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ABSTRACT

Impaired repetition is a characteristic of several speech and lan-
guage disorders, including certain variants of Primary Progressive
Aphasia (PPA). People with the logopenic variant of PPA (lvPPA)
can present with impaired repetition abilities and repetition tasks can
be used to distinguish lvPPA speakers from healthy controls. In this
paper, we propose a novel technique for quantifying the quality of
repetition in speech recordings and demonstrate the utility of the
technique by using it to distinguish between healthy speakers and
lvPPA speakers. We train several classifiers on features extracted
from the repetition recordings. The best classifier distinguishes the
lvPPA speakers with impaired repetition from the healthy speakers
with 85.7% accuracy and classifies all healthy speakers with perfect
accuracy. Although we evaluate the method on lvPPA detection, we
believe that the method has potential utility for a range of tasks and
speech disorders where repetition occurs.

Index Terms— Primary Progressive Aphasia, Cognitive Impair-
ment, Repetition Assessment, Speech Processing

1. INTRODUCTION

It is no secret that speech can be used to detect cognitive impair-
ment in patients with dementia and other neurocognitive disorders
[1, 2, 3, 4, 5, 6, 7]. Spoken repetition tasks have been used for
decades to detect cognitive and language impairment in children
and adults. Non-word repetition tasks have been used to detect lan-
guage impairment in children [8, 9, 10, 11] and word/sentence rep-
etition tasks have been used to distinguish healthy controls from pa-
tients with various forms of Primary Progressive Aphasia (PPA) and
Alzheimer’s Disease [12, 13, 14, 15, 16]. In previous research, rep-
etition scores have been manually assigned to each speaker (e.g. by
computing how many syllables a speaker said correctly) by clini-
cians and graduate students that were trained to assess the perfor-
mance of the patients on certain tasks. This process can be biased by
the scorer’s expectations [17] and can be tedious to complete. For
this reason, an automatic way of quantifying repetition quality could
be beneficial to the research and clinical communities.

Previous research has explored ways of detecting repetition in
audio. Early work on unsupervised pattern discovery in speech were
able to find repeating word-like sequences in speech signals with-
out prior knowledge of the words or the language being spoken [18,
19]. These techniques involved using spectral distance matrices, seg-
mental dynamic-time-warping (SDTW) and graph-based clustering
methods to identify reoccurring sequences. We were motivated by
this work to develop a repetition detection method that could be used
to quantify the quality of repetition in a speech recording.

In this paper, we describe our repetition detection method and
evaluate its ability to distinguish subjects with the logopenic vari-
ant of Primary Progressive Aphasia (lvPPA) from healthy subjects.
The speech of lvPPA subjects is characterized by a decline in word
retrieval, poor repetition, and phonemic paraphasias [20]. Speak-
ers with poor repetition abilities are unable to repeat other people’s
speech correctly, often producing phonological speech errors. For
this reason, recordings of lvPPA subjects completing repetition tasks
are particularly illuminating when compared to the recordings of
healthy speakers completing the same tasks. Our work differs from
previous work by providing an approach for computing a metric for
repetition quality without the need for manual evaluation and with-
out needing to know how many syllables/words are present before-
hand. In the following sections, we explain and demonstrate the fea-
sibility of our approach by training classification models using the
extracted metrics as inputs.

2. DATASETS

The first dataset used for analysis and classification was the Crowd-
sourced Language Assessment Corpus (CLAC) [21], a speech cor-
pus that consists of audio recordings for several speech and language
tasks from 1,832 speakers that were presumed healthy. As part of
the data collection protocol, speakers completed a repetition task in
which they were instructed to repeat multisyllabic words (“artillery”,
“catastrophe”, and “impossibility”) five times in succession. The
repetition recordings for a subset of the speakers in the CLAC cor-
pus were used as healthy controls during analysis and classification.

The second dataset consisted of speech from subjects with vari-
ous forms of Frontotemporal Dementia (FTD) and PPA completing
speech tasks similar to those found in the CLAC corpus, including
the repetition tasks. The FTD dataset has been used in previous re-
search to explore which speech characteristics are most salient for
the detection of the behavioral variant of FTD (bvFTD) [5]. More
information about the language assessment of the subjects in the
dataset can be found in [5]. The repetition recordings associated
with the lvPPA subjects were used for analysis and classification.

3. SIGNAL PROCESSING FOR REPETITION DETECTION

Each repetition waveform was processed in several steps. First, si-
lence was detected and removed from the beginning and end of each
recording. This was accomplished with Pydub [22] with a minimum
silence length of 250 ms, and a silence threshold set to the volume
of the recording in dB relative to full scale (dBFS) minus 16.

The next step was to extract 13 Mel Frequency Cepstral Coeffi-
cients (MFCCs) from each waveform, using a window length of 25
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ms and analysis rate of 10 ms. The MFCCs were used as the basis
for computing distance matrices described in the next section.

3.1. Self-Distance Matrices

In the general SDTW framework, distance matrices correspond to
frame-level distances between two speech waveforms, with each el-
ement being a distance between two individual frames. In the rep-
etition task however, each waveform contains multiple occurrences
of the same word or syllable, so a (square) self-distance matrix is
an appropriate representation to capture the self-similarity between
successive repetitions. For this work, we use the Euclidean distance
metric to compute frame-level MFCC distances. In Figure 1, an ex-
ample of a self-distance matrix for a recording with unimpaired rep-
etition (top) versus the matrix for a recording with impaired repeti-
tion (bottom) can be seen. In both cases, the matrix diagonal is zero
(blue), since we are comparing a recording to itself. However, in the
unimpaired repetition matrix, we can also see diagonal-like stripes at
regular intervals. These “stripes” correspond to low-distance align-
ments of successive repetitions. The first off-diagonal corresponds
to matching successive repetitions in the waveform (e.g., 1v2, 2v3,
3v4, 4v5), the second off-diagonal corresponds to matching repeti-
tions spaced two repetitions apart (1v3, 2v4, 3v5), and so on. In
this way, the off-diagonal structure neatly summarizes the distances
between each pair of repetitions.

In contrast to the unimpaired repetition, a poorly spoken rep-
etition recording will not exhibit the same degree of off-diagonal
structure. Aside from the main diagonal, we would expect to see
more random distribution of distances, corresponding to Euclidean
distances between random speech frames. In the impaired repeti-
tion example, we see some degree of off-diagonal structure, but it
is clearly weaker and more sporadic than the unimpaired repetition
example.

The self-distance matrix is a useful representation of the self-
similarity between repeating speech patterns. It has the advantage of
being agnostic to the chosen word, syllable or even language being
spoken, and requires no task-specific training.

3.2. Normalized Diagonal Sum Profile

In order to determine the optimal alignment between successive rep-
etitions, an algorithm such as SDTW should be used [18]. In doing
so, we can establish an optimal warping path and an associated align-
ment cost. In our initial work however, we chose to approximate
the warp by assuming an unimpaired repetition alignment would be
nearly diagonal, and that the alignment cost could be reasonably rep-
resented by the normalized sum of distances along the diagonal.

As a way of characterizing the overall self-distance matrix, we
transformed it into a one-dimensional profile, with each element cor-
responding to a normalized sum of distances along a particular di-
agonal. An example of a diagonal sum profile is shown in Figure 2,
which shows the profile for the unimpaired repetition and impaired
repetition examples from Figure 1. The profile is plotted as a func-
tion of time, which represents the offset in seconds between two
alignments (1s corresponds to 100 frames) in the self-distance ma-
trix. From the sum profile, we can easily identify good alignments,
as they correspond to local minima. For an unimpaired repetition
(Figure 2a), the minima occur at regular intervals and have consis-
tent magnitude and drop from the average profile value. For an im-
paired repetition (Figure 2b), the minima are more sporadic and are
rather insignificant compared to the average profile value.

Fig. 1: Self-distance matrices for an unimpaired (top) and impaired
(bottom) repetition of five instances of the word “catastrophe”.

3.2.1. Sum Profile Features

Although the self-distance matrix or the sum profile could have been
used directly as a feature representation for the repetition classifica-
tion model, we wanted to extract a more compact set of features due
to the lack of data from lvPPA speakers. Since information about
the local minima in the sum profile seemed important, we extracted
information about the offset time and magnitude of the local min-
ima. To accomplish this, the find peaks function in Scipy’s signal
processing library [23] was used to find the minima in each sum
profile. An example of the detected minima can be seen in Figure
2. The detected time offsets are shown beneath each minima and the
associated range (the magnitude drop of the local minima) are shown
above the lines representing the magnitude.

For each recording, the first three local minima were found and
the minima with the largest range was used to represent the record-
ing, along with the corresponding offset time. Each speaker had at
least two repetition recordings. After each recording had an asso-
ciated minima range and time, the minima with the smallest range
was selected as the representation for the speaker. In other words,
each speaker was represented by their worst repetition, since we ex-
pected that healthy speakers would perform well in all their record-
ings whereas struggling speakers might not.

3.2.2. Fourier Analysis Features

As an alternative to the direct feature extraction of local minima in-
formation on the sum profile, we also examined the use of a Fourier
analysis. We hypothesized that applying a discrete Fourier Trans-
form (DFT) to the sum profile could help us identify the regularity
of the local minima structure in the sum profile.

Example DFTs can be seen in Figures 2a and 2b (bottom). In
Figure 2a, there are clear DFT peaks at several frequencies. Scipy’s
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(a) Unimpaired Repetition Example

(b) Impaired Repetition Example

Fig. 2: The diagonal sum profile and associated spectral amplitudes
for the unimpaired (a) and impaired (b) repetitions of Figure 1.

find peaks function was also used to find the peaks in the DFT. As
can be seen in the Figure, the first harmonic occurs at 1.04 Hz,
which, given the DFT resolution, approximately corresponds to the
regular minima in the sum profile.

The DFT in Figure 2a also shows that significant harmonics have
higher amplitude values (in contrast to Figure 2b). This suggests that
the frequency and amplitude values associated with the harmonics
in the DFT may provide a useful representation for analyzing rep-
etitions. For this reason, we extracted the frequency and amplitude
for the largest harmonic in the DFT and used that to represent the
repetition quality in each recording. As before, we represented each
speaker by the smallest amplitude from all of their recordings (rep-
resenting the speaker’s worst performance) and used the frequency
and amplitude of that peak to represent the speaker.

4. ANALYSIS

The processing steps described in Section 3 were applied to the audio
recordings of healthy and lvPPA speakers and used to extract four
features that were described previously (sum profile local minima
time and range, DFT first harmonic frequency and amplitude). Since
the CLAC corpus contains a wide demographic, a subset of speakers
older than 44 was selected as the healthy subset in order to match the
lvPPA speaker age range. The data thus consisted of recordings from
354 healthy speakers (aged 53.3± 8 years; 199 female speakers) and

Fig. 3: A scatter plot of the sum profile local minima range and DFT
harmonic amplitude for healthy and lvPPA speakers.

9 lvPPA speakers (aged 64.1 ± 7 years; 5 female speakers).
We experimented with different combinations of the four fea-

tures to see which were the most salient for distinguishing between
speakers with unimpaired and impaired repetitions. One approach
that we used to make predictions about which combination of fea-
tures would be most salient was to plot one feature as a function
of another for each speaker and visualize the separation. Figure 3
shows one such visualization that plots the local minima range as a
function of the harmonic amplitude for lvPPA and healthy speakers.

While lvPPA speakers are known to have difficulty with repe-
tition, there are some that perform the task well. To better analyse
the results, a speech and language pathologist independently scored
all lvPPA speakers on the multisyllabic word repetition task in terms
of speed, precision/accuracy and consistency, before assigning each
speaker an overall score. These scores were used to divide the lvPPA
speakers into those with relatively unimpaired repetition abilities,
and those with relatively impaired repetition abilities.

In Figure 3, the unimpaired lvPPA speakers tend to fall among
the cluster of healthy speakers while all but one impaired lvPPA
speaker is separated from the healthy speakers. The one impaired
lvPPA speaker that is among the healthy speakers is dysfluent
throughout the recordings to a lesser degree than the other impaired
lvPPA speakers. For this reason, we think it’s reasonable for that
speaker to be close to the border between the clusters.

4.1. Classification

In order to explore how useful the features we extracted were for dis-
tinguishing between unimpaired and impaired repetition recordings,
we trained five classification models on several different combina-
tions of features. The five classifiers that we trained were the Linear
Discriminant Analysis (LDA) classifier, the Decision Tree (DT) clas-
sifier, the K-Nearest Neighbors (KNN) classifier, the Random Forest
(RF) classifier, and the Support Vector Machine (SVM) classifier.
Because of the small size of the data, we used Leave-One-Subject-
Out (LOSO) to train the models. Due to space limitations, we only
share the classification results for the KNN classifier trained on all
the different combinations of features (Table 1), and we also share
the best LOSO results for all five models and the combination of
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Features Acc. Spec. Sens. Imp. Sens.
[MR] 0.992 1 0.667 0.857
[HA] 0.989 1 0.556 0.714

[MT, MR] 0.992 1 0.667 0.857
[MT, HF] 0.975 1 0 0
[MR, HA] 0.989 1 0.556 0.714
[HF, HA] 0.989 1 0.556 0.714
[HF, MR] 0.989 1 0.556 0.714

[MT, MR, HF, HA] 0.989 1 0.556 0.714

Table 1: KNN LOSO results for healthy vs. lvPPA speakers with
different feature combinations (MT: Minima Time, MR: Minima
Range, HF: Harmonic Frequency, HA: Harmonic Amplitude).

Classifier Features Acc. Spec. Imp.
Sens.

LDA [HF, MR] 0.983 1 0.429
DT [HF, HA] 0.986 0.994 0.857

KNN [MR], [MT, MR] 0.992 1 0.857
RF [MT, MR], [HF, MR] 0.992 1 0.857

SVM [MR], [HF, MR] 0.992 1 0.857

Table 2: The best LOSO results for each classifier.

features that the models were trained on (Table 2).
Each model output a prediction of “healthy” or “lvPPA”. Since

there was a large disparity in the number of healthy speakers versus
lvPPA speakers, we report the specificity (the percentage of healthy
speakers that were correctly classified as healthy) and sensitivity
(the percentage of lvPPA speakers that were correctly classified as
lvPPA) results in addition to the average accuracy across all splits.
For sensitivity, we were particularly interested in the sensitivity for
the impaired lvPPA speakers, as we expected the unimpaired lvPPA
speakers to be misclassified as healthy. For this reason, we report the
impaired lvPPA sensitivity (the percentage of impaired lvPPA speak-
ers that were classified as lvPPA) in both tables. Table 2 shows that
the best-performing classifiers had an average accuracy of 0.992, a
specificity of 1, and an impaired lvPPA sensitivity of 0.857.

5. DISCUSSION

The classification results demonstrate the feasibility of our approach
by distinguishing between speakers with unimpaired and impaired
repetition (healthy and impaired lvPPA speakers). Only one im-
paired lvPPA speaker was misclassified as healthy. The misclassi-
fied speaker is the impaired lvPPA speaker that is among the healthy
speakers in Figure 3, which accounts for the misclassification. The
misclassified speaker was also early in their disease progression (0
years since diagnosis when the task was completed), which likely
made their repetition impairment less severe compared to the other
impaired lvPPA speakers who were all further along in the progres-
sion of the disease (the other impaired lvPPA speakers had an aver-
age of 3 years since diagnosis).

5.1. Combination Of Features

Table 2 shows that the MR feature is present in the feature combina-
tions of all but one classifier when the best performance for that clas-
sifier is achieved. For two classifiers (KNN and SVM), using only
the MR feature achieves the best performance (Table 2). We can
conclude therefore that MR is an important feature for quantifying

repetition in audio, perhaps the most important feature. However,
only two classifiers achieved the best performance using only MR
features. The other classifiers used a combination of MR and MT
or HF. This suggests having a feature that represents the time the
repetition occurred is best for good performance across classifiers.

5.2. Benefits Of Our Approach

There are several benefits associated with our approach. The first is
that our approach is agnostic to accent and language. Since an ut-
terance is being compared to itself when the distance matrix is com-
puted, the approach does not need to be augmented based on what
language someone speaks or what accent they have. Our approach
simply tries to capture and measure repeating sounds. This means
that the word the speaker repeats does not matter.

Our approach can also potentially be used to identify repeating
sounds that are not words, like repeating environmental sounds or
non-word repetition tasks, like the popular pataka task that is used
to study patients with Parkinson’s disease [24]. Our approach can
be applied to a variety of problems in addition to the detection of
language impairment. Our method is also agnostic to the data col-
lection method that is used. Recordings can be captured in a lab
setting, where a proctor is present (e.g. FTD dataset). Recordings
can also be collected by the speaker themselves without a proctor
present, via phone or computer (e.g. CLAC dataset). The task is
simple enough for people to complete on their own from anywhere.

Variation in the recording environment is also not a problem.
The concern associated with having recordings that have been col-
lected in vastly different environments using different microphones
is alleviated by the fact that self-distance matrices are collected and
distances are not being computed between the recordings with vastly
different recording environments. Lastly, our approach does not de-
pend on the amount of input data we have and can be applied to a
single recording. This is useful in situations where data tends to be
limited (e.g. when working with patient data in the health domain).

6. CONCLUSIONS

In this paper, we present a novel approach for measuring the qual-
ity of repetition in a recording. We demonstrate the feasibility of
this approach by using it to distinguish between healthy and lvPPA
speakers using classification. We discuss the many benefits of our
approach, including the fact that it is a general repetition measure-
ment approach that can be applied to research problems in a variety
of areas. We envision our approach being used to create an applica-
tion that allows speakers to record themselves completing a simple
repetition task (e.g. “repeat the word ‘Artillery’ five times”) and get
a repetition score in real time. In the future, we would like to explore
how repetition score changes over time. We anticipate using this ap-
proach to measure changes in the quality of repetition over time, thus
measuring disease progression. We would also like to have a base-
line that directly uses speech features as input for disorder assess-
ment while also exploring how the number of repetitions affects our
method. Our approach is minimally invasive, inexpensive, and uses
recordings that are quick/easy to record, making it appealing for use
in clinical trials. The language-independent nature of the approach
also makes it potentially useful for global clinical trials.
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