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Abstract

Recent advances in audio-visual learning have shown

promising results in learning representations across modal-

ities. However, most approaches rely on global audio

representations that fail to capture fine-grained temporal

correspondences with visual frames. Additionally, exist-

ing methods often struggle with conflicting optimization

objectives when trying to jointly learn reconstruction and

cross-modal alignment. In this work, we propose CAV-

MAE Sync as a simple yet effective extension of the orig-

inal CAV-MAE [14] framework for self-supervised audio-

visual learning. We address three key challenges: First,

we tackle the granularity mismatch between modalities by

treating audio as a temporal sequence aligned with video

frames, rather than using global representations. Second,

we resolve conflicting optimization goals by separating con-

trastive and reconstruction objectives through dedicated

global tokens. Third, we improve spatial localization by

introducing learnable register tokens that reduce the se-

mantic load on patch tokens. We evaluate the proposed ap-

proach on AudioSet, VGG Sound, and the ADE20K Sound

dataset on zero-shot retrieval, classification, and localiza-

tion tasks demonstrating state-of-the-art performance and

outperforming more complex architectures. Code is avail-

able at https://github.com/edsonroteia/cav-mae-sync.

1. Introduction

Humans perceive the world in a multimodal way where
especially auditory and visual perception are very closely
connected. As a result, jointly learning the representations
of both modalities has been a longstanding active research
topic in multimodal learning [1, 2, 4, 9, 25, 34, 42]. Specif-
ically audio-visual alignment has been tackled from multi-
ple perspectives, with major works focusing on contrastive
learning [8, 27, 38], but also exploring fusion-based meth-
ods [18, 23, 36, 40]. Recently, multitask formulations com-

Figure 1. By representing audio with multiple finer-grained repre-
sentations aligned with individual video frames, CAV-MAE Sync
improves the precision of audio-visual alignment, in contrast to
the original CAV-MAE, which uses a global audio representation
that struggles with fine-grained temporal correspondence.

bine multiple learning objectives and have emerged as a
promising direction for audio-visual representation learn-
ing. In particular, CAV-MAE [14] introduced a framework
that jointly optimizes contrastive alignment between modal-
ities and masked reconstruction within each modality. By
leveraging both cross-modal and intra-modal learning sig-
nals, this approach has emerged as a foundational architec-
ture that has inspired several follow-up works [15, 20, 24].

We argue that while these methods have achieved im-
pressive results, they show two significant limitations. First,
most of them align the video and audio information based
on a global audio representation, thus matching, for exam-
ple, 10 seconds of audio to a single video frame. Second,
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while the joint learning of cross-modal similarities together
with in-modality reconstruction has proven to be a success-
ful strategy, the vanilla implementation of this idea suffers
from the fact that both objectives need to be achieved by a
single representation, learned in a joint layer. This can be
problematic as having a too similar representation for audio
and vision can inhibit their reconstruction and vice versa.

To address this, we propose CAV-MAE Sync, a simple
yet effective extension of the original CAV-MAE frame-
work for audio-visual learning that takes advantage of the
natural temporal alignment between modalities while at the
same time relaxing the constraint of a joint representation.
Namely, our work addresses three key challenges of this
architecture as follows: i) First, we tackle the granular-
ity mismatch between visual and audio modalities. While
existing methods typically operate on global audio-visual
alignment objectives, we propose treating audio as a tem-
poral sequence of instances, better matching the inherent
structure of both modalities. This process is illustrated in
Figure 1. ii) Second, we resolve the tension between con-
trastive and reconstruction objectives. Current approaches
like CAV-MAE simultaneously enforce representation sim-
ilarity through contrastive loss while applying reconstruc-
tion loss on the same embedding layer. We argue this cre-
ates conflicting optimization goals. Our solution introduces
separate global tokens, allowing each objective to operate
in its optimal space. iii) Third, we introduce learnable reg-
ister tokens into the pipeline. Similar to the results seen
in [10], these registers further alleviate the semantic load
of the patch tokens, while also allowing for finer-grained
audio-visual alignment and thus better localization.

To evaluate our approach, we conduct experiments on
zero-shot audio-visual retrieval, linear probing for audio-
visual classification, and localization on the well-known
VGGSound [6], AudioSet [11], and ADE20K [43] datasets.
Our results show that the proposed CAV-MAE Sync is not
only superior to the original CAV-MAE architecture but also
competes with significantly more complex architectures and
achieves state-of-the-art performance on all tasks.
Our contributions can be summarized as follows: (1) We
propose CAV-MAE Sync, an extension of the CAV-MAE
architecture that allows for a fine-grained temporal resolu-
tion on the audio side to support direct vision-audio align-
ment. (2) We introduce global tokens to disentangle the
inhibiting contrastive and reconstruction objectives and add
registers to the pipeline to further de-noise the ViT signal.
(3) We evaluate the proposed setup on various downstream
tasks and show a superior performance, even compared to
significantly more complex architectures.

2. Related Work

Contrastive Audio-Visual Masked Autoencoder Mod-

els. CAV-MAE [14] presented the first audio-visual model

that leverages both contrastive learning and masked au-
toencoder objectives, and together with AVMAE [12], pi-
oneered the self-supervised objective of masked autoen-
coding in the audio-visual domain. By combining the
two learning tasks, CAV-MAE demonstrated strong perfor-
mance across audio-visual tasks, effectively learning repre-
sentations that capture both modality-specific features and
cross-modal relationships. Building on CAV-MAE’s suc-
cess, several works have proposed improvements to this
contrastive audio-visual masked autoencoder framework.
CrossMAE [15] introduced a region-aware approach using
dual encoders and a fusion module to predict masked re-
gions in both modalities, enabling fine-grained cross-modal
understanding. MaViL [20] built on top of the framework
by performing video-level encoding and introducing a so-
phisticated masking strategy with both inter-modal con-
trasting between matched video-audio pairs and intra-modal
contrasting between masked views of the same modality.
AVSiam [24] proposed a parameter-efficient Siamese ar-
chitecture that shares a single vision transformer backbone
between modalities while maintaining the core CAV-MAE
framework, reducing the model size while claiming to help
bridge the modality gap between audio and visual represen-
tations. Unlike other CAV-MAE models, VAB [37] focuses
on masked audio token prediction in latent space using pre-
trained tokenizers. While it can be fine-tuned with con-
trastive learning for retrieval tasks, its primary innovation is
a visual-conditioned masked audio prediction that enables
both representation learning and audio generation capabili-
ties. While these methods have made significant advances,
they mostly operate on global audio-visual alignment ob-
jectives, missing opportunities for finer temporal granular-
ity. Our work addresses this limitation by treating audio as a
temporal sequence of instances, introducing separate global
tokens to help disentangle competing objectives, and en-
hancing spatial localization through register tokens, achiev-
ing state-of-the-art performance with a simpler architecture.

General Contrastive Audio-Visual Models. Initial ap-
proaches to audio-visual learning leveraged knowledge dis-
tillation [4, 31], where well-trained visual models guided
the optimization of audio networks. This was followed
by the emergence of paired sample discrimination meth-
ods [2, 3, 22, 30], which learned representations by distin-
guishing between matching and mismatched audio-visual
pairs. Building on this successful paradigm, recent con-
trastive learning approaches [29, 34, 38] have formalized
the learning objective by maximizing similarity between
positive pairs while minimizing similarity between nega-
tive examples in the embedding space. Several works have
focused on improving contrastive learning through better
sampling and data augmentation strategies. This includes
active learning approaches for mining hard negatives [26],
robust sampling to handle temporal misalignment [28], and
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multi-view techniques [32, 33, 39, 41] that leverage both
global and local temporal context. Recent work has ex-
plored making representations more robust by relaxing tem-
poral synchronicity constraints [35] and introducing equiv-
ariance [21]. In another direction, several works have ex-
plored localization capabilities emerging from contrastive
learning. Audio-Visual Correspondence [3] demonstrated
that localization naturally emerges from the audio-visual
correspondence task without explicit supervision. Building
on this, Audio-Visual Associative Localizations [17] devel-
oped methods to explicitly link spoken audio descriptions
with specific image regions. Chen et al. [7] improved lo-
calization through hard negative mining in the contrastive
learning process. Another line of work has further explored
approaches to learning unified embeddings across multiple
modalities. ImageBind [13] uses images as a semantic an-
chor, leveraging strong semantic relationships from image-
text models to align multiple modalities like audio, depth,
and thermal data. This enables zero-shot capabilities across
modalities without requiring explicit pairings between all
of them. Following, LanguageBind [44] argues for directly
aligning modalities to language, utilizing a pre-trained lan-
guage encoder as the semantic anchor point, demonstrat-
ing good performance on language-related tasks through
this direct alignment strategy. More recently, DenseAV [16]
achieved strong localization by aligning dense audio-visual
features through a dual encoder architecture built on top of
Dino [5] and HuBERT [19] backbones, showing good re-
sults on semantic segmentation and retrieval tasks. Similar
to DenseAV, we pursue fine-grained modal alignment but
with a simpler approach that extends CAV-MAE with dedi-
cated components for contrastive and reconstruction tasks.

3. CAV-MAE Sync

3.1. Overview

Our method employs the contrastive masked autoencoder
framework [14], training the model to reconstruct both vi-
sual and audio signals while enhancing audio-visual align-
ment through a contrastive objective. Unlike traditional
approaches that utilize a single audio representation, we
implement a sequence of audio representations temporally
aligned with visual frames. This strategy ensures more co-
herent temporal alignment between audio and visual modal-
ities without complicating the model architecture. For
downstream tasks, we leverage the finer-grained audio-
visual correspondences learned during pretraining. Figure
2 illustrates the data flow of our approach. In the following
subsections, we first review the basics of CAV-MAE and
then extend it in a second step toward the proposed CAV-
MAE Sync framework.

3.2. Background: CAV-MAE

Given a video consisting of a set of frames and a respective
audio signal, CAV-MAE uniformly samples frames from
each video and selects for each training step one frame-
audio pair consisting of a random frame vi and the visual
representation of the full Mel spectrogram of the respec-
tive audio signal ai. The respective two 2D inputs are then
patchified. Then a portion of patches is randomly masked
in each modality and a convolutional projection layer to-
kenizes the remaining frame and audio patches into se-
quences of visual and audio tokens respectively, also adding
a modality type and a positional embedding.

The sequences of unmasked visual tokens uv and au-
dio tokens ua are forwarded through separated encoders Ev

and Ea to learn modality-specific representations zv and za.
Note that, while both encoders share the same ViT architec-
ture and are initialized from identical pretrained weights,
they are trained independently without weight sharing.

After the modalities are encoded individually, their in-
teractions are captured in a joint layer J , which is trained
through three separate forward passes with shared trans-
former weights but individual layer normalizations, first one
pass for the visual representations alone, second for the au-
dio representations alone. The output patches of those two
separate forward passes ha and hv are then averaged to form
global representations of audio and visual modalities, caj
and cvi , and used to compute the contrastive loss between
the two modalities. The contrastive loss is then defined as:

Lc = → 1

N

N∑

i=1

log

(
exp (si,i/ω)∑

k →=i exp (si,k/ω) + exp (si,i/ω)

)

(1)
with si,j = ↑cvi ↑T ↑caj ↑ being the cosine similarity between
normalized visual and audio representations, and ω > 0 a
temperature parameter of the similarity distribution.

Finally, for the third pass, the visual and audio tokens are
concatenated into a single sequence. This joint representa-
tion is used for the masked autoencoding objective. The
reconstructed patches are denoted as m̂a

i for audio and m̂v
i

for video patches for each masked position i. The recon-
struction terms La

i and Lv
i compute the mean squared error

between predicted and original masked patches for audio
and visual modalities, respectively:

La
i =

∑
i↑|ma| (m̂ai →mai)

2

|ma|
(2)

Lv
i =

∑
i↑|mv| (m̂vi →mvi)

2

|mv|
(3)

The reconstruction loss averages these terms over the batch:

Lr =
1

N

N∑

i=1

(La
i + Lv

i ) (4)
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Figure 2. Overview of our approach. Our model processes video frames and audio segments in parallel through separate encoders Ea and
Ev , with the audio encoder Ea operating on finer temporal granularity to better align with visual frames. Both modalities interact through
the Joint Layer L and the Joint Decoder D The model is trained with both reconstruction and contrastive objectives.

The final learning objective balances the contrastive and the
reconstruction loss using weighting parameters εr and εc as
L = εcLc+εrLr. This weighted objective ensures that the
model learns both modality-specific features through recon-
struction and aligned cross-modal representations through
contrastive learning.

3.3. Improving Temporal Granularity

We argue that the current contrastive matching of a full au-
dio sequence to a single random frame is a rather loos con-
trastive objective, as 1) frames from different scenes will
be mapped to the same audio as long as they come from
the same video and 2) as longer audio usually also con-
tain more than one audio class (e.g. in case of AudioSet)
it not only maps several frames to the same audio but also
to an audio encoding containing different classes. We there-
fore first aim to increase the temporal granularity to achieve
a more precise audio-visual alignment. To this end, we
extract audio segments corresponding to individual video
frames. Unlike using a single audio spectrogram for the en-
tire video, this method leverages the natural temporal align-
ment between audio and visual information and ensures that
each audio segment is temporally aligned with its respective
video frame, enhancing coherence between modalities.
Temporal Alignment Process. Given a video with T
frames and its corresponding audio spectrogram of length
S, we extract a fixed-length spectrogram segment of size
slength for each frame i. Since video frames and audio
spectrogram samples are extracted at different rates from
the same time interval, we map each frame index to its

corresponding position in the spectrogram using scenteri =
↓i · S/T ↔. We then extract a window centered at this po-
sition, adjusting the boundaries to handle edge cases. The
segment extracted from the spectrogram is indexed from a
starting position sstarti to an ending position sendi , where
sstarti = scenteri → ↓slength/2↔ and sendi = sstarti + slength.

3.4. Disentangling Joint Modality Encoding

In the original architecture [14], patches are optimized for
both contrastive and autoencoder objectives using a shallow
joint layer, which can hinder the model’s ability to learn dis-
tinct representations for each objective. To address this, we
propose strategies to disentangle these objectives, enhanc-
ing the model’s performance and representation quality.
Global Token Integration. While traditional MAE ap-
proaches aggregate patch tokens to form global representa-
tions for downstream tasks [12, 14], we instead introduce
dedicated global tokens for the contrastive objective. By
separating the global representation pathway from the patch
tokens, we reduce the information burden on patch tokens,
which can now focus on reconstruction while the global
tokens aggregate information during both single-modality
and joint encoding stages. We denote these global tokens
as ga and gv for audio and visual modalities respectively.
These tokens serve as global representations of their respec-
tive modalities and are used for the contrastive objective
and downstream tasks. While these tokens are optimized
primarily through the contrastive loss, the entire model’s
weights, including the encoders and joint layers, are still
updated through backpropagation from both objectives.
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Register Tokens. Vision transformers often contain high-
norm patch tokens that act as computation nodes rather than
visual features in the self-supervised setting [10]. We incor-
porate the idea of register tokens, which helps our method in
two ways: It maintains the patch tokens dedicated to the re-
construction objective and allows the global tokens to focus
on the contrastive objective. This disentanglement improves
the model’s ability to capture semantic information and per-
form localization. These register tokens are appended to uv

and ua and are processed through the joint layer in the same
manner as the global tokens.
Adaptation of the Joint Layer. With the addition of
global and register tokens, the joint layer is refined to han-
dle modality-specific representations more effectively. The
contrastive loss Lc now exclusively utilizes the global to-
kens (ga and gv), computing similarity scores as si,j =
↑gvi ↑T ↑gaj ↑. This ensures that the contrastive objective
operates on high-level modality representations, while the
patch tokens remain to address the reconstruction objec-
tive. By disentangling the contrastive and autoencoder ob-
jectives, the model can better optimize each task indepen-
dently. The global tokens provide robust representations
for cross-modal alignment, while the patch tokens focus
on accurate reconstruction. This separation leads to im-
proved performance in both representation learning and
downstream tasks, as the model leverages specialized fea-
tures for each objective without mutual interference.

3.5. Downstream Tasks

3.5.1. Cross-Modal Retrieval

For cross-modal retrieval, the goal is to retrieve relevant au-
dio segments given a visual query and vice versa. Unlike
approaches that use global tokens per modality, we lever-
age multiple temporal tokens to capture fine-grained rela-
tionships between audio and visual data. For each video, we
forward all frames and their corresponding audio segments
through their respective encoders and joint layer. Using the
definitions from Section 3.4, we obtain the final global to-
kens gv and ga after passing through the joint layer J with
their corresponding layer normalizations LNv and LNa.
Similarity Calculation. For video-to-audio retrieval,
consider a query video with a set of visual global tokens
Vq = {gv1 , ..., gvT } and a target video with audio global
tokens At = {ga1 , ..., gaT }, with T as number of tempo-
ral tokens per modality. We construct a similarity matrix
S = VqA↓

t between the two sets where each element si,j
represents the similarity between the i-th visual token of the
query video and the j-th audio token of the target video. We
compute the final similarity score by averaging the diagonal
of S, emphasizing the modality temporal alignment:

Similarity Score =
1

T

T∑

t=1

st,t (5)

Figure 3. Illustration of our downstream tasks: (1) Classification:
using CLS token with fcls projection for video-level prediction,
and (2) Retrieval: computing similarity matrix R between audio
query Aq and video candidates Vt for cross-modal matching.

This diagonal-focused approach ensures that temporally
corresponding token pairs contribute most strongly to the
similarity score, promoting retrieval based on both seman-
tic and temporal alignment. For a batch of videos, we com-
pute the similarity scores between all query-target pairs to
construct a ranking matrix R, where each element Ri,j rep-
resents the similarity score between query video i and target
video j. The rankings are determined by sorting the simi-
larity scores for each query, with higher scores indicating
better matches. Figure 3 illustrates both our classification
and cross-modal retrieval tasks.

3.5.2. Classification

For the classification task, we extend the sampling strategy
to ensure comprehensive temporal coverage of each video.
Instead of loading a single audio-visual segment per video
instance, we sample all frames and their corresponding au-
dio segments, effectively increasing the batch size to B · T .

For classification, we first obtain the global tokens gv

and ga from the visual and audio encoders for each tem-
poral step t in video i. These tokens are concatenated at
each timestep to form a sequence Ci of length T contain-
ing the unified audio-visual representations. We prepend a
learnable CLS token to the sequence Ci to aggregate tem-
poral information, resulting in the final sequence C ↔

i =
{CLS, Ci,1, . . . , Ci,T } that is passed to the classification
head. Let fcls denote our classification head - a two-layer
transformer followed by a linear projection. Given the ex-
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Baselines R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

VAB-Encodec [37] 39.5 65.4 74.6 33.5 63.3 74.3 37.5 64.0 73.7 34.9 62.7 73.1

CAV-MAE [14] 16.1 38.6 49.3 14.7 35.3 45.9 9.5 22.6 32.4 8.3 23.8 32.4
CAV-MAEScale+ [14] 18.8 39.5 50.1 14.8 34.2 44.0 15.1 34.0 43.0 12.8 30.4 40.3
LanguageBind [44] 6.4 20.2 28.3 10.3 30.1 39.7 4.4 15.0 22.5 6.5 22.7 33.5
AVSiam [24] 19.7 → → 19.0 → → 17.6 → → 20.4 → →
ImageBind [13] 22.1 43.2 52.6 21.6 43.4 52.9 20.8 42.6 51.6 20.7 43.2 53.4

Ours 35.2 58.3 67.6 27.9 51.7 61.8 27.9 52.4 62.2 23.2 46.2 58.1

Table 1. Zero-shot retrieval results on AudioSet and VGGSound for Visual to Audio (V→A) and Audio to Visual (A→V) tasks. Our model
achieves state-of-the-art zero-shot performance across all retrieval metrics (R@1, R@5, R@10) on both datasets, surpassing baselines like
ImageBind and AVSiam. Fine-tuned VAB-Encodec scores are provided as an upper bound for comparison.

tended sequence C ↔
i, the classification head produces pre-

dictions ŷi = fcls(C ↔
i). For multi-class tasks like AudioSet,

we use binary cross-entropy loss. For single-class tasks like
VGGSound, we use standard cross-entropy loss. In both
cases, the model learns to aggregate temporal information
over the concatenated audio-visual tokens.

3.5.3. Sound-Prompted Semantic Segmentation

For sound-prompted semantic segmentation, our goal is to
make our model output a localization map in a frame given
an audio query. We extract the global audio token ga and all
visual tokens hv and compute the cosine similarity between
each hv and ga, forming the similarity matrix L correspond-
ing to the 14↘14 patches grid of the frame. We then upscale
this matrix to the original frame resolution of 224↘224 pix-
els and use it as our predicted localization map.

4. Evaluation

4.1. Datasets

AudioSet. The full AudioSet-2M dataset contains over
2 million 10-second YouTube video clips annotated with
527 audio event classes, which we use for pre-training. For
downstream evaluation, we use AudioSet-20K [11], a bal-
anced subset containing 20, 000 samples. For retrieval, we
use the subsampled split provided by [14].
VGGSound. The dataset [6] consists of 200, 000 10-second
YouTube videos annotated with 309 classes. Each video
contains a visually evident sound source, verified through
a pretrained vision classifier. This property makes VG-
GSound less noisy in terms of audio-visual correspondence.
ADE20K Sound. This dataset contains 106 images from
ADE20K [43] paired with corresponding sound clips from
VGGSound. The images and sounds span 20 ADE20K
classes, with each image containing objects that produce
the paired sound (e.g., an image of a dog paired with a bark-
ing sound). The dataset was created by manually selecting
ADE20K images and matching them with semantically rel-
evant audio clips from VGGSound.

4.2. Downstream Tasks

To assess the capabilities of our proposed approach, we
evaluate performance on three key downstream tasks. Fur-
ther implementation details can be found in the supplement.
Zero-shot Audio-Visual Retrieval. Given a query from
one modality, the model must retrieve the corresponding
sample from the other modality. We evaluate bidirec-
tional retrieval (Visual→Audio and Audio→Visual) using
Recall@k metrics (k = {1, 5, 10}) on AudioSet and VG-
GSound test sets. For fair comparison, we follow the evalu-
ation protocol and subsampling from CAV-MAE [14], using
cosine similarity between embeddings to rank candidates.
Sound-Prompted Image Segmentation. Follow-
ing [16], we evaluate cross-modal localization using
ADE20K Sound. Given an audio prompt, the model must
segment corresponding regions in the paired image. Perfor-
mance is measured via mean Average Precision (mAP) and
mean Intersection over Union (mIoU) across 20 classes.
Classification. We assess representation quality through
linear probing on AudioSet and VGGSound classification
tasks. Following standard practice, we freeze the pretrained
encoder and train only a linear classifier, using mean Av-
erage Precision (mAP) for AudioSet’s multi-label case and
accuracy for VGGSound’s single-label setting.

4.3. Comparison to State-of-the-Art

Zero-shot Retrieval. We evaluate our model’s retrieval
performance in both directions - Visual to Audio (V→A)
and Audio to Visual (A→V) - on AudioSet and VGGSound
datasets, following the same subsampling strategy as [14].
For baselines, we compare against state-of-the-art audio-
visual models including CAV-MAE [14], ImageBind [13],
AVSiam [24], and VAB [37] as a reference for a model fine-
tuned for retrieval serving as an upper bound. We report
numbers from original papers and otherwise use officially
released checkpoints where available. The retrieval metrics
are computed using cosine similarity between query and tar-
get embeddings as detailed in Section 3.5. As shown in
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Baselines Pretrain Dataset AS20K→ VGGSound→

VAB-Encodec [37] AS-2M + VGGS 33.3 57.6

CAV-MAE [14] AS-2M 27.3 -
CAV-MAEScale+ [14] AS-2M 28.5 47.7
CAV-MAEScale++ [14] AS-2M 29.2 51.1
CAV-MAEScale+++ [14] AS-2M 25.3 51.6
MaViL [20] AS-2M 30 -

Ours AS-2M 30.5 52.7

Table 2. Comparing audio-visual classification performance using
linear probing. Numbers reported for AS20K are calculated using
mAP (mean Average Precision) and VGGSound with accuracy.

Table 1, our model achieves state-of-the-art performance in
both directions, suggesting that our model learns a balanced
joint embedding space. These results demonstrate that en-
forcing temporally consistent audio-visual correspondences
during pretraining together with a disentangling of the
contrastive MAE objective enables better generalization to
downstream retrieval tasks.
Classification. While our model achieves strong retrieval
performance through finer-grained temporal alignment, we
also evaluate its representation learning capabilities through
linear probing. Prior work has observed trade-offs between
retrieval and representation learning performance, where
optimizing for one task often comes at the expense of the
other. Our goal is to maintain strong performance across all
tasks through a unified architecture rather than specializing
in a single objective. Table 2 compares linear probing per-
formance on AudioSet-20K and VGGSound classification.
Our model achieves 30.5 mAP on AudioSet and 52.7% ac-
curacy on VGGSound, outperforming CAV-MAE variants
and MaViL when using only AudioSet-2M pretraining.
Sound-Prompted Image Segmentation. Following [16],
we finally assess our model’s ability to localize sound
sources in images using the ADE20K Sound dataset. This
dataset pairs 106 images from ADE20K with correspond-
ing sound clips from VGGSound, spanning 20 ADE20K
classes. The task requires the model to segment regions
in an image corresponding to a given sound prompt, ef-
fectively testing cross-modal capabilities. Performance is
measured using mean Average Precision (mAP) and mean
Intersection over Union (mIoU), averaged across the 20
ADE20K classes. As shown in Table 3, our model achieves
22.7 mIoU on sound-prompted segmentation, performing
on par with previous self-supervised approaches like CAV-
MAE and ImageBind. Note that while the current best
model, DenseAV, achieves higher performance (24.2 with
DinoV2+LoRA), we only directly compare to approaches
with identical or similar backbones and architecture.

4.4. Ablation Studies

We conduct a series of ablation studies to evaluate the im-
pact of different components on our model’s performance.
Tables 4–8 summarize the results of these experiments.

Baselines mAP ≃ mIoU ≃
DAVENet [17] 16.8 17.0
CAVMAE [14] 26.0† / 21.2 20.5† / 20.9
ImageBind [13] 18.3 19.1

Ours 22.6 22.7

Table 3. Sound-prompted semantic segmentation: Comparison
of sound localization methods on ADE20K Sound dataset [16].
†Original reported by [16] / our reproduction.

Visual ↗ Audio AudioSet Eval Subset VGGSound Eval Subset

R@1 R@5 R@10 R@1 R@5 R@10

CAV-MAEScale+ 15.7 35.2 45.3 11.1 26.5 35.0
ω↗ Increase batch size 128 ↗ 256

CAV-MAEScale++ 19.7 40.2 50.7 14.8 31.6 41.0
ω↗ Pretrain and retrieve with 16 temporal tokens using diagonal similarity (Sec. 3.5)

CAV-MAEScale++* 23.9 46.8 58.0 16.1 36.2 46.1
ω↗ Increase batch size 256 ↗ 512 and εc=0.1

CAV-MAEScale+++ (εc=0.1) 30.1 54.9 64.5 21.0 44.0 56.8

Ours 35.2 58.3 67.6 27.9 51.7 61.8

Table 4. Retrieval performance comparison showing the progres-
sion from CAV-MAE to our approach. The results demonstrate
that simply using temporal tokens with diagonal similarity yields
weaker performance than ours, highlighting the importance of our
global and register tokens combined with fine-grained pretraining.

Establishing a Strong CAV-MAE Baseline. Table 4
shows our systematic optimization of CAV-MAE as a base-
line. Starting with CAV-MAEScale+, increasing batch size
to 256 yields CAV-MAEScale++ with improved AudioSet re-
trieval (R@1 from 18.8 to 19.7). Using 16 temporal to-
kens during both pretraining and retrieval, along with diag-
onal sequence similarity for retrieval (CAV-MAEScale++*),
further boosts performance to 23.9 R@1. Finally, larger
batches (512) and stronger contrastive weight (εc = 0.1)
in CAV-MAEScale+++ achieves 30.1 R@1. For fair compari-
son, our model uses the same hyperparameters with 4s au-
dio segments, reaching 35.2 R@1 on AudioSet and 27.9
R@1 on VGGSound with the same parameter count and a
fraction of the token count.

# Frames AudioSet Eval Subset VGGSound Eval Subset

Train Eval R@1 R@5 R@10 R@1 R@5 R@10

10 10 31.2 55.3 65.6 25.6 49.6 59.3
10 16 34 57.3 66.8 27.0 50.7 60.6
16 10 32.3 55.0 65.3 26.3 48.7 59.6
16 16 35.2 58.3 67.6 27.9 51.7 61.8

Table 5. Effect of frame sampling density on retrieval performance
during pre-training and evaluation. Results demonstrate consistent
improvements with denser temporal sampling across both stages.

Audio Length Ablation. To promote fine-grained tem-
poral alignment between audio and visual modalities, we
investigate the optimal temporal granularity for audio sam-
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Figure 4. Impact of audio segment length on model performance.
Experiments show 3-4 second segments achieve optimal results
while reducing computational costs compared to standard 10-
second segments.

# Regs. AudioSet Eval Subset VGGSound Eval Subset Localization Classification

R@1 R@5 R@10 R@1 R@5 R@10 mIoU AS20k (mAP)

0 35.5 59.0 68.0 27.9 50.9 62.4 20.9 27.1
4 32.9 58.1 67.0 28.2 51.3 63.2 21.7 27.5
8 35.2 58.3 67.6 27.9 51.7 61.8 22.8 30.8

16 34.9 59.2 68.5 27.7 52.2 64.0 22.9 26.8

Table 6. Ablation studies on the number of registers. Results
demonstrate consistent improvements with denser temporal sam-
pling across both stages.

Global AudioSet Eval Subset VGGSound Eval Subset Localization Classification

R@1 R@5 R@10 R@1 R@5 R@10 mIoU AS20k (mAP)

w/o 30.1 55.3 64.9 21.6 48.1 60.7 20.7 26.6
w/ 35.2 58.3 67.6 27.9 51.7 61.8 22.8 30.8

Table 7. Effect of global token on model performance. The global
token significantly improves cross-modal retrieval on both datasets
while enhancing localization and classification tasks, demonstrat-
ing its importance for capturing audio-visual relationships.

Ratio AudioSet Eval Subset VGGSound Eval Subset Localization

R@1 R@5 R@10 R@1 R@5 R@10 mIoU

0.6 39.1 63.3 71.7 28.6 55.5 68.7 19.1
0.75 35.2 58.3 67.6 27.9 51.7 61.8 22.8
0.9 21.5 42.3 53.5 16.7 37.9 50.1 23.4

multi {0.6-0.9} 27.3 51.6 62.1 22.1 45.7 59.9 21.2

Table 8. Effect of masking ratio on retrieval and localization per-
formance. Trade-off analysis between different masking ratios
shows 0.75 provides optimal balance between tasks.

pling, as videos typically contain multiple distinct audio
events that should be precisely matched with their cor-
responding visual frames. In Figure 4, our experiments
show that 3-4 second segments provide optimal perfor-
mance for our architecture and pre-training approach, out-
performing the standard 10-second segments in zero-shot
retrieval tasks. Note that this shorter duration also brings
computational benefits - since our model samples one ran-
dom frame and audio segment during pre-training, we pro-
cess only 30-40% of the audio tokens compared to using full

10-second segments. Audio segments shorter than 3 sec-
onds lead to degraded performance, suggesting this could
be a limit for effective learning in our framework.
Number of Frames. Table 5 investigates the impact
of temporal sampling density during both pre-training and
evaluation. While increasing frames from 10 to 16 in ei-
ther stage improves performance, the best results come from
denser sampling in both, with pre-training and evaluating
with 16 frames yielding the best score.
Number of Registers. In Table 6, we assess the impact of
varying register counts. While registers are known to boost
classification performance in vision transformers [10], opti-
mal counts can vary by task. We observe that increasing the
number of registers consistently improves localization per-
formance, from 20.9 IoU with zero registers to 22.9 with 16
registers. We chose 8 register tokens as our standard setting
since it achieved competitive performance across all tasks,
supporting our goal of a balanced model.
Global Token. The presence of a global token is eval-
uated in Table 7. Incorporating the global token enhances
the performance for retrieval on AudioSet (+3.6% on aver-
age) and VGGSound (+3.7% on average), while also im-
proving localization (mIoU from 20.7 to 22.8) and classifi-
cation (AS20k mAP from 26.6 to 30.8). These consistent
improvements across all tasks highlight the global token’s
role in capturing global context and helping disentangle the
contrastive and reconstruction objectives.
Masking Ratio. Table 8 examines different masking ratios
during pretraining. A lower masking ratio of 0.6 achieves
the highest retrieval performance but results in poorer lo-
calization (IoU 19.1). A higher ratio of 0.9 significantly de-
grades retrieval performance but improves localization (IoU
23.3). A ratio of 0.75 provides a good balance, with strong
retrieval and localization (IoU 21.8) performance. Applying
a multi-ratio strategy [24] led to worse performance across
all metrics. Therefore, we use 0.75 masking in our final
model, as it provides the best trade-off between retrieval
and localization capabilities.

5. Conclusion

In this work, we introduced CAV-MAE Sync, an exten-
sion of the popular CAV-MAE framework that addresses
key challenges in audio-visual learning by treating audio
as a temporally aligned sequence, disentangling contrastive
and reconstruction objectives through separate global to-
kens, and enhancing spatial localization with learnable reg-
ister tokens. Our experiments demonstrate across AudioSet,
VGGSound, and ADE20K that these architectural improve-
ments offer a more effective and efficient approach to audio-
visual representation learning that harmoniously aligns tem-
poral and spatial aspects of audio and visual modalities.
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