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Abstract—The foundation model paradigm leverages a shared
foundation model to achieve state-of-the-art (SOTA) performance
for various tasks, requiring minimal downstream-specific data
collection and modeling. This approach has been proven crucial
in the field of Natural Language Processing (NLP). However, the
speech processing community lacks a similar setup to explore
the paradigm systematically. To bridge this gap, we introduce
Speech processing Universal PERformance Benchmark (SU-
PERB). SUPERB represents an ecosystem designed to evaluate
foundation models across a wide range of speech processing tasks.
It facilitates the sharing of results on an online leaderboard,
fostering collaboration from a community-driven benchmark
database which helps new development cycles. We present a
unified framework for solving all the speech processing tasks
in SUPERB with the frozen foundation model followed by task-
specialized lightweight prediction heads. Combining our results
with community submissions, we verify that the framework
is simple yet effective as the SOTA foundation model shows
competitive generalizability across most of the SUPERB tasks.
Lastly, we conduct a series of analyses to offer an in-depth
understanding of SUPERB and speech foundation models, from
the information flows across tasks inside the models to the
statistical significance and robustness of the benchmark. Our
benchmark results suggest foundation models should be powerful,
robust, and disentangled, in order to be universally applicable
for most kinds of speech processing.

Index Terms—speech, foundation model, self-supervised learn-
ing, representation learning, task generalization, benchmark,
evaluation, SUPERB, S3PRL

I. INTRODUCTION

EVELOPING well-performing deep learning networks

has become costly, involving data collection, model-
ing, computing power, and training time. This repetition for
each specific use case is time and cost-prohibitive for both
academic and industrial researchers. To address this, the
foundation model paradigm [1] proposes a framework that
transfers knowledge from a centralized foundation model for
downstream use cases. Scaling up the foundation model with
more data and computing resources improves performance on
numerous downstream tasks simultaneously. Self-Supervised
Learning (SSL) has emerged as a promising technique for
developing foundation models [2f], [[3]]. This technique involves
pre-training a model with a substantial amount of parameters
and unlabeled data to learn powerful, general, and transfer-
able representations. Since after pre-training once, the model
achieves state-of-the-art (SOTA) downstream performances
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Fig. 1: The figure presents the concept of a speech foundation
model. As the core component of a universal speech pro-
cessing system, the model handles waveforms from different
tasks, processes them into high-level representations, and feeds
the representations into different prediction heads to produce
predictions for various tasks.

after fine-tuning on various tasks, SSL appears as a remedy
for democratizing SOTA deep learning research and deploy-
ment for people from different backgrounds. The success of
this approach has been witnessed in both Natural Language
Processing (NLP) [2]] and Computer Vision (CV) [3].

SSL has been explored in speech [4]-[14], with studies
applying SSL models to various applications [S§]], [[11]]. How-
ever, these studies used different datasets and setups, making
it challenging to gain insights from meaningful comparisons.
Furthermore, unlike NLP, where foundation models are as-
sessed across multiple tasks and benchmarks like GLUE [[15]],
speech SSL evaluation often narrows down to specific tasks.
Despite this approach pushing task-specific performance, it
overlooks SSL’s potential of developing universal foundation
models which handle diverse data conditions and generalize
to new tasks without costly downstream-specific modeling,
pre-training and data collection. LEAF [16] and HEAR [17]
advocated the development of universal models that emulate
human perception to replace FBANK, but the models were
primarily evaluated on audio classification tasks. Little effort
has been devoted to benchmarking the universality of speech



SSL models.

To address the limitations mentioned above, we introduce
Speech processing Universal PERformance Benchmark (SU-
PERB), highlighting the following three features:

1) Comprehensive coverage: SUPERB brings standardiza-
tion to comparing SSL models across a diverse range of
15 speech processing tasks.

2) Task generalizability: SUPERB encourages the devel-
opment of speech foundation models to solve numerous
tasks simultaneously compared to single-task experts.

3) Community standard: SUPERB adopts popular tasks
from speech communities, and follows the conventional
evaluation protocol to align with common research in-
terests.

Existing works have proposed several benchmarks for speech
SSL 18], [19]. Compared to these efforts, SUPERB explicitly
emphasizes the task generalizability and remains to be the
benchmark with the most comprehensive task coverage across
most kinds of speech processing tasks, from discriminative to
generative tasks, which we believe is essential to foster the
progress on universal speech foundation models.

The 15 SUPERB tasks include the popular Automatic
Speech Recognition (ASR), Speaker Verification (SV), Emo-
tion Recognition (ER), Voice Conversion (VC), Speech En-
hancement (SE), etc., as shown by Fig [1]. We study the
frozen foundation models followed by task-specialized predic-
tion heads for solving SUPERB tasks in this work with the
following considerations:

1) Inclusive: The computing barrier is significantly re-
duced, making it more affordable for researchers from
diverse backgrounds.

2) Scalable: The final system is significantly smaller as
we only need to save the lightweight prediction heads,
leading to a substantial reduction of the parameter size
when scaling up the task number.

3) Versatile: By mounting all the prediction heads to the
foundation model, we automatically acquire a multi-task
model capable of dealing with all kinds of speech tasks.

We defined the standardized task design, provided the base-
line model results, and released the offline evaluation software
in [20]], [21]. In this work, we extend our previous work with
the following contributions with some takeaways for future
researchers to develop SSL:

o Combined with the released software, we further provide
a complete platform consisting of an online leaderboard
for public submissions and comparative analysis supports
including statistical and visualization tools (Section [[V).
After launching the submission system, we received 14
submissions, suggesting that our platform is becoming an
active community.

o We scale the evaluation from the original /4 models to 36
models, together with the efforts from our community, to
provide a comprehensive coverage of the existing speech
SSL literature and track the latest research (Section [V-B).

o We point out common pitfalls of leveraging or evaluating
speech foundation models and provide corresponding
suggestions accordingly, including (1) extracting the last-

layer feature without a throughout examination of the
model layers (Section [V-A), (2) interpreting the infor-
mation flow within model layers with the misleading
trained weights from the weighted-sum technique (Sec-
tion [VI-A)), and (3) ranking models solely basing on the
score of each task regardless of the statistical significance
(Section |VIIJ).

o We analyze the updated leaderboard results along with the
layer-wise benchmarking results and obtain several find-
ings, including: (1) SOTA foundation models possess var-
ious high-quality information but often struggle to handle
out-of-domain ASR datasets, noisy waveforms, or feature
disentanglement (Section . (2) Incorporating vector
quantization into network architectures is beneficial for
content-centric tasks but diminishes the model’s univer-
sality on SUPERB tasks (Section [V-B4). (3) The founda-
tion models consistently learn speaker characteristics at
prior layers, followed by emotional information, and then
linguistic signals. (Section (4) In the VC task,
we suggest conducting the single-layer benchmarking for
the consistently better performance (Section [VI-B2). (5)
WavLM Large learns good disentanglement concurrently
with better universal features compared to other mod-
els, while Data2vec Large achieves SOTA disentangle-
ment capability and content accessibility by sacrificing
speaker characteristics severely (Section and Sec-
tion [VI-B4). (6) The relative performance of SUPERB is
robust against various changes in data conditions

II. RELATED WORK

Several works have proposed different methods for evaluat-
ing speech SSL models. The ZeroSpeech series [[18] focuses
on the intrinsic evaluation for different levels of content
information from phonetics, lexicon, to semantics, with the
linguistically-motivated ABX and ABX-based metrics. The
SLUE series focuses on evaluating SSL. models’ capability
for solving spoken language understanding (SLU) tasks like
named entity recognition, sentiment analysis, and spoken
question answering [22], [23]]. [24] proposed a benchmark
for evaluating the paralinguistic information inside the speech
SSL models, including masked speech detection and dysarthria
classification.

Besides these benchmarks focusing on a specific aspect of
speech, some works proposed to standardize the evaluation
of different aspects of speech in a single benchmark. [25]]
proposed to benchmark SSL models with SV, ER, and SLU
tasks in English through fine-tuning the entire SSL model.
LeBenchmark [[19] established a multi-task SSL benchmark
for French with ASR, SLU, ER, and speech translation (ST).
FLEURS [26] and XTREME-S [27] extend the multi-task
evaluation frameworks to the multi-lingual setting.

Compared to these efforts, the SUPERB series cover broader
aspects of speech processing, including content (ASR), seman-
tics (ST), speaker (SV), paralinguistics (ER), denoising (SE),
and disentanglement (VC). The original SUPERB [20] ad-
dresses 10 discriminative tasks, with the follow-up SUPERB-
SG [21] introducing 5 additional tasks for semantic and



generative capabilities. These 15 tasks define the public set of
SUPERB. The SUPERB Challenge [28]] introduces the hidden
set for partial tasks to prevent overfitting SSL development
on the public set, where the corpora for the hidden set are
privately recorded and the participants submit the models to
the hidden set committee for evaluation. ML-SUPERB [29]
extends the framework from English to the multilingual setting
covering 143 languages with the consideration of ASR and
language identification (LID) as the first step.

Despite the increasing interest and adoption of the 15-
task public set of SUPERB [[14f], [30], [31], the original
work [20]], [21]] presents the standardized task design and the
evaluation results on limited models without detailed analyses
and suggestions for the benchmark adoption. In this work, we
extend [20], [21] with an online interactive platform, up-to-
date foundation model evaluation, and in-depth analyses for
the benchmark itself along with the current status of speech
foundation model development.

III. SPEECH PROCESSING UNIVERSAL PERFORMANCE
BENCHMARK

We establish and release Speech processing Universal PER-
formance Benchmark (SUPERB), a benchmark dedicated to
evaluate the task generalizability of speech foundation models,
encompassing most aspects of speech processing. We collect
15 well-known tasks: Phoneme Recognition (PR), Keyword
Spotting (KS), Speaker Identification (SID), Emotion Recog-
nition (ER), Intent Classification (IC), Automatic Speech
Recognition (ASR), Speaker Verification (SV), Query-by-
example (QbE), Slot Filling (SF), Speaker Diarization (SD),
Out-of-domain ASR (OOD-ASR), Speech Translation (ST),
Voice Conversion (VC), Source Separation (SS), and Speech
Enhancement (SE). The tasks are selected to investigate sev-
eral aspects of speech, ranging from content (ASR), speaker
(SV), semantics (ST), paralinguistics (ER), generation (SS),
denoising (SE), to disentanglement (VC). We described each
task design including the task target, assessed properties,
adopted corpus, corpus statistics, and evaluation metrics in
[20], [21], and organize them together in the supplementary
material. The material also describes the downstream adapta-
tion for the foundation models to solve these tasks, including
the prediction head we use, and the optimization loss. Note
that in principle SUPERB only defines the ftask design and
we welcome researchers to explore various effective ways for
downstream adaptation.

IV. PLATFORM DESIGN

As shown by Fig [2h, we design our platform to let the users
easily reproduce our results, evaluate customized foundation
models, extend the benchmark database themselves, analyze
the model characteristics by comparing to others for the model
limitation, and foster future development. To achieve this,
our platform consists of the following three components: a
software, a website, and numerous helpful artifacts.
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Fig. 2: (a) demonstrates the SUPERB platform’s development
cycle for speech foundation models. Starting from the offline
evaluation, the user develops a new speech foundation model
and evaluates it with S3PRL across a wide range of stan-
dardized SUPERB tasks. The downstream prediction files are
auto-generated at this stage. Then, the user submits the pre-
diction files to the online leaderboard to extend the benchmark
database and compare it with others. Finally, the user analyzes
the performance difference across SUPERB tasks with the
website’s visualization tools and S3PRL’s statistical tools to
gain insight into the future improvement direction. (b) gives an
example of the website’s radar visualization tool for comparing
WavLM Large, HuBERT Large, and APC on several tasks. All
scores are normalized to be higher for better performances.

A. Software

We implement the SUPERB evaluation tasks in the S3PRL
toolkitﬂ [5], 161, [20], as it supports numerous speech founda-
tion models as the easily reusable modules. The foundation
models in S3PRL are termed as upstream models and are
designed to be independent of the downstream task implemen-
tation, so that one can easily switch between any upstream and
downstream combination or add one’s own foundation model
as a new upstream and evaluate it with all the tasks in S3PRL.
This upstream addition implementation can be done once and
all the tasks are supported automatically. The software is
tightly integrated with the SUPERB official website so that
once the evaluation of each task is done, the corresponding
submission files are automatically generated, and the users can
upload the submission files to our website by themselves and
easily help extend the benchmark database. Compared with
the initial release of SUPERB [20], [21], we upgraded the
codebase to support Kaldi-style [|32] data preparation for most
of the tasks. This makes the software much more versatile for
different experimental settings including switching corpus and
conducting few-shot learning. We also upgraded to support a
unified interface for adding distortion on recordings for all the
tasks by simply writing configurations, including reverberation
and additive noises. The distortions are applied on-the-fly and
deterministic (reproducible) to save disk space. Finally, we add
the statistical tools for analyzing the difference significance
between models for all the tasks.

Uhttps://github.com/s3prl/s3prl



TABLE I: Weighted-sum benchmark results of wav2vec 2.0
and HuBERT on SID and IC using different fine-tuning
learning rates. The learning rates with * denote the default
learning rate in S3PRL. Bold fonts mark the best learning
rates for different models. We searched from le-1 to le-7 in
log-scale and show the partial results due to the space limit.

SID (acc) IC (acc)
Models
le-1 le-2 le-3 le-4* le-3 le-4*
wav2vec 2.0 Base NaN 7428 7518 66.72 9212 92.35
wav2vec 2.0 Large = NaN 8438 86.15 8271 9528 93.22
HuBERT Base 8142 81.01 70.09 67.37 98.34 97.81
HuBERT Large NaN 8694 90.33 8694 98.63 98.76

B. Website

Our websiteE] serves an important functionality of the SU-
PERB benchmark: an actively extending benchmark database,
so that SUPERB is not only a static leaderboard with our
own results. Upon the time of submission, our online leader-
board receives 14 submissions, suggesting that our platform is
becoming an active community. To reduce the participation
barrier, the website also accepts submissions with partial
results when evaluating all the tasks is too expensive. The
website further provides helpful visualization tools to compare
different models’ detailed characteristics by scatter and radar
charts, as shown by Fig [p.

C. Artifacts

Modern deep learning systems are complicated and hard
to reproduce even when the code is released, since a slight
misconfiguration of the hyper-parameters or a wrong package
version might lead to worse performances. Hence, we release
our fine-tuning logs (Tensorboard files), hyper-parameters and
well-trained downstream prediction heads for several well-
known foundation models’] so that the user can debug their
training procedure with our official ones. Furthermore, we
release the downstream prediction files for several SOTA
models, so the user can analyze the improvement significance
with the statistical tools in S3PRL.

V. MAIN RESULT

We present the benchmark results of 36 speech foundation
models [4]-[7], [O]-[114], [30], [31], [33]-[44] on 15 speech
processing tasks. This is the most comprehensive standardized
evaluation database for speech SSL to our best knowledge.
In this section, we first compare two downstream adaptation
protocols we tried for foundation models. Then, we present
the full benchmark results.

Note that it is important to explicitly search for the suitable
learning rates for different foundation models instead of di-
rectly using the default one in S3PRL, since different models
favor different learning rates as shown by Table [, We search
from le-1 to le-7 in log-scale in the following experiments.

Zhttps://superbbenchmark.org/

A. Downstream Adaptation Protocols

Before diving into full benchmarking, we first examine the
best way to utilize a frozen foundation model. We compare
(1) the last layer representation and (2) the weighted sum over
all layers of representation. In this work, we do not consider
fine-tuning the whole foundation model due to the significant
computational cost and parameter inefficiency associated with
handling a large number of tasks. Table [[I| shows that in most
cases weighted-sum is better than the last-layer representation,
either equally good or significantly better. Conversely, most of
the highlighted failing cases have only slight differences.

It is worth noting that, wav2vec 2.0 shows serious differ-
ences when switching from the last-layer to the weighted-
sum protocol for all the tasks: 80%, 67% and 58% relative
improvement on PR, SID and IC respectively. [45] reported
this behavior on the content-centric tasks, and our results
demonstrate that the poor performances are consistent across
most of the SUPERB tasks including the speaker and emotion-
related tasks. This phenomenon suggests that the last layer
of wav2vec 2.0 possesses less useful information and one
should always try the weighted-sum protocol when evaluating
wav2vec 2.0. We believe this can be a pitfall worth explicitly
pointing out since there are works [[17], [46] on benchmarking
or leveraging frozen wav2vec 2.0 following the conventional
last-layer protocol.

The weighted-sum protocol also shows improvement on
HuBERT, especially on the SID task with a 25% relative
improvement. Overall, we observe that the weighted-sum
protocol is a much more reliable protocol, yielding stable
and competitive results for most of the foundation models.
Intuitively, the trainable weights automatically determine the
informative layers for each task and ensemble them usually
results in a better performance. Hence, we set this protocol as
default for SUPERB benchmark.

B. Full Benchmark Result

We present the main results following the weighted-sum
protocol in Fig [3] and discuss several important aspects in
this section. We also mark the best and the worst model in
Table

1) Hand-crafted acoustic feature vs. SSL on the task gen-
eralizability: Firstly, we compare all the SSL models with
a classic acoustic feature, FBANK, to assess their task gen-
eralizability. We choose FBANK as the baseline because it is
widely used in various speech processing tasks and has usually
been adopted as the baseline for evaluating general-purpose
frontends, e.g. LEAF [16].

Table [T shows that FBANK is not the worst feature in many
cases. By further confirming with Fig [3] FBANK performs
competitive on several tasks, including SV, SE and SS. Several
models, including PASE+ [12], TERA [6]], Modified CPC [36],
and Discrete BERT [44]], perform worse than FBANK on SV,
despite showing competitive performance on other tasks like
Discrete BERT on ASR. On SE, NPC [34], DeCoAR 2 [7],
and Discrete BERT perform poorly and more models fail on
SS, including APC [4]], VQ-APC [33]], vg-wav2vec [[10], and

3 github.com/s3prl/s3prl/blob/main/s3prl/downstream/docs/superb_artifacts.md Discrete BERT. Even though Data2vec [42] Base demonstrates



TABLE II: The last layer representation v.s. weighted-sum over all layers. In each cell, the upper number represents the last
layer; the lower number represents the weighted-sum. Bold fonts highlight the cases when weighted-sum is worse.

PR KS QbE ASR SID ASV  SD IC SF ER

Models
per] acc?T mtwv?T werl) acctT eer] der] acc? f1 1 cer | acct
PASE+ 12] 58.88 8237 007 2492 3584 1091 852 3029 6041 6277 57.64
1 58.87 8254 072 2511 37.99 1161 8.68 2982 62.14 60.17 57.86
ApC 14 4185 9104 268 2161 5979 881 1072 74.64 7126 50.76 58.84
1 4198 91.01 3.0 2128 6042 856 1053 74.69 7046 50.89 5933
TERA J6) 4753 88.09 8.7e-3 1845 5867 1649 954 488 6328 5791 5476
49.17 8948  0.13 18.17 5757 1589 9.96 5842 6750 5417 56.27
svee o] 3239 9409  3.07 1640 4488 983 1079 7891 7752 4175 58.17
wav2vee [9) 31.58 9559 485 1586 5656 799 99 8492 7637 4371 59.79
av2vee 2.0 Base [11] 2837 9231 88e2 957 4562 960 748 5834 7994 3781 5693
wavevee 2O base 11 574 9623 233 643 7518 602  6.08 9235 8830 2477 6343
] 685 9598  7.36 674 6484 722 676 9594 8624 2852 62.94
HuBERT Base [13] 541 9630 736 642 8142 511 588 9834 8853 2520 64.92

TABLE III: The best and the last model on each metric.

Task Metric Best Last
PR PER Data2vec Large FBANK
KS ACC Unispeech SAT Large FBANK
IC ACC Unispeech SAT Large FBANK
SID ACC WavLM Large FBANK
ER ACC Unispeech SAT Large FBANK
ASR WER Data2vec Large PASE+
OODASR WER WavLM Large Mockingjay
SF F1 WavLM Large Mockingjay
CER WavLM Large PASE+
QBE MTWYV  Unispeech SAT Base+ Mockingjay
ASV EER Unispeech SAT Large TERA
SD DER WavLM Large Mockingjay
ST BLEU WavLM Large FBANK
MCD CoBERT Base PASE+
vC WER CoBERT Base FBANK
ASV vg-wav2vec PASE+
SE PESQ WavLM Large D?screte BERT
STOI ‘WavLM Large Discrete BERT
SS SISDRi  Unispeech SAT Large  Discrete BERT

leading performance on most tasks, it slightly underperforms
FBANK on SS. Hence, we conclude that despite SSL showing
promising results on the reported datasets and tasks, it is
still challenging to outperform FBANK in terms of task
generalizability.

2) The SOTA models on different tasks vary: By searching
through the darkest (best) cell of each column in Fig 3] we
find that no single model can top all the tasks simultaneously.

Firstly, we compare PR and OOD-ASR. Data2vec Large is
the best model for the LibriSpeech-based PRE], while WavLM
Large ranks first on all the OOD-ASR datasets, demonstrating
the effectiveness of the extra 34k hours of pre-training data
for the out-of-domain scenarios.

When considering the speaker-related tasks of SID and ASV

4The ASR performances between Data2vec Large and WavLM [14] Large
is not significant according to Table M

and the mixture-related tasks of SD and SS, WavLM Large
and Unispeech SAT [43|] Large achieve the highest rankings
on SID and ASYV, thanks to their pre-training task design that
focuses on distinguishing between speakers in mixed signals.
Consequently, these two models also outperform the others
on SD and SS, as most of the SSL. models lack exposure to
mixture data during their pre-training phase.

On VC, the leading models are different from other tasks.
We adopt Mean Cepstral Distortion (MCD) as the primary
metric as it was shown well correlated to the human percep-
tion [47]. The top three models are CoBERT Base, Discrete
BERT and Data2vec (Base and Large). The VC prediction
head converts speech from a source speaker to a target speaker
while preserving the underlying spoken contents, given the
foundation model features and the target speaker. The task
design thus requires the features with pure linguistic signals
which disentangle the source speaker characteristics [47].
By considering VC, PR, and SID jointly, Discrete BERT
achieves average performance on PR (14.32% PER) but
performs poorly on SID (33.63% ACC). When comparing
Data2vec Base/Large to HuBERT Base/Large and WavLM
Base/Large, the performances on PR and ASR are similar,
but the accuracy on SID is much lower (70.21/79.24% ACC).
A similar phenomenon is observed when comparing CoBERT
Base to HuBERT Base. These three models contain valuable
content information but offer limited accessibility to speaker
information, and become the SOTA on VC. Consequently, the
representation with excellent content and speaker information
simultaneously cannot easily rule the VC task, like wav2vec
2.0. This observation does not imply that it is impossible
to pre-train a universal model to excel in content, speaker,
and disentanglement tasks concurrently. Rather, our bench-
mark setting necessitates the foundation model to explicitly
disentangle the information within its layers while preserving
different types of information. We breakdown this analysis in
more details in Section

Finally, in SE task, WavLM Large rank first due to its pre-
training task also involving mixtures of speech and noises. In
conclusion, WavLM stands out as the closest model to the
concept of a foundation model, but it performs suboptimally



0.0 0.2 0.4

FBANK 82.01 63.13 53.59 34.50 71.48

PASE+ 58.87 [EZETS 61.12 51.41 34.66 70.18

APC 960hr 92.03 59.81 50.71 33.50 66.63

APC (360hr) 91.01 62.34 54.03 35.05 69.95

VQ-APC (360hr) 91.11 62.85 54.14 35.80 71.04

NPC 88.96 60.75 49.68 34.43 68.87

Mockingjay 83.67 65.01 58.28 36.87 73.26

Mockingjay+ 80.80 49.91 56.45 61.21 53.17 34.19 68.05

TERA 89.48 66.62 56.27 57.89 48.56 30.80 65.36

Audio Albert 86.01‘ ‘56.51 56.52 61.30 52.14 34.82 69.16

DeCoAR 91.82 85.34 69.76 60.66 57.25 47.11 32.12 64.44

DeCoAR 2.0 94.48 90.80 74.42 62.48

64.09 ﬁ 60.96

84.92 | 56.56 59.79

Modified CPC 91.89 61.82 53.45 34.92 68.13

wav2vec 95.59 54.95 4533

vg-wav2vec 93.38 85.68 JELR:N 58.24 60.02 51.44 35.26 65.21

Discrete BERT 91.69 88.00 JEENEN 59.54 60.97 53.53 37.62 68.93

FaST-VGS+ 97.27 98.97 [ESNEZY 62.71 46.48 35.53 2532 54.19

LightHUBERT Stagel 96.82 80.01 66.25 43.72 34.69 24.32 52.82

LightHUBERT Small 96.07 69.70 64.12 47.26 37.48 26.34 54.89

DPHUBERT 96.36 76.83 63.16 48.98 38.46 26.09 56.12

DPWavLM 96.27 82.11 65.24 46.29 33.99 24.77 54.63

CoBERT Base 96.36 72.66 6532 4.74 4436 34.27 2452 53.59

data2vec-aqc Base 96.36 59.87 67.59 5.39 42.39 32.60 23.62 52.44

CCC-wav2vec 2.0 96.72 72.84 64.17 6.30 41.79 31.96 22.71 50.65

wav2vec 2.0 Base 96.24 75.18 63.43 6.43 4531 36.34 24.75 54.59

HuUBERT Base 96.30 81.42 64.92 6.42 45.02

bERTN 52.41

4.94 45,54

35.42 24.56 53.50

DistilHUBERT 95.98 73.54 63.02 58.69

40.11 ‘ 29.05

Data2vec Base 96.56 70.21 66.27 38.43 25.83 53.62

Unispeech SAT Base 96.75 85.76 66.04 6.75 45.00 36.20 25.46 53.72

Unispeech SAT Base+ 97.40 87.59 68.48 6.44 41.46 31.76 24.59 51.77

WavLM Base 96.79 84.51 65.94 6.21 44.63 35.45 25.05

PLENEN 29.75

34.30 23.43

52.79

WavLM Base+ 96.69 86.84 67.98 42.05 IRg 5]

wav2vec 2.0 Large 96.66 86.15 65.64 42.95 52.91

HuUBERT Large 95.29 90.33 67.62 42.39 28.89 22.02 48.95

Data2vec Large 96.75 79.24 66.31 42,77 34.22 24.43 52.60

Unispeech SAT Large 97.89 95.16 36.63 26.82 49.32

WavLM Large 97.47 95.25 3271 46.72

PR-PER
KS-ACC
SID-ACC
ER-ACC
ASR-WER

OODASR-AVG-WER
OODASR-ES-WER
OODASR-ZH-CER
OODASR-AR-WER

92.95 69.64

52.92 0.58 EI0.0S 2.32

88.25 62.14 60.18 0.72 11.61 8.68 3.16
88.40 72.55 50.35 3.43 5.50 88.00 = 2.56
90.32 70.46 50.90 3.10 5.95 87.25 | 2.56
90.42 68.53 52.91 251 4.23 94.25
90.00 72.79 48.45 2.46 94.75
91.64 61.59 58.89 0.07 11.66
89.44 70.49 52.60 0.15 FHCHE 84.00 2.59 93.80
86.83 67.50 54.18 0.13 83.75
89.10 70.70 51.75 0.47 82.50 2.61 |93.80
85.32 74.40 46.22 4.24
80.99 4.06
90.78 71.19 4991 3.26 12.86
84.49 |G-t/ 4372 4.85
7/ 4155 410 10.38 O[N] 2.48
82.39 15.56 99.75
88.15 27.12 §5.62 92.75 | 2.57  93.94
63.07 88.44 25.92 7.37 94.50 | 2,59 94.11
(UEER 87.58 26.90 7.64 4 o o 8. m 93.85
VEWEN 86.86  28.26  6.93 96.25 F2156 93.97
VAWAN 87.68 26.11 8.74 98.00 | 2.59  94.00
65.08 89.04 23.35 99.50
60.92 89.39 22.88 | 6.65 99.25 | 2,59 94.13
61.84 88.08 24.34 | 6.73 94.50 2.62 94.16
65.58 88.30 24.77 98.00 B2I558 93.90
66.611 88.53 25.20 7.37 98.50 | 2,58  93.90
82.57 | 35.59 E-W N} 94.25 12,55 93.80
64.26 | 88.59 25.27 | 5.76 99.50 93.76
64.64| 88.98 23.56 9.27 98.50 | 2.60 94.00
57.73 89.76 21.75 98.25 | 2.61 94.20
65.231 89.38 22.86 98.75 | 2,58  94.01
56.75 89.73 21.54 99.00  2.63 94.25
61.16 87.11 27.31 97.25 E 94.00
89.81 21.76 99.25 2.64 94.20
59.82 90.98 22.16 99.50 B2:56 93.95
46.90 92.13 18.01 97.50 2.70 94.40
39.65 92.25 17.61 99.50 2.71 94.48
T f 2 F £ 2 8 8 3 g @8 &
5 ¢ E £ 3 2 3 3 ¢ & b o2
@ 'S'-IE' 2 o L g 8 > u n g
o

OODASR-SPON-WER

Fig. 3: The full benchmark results of 36 foundation models on 15 speech processing tasks. Each column represents a metric of
a task. The heatmap reflects the performance linearly, and the darker cells of the same task always indicate better performance.

on VC for the disentanglement capability.

3) The failing patterns of SOTA models: We discuss the
failing patterns of several SOTA models. Discrete BERT, one
of the VC SOTA, improves upon wav2vec on LibriSpeech-
based PR and ASR, while performing significantly worse on
OOD-ASR. When examining each OOD-ASR dataset individ-
ually, we observe a slight improvement (0.8%) upon wav2vec
in spontaneous English ASR, but a severe degradation when

transferring to other languages. This result suggests that in
spite of showing effectiveness for disentanglement, the code-
book ID input may be more susceptible to domain shifts
compared to continuous representation.

wav2vec 2.0 [11]] Base, as the end-to-end upgraded version
of Discrete BERT, surpasses it in most tasks except VC. When
comparing wav2vec 2.0 and HuBERT [13]], the latter shows
slight improvements over the former across most tasks, and



this behavior is consistent for both the Base and Large variants.
WavLM further outperforms HuBERT consistently in both
model variants. However, despite possessing various high-
quality information including much better linguistic signals
on PR and ASR, these three SOTA models still fall behind
the SOTA established by Discrete BERT in VC, suggesting
that further efforts could be made for disentanglement.

On SE, we observe that CCC-wav2vec 2.0 [40], with
only the standard Base model size, significantly outperforms
wav2vec 2.0 Base and Large. The result again suggests the
importance of explicitly considering noisy input during the
pre-training stage.

Data2vec is of good performance on the content and seman-
tic tasks, while performing worse for speaker recognition El
denoising and separation. The behavior is consistent for the
Base and the Large variants. This purity of content information
again makes it ideal for the VC task, but not ideal for the
speaker tasks as a foundation model. Interestingly, Data2vec
is the only model achieving SOTA disentanglement capability
without adopting the VQ technique. Additionally, Data2vec
Large exhibits poor transferability to OOD-ASR datasets when
compared to WavLM Large, which highlights the limitation of
pre-training speech foundation models solely with the standard
LibriSpeech dataset.

In conclusion, we point several weaknesses of the SOTA
models in the SUPERB evaluation framework, which might
be worth considering when designing new models:

¢ Out-of-domain transferability: Unable to transfer to
out-of-domain ASR datasets besides LibriSpeech.

o Robustness: Unable to handle noisy waveforms.

« Disentanglement: Unable to disentangle the content and
speaker information while preserving both pieces of in-
formation.

4) The impact of vector quantization: We notice a con-
sistent pattern regarding the impact of incorporating vector
quantization (VQ) into network architectures on the task
generalizability of models. This observation can be illustrated
by comparing pairs such as APC versus VQ-APC and wav2vec
versus vq-wav2vec, Discrete BERT. While DeCoAR [35]]
and DeCoAR 2.0 cannot be directly compared due to the
significant difference in parameter size, it is worth noting
that DeCoAR 2.0 underperforms compared to DeCoAR on
certain tasks, possibly due to the inclusion of an additional
VQ module.

In comparison to APC, the quantized variant VQ-APC
demonstrates improvements in content-related tasks such as
PR, ASR, KS, and QbE. However, it also exhibits degradation
in SID and SV tasks. Consistent with the discussion about
disentanglement made in Section this improvement in
content-related tasks and the corresponding decline in speaker-
related tasks contribute to an enhancement in the VC task,
resulting in a reduction of the MCD from 8.05 to 7.84.
However, VQ-APC experiences a degradation in the SS task.

SNote that despite Data2vec Large shows slight improvement on SD
upon wav2vec 2.0 Large, our significance analysis in Table [V] shows the
improvement is not significant. Conversely, the results of SID and SV both
show that Data2vec Large is worse, getting 79% ACC and 5.73% EER.

A similar phenomenon occurs among wav2vec, Vq-
wav2vec, and Discrete BERT regarding VQ. We observe
that vg-wav2vec exhibits degradation compared to wav2vec
in most tasks. Specifically, on SID, vg-wav2vec shows a
significant degradation from 56.56% to 38.8% ACC, while
experiencing a slight degradation on PR from 31.58% to
33.48% PER. However, in the VC task, vg-wav2vec improves
upon wav2vec, reducing the score from 7.45 to 7.08 MCD.
This suggests that the uneven degradation in content and
speaker still leads to an improvement in the disentanglement
VC task. For Discrete BERT, the impact of quantization is
more pronounced. As only the quantized codebook ID is
used as input, there is a substantial information loss from the
raw waveform. Discrete BERT outperforms wav2vec and vg-
wav2vec in PR and ASR, but performs significantly worse
in SID. The purity of the linguistic signal in Discrete BERT
allows it to achieve the second ranking in VC. However,
Discrete BERT ranks last in other generative tasks such as
SE and SS.

Finally, while DeCoAR 2.0 outperforms DeCoAR across
most tasks, it performs worse on the speaker-related SD and
generative tasks SE and SS. Combining these findings, we
infer that adding the VQ module after scaling up the network
from the original DeCoAR might be the root cause. Based
on the experiences in the VC literature [47]], [48], it can be
inferred that the incorporation of VQ within network archi-
tectures generally yields improved content information while
sacrificing speaker information. This phenomenon results in
the formation of a disentangled content-centric representation,
which brings notable advantages to the VC task. However,
it should be noted that VQ often leads to suboptimal perfor-
mance in generative tasks such as SE and SS.

In conclusion, when constructing a speech foundation
model, VQ may not be the most preferable design choice.
It is not an indispensable component for achieving com-
petitive content information and disentanglement capability,
as evidenced by the success of Data2vec, and its inclusion
can significantly impair speaker information, and hinder the
effectiveness in generative tasks. Nevertheless, if the primary
focus is exclusively on content and semantic tasks, VQ can
still be considered as a desirable component.

VI. LAYER-WISE ANALYSIS OF SPEECH FOUNDATION
MODELS

We further dive into several well-known models’ layer-wise
properties on several representative tasks. We first verify the
correctness of a common analysis protocol for inferring each
layer’s importance to a task, followed by an in-depth analysis
of the information flow inside speech foundation models.

A. Analysis on the trained layer-weights

After fine-tuning a trainable weighted-sum over all the
layers along with the downstream prediction head, we acquire
a weight for each layer contributing to the best performance
on the development set. We term these trained weights as
layer-weights. It is widely adopted to analyze each layer’s
importance to a task by these layer-weights [14], [29], [41]],
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TABLE IV: Spearman’s p between layer-weights from a
normalized benchmarking and the true layer performances.
The Score is designed to be higher for better performance.

Task PR SID ER VC SE
Score 100 - per acc acc -med pesq
p 0.393 0494 0371 -0.693 0.711
p-value 0.031 0.007  0.041 0 0

The results for wav2vec 2.0 Base/Large and HuBERT

(a) wav2vec 2.0 Base and Large. The ACC and 100 — PER of Base/Large are presented in Fig[d The performances of these

wav2vec 2.0 Large’s final two layers are all near O.
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(b) HuBERT Base and Large.

Fig. 4: Comparing each layer’s performance to layer-weights
after the weighted-sum fine-tuning. The blue lines are for SID;
the red lines are for PR. The solid lines are for the Large
models; the dashed lines are for the Base models.

under the hypothesis that the weights are proportional to
each layer’s true performance. Before adopting this analysis
protocol, we first examine the correlation between the layer-
weights and the true performance of each layer on a few tasks
to explore whether the analysis tool can lead to a reliable
conclusion.

Since some models possess different numerical scales across
layers, which essentially affect the layer-weights and the
interpretation in our preliminary experimentﬂ We consider
another benchmarking setting to factor out the effect of
the feature numerical scale, normalized benchmarking. In a
normalized benchmarking, we first normalize each layer of
features by a non-trainable layer-norm across the hidden size
dimension, and then take the normalized features for the
trainable weighted-sum. Following the original benchmarking
setting, the trainable floating points for all the layers are
normalized into a valid probability distribution with a softmax
function and initialized as a uniform distribution.

5This phenomenon is especially observable for the Large variants of
wav2vec 2.0, HuBERT and WavLM. These models’ last layer features are in
very small numerical values compared to the other layers, and the layer-weight
of the last layer is extremely large. However, the last layer of wav2vec 2.0
does not contain any useful information according to Fig@ and Fig El Hence,
we infer that the layer-weights might serve two functionalities jointly: (1)
normalizing the numerical scale across layers, (2) identifying the informative
layers. As an importance analysis tool, we only care about the functionality
(2), hence the raw layer-weight from the default benchmarking is not an
appropriate choice.

four models on PR and SID with the normalized benchmarking
do not show significant differences compared to the default
benchmarking setting in Section[V-B] We show layer-weights
for all the layers, while due to the huge computation cost of
layer-wise benchmarking, we only benchmark the odd layers.

On the Base models, the layer-weights roughly reflect the
true performance on PR and SID, despite some inconsistency
exists. E.g. The 5-th layer of wav2vec 2.0 Base on SID is
better than the 9-th layer, but the layer-weights suggest the
opposite. When considering the Large models, the inconsis-
tency between the layer performances and the layer-weights
becomes more severe. On SID, the layer-weights fail to locate
the best layer for both wav2vec 2.0 Large and HuBERT Large.

Furthermore, on both PR and SID the layer-weights fail
to reflect the smooth information change inside the speech
foundation models. For HuBERT Large, the speaker informa-
tion rises smoothly and reaches the peak at layer 9, and then
it decreases smoothly. Conversely, the layer-weights suggest
that HiBERT Large’s layer 3, layer 6 and layer 12 are the
best three layers for SID, and layer 7~11 are the layers with
poor speaker information.

Finally, we compute the Spearman’s rank correlation co-
efficient (Spearman’s p) between the layer performances and
the layer-weights. We use 1 — PER and ACC' as the layer
performance of PR and SID to compute the correlation. The p
values of the Base models, Large models, and both variants are
0.7, 0.32, and 0.4 respectively, suggesting that layer-weights
are not well-correlated with the layer performances especially
on the Large models. By further examining wav2vec 2.0 Large
and HuBERT Large on ER, VC and SE, Table m shows that
the Large models’ layer-weights are not proportional to layer
performances for all the tasks except SE. On VC, they are even
negatively correlated, suggesting that the weighted-sum opti-
mization process was misguided by the unwanted information,
which we will elaborate on further in Section

In conclusion, we verify the inconsistency between the
trained layer-weights and the true performance of each layer
across several tasks. As a result, we opted to benchmark each
layer solely for a reliable understanding on the information
flow inside speech foundation models in Section [VI-B]

B. Layer-wise single-layer benchmarking

In Fig ] we present the single-layer benchmark results
for some representative models: APC, TERA, DeCoAR 2.0,
wav2vec 2.0 Base, wav2vec 2.0 Large, HuBERT Base, Hu-
BERT Large, Data2vec Large and WavLM Large. Due to
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Fig. 5: Layer-wise benchmarking of 9 speech foundation models on 5 tasks. The model name’s suffix number represents the
layer ID, and the corresponding row is the result of single-layer benchmarking. We benchmark on the odd layers for all the
models except APC and TERA since they have fewer layers. For the row without the suffix number, it means the model is

trained with the weighted-sum protocol.

the huge computational cost, we benchmark the odd layers
on a subset of representative tasks: PR, SID, ER, VC and
SE. Intuitively, these tasks represent models’ capability on
content, speaker, emotion, disentanglement (content/speaker),
and denoising (noise/speech discrimination in our setting).

1) Information flow inside foundation models: We ob-
serve that different information locates at different layers.
The information changes inside speech foundation models

present a similar trend across different models. The lower
layers benefit the SE task which requires the manipulation of
STFT masks when considering HuBERT Base/Large, WavLM
Large, Data2vec Large, APC, and DeCoAR. For wav2vec 2.0
Base/Large and TERA, the SE differences between layers are
less obvious. In the middle layers, the information changes to
benefit SID, followed by ER. Finally, the higher layers benefit
the PR task.



2) Pushing limits with single-layer benchmarking: We ob-
serve that sometimes the single-layer benchmarking outper-
forms the weighted-sum benchmarking. The examples include
APC and TERA on PR; wav2vec 2.0 Base and HuBERT Base
on SID; DeCoAR 2.0 and TERA on ER; wav2vec 2.0 Large
and HuBERT Large on PESQ for SE. This phenomenon has
also been reported in [49], which focuses on analyzing the
content information across layers. Here we observe that the
phenomenon is consistent across several tasks.

It is worth mentioning that, on VC, all the models in
Fig [5] improve significantly with single-layer benchmarking,
and the well-performing layers are with low PER on PR and
low ACC on SID. Combined with our observation in Sec-
tion [VI-A| we infer that these models all possess the layer with
rich speaker characteristics and the weighted-sum protocol
inevitably exposes the unwanted source speaker information
to the downstream prediction head, leading to a suboptimal
transferability to the target speaker.

3) Feature disentanglement across layers: When consider-
ing the relation between PR, SID and VC across layers, we find
that HuBERT Base/Large, WavLM Large, and Data2vec Large
all show a clear disentanglement that the layers with excellent
content information get poor speaker information, and vice
versa. wav2vec 2.0 Large shows only a weak disentanglement
compared to HuBERT Large especially in Fig 4 HuBERT
Large’s better disentanglement leads to a better single layer
performance and a better weighted-sum performance on VC
with 7.06 and 7.22 MCD respectively, compared to wav2vec
2.0 Large’s 7.61 and 7.63 MCD. HuBERT Large achieves
better disentanglement without sacrificing the performances
on content and speaker related tasks, as verified by our main
result in Fig [3] that HuBERT Large is better than wav2vec 2.0
Large in most tasks. The same phenomenon can be observed
when comparing WavLM Large against wav2vec 2.0 Large.

Combined with the reported autoencoder-style behavior of
wav2vec 2.0 [45] and the rising SID accuracy at the final
layers in Fig 5] we infer that the objective of wav2vec 2.0,
InfoNCE, might lead to poorer disentanglement capability.
Since the network’s final layers must be similar to the positive
samples from the prior layers hence both ends contain low-
level entangled information, and make the network hard to
cleanly separate the content and speaker information across
model layers.

These results confirm that our benchmark settings neces-
sitate speech foundation models possessing various types of
rich information explicitly disentangled across layers, and it
is promising to deliver such a model with different learning
objectives as demonstrated by HuBERT Large.

It is worth noting that despite wav2vec 2.0 Base being worse
than wav2vec 2.0 Large on most tasks including PR and SID
in Fig [3| the former uncommonly outperforms the latter on
VC with 7.5 and 7.63 MCD respectively. This outlier could be
explained by the better disentanglement capability of wav2vec
2.0 Base as verified in Fig[da] when comparing the 8-th layer of
wav2vec 2.0 Base and the 14-th layer of wav2vec 2.0 Large.
The reason behind the Base model’s better disentanglement
compared to the Large model is yet to be explored, but this
phenomenon reveals an important fact that the disentanglement

capability does not improve trivially as the model size or the
pre-training data amount scales up, and more efforts could
be put into developing powerful, disentangled, and scalable
speech foundation models.

4) SOTA disentanglement capability of Data2vec Large:
By examining the layer-wise performances of Data2vec Large,
we find that Data2vec achieves high VC performance by
sacrificing speaker information throughout the model layers.
Furthermore, the 21-th layer reaches the highest disentangled
content representation with 2.58% PER for PR and only 7.38%
ACC for SID. Compared to recent efforts focusing on speaker
disentanglement, where both ContentVec [50] and Spin [51]]
report SUPERB PR performance above 4% PER and SID
performance above 10% ACC, Data2vec Large show espe-
cially strong disentanglement. In spite of not being directly
comparable due to the Large model size, the results still sug-
gest that Data2vec Large is ideal for the tasks requiring pure
linguistic information including voice conversion, acoustic unit
discovery tasks in ZeroSpeech [18] and the discrete unit-based
systems [52]]. We verify Data2vec Large’s disentanglement
capability with our VC task and achieve the new SOTA of
6.75 MCD with single-layer benchmarking on the 21-th layer.
The result is surprising as Data2vec was not designed for
disentanglement and did not adopt the VQ technique. We leave
explaining and exploring Data2vec Large’s disentanglement
characteristic as future work.

VII. SIGNIFICANCE OF SUPERB

We analyze the statistical significance for the current SU-
PERB leaderboard. Since our submission system requires the
downstream prediction of each task, we can analyze the sig-
nificance between models including community submissions.
Since the downstream predictions are from the same testing
set and a testing utterance is evaluated twice with two models,
we adopt the paired tests:

o Paired t-test: For the tasks with recording-level or query-
level continuous metrics. We compute the query-level
MTWYV for QBE and adopt the recording-level metrics
for the other tasks, including PER, WER, slot-type F1,
DER, BLEU, PESQ, STOI, SISDRi, and MCD.

o McNemar test: For the tasks with categorical recording
prediction, including ACC for SID and EER for SV.

For SE, we report both PESQ and STOI as there is no
apparent better choice. The scores of them are frequently very
closed and merit a discussion on their significance. For VC,
we report the primary metric MCD [47]]. For OOD-ASR, we
compute the p-value separately for SBCSAE, Common Voice
Spanish, Mandarin, and Arabic. Then, we average 4 p-values
as the final p-value.

Note that two overall scores are not required to be hugely
different to be significant. When the improvement is small
but consistent across all testing utterances, the difference is
significant; while when the overall improvement is large but
inconsistent across utterances (i.e. with serious degradation
on some utterances), the overall difference is unreliable and
insignificant.

We present the results in Table [V]for four well-known SOTA
models: wav2vec 2.0 Large, HuBERT Large, Data2vec Large



TABLE V: The p-values of the paired t-test or McNemar test
for the Large models. The bold cells mark the cases when the
difference is insignificant (p-value > 0.05).

HuBERT W2V2  Data2vec WavLM
per PR ASR wer
HuBERT 3.29 X .8045 .0195 2852 3.76
Ww2v2 4.75 0 X .0404 4269 3.62
Data2vec 2.55 0 0 X 1917 3.44
WavLM 322 1855 0 0 X 3.36
acc KS QbE mtwv
HuBERT  95.29 3 1192 .0018 0 3.53
Ww2v2 96.27 .009 X .0174 0 5.06
Data2vec  96.75 0 1289 3 0 6.28
WavLM 97.47 0 0 0 X 8.86
acc IC ER acc
HuBERT  98.76 X .0028 .0005 .0354 67.58
Ww2v2 95.68 0 X 5558 0 65.64
Data2vec  98.31 0827 0 3 0 65.29
WavLM 99.31 0035 0 0 X 68.87
slot-f1 SF SD der
HuBERT  89.81 3 1569 0513 0 5.75
Ww2v2 86.94 0 3 5412 0 5.62
Data2vec 90.98 0 0 X 0 5.53
WavLM 92.21 0 0 .0001 X 3.24
acc SID SV eer
HuBERT  90.33 3 .0029 0550 0 5.99
Ww2v2 86.15 0 X 5267 0 5.65
Data2vec  76.77 0 0 X 0 5.73
WavLM 95.49 0 0 .0002 X 3.77
wer OOD-ASR (avg) ST bleu
HuBERT  42.28 3 0 0 0 20.23
Ww2v2 42.90 0 X 0 0 12.78
Data2vec  42.71 0 4368 3 .0113 23.02
WavLM 32.66 0 0 0 X 26.56
pesq SE (pesq) SE (stoi) stoi
HuBERT  94.18 X 0 0 0 2.64
Ww2v2 94.04 .0036 X 0 0 2.52
Data2vec  93.95 0 0444 X 0 2.56
WavLM 94.51 0 0 .0002 X 2.70
sisdri SS vC mcd
HuBERT 1045 X 0 0 0 7.22
Ww2v2 10.02 0 X 0 0 7.63
Data2vec 9.76 0 0 X 0 7.02
WavLM 11.07 0 0 0 X 73
wer OOD-ASR (es) OOD-ASR (ar) wer
HuBERT  28.89 3 0 0 0 48.95
Ww2v2 343 0 b3 .3826 0 5291
Data2vec ~ 34.22 0 4102 3 0 52.6
WavLM 24.39 0 0 0 X 46.72
cer OOD-ASR (zh) OOD-ASR (spon) wer
HuBERT  22.02 X 0 0 0 69.7
Ww2v2 23.43 0 X 9544 0 61.16
Data2vec  24.43 0 0 X 0 59.82
WavLM 20.06 0 0 0 X 39.65

and WavLM Large. On SV, when taking HuBERT Large as
the baseline, wav2vec 2.0 Large improves 0.34 EER which is
significant, while Data2vec Large improves 0.26 EER which is
insignificant. The decision boundary is hard to infer without
statistical tools. On QBE, wav2vec 2.0 Large and Data2vec
Large show a 1.22 MTWYV difference which is significant,

while wav2vec 2.0 Large and HuBERT Large show a 1.53
MTWYV difference which is instead insignificant, suggesting
that a larger difference on the overall scores do not always lead
to more significant results. Hence, it is important to analyze
the significance explicitly with the downstream predictions.

The majority of results obtained on LibriSpeech ASR are
deemed insignificant. Although WavLM appears to rank first
in terms of WER for ASR, the significance test reveals that
this is not the case within our ASR setting. The results further
suggest that the evaluation of speech foundation models on the
standard LibriSpeech dataset is saturating. As a comparison,
the differences in OOD-ASR are most significant, even for
each separate dataset, and WavLM improves upon others
significantly on all the OOD-ASR datasets.

The differences in SV and SD are also frequently insignifi-
cant except WavLM. In terms of DER scores, Data2vec Large
ranks ahead of wav2vec 2.0 Large, followed by HuBERT
Large. However, the p-values indicate that their performances
are statistically equal. These results once again highlight the
misleading nature of ranking models based solely on task
scores, as even a minor random disturbance can result in a
noticeable alteration in the ranking. Interestingly, despite that
the PESQ, STOI and SISDRIi scores on SE and SS are highly
similar for all the models, they all pass the significance test,
suggesting that the improvement is small but consistent. On
VC, all the MCD results are significant.

We conclude that insignificant results exist and it is unre-
liable to rank models solely according to the score on each
task. We release the downstream predictions of these SOTA
models, along with the code to calculate the significance of
all tasks in S3PRL. We recommend the participants to always
explicitly consider the statistical significance when evaluating
with SUPERB benchmark and compare to these released
baselines.

VIII. ROBUSTNESS OF SUPERB

We discuss the robustness of the proposed benchmark to un-
derstand the transferability of the conclusion derived from the
benchmark results. We examined the robustness of SUPERB-
SGin [21], and extend the examination to the tasks defined in
SUPERB [20] in this work. Due to the space limit, we select
representative tasks, PR, SID and ER for content, speaker and
paralinguistic information respectively. We discuss two types
of condition variations: low-resource and distorted recordings.
For the low-resource condition, we consider two levels. For
PR, we randomly sample 1 hour and 10 minutes of recordings
from the LibriSpeech train-clean-100 subset for the few-shot
and extreme few-shot conditions respectively; we randomly
sample 30 and 5 utterances from each speaker for SID; we
randomly sample 30 and 5 utterances from each emotion
category for ER. For the distorted condition, we consider
adding additive noises, reverberation and both. For additive
noise, the WHAM! [53] dataset’s training, validation, and
testing sets are applied to the training, validation, and testing
sets of PR, SID and ER respectively. The SNR for each
noise addition is randomly sampled from 3, 6, and 9 dB. For
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Fig. 6: PR, SID and ER under few-shot and distorted con-
ditions with HuBERT Large, wav2vec 2.0 Large, Data2vec
Large and WavLM Large.

(f) Distorted ER

reverberation, we leverage SOXE] to add the reverberation with
the freeverb algorithm. We randomly sample from 0~80 for
reverberance. When both additive noise and reverberation are
applied, we follow the same settings above. We present the
results for HuBERT Large, wav2vec 2.0 Large, WavLM Large
and Data2vec Large in Fig [6]

Firstly, Fig E] shows that for PR, SID and ER, different
condition changes do not lead to significantly different rank-
ings, except that wav2vec 2.0 Large shows slightly better
robustness than HuBERT Large in the low-resource ER. In
the few-shot PR, we find that Data2vec Large shows better
robustness in the low-resource conditions according to its
smoother slope compared to all the others. Despite WavLM
Large and HuBERT Large show similar performance in the
default PR setting with 100 hours of data, HuBERT Large
is more robust against the few-shot 1-hour and 10-minute
settings. On the other hand, WavLM is much more robust
against the additive noises in the distorted PR. This suggests
that while the models might exhibit similar performance in
the default SUPERB setting, they could possess very different

7https://sox.sourceforge.net/

robustness characteristics. In few-shot SID and distorted SID,
the default SUPERB can perfectly reflect the performance.

In conclusion, similar to the results in [21]], the default
experimental settings of SUPERB provide a valuable reflection
of the models’ relative performance in various scenarios,
albeit with a few exceptions. We further observe that each
model exhibits different levels of robustness against different
conditions, and the default SUPERB evaluation may not
always capture these characteristics comprehensively due to
the saturating performance. Nonetheless, the findings from
SUPERB offer promising insights into the models’ capabilities
across different scenarios.

IX. CONCLUSION

We present SUPERB benchmark, an interactive platform
for evaluating speech foundation models. The standardized 15
tasks cover a wide range of speech processing, including both
discriminative and generative tasks. The 36 evaluated models
provide comprehensive baselines. We point out common pit-
falls of benchmarking and analyzing speech foundation mod-
els, including inappropriate ranking between models regardless
of statistical significance, and the inaccurate implication of the
learned layer-weight. Our results suggest that in order to be
universal on the SUPERB benchmark, the foundation model
should possess various high-quality information and be robust
to domain shifts and noisy conditions. Furthermore, different
types of information should be explicitly disentangled inside
the model. Finally, analyses of SUPERB’s significance and
robustness reveal the need for a harder version of SUPERB,
which we leave for future work. We open-source all the
materials to lower the barrier for reproduction, benchmarking,
submission, and analysis. We welcome researchers to join our
active community and drive the research frontier together.
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