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Abstract

Audio-Visual Speech Recognition (AVSR) uses lip-based
video to improve performance in noise. Since videos are harder
to obtain than audio, the video training data of AVSR models
is usually limited to a few thousand hours. In contrast, speech
models such as Whisper are trained with hundreds of thousands
of hours of data, and thus learn a better speech-to-text decoder.
The huge training data difference motivates us to adapt Whis-
per to handle video inputs. Inspired by Flamingo which in-
jects visual features into language models, we propose Whisper-
Flamingo which integrates visual features into the Whisper
speech recognition and translation model with gated cross atten-
tion. Our audio-visual Whisper-Flamingo outperforms audio-
only Whisper on English speech recognition and En-X transla-
tion for 6 languages in noisy conditions. Moreover, Whisper-
Flamingo is a versatile model and conducts all of these tasks
using one set of parameters, while prior methods are trained
separately on each language.

Index Terms: audio-visual speech recognition, noise-robust

1. Introduction

In recent years, major improvements in Automatic Speech
Recognition (ASR) performance have been achieved by models
trained on large-scale data [1,2], but performance still declines
in noise [3]. To enhance performance in noise, Audio-Visual
Speech Recognition (AVSR) uses lip-based video in addition to
audio inputs. Self-Supervised Learning (SSL) methods such as
AV-HuBERT [4] pre-train on large-scale datasets of unlabeled
videos and fine-tune on a few hundred hours of labeled videos
to perform noise-robust AVSR. However, due to the difficulty in
collecting publicly accessible videos, these models are usually
trained on only a few thousand hours of data.

To overcome the lack of video data, recent methods fine-
tune audio-only models pre-trained on hundreds of thousands
of hours of audio for audio-visual speech recognition [5-7].
The results show that such audio models combined with audio-
visual fine-tuning on a few hundred hours of videos can ap-
proach the performance of video models pre-trained on thou-
sands of hours of video [6]. However, these methods often train
video models and text decoders from scratch on only a few hun-
dred hours of data, which is suboptimal compared to training on
large-scale data. Furthermore, only English data has been used.

In this work, we propose to integrate visual features from
AV-HuBERT into Whisper [1], an audio-only model trained on
680k hours of speech with a strong multilingual decoder. Com-
pared to the prior audio-visual adaptation methods, our video
model and text decoder are pre-trained with large-scale data.
This allows our method to perform well on audio-visual speech
translation, a task not explored by prior methods [5-7].

How to fuse modalities effectively in multi-modal models is
an ongoing research question. One recent work, Flamingo [8],
fuses visual features into text-only language models using gated
cross attention and fine-tuning on a paired text-image dataset.
The gated cross attention layers are initialized to the identity
function and learn to attend to the visual features during fine-
tuning. These layers have been shown to generalize to differ-
ent modality pairs; Audio Flamingo [9] recently applied them
for text-audio reasoning. Inspired by this method, we propose
Whisper-Flamingo which inserts gated cross attention layers
into Whisper’s decoder and enables Whisper to use lip-based
features for speech recognition.

Our experiments on the English (En) LRS3 video
dataset [10] show that our novel audio-visual Whisper-
Flamingo significantly outperforms the audio-only Whisper
baseline in noise. Moreover, Whisper-Flamingo achieves com-
petitive noise-robust results compared to prior audio-visual
models. Next, we demonstrate Whisper’s multilingual capa-
bilities by extending Whisper-Flamingo for En-X translation
on the MuAViC dataset [11]. Our model performs En tran-
scription and En-X translation into 6 other languages, while
the previous audio-visual SOTA requires fine-tuning on each
language separately. Once again, Whisper-Flamingo signifi-
cantly outperforms audio-only Whisper in noise for both En
transcription and En-X translation. Code and models at
https://github.com/roudimit/whisper-flamingo

2. Method

In this section, we review audio-visual fusion methods for
AVSR, and then explain our method. Two common fusion
methods are early and late fusion. In early fusion, both modal-
ities are first separately processed by light-weight encoders and
then combined with feature addition or concatenation and used
as input to an audio-visual Transformer [12, 13]. Both SSL
models [4, 14, 15] and fully-supervised models [16—18] use this
design. In late fusion, audio and video are processed separately
by Transformer encoders, and afterwards features are fused with
an MLP. The audio-visual features are then passed to a linear-
layer or Transformer decoder. This approach is common for
fully-supervised models [19-21]. Both early and late fusion
need identical audio and visual feature rates so that they can be
fused at each time step; a common design is to match the video’s
frame rate by downsampling the audio features to 25 Hz.

Most methods which adapt pre-trained audio-only mod-
els for AVSR through audio-visual fine-tuning use early fu-
sion. FAVA [6] adapts BEST-RQ [22], an audio self-supervised
model, through early fusion with a video model trained from
scratch. Adaptive AV [7] prepends Whisper with an audio-
visual Transformer to output a de-noised spectrogram, but does
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Figure 1: Diagram of Whisper-Flamingo based on Whisper [1] and Flamingo [8]. We first fine-tune all of Whisper’s parameters using
English audio for English transcription and En-X translation. To train Whisper-Flamingo, we freeze the audio model, add gated cross
attention layers into Whisper’s decoder attending to visual features from AV-HuBERT, and train the model on audio-visual inputs.

Table 1: Hyperparameter summary. We first train Whisper-
Large FT (Fine-tune) with audio-only, then use it to initialize
Whisper-Flamingo. A=audio, AV=audio-visual. {=per sample.

Whisper- ~ Whisper- ~ Whisper- ~ Whisper-

Large FT  Large FT  Flamingo Flamingo
Test Modalities A A AV AV
En Recognition v v 4 4
En-X Translation X v X v
GPUs 1 4 1 4
Total Params. 1.55B 1.55B 2.5B 2.5B
AV-HuBERT Params. - - 325M 325M
Gated X-Attn Params. - - 630M 630M
Trainable Params. 1.55B 1.55B 631M 631M
Warmup Steps 1k 1k 5k Sk
Total Steps 90k 225k 20k 40k
Learning Rate 5x107% 5x107°% 1x107* 1x107*
Batch per GPU (s) 80 40 160 30
Max Length (s) 10 10 15 15
Max Characters 350 300 350 250

not use visual features directly in Whisper. However, we
found gated cross attention with features from pre-trained AV-
HuBERT worked better than early fusion. Note that separate
research focuses on using visual features from images or in-
structional videos for AVSR, where the visuals provide context
and are only loosely synchronized with the audio [23,24].

We propose to adapt Whisper’s decoder with visual fea-
tures from AV-HuBERT using gated cross attention, as shown
in Figure 1. Each of Whisper’s decoder blocks consists of a
self-attention layer, cross attention layer attending to the au-
dio features, and a Multi-Layer Perceptron (MLP). Based on
Flamingo [8], the gated cross attention layer is defined as fol-
lows, where x is the input to the decoder block, v are the vi-
sual features, Attn is multi-head cross attention, LN is Layer-
norm [25], and FF'W is an MLP:

/
x =

; ()]
) (€3

The learnable parameters cxattn and omp are initialized to 0 so
that the layers initially function as the identity since tanh(0) =
0. Through audio-visual fine-tuning, the model adjusts the
weights of axattn and amip and learns to attend to the visual
features. We insert the gated cross attention layers in Whisper’s
decoder in the beginning of each block, before the self-attention
layer. We tried to insert them in other orders within the decoder
blocks, but the performance was slightly worse. We also tried

x + tanh(axattn) X Attn(LN(x), v)
/

x’ + tanh(amip) X FFW (LN(x

y
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Table 2: Fusion ablation with Whisper-Medium on LRS3. We
report results on the original test set (Clean) and with babble
noise injected at 0-SNR (Noisy). A=audio, AV=audio-visual.

Test Clean  Noisy
Model Modalities WER| WER]
Whisper, Zero-shot A 2.3 222
‘Whisper, Fine-tuned A 1.9 12.6
‘Whisper-Early-Fusion AV 1.7 10.0
Whisper-Late-Fusion AV 2.1 16.5
Whisper-Flamingo AV 1.5 7.0

inserting them into the encoder, but the performance was sig-
nificantly worse. Note that since the gated cross attention sepa-
rately attends to the video features, the audio and video features
can have different feature rates (for example, 50 Hz and 25 Hz).
Training pipeline. Before adding gated cross attention, we first
fine-tune all layers of the audio-only Whisper model to adapt
it to the domain of interest (denoted as Whisper Fine-tuned).
We also add noise during fine-tuning to increase the noise-
robustness. We use the standard cross-entropy loss between the
model’s predicted transcript and the ground-truth tokens. To
train Whisper-Flamingo, we freeze the fine-tuned Whisper, in-
sert the gated cross attention layers, and fine-tune the model
with audio-visual inputs. The gated cross attention layers and a
linear layer on top of the visual features are trained from scratch,
while all other parameters are frozen. The new layers can there-
fore be seen as a (large) set of adaptors [27]: removing them
results in the audio-only Whisper weights.
From English to Multilingual. Whisper was trained for mul-
tilingual transcription and X-En translation (multilingual au-
dio to En text). We tried Whisper-Flamingo on multilingual
speech recognition and X-En translation using the videos in the
MuAViC dataset [11] but found several issues. Most languages
in the dataset have less than a third of the hours of English data
available, which makes training new layers from scratch diffi-
cult. Also, the multilingual videos are longer on average than
the English videos. This causes increased GPU memory pres-
sure and requires a reduced batch size, which also makes train-
ing difficult. Therefore we focused on En-X translation (English
audio to multilingual text) and propose to handle multilingual
recognition and translation in future work [28-32].

Prior research shows that Whisper can be prompted for En-
X translation, but it requires language-specific logit filtering and
the performance can still be unsatisfactory [24]. Since fine-



Table 3: Results for English transcription on LRS3. We report results on the original test set (Clean) and with babble noise added at
0-SNR (Noisy). A= Audio, AV= Audio-Visual. Noise dataset= dataset used to make babble noise. Hours of unlabeled / labeled data
used to train each model are shown. Note' that u-HuBERT [14] and AV-HuBERT [26] use a different noise file than us.

Test Noise Unlabeled Hrs  Labeled Hrs WER|
Model Modalities ~ Dataset A AV A AV Clean Noisy
Audio-Visual SSL Methods
AV-BEST-RQ [6] AV NoiseX - 1759 433 2.1 6.8
AV2vec [15] AV MUSAN - 433 433 2.5 6.7
AV-HuBERT [26] AV LRS37 - 1759 433 1.4 5.8
u-HuBERT [14] AV LRS3f - 1759 433 1.3 4.6
Audio-Only Pre-train + Audio-Visual Fine-Tune Methods
Adaptive AV [7] AV MUSAN - 400 680k 30 2.3 16.3
FAVA [6] AV NoiseX 1759 - - 433 1.7 6.6
FAVA-USM [6] AV NoiseX 12M 5000 433 1.3 6.2
Our Audio-Only Whisper Baselines
Whisper-Large, Zero-shot (No Fine-Tuning) A LRS3 - 680k - 2.1 20.8
Whisper-Large, Fine-tuned on LRS3 A LRS3 - 680k - 2.3 11.7
Proposed Audio-Visual Fine-tuning Method
Whisper-Flamingo (Ours) AV LRS3 - 1759 680k 433 1.5 5.6

tuning Whisper has been shown to enable transcription of un-
seen languages [33], we propose to fine-tune Whisper for En-X
translation. We fine-tune the audio model in a multi-task style
to transcribe English audio and translate it to the other lan-
guages. To train Whisper-Flamingo, we freeze the fine-tuned
audio model, add the gated cross attention layers and the lin-
ear layer on top of the visual features, and train the model on
audio-visual inputs.

3. Experiments
3.1. Experimental Setup

To train our models, we use LRS3 [10] - the largest, publicly-
available AVSR dataset in English (En), sourced from TED
talks. We followed AV-HuBERT [4] to create a 433h training
set, 1h validation set, and 1h test set. For En-X translation, we
use the MuAViC [11] dataset which has translations of LRS3’s
English text into 6 languages: Greek (El), Spanish (Es), French
(Fr), Italian (It), Portuguese (Pt), and Russian (Ru).

We use Whisper Small, Medium, and Large-v2 with 244M,
769M, and 1.55B parameters [1]. We extract 80-bin log-Mel
spectrograms with a stride of 10ms and window size of 25ms
from audio sampled at 16kHz. We extract video features from
the AV-HuBERT Large [4] encoder fine-tuned on LRS3 with
325M parameters. For Whisper Large, the gated cross atten-
tion layers add 630M parameters, bringing the total number
of parameters to 2.5B (including AV-HuBERT). We freeze AV-
HuBERT but enable dropout and batch normalization updating
during Whisper-Flamingo training. The videos have a frame
rate of 25fps and are converted to grayscale. Dlib [35] is used
to extract 96x96 crops centered on the lips which are aligned to
a reference mean face [36]. During training, a random 88x88
crop is used and the video is flipped horizontally with probabil-
ity 0.5. For testing, the center 88x88 crop is used.

Table 1 summarizes the hyperparameters for the main ex-
periments. We used A6000 GPUs with 48GB memory. Au-
dio/video samples with similar lengths are batched together, and
short samples are O-padded. AdamW was used as the optimizer
[37]. Following [1], we used SpecAugment [38] (Librispeech-
Basic) with Whisper-Large and did not use it with Whisper-
Medium. Training was done with PyTorch [39] and PyTorch
Lightning [40]. We used the SpecAugment and batch sorter im-
plementations from ESPnet [41].

During training, we randomly add noise to the audio with a
signal-to-noise ratio (SNR) of 0. Following prior work [11,26],
the “natural”, “music” and “babble” noise are sampled from the
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MUSAN dataset [42], and overlapping “speech” noise is sam-
pled from LRS3 [10]. To select the best checkpoints, we moni-
tor the highest token prediction accuracy on the noisy validation
set every 1k steps. We report beam search decoding results with
beam size 15. Following prior work [11], we use the Fairseq
normalizer [43] to remove punctuation and lower-case text be-
fore calculating WER. For translation, we use SacreBLEU [44]
with the default 13-a tokenizer to calculate BLEU [45].

3.2. Modality Fusion Ablation with Whisper-Medium

We first compared gated cross attention to early and late fusion
using Whisper Medium. For early fusion, we duplicate AV-
HuBERT’s 25 Hz video features to temporally align them with
Whisper’s 50 Hz audio features (after the CNN layers) and use
addition to fuse them before Whisper’s Transformer encoder.
For late fusion, we use an MLP to fuse the video features with
Whisper’s audio features after its Transformer encoder. In both
cases, all of Whisper’s parameters are fine-tuned. For audio-
only baselines, we use Whisper zero-shot (no fine-tuning) and
fine-tuned on LRS3. We test models in both the clean and
noisy conditions with babble-noise injected at 0-SNR. The re-
sults are shown in Table 2. Fine-tuning audio-only Whisper
decreases the noisy WER of the zero-shot model from 22.2%
to 12.6%. We then use the fine-tuned model as initialization
to train the models with audio-visual fusion. Early-fusion ob-
tained a small improvement in both the clean and noisy WERs.
Late-fusion could not fuse the modalities well and performance
became worse in both clean and noisy conditions. Finally,
Whisper-Flamingo with gated cross attention obtained the best
noisy WER, significantly improving the audio-only Whisper
fine-tuned baseline from 12.6% to 7.0%, while the clean WER
was slightly improved from 1.9% to 1.5%. Freezing Whisper
helps retain its strong audio skills while new cross attention lay-
ers enable it to integrate the visual modality more effectively.

3.3. Whisper-Flamingo English Speech Recognition

For our main experiments, we scale up to Whisper-Large. In the
3rd section of Table 3, we compare audio-only Whisper-Large
zero-shot and fine-tuned on LRS3; the fine-tuned model outper-
forms the zero-shot model in noise (11.7% vs 20.8%). Fine-
tuned Whisper-Large performs slightly worse than Whisper-
Medium on clean audio (Table 2), but Whisper-Large performs
better on noisy audio. The bottom part of Table 3 shows
our audio-visual Whisper-Flamingo initialized from fine-tuned
Whisper-Large. Compared to the audio-only baseline, Whisper-



Table 4: Results for English transcription on LRS3 and En-X Translation on MuAViC. Babble noise is added at O-SNR (Noisy). One
Model= the model translates to all languages with one set of parameters. Test Mod.= inference modalities (Text: T, audio: A, audio-
visual: AV). Note' that Bilingual AV-HuBERT [11] use a different noise file than us that was not publicly available.

Test One Noise En El Es Fr It Pt Ru Avg
Model Mod. Model Dataset WER/ BLEUT w/o En
Text-to-Text Translation
Bilingual Transformer [11] T X 25.8 29.5 27.0 22.6 239 17.2 24.3
M2M-100 [11,34] T v 24.5 28.7 25.6 21.8 222 15.8 23.1

Speech-to-Text Translation (Clean Audio)

Bilingual AV-HuBERT [11] A X - 230 215 251 20.7  20.1 14.7 21.9
‘Whisper-Small, Fine-tuned A 4 20 224 271 249 209 21.6 156 22.1
Whisper-Medium, Fine-tuned A v 2.1 229 275 261 219 214 15.1 22.5
‘Whisper-Large, Fine-tuned A v 1.5 23.7 27.9 26.0 21.8 214 15.7 22.7
Bilingual AV-HuBERT [11] AV X - 234 266 253 20.7 205 14.6 21.9
(Ours) Whisper-Flamingo (Small) AV v 2.0 22.6 27.0 24.7 20.7 213 15.5 22.0
(Ours) Whisper-Flamingo (Medium) AV v 1.6 238 28.0 26.1 22.5 213 16.0 23.0
(Ours) Whisper-Flamingo (Large) AV v - 1.3 244 279 259 22.1 21.8 157 229
Speech-to-Text Translation (Noisy Audio from MuAViC)
Bilingual AV-HuBERT [11] A X MuAViCt - 159 19.2 17.1 12.9 14.4 10.3 15.0
Whisper-Small, Fine-tuned A v MuAViC 17.3 17.5  20.1 19.4 15.3 16.3 11.8 16.7
‘Whisper-Medium, Fine-tuned A v MuAViC 148 181 221 198 162 173  12.1 17.6
Whisper-Large, Fine-tuned A v MuAViC 13.8 19.7 234 204 17.4 17.7 13.3 18.6
Bilingual AV-HuBERT [11] AV X MuAViCt - 227 248 238 200 200 137 20.8
(Ours) Whisper-Flamingo (Small) AV v MuAViC 10.7 19.0 221 21.1 17.1 18.3 13.2 18.5
(Ours) Whisper-Flamingo (Medium) AV v MuAViC 83 20.7 24.5 21.6 18.8 18.6 13.7 19.6
(Ours) Whisper-Flamingo (Large) AV v MuAViC 72 211 254 224 193 199 14.7 20.5

Flamingo significantly improves the noisy performance from
11.7% to 5.6% (52.1% relative improvement). It also im-
proves the clean WER from 2.3% to 1.5%.

Table 3 also shows a comparison with prior audio-visual
SSL methods and audio-visual fine-tuning methods on LRS3.
Direct comparison in noisy conditions is challenging since dif-
ferent noise datasets were used to generate the babble noise.
SSL methods AV-HuBERT [26] and u-HuBERT [14] used
LRS3 to generate babble noise, but the noise file they gener-
ated was not publicly available. We followed their procedure
to generate the noise, so our noisy conditions are similar but
not identical. Compared with AV-HuBERT, Whisper-Flamingo
achieves comparable clean performance (1.5% vs 1.4%) and
slightly better noisy results (5.6% vs 5.8%), which shows that
Whisper-Flamingo is effective at adapting Whisper to the vi-
sual features from AV-HuBERT. Moreover, a major advantage
of Whisper-Flamingo over AV-HuBERT is improved translation
performance (Section 3.4). The best noisy performance (4.6%)
is reported by u-HuBERT; we would like to try it as a visual
encoder for Whisper-Flamingo, but the weights are not publicly
available. Finally, Whisper-Flamingo outperforms other meth-
ods in noise which adapt audio-only models through audio-
visual fine-tuning [6, 7], including FAVA-USM [6] which was
pre-trained on 12M hours of unlabeled audio [2]. However, the
babble noise was generated from different datasets making re-
sults not strictly comparable.

3.4. Whisper-Flamingo En-X Speech Translation

Audio Results. In Table 4, we show the result of fine-tuning
audio-only Whisper-Large for En-X translation using the 6 lan-
guages in the MuAViC dataset (“Whisper-Large, Fine-tuned”).
Although Whisper was not originally trained for En-X trans-
lation, it adapts well to the new task. Testing with clean audio,
we achieve an average BLEU score of 22.7, which outperforms
the previous SOTA of 21.9 from Bilingual AV-HuBERT. More-
over, our model transcribes En audio (WER of 1.5%) and trans-
lates to 6 languages with a single set of parameters, while Bilin-
gual AV-HuBERT fine-tunes separately for each language pair
and trains language-specific decoders from scratch. Our model

nearly reaches the text-to-text performance from machine trans-
lation models using the ground-truth English text; those models
achieve average BLEU scores of 23.1 from a multilingual model
and 24.3 from bilingual models.

Audio-Visual Results. Once we fine-tune audio-only Whis-
per for En-X translation, we use it to train Whisper-Flamingo
by freezing the weights and adding gated cross attention lay-
ers. Testing with clean audio, Whisper-Flamingo slightly out-
performs the audio-only model with an average BLEU score of
22.9 and En WER of 1.3%. In noisy conditions, we use mul-
tilingual babble noise constructed following MuAViC [11] by
adding audio in 9 different languages from 30 speakers. Note
that their noise file was not publicly available, so our noisy con-
ditions are similar but not identical. With multilingual babble
noise, Whisper-Flamingo significantly outperforms the audio-
only Whisper model in average BLEU score (20.5 vs 18.6)
and En WER (7.2% vs 13.8%). Compared with the previous
SOTA bilingual AV-HuBERT, our audio-only average BLEU is
much better (18.6 vs 15.0), but our audio-visual performance
is slightly worse (20.5 vs 20.8). However, our models perform
both En-X translation and En transcription with a single
model, while their models fine-tune separately for each lan-
guage pair. Finally, we show the results using Whisper-Medium
and Whisper-Small: Whisper-Flamingo always does better in
noise compared to the audio-only baselines, and performance
tends to improve as the model size increases.

4. Conclusion

We introduced Whisper-Flamingo, a novel audio-visual model
that combines the strengths of AV-HuBERT and Whisper us-
ing gated cross attention. Our audio-visual Whisper-Flamingo
significantly outperforms audio-only Whisper in noise. We
showed that Whisper can be fine-tuned for the new task of X-
En translation. Our model performs both En speech recognition
and En-X speech translation using one set of parameters while
previous methods fine-tune separately on each language. Our
method is a generic way of fusing a visual encoder into the de-
coder of an ASR model to enable AVSR, and it could work with
other models trained on more data in the future.
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