Luxburg, 2007; Park et al., 2020). We
then perform Eigen decomposition of the Lapla-
cian, and top-k eigenvectors are estimated. The
rows of the eigenvectors become the spectral em-
beddings. These spectral embeddings are clustered
using the standard k-means algorithm.

D Additional evaluation and model
configuration details

All the models trained in this paper are from popu-
lar publicly available toolkits. We share the com-
plete configuration files for all the models used in
this paper with all the hyperparameters used in our
experiments. We also share the code for the mod-
els that differ from the publicly available toolkits.
Since the FHS dataset is in the English language,
all the models are trained using English language
datasets. Table 5 shows the statistics for all the
models used for the experiments in this work.

D.1 Text and speech forced alignment

We force align the word sequences with the input
audio (McAuliffe et al., 2017). We use the pre-
trained Librispeech model and adapt it with the
FHS dataset. We perform adaptation with 10 hours
of FHS data from dev set. The alignments are gen-
erated as described in Section 2. Note that MFA is
only used to get the speech segment endpoints. No
speaker turn information is used in the diarization
system.
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Figure 8: Forced alignment of text and speech: The first and second tiers shows audio and spectrogram respectively.
The prefixes E and S are used to represent examiner and subject respectively. The suffix orig represents speaker
boundaries in the original annotation. The FAligned are the word boundaries obtained after forced aligning text and
speech. The impr denotes the improved speaker boundaries with speaker end timestamps.

Categories KenLM (Training) ECAPA-TDNN Wav2Vec 2.0 (Finetuning) EfficientNet (Training)

GPU / CPU Name INTEL CPU 2.7 GHz NVIDIA V100 NVIDIA RTX A5000 NVIDIA GTX 1080
GPU / CPU Memory 3 GB 32 GB 24 GB 8 GB
Number of such GPUs/CPUs 1 1 4 2
Run time for 1 Epoch - 23 hours 20mins 5 min x 92 recordings
Tot. num of Epochs - 12 20 5
Avg. runtime for Training 1 hour 11 days (pretrained model used) 8 hours 40 hours
Avg. runtime for Inference 5 mins 1 hour 30 mins 1 min x 92 recordings
Num of model parameters 100,000 21 Million 300 Million 4 Million

Table 5: Experiment and resource details for different models used in this work. All the values are approximated to
the closest integer.

5311



D.2 Diarization

For diarization with estimated VAD, we tune the
rVAD system on dev set such that we do not miss
any speech. This is important as the role ID and
the cognitive ID modules are dependent on the
words spoken by the subject. The hyperparame-
ter of ftThres and vadThres are set to 0.91 and
0.001 respectively (Tan et al., 2020). With this con-
figuration, we obtain the MS and FA are 0.3% and
21.3%, respectively.

We use the pre-trained ECAPA-TDNN
model (Desplanques et al., 2020) for our ex-
periments (Ravanelli et al., 2021). The model
was originally trained using Voxceleb1 and
Voxceleb2 (Nagrani et al., 2017; Chung et al.,
2018) datasets. The best pruning threshold value
(pval) for spectral clustering obtained on the dev
set is 0.02 and 0.5 for oracle VAD and estimated
VAD, respectively.

We use a standard forgiveness collar of
250ms (Alhanai et al., 2018) for diarization eval-
uation. It does not penalize the error within the
collar from the speaker’s boundaries. It is helpful
to ignore these small errors as they might have orig-
inated due to improper human annotations. We use
the NIST evaluation tool to calculate the SER and
cluster purity (Neville Ryant, 2018).

D.3 Role ID

The ASR decoded text used for training role-
specific LMs is obtained from a popular wav2vec
2.0 model (Baevski et al., 2020). The pre-trained
model from Fairseq (Ott et al., 2019) is finetuned
on the FHS dev set to obtain the ASR decoded
text. All the AUC calculations are performed using
sklearn toolkit (Pedregosa et al., 2011; Buitinck
et al., 2013).

D.4 Cognitive ID

Since there is a class imbalance between dementia
and healthy, models for cognitive ID are trained us-
ing class balancing strategies. For both LM-based
and EfficientNet cognitive ID, we over-sample the
sentences from the dementia class. For cognitive
ID evaluation, we found that considering the top
N highest scoring segments from the hypothesized
subject cluster for audio modality gives better per-
formance. Hence we consider top N scoring seg-
ments for audio modality, while for text modality,
we use all the segments in the hypothesized subject
cluster.
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Figure 9: The EfficientNet model architecture for cog-
nitive ID used in this paper.

We slightly modified the EfficientNet model in
(Gong et al., 2022) for cognitive ID (illustrated in
Figure 9). Each speech waveform is first converted
to a sequence of 128-dimensional log Mel filter-
bank (fbank) features computed with a 25ms Han-
ning window every 10ms. The t⇥128 fbank feature
vector is input to an EfficientNet-B0 model (Tan
and Le, 2019). The EfficientNet-B0 model effec-
tively downsamples the time and frequency dimen-
sions by a factor of 32, and the feature dimension d
is 1280. Thus, the penultimate output of the model
is a dt/32e ⇥ 4 ⇥ 1280 tensor. We apply mean
pooling over the four frequency dimensions and
all time dimensions to produce a 1280-dimensional
segment-level representation that is fed to a binary
linear classifier for cognitive ID. We train the Effi-
cientNet model with a batch size of 48, an initial
learning rate of 1e-3 for up to 5 epochs.
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