
DC-Spin: A Speaker-invariant Speech Tokenizer for Spoken Language Models

Heng-Jui Chang1, Hongyu Gong2, Changhan Wang2, James Glass1, Yu-An Chung2

1MIT CSAIL, USA
2Meta AI, USA

hengjui@mit.edu, andyyuan@meta.com

Abstract
Spoken language models (SLMs) have gained increasing atten-
tion with advancements in text-based, decoder-only language
models. SLMs process text and speech, enabling simultane-
ous speech understanding and generation. This paper presents
SpinHuBERT and Double-Codebook Speaker-invariant Clus-
tering (DC-Spin) to improve speech tokenization for bridging
audio signals and SLM tokens. DC-Spin extracts speaker-
invariant tokens rich in phonetic information and resilient to
input variations, enhancing zero-shot SLM tasks and speech
resynthesis. Comparisons of tokenization methods and down-
stream task proxies show that tokens easily modeled by an n-
gram LM or aligned with phonemes offer strong performance,
offering insights for designing speech tokenizers for SLMs.
Index Terms: speech tokenizer, self-supervised learning, spo-
ken language model, speech resynthesis

1. Introduction
Spoken language models (SLMs) have gained more interest
with the advancements of large language models (LLM) and
audio tokenization techniques [1]. SLMs resemble causal LMs
in natural language processing, but SLMs take speech and, op-
tionally, text as input and generate speech or text. Hence,
SLMs can perform tasks like speech continuation [2], auto-
matic speech recognition (ASR) [3, 4], text-to-speech synthe-
sis (TTS) [5], and the more complicated spoken language un-
derstanding (SLU) [6–8]. SLM has two main research direc-
tions: 1) LM architecture and training and 2) speech tokeniza-
tion techniques, the latter of which is the focus of this paper.

Since directly taking raw audio waveform as input to an
SLM is infeasible, prior studies leverage adaptors or discrete
tokens.1 Adaptors bridge speech encoders and text LMs [7, 9,
10], enabling speech understanding and ASR but complicating
speech generation [11]. Token-based SLMs convert speech into
discrete units for input and output [2, 4, 12, 13], allowing joint
speech-text processing [8] and synthesis from tokens [14].

Self-supervised Learning (SSL) and neural audio codecs
are common approaches for speech tokenization. First, SSL
pre-trains speech encoders with unlabeled data, reducing re-
liance on human annotation [15]. These models extract pho-
netic representations [16–18], making K-means quantization of
hidden features a common tokenization method [2,4,12]. Fine-
tuning approaches further improve SSL encoders for speech
tokenization [19, 20]. Next, neural codecs compress speech
into compact units and reconstruct high-fidelity signals through
residual vector quantization (RVQ) [21–23]. E.g., SpeechTok-
enizer distills from an SSL teacher model to enforce phonetic

1Terms “token” and “unit” are used interchangeably in this paper,
indicating discrete speech units.

representations but is limited by the teacher [24,25]. Moreover,
closed-source models like USM [3] claim strong performance
but lack reproducibility. Therefore, we aim to develop effective
tokenizers and provide detailed insights into tokenizer design.

We define two key qualifications for a good speech tok-
enizer inspired by prior studies. First, the tokens should con-
tain phonetic or semantic information for recognition and un-
derstanding tasks [2]. Second, the tokens should retain acous-
tic details for being resynthesized into speech for generative
tasks [5, 24, 26]. Hence, this paper tries to answer the follow-
ing question: how to build and evaluate a speech tokenizer for
spoken language models that satisfies these qualifications?

We simplify the setup by training a unit-based speech
LM (uLM) [2] and a Hifi-GAN unit-to-speech synthesizer [14,
27]. This setup is commonly used in SLM studies and appli-
cations [4, 12, 20], which is an ideal proxy for more advanced
SLMs. uLMs are causal transformer LMs [28] trained with the
next-token prediction objective on speech tokens. uLMs per-
form zero-shot tasks like detecting spoken words and syntactic
structures by estimating the probability of utterances [29]. We
train Hifi-GANs to convert tokens to audio and quantify the in-
telligibility of the resynthesized speech to simulate speech gen-
eration with SLMs. Hence, we can examine whether speech
tokenizers satisfy the desired qualities.

This paper proposes Double-Codebook Spin (DC-Spin) by
extending speaker-invariant clustering (Spin) with an auxiliary
codebook to extract strong phonetic speech units [17]. To
boost robustness and token quality, we propose pre-training
the Hidden-unit BERT (HuBERT) SSL speech encoder with
Spin codeword units as a better initialization for DC-Spin [30],
denoted as SpinHuBERT. First, the proposed tokenizer pro-
duces high-quality speaker-invariant speech tokens, achieving
state-of-the-art spoken language modeling and speech resyn-
thesis compared to open-source tokenizers on multiple bench-
marks with limited resources. Second, we analyze multiple
proxy tasks to understand the relation between speech tokenizer
and SLM performance. We find that phoneme and character-
normalized mutual information and the proposed n-gram pre-
dictability are good proxies for downstream tasks.

2. Method
2.1. Background

Hidden-unit BERT (HuBERT) [30] is a speech SSL method
pre-trained with a mask prediction objective for multiple itera-
tions, using pseudo labels derived from K-means clustered au-
dio representations. In the first iteration, the labels are K-means
cluster IDs of Mel-frequency cepstral coefficients (MFCCs).
The second and beyond iteration models predict K-means
clusters from the previous model’s hidden embeddings. Be-



Encoder

(I) HuBERT/SpinHuBERT 
Pre-training

Encoder

(II) ASR/PR Fine-tuning
(Optional)

hello

Encoder

(III) DC-Spin
Fine-tuning

speaker 
perturbation

initialize initializePseudo Label
(K-means/Spin)

encoder output encoder output
(speaker-perturbed)

Primary
Codebook

Auxiliary
Codebook

Figure 1: The proposed speech tokenizer training. Stage (I) pre-trains a speech encoder with pseudo labels from K-means or Spin units,
where the latter is the proposed SpinHuBERT (Section 2.2). The optional stage (II) fine-tunes the encoder with CTC-based ASR or
phoneme recognition (PR). In stage (III), the encoder is fine-tuned with the DC-Spin objective (Section 2.3).

sides pre-training, K-means units preserve phonetic informa-
tion, making ideal tokens for SLMs [2].

Inspired by [31], Speaker-invariant Clustering (Spin) is a
fine-tuning approach for improving pre-trained speech encoders
in capturing speaker-invariant content in speech through online
clustering [17, 32]. During training, each utterance is perturbed
to sound like a different speaker. Both utterances are fed to an
SSL encoder like HuBERT, and the frame-level output of each
utterance is transformed into a sequence of probability distribu-
tions over a learnable codebook. The distributions are smoothed
to enforce full codebook usage and serve as the learning target.
Finally, the model minimizes the cross-entropy loss between the
original codeword distribution and the smoothed targets from
the perturbed output and vice versa. With minimal computing,
Spin removes speaker information and improves SSL encoders
in content-related problems like ASR and phoneme recogni-
tion (PR). Although the frame-wise codeword IDs of Spin align
with phonemes and characters [32], the applications of these
units remain undiscovered.

2.2. SpinHuBERT: HuBERT with Better Targets

Spin can be applied to any SSL speech encoder, but the fine-
tuned performance depends on the encoder’s quality. Because
of the speaker-invariant nature of Spin, discrete units derived
from Spin codebooks are closer to phonemes than HuBERT
K-means units [17, 32]. Hence, we propose SpinHuBERT by
training HuBERT with Spin codeword IDs, which is expected
to extract better content and phonetic representations.

Furthuremore, inspired by [3, 11, 33], we introduce Super-
vised Fine-tuning (SFT) to boost SpinHuBERT. Specifically,
we consider CTC-based [34] ASR and PR as the supervised
tasks because 1) the data are relatively easy to collect compared
to frame-level labels and 2) both tasks force the model to ne-
glect redundant information and extract the content in speech.
With SpinHuBERT and SFT, we expect a strong initial encoder
model for Spin fine-tuning.

2.3. DC-Spin: Spin as Speech Tokenizer

Since Spin codebooks capture phonetic information and are
speaker-invariant, the tokens extracted from Spin satisfy the first
qualification in Section 1. These properties are beneficial for
speech generation because the vocoder can condition on differ-
ent speakers, allowing more flexible speech synthesis. Mean-
while, the Spin codebook is optimized with gradient descent
and proven highly scalable compared with K-means [35]. Thus,
this paper explores tokenizing speech with Spin for SLMs.

50 100 200 500 1000 2000 4000
Spin Codebook Size

60

65

70

75

80

A
cc

ur
ac

y
(%

)

TSC
sWUGGY
sBLIMP

Figure 2: HuBERT + Spin on zero-shot SLM (see Sec-
tions 3.1and 3.2 for the setup).

First, we fine-tune HuBERT with different Spin codebook
sizes and use the codeword IDs as discrete units to perform
zero-shot SLM tasks, where the setup can be found in Sec-
tions 3.1 and 3.2. In Figure 2, 200 and 500 codewords per-
form relatively better. However, large codebooks help speech
resynthesis and improve phonetic representations in Spin [17].
The contradiction motivates us to develop Double-Codebook
Spin (DC-Spin) to obtain a small but high-quality codebook.

DC-Spin extends Spin to two learnable codebooks as illus-
trated in the far right part of Figure 1. The primary codebook ex-
tracts discrete units for downstream tasks. The auxiliary code-
book is a large codebook that enhances the encoder to capture
fine-grained phonetic units. Because both codebooks share the
same encoder, the auxiliary codebook indirectly helps the pri-
mary codebook encode high-quality units.

The training pipeline is shown in Figure 1. In stage (I),
we pre-train a SpinHuBERT with pseudo labels generated with
Spin. Optionally, SFT with ASR or PR is applied to stage (II).
Stage (III) fine-tunes the encoder with the DC-Spin objective to
obtain the discrete tokens from the primary codebook.

3. Experiment
3.1. Setup

Baselines We adopt EnCodec [22] and SpeechTokenizer [24]
as the neural codec baselines. For SSL-based methods,
we consider K-means clustering, augmentation invariant dis-
crete representation [19], and Noise Aware Speech Tokeniza-
tion (NAST) [20], where the latter two methods are designed
for SLM via perturbation-invariant objectives. K-means clus-
tering with K centroids is denoted as “K-meansK .”
SSL Pre-training We follow the architecture and training
setup for HuBERT Base to train the 3rd-iteration HuBERT (it3)
and SpinHuBERT, but we use a 124k-hour English corpus. Hu-



Table 1: Zero-shot SLM evaluation for unsupervised speech to-
kenizers based on HuBERT Base and the LibriSpeech dataset.
All SLMs share the same architecture (150M parameters).

TSC↑ sWUGGY↑ sBLIMP↑
Units Method all in-vocab

50 K-means [20] 66.27 – 67.48 52.42
[19]♠ – – 67.42 57.04
NAST50 [20] 64.51 – 67.14 54.34
Spin50 65.85 58.90 63.52 59.38
DC-Spin50,4096 69.91 65.05 73.51 60.15

100 K-means [20] 67.18 – 67.75 51.96
[19]♠ – – 68.20 56.99
NAST100 [20] 64.13 – 73.35 55.86
Spin100 68.25 65.28 73.25 59.97
DC-Spin100,4096 70.18 68.04 78.47 61.35

200 K-means [20] 67.55 – 71.88 52.43
[19]♠ – – 70.68 56.26
NAST200 [20] 66.70 – 76.42 55.62
Spin200 69.64 68.95 78.19 62.55
DC-Spin200,4096 69.21 70.79 80.59 62.13

500 K-means 63.23 66.74 74.72 55.54
[19]♠ – – 69.33 56.93
Spin500 67.45 70.03 79.31 60.08
DC-Spin500,4096 67.50 71.48 81.38 60.84

♠The authors could not confirm the subset of sWUGGY, but it is
more likely to be the in-vocab set according to [20].

BERT it3 learns to predict 500-unit K-means clusters of the 9th
layer of HuBERT Base. SpinHuBERT predicts tokens extracted
from a Spin model with a codebook size of 4096.
Supervised Fine-tuning We fine-tune SpinHuBERT with
ASR and PR using a 3k-hour English speech dataset in-
cluding LibriSpeech [36], denoted as SpinHuBERT-ASR and
SpinHuBERT-PR, respectively.
Spin & DC-Spin Fine-tuning Following [17], we fine-tune
SSL models with unlabeled data from LibriSpeech on a V100
GPU. “SpinK” denotes Spin with a codebook size of K. DC-
Spin with primary and auxiliary codebook sizes of K1 and K2

is denoted as “DC-SpinK1 ,K2 .”
Spoken Language Models We adopt uLM as the SLM for a
fair comparison with prior works [2]. Each uLM is a 150M-
parameter transformer decoder [28] trained with the tokenized
6k hours clean subset of Libri-Light [37]. uLM estimates the
log probability of speech utterance normalized by length for
zero-shot SLM tasks.
Speech Resynthesis We use the Expresso dataset [38] to train
and evaluate unit-to-speech Hifi-GAN vocoders [14, 27]. The
input includes a sequence of tokenized speech units, a speaker
ID, and a style ID. Speaker and style information is reintro-
duced during speech resynthesis using external embeddings, so
the speaker-invariant property will not compromise the intona-
tion and expressiveness of the generated speech. This design
leads to more robust, generalizable SLMs while still supporting
rich generation. We resynthesize all utterances in the dev and
test sets with the original speaker and speaking style IDs.

3.2. Zero-shot Spoken Language Modeling

This section discusses the impact of tokenizers on SLM. Re-
sults are reported in accuracy by comparing the SLM-estimated
probabilities of pairs of utterances in the following tasks.
TSC We use the Topic Spoken StoryCloze to evaluate
an SLM’s ability to capture continuation coherence and fine-
grained textual nuances [12]. Each sample comprises two simi-
lar spoken stories with different endings. The SLM is expected

Table 2: Unconstrained resources zero-shot SLM evaluation.

SLM Data TSC↑ sWUGGY↑ sBLIMP↑
Method Params (hours) all in-vocab

High-resource Speech LM
AudioLM [39] 300M 60k – 71.5 83.7 64.7
VoxtLM [4]♠ 1.3B 60k – 65.6 – 57.1
TWIST [12]♠ 13B 150k 76.4 74.5 84.1 59.2
SPIRIT LM [8]♠ 7B 460k 82.9 69.0 – 58.3
Moshi [13] 7B 7M 80.9 74.8 – 59.9
Sylber [40] 125M 66k – – 78.0 60.8

Baselines
EnCodec [22] 150M 6k 56.1 52.2 53.1 50.1
SpeechTokenizer [24] 150M 6k 63.7 64.9 72.1 53.9
HuBERT + K-means500 150M 6k 63.2 66.7 74.7 55.5

SpinHuBERT + DC-Spin500,4096
SpinHuBERT 150M 6k 70.7 72.3 82.2 62.8
SpinHuBERT-ASR 150M 6k 70.2 73.7 84.5 65.7
SpinHuBERT-PR 150M 6k 70.2 74.1 85.0 65.9

Cascaded Topline
ASR + Llama2 [8] 7B – 94.8 79.2 – 71.6

♠LM pre-trained with text or paired speech-text data.

to find the utterance to have a consistent ending.
sWUGGY We adopt the spot-the-word task from Ze-
roSpeech [29]. Each sample has two spoken words with similar
pronunciations, with one of the words absent from the English
vocabulary. The “all” subset combines the “in-vocab” and out-
of-vocabulary words not in the LibriSpeech training set.
sBLIMP Like sWUGGY, an SLM is expected to find the gram-
matically correct sample from two similar utterances.

Table 1 shows the results of unsupervised speech tokeniza-
tion techniques based on HuBERT Base and LibriSpeech for a
fair comparison. DC-Spin surpasses previous methods and con-
sistently improves over Spin across different unit sizes, but the
gap is narrowed when the codebook size is 500. Among all
tasks, DC-Spin improves sWUGGY most significantly because
this task is closely related to how well speech tokens represent
pronunciation, which is related to phonetic information.

To compare the proposed methods with state-of-the-art
SLMs, we report results with unconstrained resources in Ta-
ble 2. First, EnCodec tokens perform worst because no explicit
constraints are imposed on the encoder or quantizer to extract
phonetic or semantic representations. SpeechTokenizer per-
forms similarly to HuBERT with K-means because this model
distills from a HuBERT teacher. Next, the proposed SpinHu-
BERT with DC-Spin offers the best performance on sWUGGY
and sBLIMP, even using a relatively small SLM and training
data size. DC-Spin is improved using ASR or PR SFT with
similar performance gains. Nevertheless, large SLMs excel in
TSC, showing that this task might correlate more with LM scal-
ing. Results suggest speech tokenizers greatly impact SLMs,
and SpinHuBERT and DC-Spin achieve state-of-the-art SLMs
on several tasks with limited resources.

3.3. Speech Resynthesis

This section focuses on speech resynthesis from discrete units.
ASR-WER uses an ASR model to transcribe the resynthesized
speech and computes the word error rate to quantify the in-
telligibility of the audio [38]. Following [41, 42], we adopt
UTMOS, a neural network-based mean opinion score (MOS)
prediction, to assess the quality of the resynthesized speech be-
cause this metric highly correlates with human-rated MOS [43].

As shown in Table 3, HuBERT + DC-Spin reduces more
than 10% relative WER compared with K-means, but the K-



Table 3: Speech resynthesis ASR-WER and UTMOS on Ex-
presso dev and test sets.

ASR-WER↓ UTMOS↑
Method Bitrate dev test dev test

Ground Truth 256k 15.2 14.3 3.24 3.28

Neural Codecs
EnCodec RVQ1:2 [22] 1.5k 28.4 27.5 1.35 1.31
SpeechTokenizer RVQ1 [24] 500 30.7 32.9 1.27 1.27

HuBERT
K-means500 448 24.0 24.4 2.93 2.76
DC-Spin500,4096 448 21.3 22.4 2.96 2.93

SpinHuBERT
K-means500 448 20.0 21.2 3.05 2.94
DC-Spin500,4096 448 20.5 21.7 3.11 3.04

+ ASR 448 18.9 20.0 3.08 3.05
+ PR 448 18.8 18.7 3.02 2.92

Table 4: HuBERT with different learning targets on SUPERB.

Content Semantics

Data PR ASR KS QbE IC SF ST
Method (hours) PER↓ WER↓ Acc↑ MTWV↑ Acc↑ F1↑ CER↓ BLEU↑

HuBERT it2 960 5.41 6.42 96.30 0.0736 98.34 88.53 25.20 15.53
HuBERT it3 124k 4.84 7.13 96.01 0.1016 98.37 89.66 23.96 18.00
SpinHuBERT 124k 3.69 6.16 97.14 0.0903 99.24 90.06 22.21 19.62

means and DC-Spin are similar in SpinHuBERT, showing that
SpinHuBERT extracts better representations for resynthesis
even without DC-Spin. With SFT, the ASR-WERs are further
reduced, especially when PR is introduced. Compared with
codec-based approaches, DC-Spin tokens can be synthesized
to produce high-intelligibility and quality speech at a relatively
low bitrate since codecs require multiple RVQ codebooks to
perform well. We notice that UTMOS among SSL-based meth-
ods are similar, possibly indicating that the resynthesis quality is
less relevant to the tokens than the vocoder. Note that the ASR-
WERs are greater than 10% because Expresso contains expres-
sive speech like laughter and whispering. To summarize, the
effectiveness of the proposed SSL-based tokenizers on speech
resynthesis corroborates with the findings in [44].

3.4. Ablation Studies

3.4.1. HuBERT Learning Targets

Table 4 compares the effects of learning targets for HuBERT via
the content and semantic-related tasks in the SUPERB bench-
mark [45, 46]. With more data and an additional iteration, the
HuBERT it3 surpasses it2 in most tasks. Next, by introduc-
ing a speaker-invariant learning objective via Spin codewords,
SpinHuBERT outperforms HuBERT it3 in almost all tasks, in-
dicating the effectiveness of the proposed approach.

3.4.2. DC-Spin Auxiliary Codebook

We inspect the effect of the auxiliary codebook size in DC-Spin
by showing the relation between the codebook sizes and zero-
shot SLM in Figure 3a. Comparing Spin and DC-Spin (dashed
vs. solid lines), DC-Spin helps downstream tasks in almost all
cases. Moreover, the performance gain of larger auxiliary code-
books is more prominent in sWUGGY, corroborating with the
findings in [17] and Section 3.2 that larger codebooks help the
speech encoder capture phonetic representations. The results
indicate the necessity of including a large auxiliary codebook to
help with the primary Spin codebook for SLM.

64 128 256 512 1024 2048 4096 8192
DC-Spin Auxiliary Codebook Size

60

62

65

68

70

72

75

A
cc

ur
ac

y
(%

)

TSC
sWUGGY
sBLIMP

(a)

T
S

C

sW
U

G
G

Y

sB
LI

M
P

A
S

R

R
es

yn
th

Bitrate

4-gram

ABX

PNMI

CNMI

0.56 -0.07 0.69 0.21 -0.17

0.71 0.47 0.72 0.65 0.17

-0.21 0.53 -0.39 0.08 0.42

0.39 0.84 0.29 0.58 0.59

0.47 0.77 0.50 0.70 0.49

(b)

Figure 3: (a) DC-Spin50,· with different auxiliary codebook sizes
vs. zero-shot SLM. Dashed lines indicate Spin50. (b) Pearson
correlation coefficients between proxy and downstream tasks.

3.5. Finding Proxy Tasks for Spoken Language Modeling

This section inspects the correlation between tasks to find
proper proxies for SLM tasks. We compute the bitrate of
tokens by considering the distribution of tokens via entropy.
We propose N-gram Predictability by training a 4-gram LM
with speech tokens and reporting the average perplexity on Lib-
riSpeech to measure the difficulty of modeling speech tokens.
Phonetic ABX error rate quantifies how well a tokenizer can
distinguish phonemes [29,47]. Phone Normalized Mutual In-
formation (PNMI) computes the mutual information between
the speech tokens and phonemes [30], where higher values
imply better alignment with the underlying phoneme distribu-
tion. Similarly, Character Normalized Mutual Information
(CNMI) compares tokens with character alignments obtained
by UnitY2 [32, 48].

Using 33 tokenizers with 500 units and 50Hz framerate, we
compute the Pearson correlation coefficients between proxy and
downstream metrics in Figure 3b, where ASR is uLMs fine-
tuned with transcribed speech and evaluated on LibriSpeech.
We make the values negative before calculating the coeffi-
cients for lower-better metrics (bitrate, 4-gram, ABX, ASR, and
resynthesis). First, bitrate positively correlates with TSC and
sBLIMP, implying short and compact tokens are more suitable
for capturing the long context of speech. Low 4-gram perplexity
correlates with SLM tasks, so repeating patterns in tokens im-
proves SLM. The high correlation between PNMI, ABX, and
sWUGGY verifies that sWUGGY relies on well-aligned pho-
netic units (Section 3.2). Similarly, CNMI quantifies the textual
alignment quality, making this task more related to sBLIMP and
ASR. Speech resynthesis correlates with phoneme alignment
metrics (ABX and PNMI), suggesting that this task relies on the
phonetic representations captured by the tokens to synthesize
intelligible speech. Nevertheless, the ABX error rate negatively
correlates with TSC and sBLIMP, implying this commonly used
metric might fail as a proxy. Thus, n-gram predictability, PNMI,
and CNMI are ideal proxies for developing speech tokenizers.

4. Conclusion
This paper builds and evaluates effective speech tokenizers for
SLM and speech resynthesis. Through experiments, we show
that the proposed SpinHuBERT and DC-Spin satisfy the two
qualifications of an ideal tokenizer: captures phonetic informa-
tion and acoustic details. We found that n-gram predictabil-
ity, PNMI, and CNMI strongly correlate with downstream per-
formance, making these tasks ideal proxies and offering future
development guidelines. Scaling, multilinguality, and applica-
tions like ASR and TTS are potential follow-ups.



5. References
[1] H. Wu, X. Chen, Y.-C. Lin, K.-w. Chang, H.-L. Chung, A. H. Liu,

and H.-y. Lee, “Towards audio language modeling-an overview,”
arXiv, 2024.

[2] K. Lakhotia et al., “On generative spoken language modeling
from raw audio,” TACL, 2021.

[3] P. K. Rubenstein et al., “Audiopalm: A large language model that
can speak and listen,” arXiv, 2023.

[4] S. Maiti, Y. Peng, S. Choi, J.-w. Jung, X. Chang, and S. Watanabe,
“Voxtlm: Unified decoder-only models for consolidating speech
recognition, synthesis and speech, text continuation tasks,” in
ICASSP, 2024.

[5] C. Wang et al., “Neural codec language models are zero-shot text
to speech synthesizers,” arXiv, 2023.

[6] Y. Gong, A. H. Liu, H. Luo, L. Karlinsky, and J. Glass, “Joint
audio and speech understanding,” in ASRU, 2023.

[7] Y. Chu, J. Xu, X. Zhou, Q. Yang, S. Zhang, Z. Yan, C. Zhou, and
J. Zhou, “Qwen-audio: Advancing universal audio understanding
via unified large-scale audio-language models,” arXiv, 2023.

[8] T. A. Nguyen et al., “Spirit-lm: Interleaved spoken and written
language model,” arXiv, 2024.

[9] Z. Ma et al., “An embarrassingly simple approach for llm with
strong asr capacity,” arXiv, 2024.

[10] C. Tang, W. Yu, G. Sun, X. Chen, T. Tan, W. Li, L. Lu, Z. MA,
and C. Zhang, “SALMONN: Towards generic hearing abilities for
large language models,” in ICLR, 2024.

[11] A. Dubey et al., “The llama 3 herd of models,” arXiv, 2024.

[12] M. Hassid et al., “Textually pretrained speech language models,”
NeurIPS, 2024.

[13] A. Défossez, L. Mazaré, M. Orsini, A. Royer, P. Pérez, H. Jégou,
E. Grave, and N. Zeghidour, “Moshi: a speech-text foundation
model for real-time dialogue,” arXiv, 2024.

[14] A. Polyak, Y. Adi, J. Copet, E. Kharitonov, K. Lakhotia, W.-N.
Hsu, A. Mohamed, and E. Dupoux, “Speech resynthesis from
discrete disentangled self-supervised representations,” in Inter-
speech, 2021.

[15] A. Mohamed et al., “Self-supervised speech representation learn-
ing: A review,” IEEE JSTSP, 2022.

[16] A. Pasad, J.-C. Chou, and K. Livescu, “Layer-wise analysis of a
self-supervised speech representation model,” in ASRU, 2021.

[17] H.-J. Chang, A. H. Liu, and J. Glass, “Self-supervised fine-tuning
for improved content representations by speaker-invariant cluster-
ing,” in Interspeech, 2023.

[18] K. Choi, A. Pasad, T. Nakamura, S. Fukayama, K. Livescu, and
S. Watanabe, “Self-supervised speech representations are more
phonetic than semantic,” in Interspeech, 2024.

[19] I. Gat, F. Kreuk, T. Anh Nguyen, A. Lee, J. Copet, G. Synnaeve,
E. Dupoux, and Y. Adi, “Augmentation invariant discrete repre-
sentation for generative spoken language modeling,” in IWSLT,
2023.

[20] S. Messica and Y. Adi, “Nast: Noise aware speech tokenization
for speech language models,” in Interspeech, 2024.

[21] N. Zeghidour, A. Luebs, A. Omran, J. Skoglund, and
M. Tagliasacchi, “Soundstream: An end-to-end neural audio
codec,” TASLP, 2021.

[22] A. Défossez, J. Copet, G. Synnaeve, and Y. Adi, “High fidelity
neural audio compression,” TMLR, 2023.

[23] Y.-C. Wu, I. D. Gebru, D. Marković, and A. Richard, “Audiodec:
An open-source streaming high-fidelity neural audio codec,” in
ICASSP, 2023.

[24] X. Zhang, D. Zhang, S. Li, Y. Zhou, and X. Qiu, “Speechtok-
enizer: Unified speech tokenizer for speech language models,” in
ICLR, 2024.

[25] H.-J. Chang, S.-w. Yang, and H.-y. Lee, “DistilHuBERT: Speech
representation learning by layer-wise distillation of hidden-unit
bert,” in ICASSP, 2022.

[26] A. Lee et al., “Direct speech-to-speech translation with discrete
units,” in ACL, 2022.

[27] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversarial net-
works for efficient and high fidelity speech synthesis,” NeurIPS,
2020.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you
need,” in NeurIPS, 2017.

[29] T. A. Nguyen, M. de Seyssel, P. Rozé, M. Rivière, E. Kharitonov,
A. Baevski, E. Dunbar, and E. Dupoux, “The zero resource speech
benchmark 2021: Metrics and baselines for unsupervised spoken
language modeling,” in NeurIPS SAS, 2020.

[30] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhut-
dinov, and A. Mohamed, “Hubert: Self-supervised speech repre-
sentation learning by masked prediction of hidden units,” TASLP,
2021.

[31] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and
A. Joulin, “Unsupervised learning of visual features by contrast-
ing cluster assignments,” NeurIPS, 2020.

[32] H.-J. Chang and J. Glass, “R-spin: Efficient speaker and noise-
invariant representation learning with acoustic pieces,” in NAACL,
2024.

[33] G. Gemini Team, “Gemini: a family of highly capable multimodal
models,” arXiv, 2023.

[34] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks,” in ICML, 2006.

[35] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient back-
prop,” in Neural networks: Tricks of the trade, 2002.

[36] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An asr corpus based on public domain audio books,”
in ICASSP, 2015.

[37] J. Kahn et al., “Libri-light: A benchmark for asr with limited or
no supervision,” in ICASSP, 2020.

[38] T. A. Nguyen et al., “Expresso: A benchmark and analysis of
discrete expressive speech resynthesis,” in Interspeech, 2023.

[39] Z. Borsos et al., “Audiolm: A language modeling approach to
audio generation,” TASLP, 2023.

[40] C. J. Cho, N. Lee, A. Gupta, D. Agarwal, E. Chen, A. Black, and
G. Anumanchipalli, “Sylber: Syllabic embedding representation
of speech from raw audio,” in ICLR, 2025.

[41] P. Mousavi, L. Della Libera, J. Duret, A. Ploujnikov, C. Subakan,
and M. Ravanelli, “Dasb–discrete audio and speech benchmark,”
arXiv, 2024.

[42] X. Chang, J. Shi, J. Tian, Y. Wu, Y. Tang, Y. Wu, S. Watanabe,
Y. Adi, X. Chen, and Q. Jin, “The interspeech 2024 challenge on
speech processing using discrete units,” in Interspeech, 2024.

[43] T. Saeki, D. Xin, W. Nakata, T. Koriyama, S. Takamichi, and
H. Saruwatari, “UTMOS: Utokyo-sarulab system for voicemos
challenge 2022,” in Interspeech, 2022.

[44] J. Shi, X. Ma, H. Inaguma, A. Sun, and S. Watanabe, “Mmm:
Multi-layer multi-residual multi-stream discrete speech represen-
tation from self-supervised learning model,” in Interspeech, 2024.

[45] S. Yang et al., “Superb: Speech processing universal performance
benchmark,” in Interspeech, 2021.

[46] H.-S. Tsai et al., “SUPERB-SG: Enhanced speech processing uni-
versal PERformance benchmark for semantic and generative ca-
pabilities,” in ACL, 2022.

[47] T. Schatz, “Abx-discriminability measures and applications,”
Ph.D. dissertation, Université Paris 6 (UPMC), 2016.

[48] Seamless Communication, “Seamless: Multilingual expressive
and streaming speech translation,” arXiv, 2023.


	 Introduction
	 Method
	 Background
	 SpinHuBERT: HuBERT with Better Targets
	 DC-Spin: Spin as Speech Tokenizer

	 Experiment
	 Setup
	 Zero-shot Spoken Language Modeling
	 Speech Resynthesis
	 Ablation Studies
	 HuBERT Learning Targets
	 DC-Spin Auxiliary Codebook

	 Finding Proxy Tasks for Spoken Language Modeling

	 Conclusion
	 References

