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ABSTRACT

Large language models have transformed how we interact with information, yet halluci-
nations, e.g., plausible but factually incorrect outputs, remain a critical barrier to their
deployment in high-stakes applications. This thesis presents a comprehensive approach to
understanding and mitigating hallucinations by identifying two fundamental types: para-
metric hallucinations, where generated content deviates from real-world facts due to missing
or weakly encoded knowledge in model parameters, and contextual hallucinations, where
generated content deviates from facts explicitly present in the provided context.

We identify that hallucinations arise from different failure modes requiring distinct so-
lutions. First, models may fail to leverage parametric knowledge already encoded in their
weights. We introduce DoLa (Decoding by Contrasting Layers), which amplifies factual
knowledge by dynamically contrasting predictions across transformer layers, improving fac-
tuality without training or external knowledge. Second, in retrieval-augmented generation
settings, models often fail to properly use provided context. We develop Lookback Lens,
which analyzes attention patterns to detect and reduce hallucinations. Third, even when
models generate correct content, users need verifiable evidence. We present SelfCite, a self-
supervised alignment method that enables LLMs to provide accurate sentence-level citations
through a reward design of context ablation. Fourth, we address the root cause: inadequate
training data coverage. MetaCLIP 2 demonstrates metadata-driven worldwide data curation
that addresses balancing on worldwide long-tail knowledge, achieving state-of-the-art results
on culturally diverse and multilingual vision-language benchmarks while enhancing English
task performance. Together, these methods form a roadmap towards better Al systems, from
data curation during pre-training to post-training and inference, working towards systems
that are not only capable but also reliable, transparent, and trustworthy.

Thesis supervisor: James R. Glass
Title: Senior Research Scientist, Computer Science and Artificial Intelligence Laboratory
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Chapter 1

Introduction

Large language models have fundamentally transformed how we interact with information
and automate cognitive tasks. From assisting in medical diagnosis [5] to generating legal
documents [6], from powering search engines [7] to writing code [8], these models have
demonstrated capabilities that were unimaginable just a few years ago. The rapid adoption
of models like GPT-4 [9], Claude [10], Gemini [11] and LLaMA [12] across industries reflects
not just their impressive capabilities, but also society’s growing reliance on Al for information
synthesis, reasoning, and decision support. As these systems become more deeply integrated
into critical workflows—from healthcare and law to scientific research and education—a
single critical challenge threatens their deployment: hallucinations.

1.1 The Hallucination Problem

Hallucinations occur when language models generate content that appears fluent and con-
fident but is factually incorrect, logically inconsistent, or unfaithful to provided source ma-
terial [13,14]. These errors manifest in multiple forms: stating that the Eiffel Tower is in
Berlin, claiming that a cited paper proves the opposite of what it actually states, or invent-
ing entirely fictitious references with plausible-looking citation formats. Empirical evidence
highlights the persistence of this issue across both general and domain-specific tasks. On the
TruthfulQA benchmark, GPT-3 produces hallucinated answers for 42% of the questions [15].
In specialized applications such as healthcare, the problem remains significant: a recent study
reported hallucination rates of 28.6% for GPT-4 and 39.6% for GPT-3.5 when generating
medical content [16].

The implications extend far beyond academic metrics. In medical applications, a halluci-
nated treatment recommendation could endanger patient safety. In legal contexts, citing non-
existent case law has already led to sanctions against attorneys who relied on Al-generated
briefs [17]. In scientific research, hallucinated citations pollute the literature and waste re-
searchers’ time verifying non-existent sources. In educational settings, students receiving
incorrect information may internalize false knowledge. Each failure reduces users’ trust not
only in that system but in Al as a whole, making it harder to apply Al in the areas where
it could be most useful.

What makes hallucinations particularly dangerous is their presentation: models generate
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false information with the same fluency and apparent confidence as true information. Unlike
traditional software, which fails obviously through errors or crashes, Al systems fail silently
and persuasively. A user cannot easily distinguish between “plausible falsehoods” and “correct
facts” without external verification. This fundamental challenge, that humans must still
stay alert even though Al is supposed to automate tasks, limits its usefulness to low-stakes
situations where mistakes are acceptable.

1.2 Two Types of Hallucinations

To address hallucinations systematically, we must first understand where they come from.
This thesis identifies and addresses two fundamental types of hallucinations, each requiring
distinct intervention strategies.

Parametric Hallucinations. Parametric hallucinations occur when generated content
deviates from real-world facts because the relevant knowledge is missing or weakly encoded
in the model’s parameters. When asked “Who wrote Romeo and Juliet?” without any
additional context, the model must retrieve this fact from its parameters. However, this
parametric knowledge is imperfect: it may be incomplete (missing rare facts), contaminated
by training data biases, or obscured by spurious linguistic correlations. Even when factual
knowledge is encoded in the weights, the standard decoding process may fail to surface
it, instead producing hallucinated alternatives based on premature predictions from the
linguistic prior. A particularly severe case involves long-tail knowledge: facts about rare
entities, culturally specific concepts, or non-English content that appear infrequently in
training data. These long-tail concepts are either never learned or only weakly encoded,
making parametric hallucinations inevitable for such queries. This raises two questions:
How can we better leverage the parametric knowledge that already exists within the model?
And more fundamentally: How can we ensure long-tail knowledge is properly encoded during
pre-training?

Contextual Hallucinations. Conteztual hallucinations occur when generated content de-
viates from facts explicitly present in the provided context. Real-world Al systems increas-
ingly employ retrieval-augmented generation (RAG), where relevant documents are retrieved
and provided to the model as input [18,19]. Yet even when correct information is provided,
models often fail to use it, instead generating content that contradicts or ignores the given
context [20]. A summarization model might generate claims absent from the source doc-
ument; a question-answering system might provide incorrect answers despite the correct
information being in the retrieved passages. Even when models do use context correctly, a
critical challenge remains: which specific parts of the context support each generated claim?
Without fine-grained attribution, users cannot efficiently verify outputs, limiting trust in
high-stakes applications. This reveals two related challenges: How can we detect when mod-
els fail to properly use provided context? And: How can we teach models to provide verifiable
citations that enable user verification?
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1.3 Thesis Overview: A Multi-Level Approach

This thesis presents a comprehensive approach to understand and mitigate both types of
hallucinations. Rather than proposing a single solution, we develop complementary meth-
ods that address each hallucination type at different stages of the model lifecycle, forming
a cohesive framework that spans from pre-training data curation through inference-time
generation.

1.3.1 Addressing Parametric Hallucinations

Parametric hallucinations arise from knowledge that is missing or weakly encoded in model
parameters. We address this problem at two stages: during inference (amplifying existing
knowledge) and during pre-training (preventing knowledge gaps at the source).

Amplifying Existing Parametric Knowledge (Chapter 3). We begin by addressing
cases where factual knowledge exists in the model but is obscured by linguistic biases. Decod-
ing by Contrasting Layers (Dola) introduces a novel inference-time method that contrasts
predictions from different layers of the transformer to dynamically select which layer to use
for token prediction. The key insight is that factual knowledge often emerges in higher layers,
while lower layers produce more generic or premature predictions based on linguistic priors.
By contrasting these layers’ outputs, DoLa amplifies correct factual knowledge without any
training or external knowledge. This improves factuality by up to 12-17% absolute points on
Truthful QA while maintaining generation quality, demonstrating that better decoding can
recover parametric knowledge already present in the model.

Preventing Long-tail Knowledge Gaps at the Source (Chapter 6). While DoLa
amplifies existing knowledge, it cannot recover knowledge that was never learned. The
fundamental insight is that even the most sophisticated post-training methods cannot recover
knowledge absent from pre-training. If long-tail concepts or culturally diverse content are
marginalized or filtered out during data curation, the model simply cannot learn them,
making parametric hallucinations inevitable for such queries. MetaCLIP 2 tackles this at
the source through metadata-driven data curation for vision-language models, demonstrating
principles applicable to language model pre-training. The key contribution is worldwide
coverage of culture-bound concepts that are systematically excluded by English-centric data
pipelines. The impact is clear on the Google Landmarks Dataset v2 (GLDv2), which includes
diverse landmarks worldwide: English-only curation achieves just 52.8% accuracy, while
worldwide curation reaches 69.0%, demonstrating that culture-bound knowledge gaps are
data curation failures, not data scarcity issues. This demonstrates that comprehensive pre-
training data prevents parametric hallucinations for long-tail knowledge at the root.

1.3.2 Addressing Contextual Hallucinations

Contextual hallucinations arise when models fail to properly use information provided in
their input context. We address this through detection (identifying when models ignore
context) and attribution (enabling verification through citations).
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Detecting Contextual Hallucinations (Chapter 4). When models are provided with
relevant documents but generate content that contradicts or ignores them, we need methods
to detect such failures. Lookback Lens analyzes attention patterns to detect when models
drift from their sources. The central observation is that when generating faithful content,
certain attention heads focus back on the provided context rather than the newly generated
sentences. By extracting the ratio of attention allocated to context versus generated content,
we train a lightweight classifier that detects contextual hallucinations. Moreover, this de-
tector enables guided decoding that dynamically adjusts generation, reducing hallucinations
by 9.6% absolute points on summarization tasks. Remarkably, the learned attention-based
classifiers generalize across both tasks and model sizes, suggesting fundamental principles in
how models ground content in context.

Enabling Attribution for Verification (Chapter 5). Detection reveals when content is
unfaithful, but users also need supporting evidence when it is faithful. Without fine-grained
attribution, users cannot efficiently verify outputs in high-stakes applications. SelfCite ad-
dresses this by teaching models to generate sentence-level citations. The innovation lies in
a self-supervised reward design: we use the model’s own behavior under context ablation as
the training signal. If removing a cited sentence changes the model’s output, that sentence
was necessary (recall); if the cited sentence alone is sufficient to produce the same output,
it was not over-cited (precision). This context-ablation-based reward enables preference op-
timization without human annotation, improving citation F1 by 5.3% absolute points and
scaling to 128K-token documents.

1.3.3 Organizing Principles

Beyond individual contributions, this thesis reveals organizing principles that connect our
approaches:

Two Hallucination Types, Four Complementary Solutions. Our framework ad-
dresses each hallucination type at multiple stages. For parametric hallucinations, DolLa
provides immediate inference-time amplification of existing knowledge, while MetaCLIP 2
prevents long-tail knowledge gaps at the pre-training source. For contextual hallucinations,
Lookback Lens detects when models ignore provided context, while SelfCite enables attribu-
tion that allows users to verify context usage. This structure ensures comprehensive coverage:
we both mitigate existing problems and prevent future ones.

Intervention on Different Stages. Our methods span the entire model lifecycle: Meta-
CLIP 2 operates during pre-training (establishing the foundational knowledge base), SelfCite
during post-training fine-tuning (adding attribution capabilities), and Dol.a and Lookback
Lens during inference and decoding (amplifying knowledge and detecting failures). This tem-
poral spread ensures we address hallucinations at every stage where they can be introduced
or mitigated, with the crucial recognition that pre-training establishes hard constraints on
what parametric knowledge is available to all subsequent stages.
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Supervision Strategy. FEach method employs a different supervision paradigm suited
to its task: DoLa is fully unsupervised (no training examples), Lookback Lens is weakly
supervised (1,000 annotated examples), SelfCite is self-supervised (using the model’s own
behavior as rewards), and MetaCLIP 2 is metadata-supervised (using curated worldwide
metadata). This diversity demonstrates that effective solutions must adapt their supervision
strategy to available resources and problem structure.

1.4 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2: Background provides essential foundations on Large Language Models
and CLIP, covering autoregressive language modeling, Transformer architectures, contrastive
learning, and zero-shot transfer. This chapter establishes the mathematical formulations and
architectural concepts underlying all subsequent contributions.

Chapter 3: DoLa addresses parametric hallucinations by amplifying existing knowledge
through layer contrasting during decoding, demonstrating improvements in factuality across
multiple benchmarks.

Chapter 4: Lookback Lens addresses contextual hallucinations through attention-
based detection, showing how attention patterns reveal whether models properly use provided
context.

Chapter 5: SelfCite addresses contextual hallucinations through attribution, intro-
ducing a self-supervised approach for teaching models to generate accurate citations using
context ablation as the training signal.

Chapter 6: MetaCLIP 2 addresses parametric hallucinations at their source, pre-
senting worldwide data curation methodology that preserves long-tail knowledge during pre-
training through metadata-driven balancing.

Chapter 7: Conclusion and Future Directions synthesizes contributions, discusses
limitations, and outlines promising directions for future work on trustworthy large-scale Al
systems.

Appendices A, B, C, D provide implementation details, additional experimental re-
sults, and supplementary analyses for each of the four main contributions.

Together, these chapters present a comprehensive approach to both parametric and con-
textual hallucinations, spanning the full lifecycle of Al systems: from the pre-training data
that establishes foundational parametric knowledge, through post-training fine-tuning that
adds attribution capabilities, to inference-time generation and verification. These approaches
represent a step toward Al systems that are not only capable but also reliable, transparent,
and trustworthy.
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Chapter 2

Background

This chapter provides essential background on the two foundational architectures central to
this thesis: Large Language Models (LLMs) and Contrastive Language-Image Pre-training
(CLIP). We introduce their mathematical formulations, training objectives, and key archi-
tectural components.

2.1 Large Language Models

2.1.1 Autoregressive Language Modeling

A language model defines a probability distribution over sequences of tokens. Given a vo-
cabulary V and a sequence of tokens x = (z1,s,...,2r) where z; € V, an autoregressive
language model factorizes the joint probability as Bengio et al. [21]:

T

P(x) = HP(mt | v<t), (2.1)

t=1
where z; = (x1,...,24_1) denotes all tokens before position ¢. This factorization enables

sequential generation: the model predicts the next token conditioned on all previous tokens.

Next-Token Prediction. The core training objective for autoregressive LLMs is to max-
imize the log-likelihood of observed sequences. Given a training corpus D of text sequences,
the objective is:

£LM = EXND

Zlog Py(xy | w<t)] , (2.2)

t=1
where Py is the model parameterized by 6. This simple yet powerful objective has proven
remarkably effective at scale [22,23].

2.1.2 Transformer Architecture and Parameterization

Modern LLMs are predominantly based on the Transformer architecture [24|, which uses
self-attention mechanisms to model dependencies between tokens. For an input sequence
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X, the model first embeds each token x; into a d-dimensional vector and adds positional
encodings:
h” = Embed(z,) + PE(t), (2.3)

where PE(t) encodes the position information.

Self-Attention Mechanism. At each layer ¢, the Transformer applies multi-head self-
attention. For each head, the attention operation computes:

Attention(Q, K, V) = soft (QKT> A% (2.4)
ention s s = SoItmax 5 .
Vdy,

where Q = H*"YWg,, K = H "YWy, and V = H" YWy, are the query, key, and
value matrices, and Wg, Wk, Wy, are learned projection matrices. Multi-head attention

concatenates outputs from h parallel attention heads before projecting back to the model
dimension.

Feed-Forward Networks. FEach Transformer layer also includes a position-wise feed-
forward network (FFN):

where ¢ is a non-linear activation function (typically GELU [25] or SwiGLU |[26]), and
Wi, W, are learned weight matrices. Layer normalization [27] and residual connections [28|
are applied around both the attention and FFN sublayers.

Output Layer. After L layers, the final hidden states H) are projected to vocabulary
logits:
Py(ay | 2oy) = softmax(Wouh!™ + boy), (2.6)

where W, € RIY*4 projects to vocabulary size |V|.

Model Families. Notable LLM families include GPT [22,23,29], LLaMA [12,30], PaLM |31],
and Mistral [32]. These models scale from millions to hundreds of billions of parameters,
demonstrating emergent capabilities with increased scale [33].

2.2 Vision-Language Models: CLIP

Contrastive Language-Image Pre-training (CLIP) [34] learns joint representations of images
and text by training on large-scale image-text pairs scraped from the internet. Unlike tradi-
tional supervised learning on fixed label sets, CLIP learns transferable visual concepts from
natural language supervision.
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2.2.1 Contrastive Learning Framework

CLIP consists of two encoders: an image encoder f;(-) and a text encoder fr(-), which map
images and text into a shared embedding space R%. Given a batch of N image-text pairs
{(I;, ;) }~,, CLIP computes:

= f1(L:)/[villz,
ti = fr(T3)/[t:]2,

where the encodings are /5-normalized to lie on the unit hypersphere.

InfoNCE Objective. CLIP’s training objective is symmetric contrastive learning, maxi-
mizing the cosine similarity between matched pairs while minimizing it for mismatched pairs.
The loss for the image-to-text direction is:

Loy — — N eXp (viti/7) ‘
Z:: 3 1eXp( th/7'> 29

where 7 is a learnable temperature parameter. The text-to-image loss Lr_,; is defined
symmetrically. The total loss is:

1
Lovp = 5(£1->T + L) (2.10)

This objective is an instance of the InfoNCE loss [35], which has strong connections to
mutual information maximization [36].

2.2.2 Architecture and Training

Image Encoder. The image encoder f is typically either a Vision Transformer (ViT) [37]
or a ResNet [28]. ViT processes an image by splitting it into patches, linearly embedding
each patch, and feeding the sequence through Transformer layers. The output is either the
[CLS| token embedding or a global average pooling of patch embeddings.

Text Encoder. The text encoder fr is a Transformer [24] similar to GPT [22], processing
tokenized text with causal attention. The final token’s embedding (typically [EOS]|) is used
as the text representation.

Training at Scale. OpenAl’s CLIP [34] was trained on 400 million image-text pairs col-
lected from the internet. The model learns to align visual and textual representations in a
unified space, enabling zero-shot transfer to downstream tasks. By using natural language
as supervision, CLIP can recognize arbitrary visual concepts described in text, without task-
specific fine-tuning.
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Zero-Shot Transfer. For a classification task with K classes, CLIP constructs textual
prompts for each class (e.g., “a photo of a [class|”). At inference, it computes cosine similar-
ities between the image embedding and all K text embeddings, and predicts the class with
highest similarity:

= argmax sim(f;(1), fr(Tk)), (2.11)

where sim(-, -) is cosine similarity and T} is the text prompt for class k.

Data Curation for CLIP. The quality and scale of training data, i.e., the image-text
pairs {(I;, T;)}X,, are critical to CLIP’s success. MetaCLIP [38] revealed that OpenAl
CLIP’s data curation likely involved metadata-driven balancing: using high-quality concept
lists (e.g., WordNet [39], Wikipedia) to guide the selection and balancing of image-text
pairs. This curation transforms the raw, imbalanced distribution of internet data into a
more balanced training distribution, ensuring sufficient coverage of tail concepts.

2.3 Chapter Summary

This chapter introduced the two foundational architectures that underpin the research in
this thesis:

e Large Language Models use autoregressive next-token prediction on Transformer
architectures to learn powerful text representations. The factorized probability model
enables sequential generation, while the Transformer’s self-attention mechanism cap-
tures long-range dependencies.

e CLIP learns joint vision-language representations through contrastive learning on
large-scale image-text pairs. Its symmetric training objective aligns visual and tex-
tual embeddings in a shared space, enabling zero-shot visual recognition via natural
language.

The subsequent chapters address critical limitations in both paradigms: hallucinations
and knowledge representation in LLMs (Chapters 3, 4, 5), and data curation challenges in
vision language model CLIP pretraining (Chapter 6).
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Chapter 3

Localizing and Amplifying Parametric
Knowledge with DoLa

3.1 Introduction

Large language models (LLMs) have demonstrated great potential in numerous natural lan-
guage processing (NLP) applications [9,23,40]. However, despite the continued increase in
performance and the emergence of new capabilities from scaling LLMs [33], their tendency
to “hallucinate”, i.e., generate content that deviates from real-world facts observed during
pretraining [13], remains a persistent challenge. This represents a major bottleneck in their
deployment especially for high-stakes applications (e.g., clinical /legal settings) where reliable
generation of trustworthy text is crucial.

While the exact reasons for LMs’ hallucinations are not fully understood, a possible
reason is due to the maximum likelihood language modeling objective which minimize the
forward KL divergence between the data and model distributions. This objective potentially
results in a model with mass-seeking behavior which causes the LM to assign non-zero prob-
ability to sentences that are not fully consistent with knowledge embedded in the training
data. Empirically, an LM trained with the next-word prediction objective on finite data
has been shown to result in a model that uses linguistic knowledge to recognize the superfi-
cial patterns, instead of recognizing and generating the real-world facts extracted from the
training corpus [13].

From a model interpretability perspective, transformer LMs have been loosely shown to
encode “lower-level” information (e.g., part-of-speech tags) in the earlier layers, and more
“semantic” information in the later layers [41]. More recently, Dai et al. [42] find that “knowl-
edge neurons” are distributed in the topmost layers of the pretrained BERT model. Meng
et al. [43] show that factual knowledge can even be edited by manipulating a specific set of
feedforward layers within an autoregressive LM. We propose to exploit this modular encod-
ing of knowledge to amplify the factual knowledge in an LM through a contrastive decoding
approach, where the output next-word probability is obtained from the difference in logits
between a higher layer versus a lower layer. By emphasizing the knowledge of higher layers
and downplaying that of lower layers, we can potentially make LMs more factual and thus
reduce hallucinations.
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Figure 3.1: Illustration of an LLM progressively incorporates factual information along layers.
While the next-word probabilities of “ Seattle” remain similar throughout different layers, the
probabilities of the correct answer “ Olympia” gradually increase from lower to higher layers.
DoLa uses this fact to decode by contrasting the difference between layers to sharpen an
LLM’s probability towards factually correct outputs.

An illustration of this idea for a simple example is shown in Figure 3.1. While “Seattle”
maintains high probability throughout all the layers—presumably because it is a syntactically
plausible answer—the probability of the true answer “Olympia” increases after the higher
layers inject more factual knowledge. Contrasting the differences between the different layers
can thus reveal the true answer in this case. Based on this concept, we propose a new
decoding method, Decoding by Contrasting Layers (DoLa), for better surfacing factual
knowledge embedded in an LLM without retrieving external knowledge or additional fine-
tuning.

Experiments on Truthful QA [15] and FACTOR [44]| demonstrate that DoLa is able to
increase the truthfulness of the models of the LLaMA family [12|. Further experiments
on chain-of-thought reasoning for StrategyQA [45] and GSMS8K [46] also show that it can
facilitate more factual reasoning. Finally, experiments using GPT-4 for open-ended chatbot
evaluation [47| show that when compared with the original decoding method, DolLa can
generate informative and significantly more factual responses that lead to better ratings from
GPT-4. From an efficiency perspective, we find that DoLa causes only a small additional
latency in the decoding process, suggesting it as a practical and useful decoding strategy for
improving the truthfulness of LLMs.!

!The source code of this chapter is available at https://github.com /voidism/DoLa.
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3.2 Related Work

3.2.1 Hallucinations in LLMs.

Hallucinations in LLMs refer to generated content not based on training data or facts, caused
by various factors like imperfect learning and decoding [13]. Ways to mitigate them include
reinforcement learning from human feedback [48|. Recent strategies involve inference-time
self-consistency checks [49], multi-agent debating [50,51], and inference-time intervention
using human labels [52].

3.2.2 NLP Pipeline in Transformer.

A study by Tenney et al. [41] notes BERT mimics classical NLP pipeline: early layers manage
syntax while later ones handle semantics. This behavior varies based on training objectives
[53] and tasks [54]. Recent studies highlight the role of middle and topmost layers [42,43]
and specific heads [52] in factual predictions.

3.2.3 Contrastive Decoding.

Contrastive Decoding (CD) [55] contrasts strong expert LMs with weak amateur LMs to
improve fluency and coherence without discussing factuality. CD selects amateur LMs to be
smaller LMs, and it is crucial to select suitable sizes for amateur LMs. DolLa dynamically
selects appropriate early layers based on token complexity, avoiding the need for training
and using smaller LMs in CD. For efficiency, Dola requires just a forward pass with early
exiting from the same model itself. O’Brien and Lewis [56] is a concurrent work that extends
CD to be evaluated on reasoning tasks.

Following the concept of CD, Shi et al. [57] introduced context-aware decoding (CAD)
to better focus LMs on contexts for improving summarization and knowledge conflict tasks.
A concurrent work, Autocontrastive Decoding (ACD) [58|, partially resembles DoLa-static
but focuses on small LMs like GPT2 in 335M/125M, as ACD requires fine-tuning prediction
heads for early layers. Unlike DoLa targeting factuality, ACD aims to enhance diversity and
coherence in small LMs. Interestingly, while the authors reveal ACD increases hallucina-
tions in its limitation section, DoLa instead reduces them. We attribute the discrepency to
model sizes, as our experiments suggest contrasting layers in a small GPT2 cannot improve
factuality. Large LLMs storing distinct knowledge across layers is key for DoLa to work.

3.3 Method

Recent language models consist of an embedding layer, N stacked transformer layers, and
an affine layer ¢(-) for predicting the next-word distribtution. Given a sequence of tokens
{1, 29,..., 241}, the embedding layer first embeds the tokens into a sequence of vectors
Hy = {hgo), . .,h,@l}. Then H, would be processed by each of the transformer layers
successively. We denote the output of the j-th layer as H;. Then, the vocabulary head
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¢(+) predicts the probability of the next token z; over the vocabulary set X,
p(ry | 244) = softmax(qb(him))zt, € X.

Instead of applying ¢ on the final layer, our approach contrasts the higher-layer and lower-
layer information to obtain the next-token probability. More specifically, for the j-th early
layer, we also compute the next-token probability using ¢(+) as follows, where J C {0,..., N—
1} is a set of candidate layers,

gi(ze | xt) = softmax(¢(h£j))) , J€J.

Tt

The idea of applying language heads directly to the hidden states of the middle layers, known
as early exit [59-61], has proven to be effective even without special training process [62], as
the residual connections [28| in transformer layers make the hidden representations gradually
evolve without abrupt changes. Using ¢;(z:) to represent g;(x; | x<;) for notational brevity,
we then compute the probability of the next token by,

e | 7<) = SOftmaX(]:(QN(It), QM(xt)))zta
where M = argmax d(gn(-), ¢;(-)).
JET

Here, layer M is named premature layer, while the final layer, i.e., layer IV, is named mature
layer. The operator F(-,-), to be elaborated further in Section 3.3.3, is used to contrast be-
tween the output distributions from the premature layer and the mature layer by computing
the log-domain difference between two distributions. The premature layer is dynamically
selected in each decoding step using a distributional distance measure d(-,-) (we use Jensen-
Shannon Divergence) between the mature layer and all the candidate layers in 7. We discuss
d(-,-) in more detail in Section 3.3.2. The motivation for selecting the layer with the highest
distance d(-,-) is to ensure that the model would significantly change its output after that
selected layer, and thus have a higher chance to include more factual knowledge that does
not exist in the early layers before it.

3.3.1 Factual Knowledge Evolves Across Layers

We conduct preliminary analysis with 32-layer LLaMA-7B [12]| to motivate our approach.
We compute the Jensen-Shannon Divergence (JSD) between the early exiting output distri-
butions ¢;(- | <) and the final layer output distribution gn(- | <), to show how the early
exiting outputs are different from the final layer outputs. Figure 3.2 shows the JSDs when
decoding the answer for the input question, from which we can observe two patterns. Pat-
tern #1 happens when predicting important name entities or dates, such as Wole Soyinka
and 1986 in Figure 3.2, which require factual knowledge. We observe the calculated JSD
would be still extremely high in the higher layers. This pattern indicates that the model
is still changing its predictions in the last few layers, and potentially injecting more factual
knowledge into the predictions. Pattern #2 happens when predicting function words, such
as was, the, to, in, and the tokens copied from the input question, such as first Nigerian,
Nobel Prize. When predicting these “easy” tokens, we can observe that the JSD becomes very
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Input: Who was the first Nigerian to win the Nobel Prize, in which year?
Output: Wole Soyinka was the first Nigerian to win the Nobel Prize, in 1986.
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Figure 3.2: JSD (scaled by 10°) between the final 32nd layer and even-numbered early layers.
Column names are decoded tokens in each step. Row names are indices of the early layers.
0 means word embedding layer.
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Figure 3.3: The illustration of how dynamic premature layer selection works.

small from middle layers. This finding indicates that the model has already decided what
token to generate in middle layers, and keeps the output distributions almost unchanged
in the higher layers. This finding is also consistent with the assumptions in early exiting
LMs [61]. We also show quantitative study with the help of an NER dataset in Appendix A.2
to support this observation.

Qualitatively, when the next-word prediction requires factual knowledge, LLaMA seems
to change the predictions in the higher layers. Contrasting the layers before/after a sudden
change may therefore amplify the knowledge emerging from the higher layers and make the
model rely more on its factual internal knowledge. Moreover, this evolution of information
seems to vary token by token. Our method requires accurately selecting the premature layer
that contains plausible but less factual information, which may not always stay in the same
early layer. Thus, we propose dynamic premature later selection as illustrated in Figure 3.3.
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3.3.2 Dynamic Premature Layer Selection

To magnify the effectiveness of contrastive decoding, the optimal premature layer should ide-
ally be the layer most different from the final-layer outputs. To allow for dynamic premature
layer selection at each time step, we adopt the following measure of distance between the
next-word distributions obtained from two layers,

d(QN(' | 2<1), Qj(' | 5U<t)) = JSD(QN(' ’55<t)“%'(' \ 95<t))7

where JSD(-, ) is the Jensen-Shannon divergence. The premature layer, i.e., the M-th layer
(0 < M < N), is then selected as the layer with the maximum divergence among the subset
of early layers,

M = argma JSD (g (- | 2<0)llgy (- | 2<0)),

where J is a set of candidate layers for premature layer selection. For LLaMA models with
various number of layers, we divide the layers into 2 to 4 buckets of J based on their total
layers, in order to focus on contrasting from a certain range of layers. The best bucket
for each task is chosen using a validation set, as detailed in Section 3.4.1. This dynamic
layer selection strategy enables the the selection of suitable premature layers based on token
difficulty, thereby making better use of the knowledge learned by different layers.

Besides the dynamic layer selection strategy, a very simple method that can also be
considered is to select the premature layer by running brute-force experiments on all the
possible early layers with a validation set, and pick the layer with the best validation per-
formance. We refer to this simple method as DolLa-static. However, DolLa-static has the
drawbacks of 1) requiring more hyperparameter search runs in layers and the fact that 2)
best layers are sensitive to data distribution, thus requiring in-distribution validation sets.
Our proposed dynamic layer selection strategy also mitigates the drawbacks of DoLa-static
by shrinking the layer search space and making the method more robust without heavily
relying on in-distribution validation sets. We empirically investigate the effectiveness of this
dynamic strategy over DolLa-static in Section 3.5.1.

3.3.3 Contrasting the Predictions

Given the premature and mature layers obtained from Section 3.3.2, we aim to amplify
mature layer outputs while downplaying premature layer outputs. Following the Contrastive
Decoding approach from Li et al. [55], we subtract the log probabilities of the premature
layer outputs from those of the mature layer. We then use this resulting distribution as the
next-word prediction, as illustrated in Figure 3.1,

p(ay | v<p) = softmax (F (gn(x), QM(xt)))xt’ where

C]N(ift) .
. if 2 € Viead (2¢|T<t)
]:(QN(%),QM(%)) = qn () t head (Zt|7<t)
—0Q, otherwise.

Similar to Li et al. [55], the subset Vyeaa (7:]7<;) € X is defined as whether or not the token
has high enough output probabilities from the mature layer,

Vhead (Ti]T<t) = {mt € X qn(xy) > amgqu(w)}.
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If the predicted probability of a token is too small in the mature layer, it is not likely to be
a reasonable prediction, so we set the token probability to zero to minimize false positive
and false negative cases. In the context of Dol.a, the false positive means an implausible
token with an extremely low score may be rewarded with a high score after contrast, due
to the unstable low probability range on these implausible tokens from different layers. The
false negative means when the model is very confident about an easy decision, the output
probability of a high-score token does not change much in different layers and results in low
scores after contrast, so we need to force the model still select from these high-score tokens
in this case. This strategy is referred as an adaptive plausibility constraint (APC) proposed
in [55].

Repetition Penalty. The motivation of DolLa is to downplay lower-layer linguistic
knowledge and amplify real-world factual knowledge. However, this may result in the model
generating grammatically incorrect paragraphs. Empirically, we do not observe such an issue,
but we found that the resulting DolLa distribution to sometimes have a higher tendency to
repeat previously generated sentences [63], especially during generation of long sequences of
chain-of-thought reasoning. Here we include a simple repetition penalty introduced in [64]
with 8 = 1.2 during decoding. The empirical analysis of the repetition penalty is shown in
Appendix 3.5.3.

3.4 Experiments

3.4.1 Setup

Datasets. We consider multiple choices and open-ended generation tasks. For multiple
choices, we use Truthful QA [15] and FACTOR (News/Wiki) [44] to assess LMs’ factuality
in short-answer /long-paragraph settings, respectively. For open-ended generation, we use
TruthfulQA (rated by fine-tuned GPT-3) [15] and tasks involving chain-of-thought [65] rea-
soning: StrategyQA [45] and GSM8K [46]. Finally, we test Vicuna QA [47] which uses
GPT-4 to evaluate instruction-following abilities as chatbot assistants.

Models and Baselines. We examine four sizes of LLaMA models [12] (7B, 13B, 33B,
65B) and compare them with three baselines: 1) original decoding (greedy decoding or sam-
pling depending on the tasks), 2) Contrastive Decoding (CD) [55|, where LLaMA-7B serves
as the amateur model and LLaMA-13B/33B/65B act as expert models, and 3) Inference
Time Intervention (ITI). ITI uses LLaMA-7B and a linear classifier trained on Truthful QA.
Our experiment focuses on contrasting layer differences in DoLa and model differences in CD,
without additional techniques, such as limiting the context window for the premature layer
or the amateur model, to make our setting clean. We set adaptive plausibility constraint ()
to 0.1 and repetition penalty (f) to 1.2 as per prior studies|55,64].

Candidate Layers. In dynamic premature layer selection, we partition transformer
layers into buckets and select one bucket as candidate layers (7). For 32-layer LLaMA-7B,
we use two buckets: [0, 16), [16, 32); for 40-layer LLaMA-13B, they are [0, 20), |20, 40); for
60-layer LLaMA-33B, three buckets: [0, 20), 20, 40), [40, 60); and for 80-layer LLaMA-65B,
four buckets: [0, 20), [20, 40), [40, 60), [60, 80), where the Oth layer is the word embedding.
This design limits the hyperparameter search space to only 2-4 validation runs. For efficiency,
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TruthfulQA (MC) FACTOR TruthfulQA (Open-Ended Generation) CoT

Model
MC1 MC2 MC3 | News Wiki | %Truth ¢ %Info t %T+I1 %Reject | | StrQA GSMSK

LLaMa-7B  25.6  40.6 192 | 583 586 30.4 96.3 26.9 2.9 60.1 10.8
+ ITT [52] 25.9 - - - - 49.1 - 43.5 - - -
+ DoLa 32.2 63.8 32.1 | 62.0 62.2 42.1 98.3 40.8 0.6 64.1 10.5
LLaMa-13B  28.3 433 208 | 61.1 626 38.8 93.6 32.4 6.7 66.6 16.7
{ CD [55] 244 410 190 | 623 644 55.3 80.2 44.4 20.3 60.3 9.1
+ DoLa 28.9 64.9 34.8 | 62.5 66.2 48.8 94.9 44.6 2.1 67.6 18.0
LLaMa-33B  31.7 495 242 | 638  69.5 62.5 69.0 31.7 38.1 69.9 33.8
+CD[55] 33.0 518 257 | 633 71.3 81.5 45.0 36.7 62.7 66.7 28.4
+ DoLa 305 62.3 34.0 | 65.4 70.3 56.4 92.4 49.1 8.2 72.1 35.5
LLaMa-65B  30.8 469 227 | 63.6 722 50.2 84.5 34.8 19.1 70.5 51.2
+ CD [55] 203 470 215 | 646 713 75.0 57.9 43.4 44.6 70.5 44.0
+ DoLa 31.1 64.6 34.3 | 66.2 724 54.3 94.7 49.2 4.8 72.9 54.0

Table 3.1: Experimental results on 1) multiple choices dataset: TruthfulQA and FACTOR
and 2) open-ended generation tasks: Truthful QA and Chain-of-Thought (CoT) reasoning
tasks, including StrategyQA (StrQA) and GSM8K. %T*I stands for %Truthx«Info in Truth-
fulQA.

only even-indexed layers (Oth, 2nd, etc.) are considered as candidates. We use either two-
fold validation (TruthfulQA-MC, FACTOR) or a validation set (GSMS8K, StrategyQA) to
select the best bucket. For Vicuna QA, which lacks a validation set, we use GSM8K’s best
bucket.

3.4.2 Multiple Choices

Short-Answer Factuality. We test TruthfulQA with the default QA prompt from Lin
et al. [15] and Li et al. [52]. For a in APC, we replace —oo with —1000 to avoid ruining
LM likelihood scores, which also applies to FACTOR. The repetition penalty is unnecessary
for likelihood score calculation. We use two-fold validation to identify the best bucket of
candidate layers based on MC3 score. Results in Table 3.1 show significant performance
improvement for LLaMA models in four sizes, outperforming I'TI/CD and confirming the
effectiveness of DoLa. The only exception is LLaMA-33B on MC1, a “winner takes all” metric
that is more sensitive to fluctuations. In contrast, MC2/MC3 are relatively more stable
metrics as they consider all true/false answers together and average them for calculating the
scores. The higher layers are consistently chosen in two-fold validation—7B: [16, 32); 13B:
[20, 40); 33B: [40, 60); 65B: [60, 80). Implementation details and extra results of contrasting
with the 0-th layer / all layers are shown in Section A.5.

Long-Paragraph Factuality. In FACTOR, each example has a long paragraph and four
completions, with one being correct. The News and Wiki subsets are used as the two folds
for two-fold validation. Table 3.1 shows DoLa outperforms baselines by 2-4%, and is more
effective than CD, except for 13B on Wiki. The chosen candidate layers are consistently lower
parts for FACTOR: [0, 16) for 7B and [0, 20) for 13/33/65B. This differs from TruthfulQA,
which selects higher layers. We believe this is due to Truthful QA having short, fact-critical
choices, while FACTOR has long sentence choices. As noted in Section 3.3.1, contrasting
with higher layers works better for key facts, while contrasting with the lower layers can
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Figure 3.4: Vicuna QA results of LLaMA vs LLaMA+DoLa, judged by GPT-4. Left: Total
scores. Right: Win/tie/loss times of LLaMA+DoLLA compared against LLaMA.

better take care of all the tokens if they include many non-fact tokens that do not require
to be contrasted with higher layers.

3.4.3 Open-Ended Text Generation

Short-Answer Factuality. In open-ended settings, Truthful QA is rated by fine-tuned
GPT-3 on truthful and informative scores. A 100% truthful score can be easily achievable
by answering “I have no comment”, but results in a 0% informative score. We use the default
QA prompt as in Lin et al. [15] and Li et al. [52], with higher candidate layers for decoding,
following the two-fold validation results of Section 3.4.2. Table 3.1 shows Dola consistently
enhances truthful scores, keeps informative scores above 90%, and has a ratio of “I have no
comment” (%Reject) under 10%. It improves the overall (%Truth*Info) scores by 12-17%
across four models, reaching the performance level of I'TI, which relies on supervised training
with labels.

CD boosts truthfulness but often refuses to answer, generating "I have no comment," —
over 60% of the time for the LLaMA-33B model — thus lowering its %Truth*Info score. We
suspect this is because CD uses LLaMA-7B for contrast, and a big difference is that 33B is
better at instruction-following than 7B, explaining why CD frequently answers "I have no
comment," as this response is indicated in the instruction prompt. Our method consistently
outperforms CD in final % Truth*Info scores.

Chain-of-Thought Reasoning. We evaluated our decoding strategy on StrategyQA
and GSMB8K, tasks requiring not just factuality but also Chain-of-Thought (CoT) reason-
ing [65] ability in order to achieve good performance. We randomly sample a 10% GSM8K
training subset as validation set for both of the tasks. The best layer buckets, [0, 16) for
7B and |0, 20) for 13B/33B/65B, aligned with FACTOR results, suggesting that contrasting
with lower layers is effective for reasoning tasks.

e StrategyQA requires multi-hop CoT reasoning [65]. In Table 3.1, DoLa boosts accuracy
by 1-4% for four models, while CD mostly worsens it, implying that contrasting a large
LM with the 7B LM, which has a certain level of reasoning ability, can impair reasoning
ability of large LMs. In contrast, DoLa enhances performance by contrasting within lower
layers that lack reasoning ability.

e GSMSK is a math word problem benchmark requiring both factual knowledge and arith-
metic reasoning. Table 3.1 shows a 2% accuracy improvement for most LLaMA sizes,
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Figure 3.5: LLaMA-7B on GSMS8K validation sets with DoLa/DoLa-static using different
premature layers. Left: subset#1. Right: subset #2.

except 7B. This suggests that even when requiring arithmetic reasoning, contrasting lay-
ers by DoLa is still helpful. In Section 3.5.4 we show an additional study on improving
CD using smaller amateur models, which is still falling behind DoLa.

Instruction Following. Vicuna QA [47] uses GPT-4 to evaluate the abilities of open-
ended chatbots to follow instructions. Following the validation results from GSM8K/FACTOR,
we used the lower layers as candidate layers for decoding with all models. Pairwise compar-
isons rated by GPT-4 are in Figure 3.4, showing DolLa notably outperforms the baseline,
especially in the 13B and 33B models, indicating DolLa is effective even in open-ended chat-
bot scenarios. Examples of qualitative studies are shown in Appendix A.3.

3.5 Analysis

3.5.1 Premature Layer Selection Strategy

We introduce a variant of Dol.a, DoLa-static, which selects a constant layer for contrasting
throughout the decoding process. We show some of the results of GSM8K validation sets in
Figure 3.5, and FACTOR in Figure 3.6, by enumerating the DoLa-static results from all the
layers.

In Figure 3.5 (left), DoLa-static performs better by contrasting lower layers. Some “op-
timal” layers, like the 10th layer, even outperform DoLa. However, these optimal layers are
sensitive across datasets, making DoLa-static less versatile without a task-specific validation
set, which may not always be available in real-world applications. For example, when ran-
domly sample another 10% GSMS8K subset (Figure 3.5, right), DoLa-static shows varying
optimal layers across these two 10% GSMSK subsets. The 10th layer is optimal in subset
#1, while the 2nd layer is optimal in subset #2. Using subset #1’s optimal layer for subset
#2 decreases its performance, highlighting DoLa-static’s sensitivity to fixed layer choice. In
contrast, DoLa with contrasting lower layers maintains high scores in both subsets, almost
matching the best performing DoLa-static layers, highlighting the robustness of DoLa. Addi-
tionally, DoLa simplifies hyperparameter search space: it needs only 2-4 bucket tests, almost
10x fewer than the 16-40 tests needed in DolLa-static.
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Figure 3.6: DoLa vs DoLa-static with different premature layers on FACTOR-News.

3.5.2

Random Layer Selection Baseline

One question in our proposed method is: How optimal is this dynamic layer selection method?
For comparison, we used a “random” baseline similar to DoLa but with layers chosen ran-
domly. Results in Table 3.2 show this random approach performs worse than the original

baseline,

3.5.3

highlighting the importance of our JSD-based layer selection strategy.
Model 7B 13B 33B 65B
Subset News Wiki News Wiki News Wiki News Wiki
LLaMA 58.3 58.6 61.1 62.6 63.8 69.5 63.6 72.2
+ Random  60.0 59.6 53.8 54.8 61.4 66.1 62.1 67.2
+ DoLa 62.0 62.2 62.5 66.2 65.4 70.3 66.2 72.4

Table 3.2: Multiple choices results on the FACTOR dataset.

The Effects of Repetition Penalty

An analysis of the effects of the repetition penalty 6 on four approaches is shown in Figure 3.7.
We can observe that the original baseline and DolLa are worse when 6 becomes larger. CD
is better when using large 6. ITI does not seem to be affected by 6.
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Figure 3.7: Baseline, CD, DoLa with different levels of repetition penalty on StrategyQA.

3.5.4 Exploration of Contrastive Decoding Baselines

To provide a more comprehensive comparison with Contrastive Decoding (CD) [55], we
explored the possibility of using smaller amateur models to create better CD baselines. We
experimented with OpenLLaMa [66] and Sheared-LLaMA [67] models in the size of 7B, 3B,
2.7B, and 1.3B as amateur models on the GSM8K task. The results are shown in Table 3.3.

We observe that using a smaller amateur LM, especially the 1.3B one, can improve the
scores for CD compared to using the 7B one as the amateur LM. However, most of the scores
only match the scores of the baseline (the 33B model is the only one that is marginally better
than the baseline), and they are still not better than DoLa. This result suggests that the
selection of the amateur LM is critical to making CD work. Despite exploring many different
amateur LMs, we could not obtain significant improvements from CD, which further validates
the effectiveness of DoLa’s approach of contrasting within the same model rather than across
different models.

Model / Score (%) 7B 13B  33B 65B
LLaMA Baseline 10.77 16.68 33.81 51.18
+ CD w/ LLaMA-7B 9.10 28.43 44.05
+ CD w/ OpenLLaMA-7B 6.44 1350 3048 38.82
+ CD w/ OpenLLaMA-7B_v2  6.90 14.33 27.14 39.50
+ CD w/ OpenLLaMA-3B 6.60 11.07 27.60 41.77

+ CD w/ OpenLLaMA-3B_v2 8.11  11.52 29.34 40.33

+ CD w/ Sheared-LLaMA-2.7B  5.00 14.10 32.30 47.08
+ CD w/ Sheared-LLaMA-1.3B  9.02 16.38 34.87 46.40

+ DoLa 10.46 18.04 35.41 53.60

Table 3.3: Exploration of the contrastive decoding baselines with different size of amateur
models on the task of GSMS8K.

3.5.5 Generalization to Non-LLaMA Models

To verify that DoLa works beyond LLaMA models, we tested MPT-7B [68]. Table 3.4
shows gains on most datasets, suggesting the potential of DoLa to generalize across various

42



transformer LLMs. We exclude the 0-th layer (word embedding layer) for MPT-7B because
its word embedding layer and LM prediction head share their weights. Directly connecting
the word embedding layer and LM prediction head together would become an operation
similar to identity mapping. We divide the 32 layers of MPT-7B into 4 buckets of candidate
layers and select the best bucket using the same validation procedure.

Model TruthfulQA FACTOR CoT
%Truth %Truth+xInfo News Wiki StrQA GSMS8K

MPT-7B 37.3 26.6 67.4 59.0 59.5 8.3

+ DoLa 53.4 46.0 68.5 62.3 60.3 8.0

Table 3.4: Experiments of DoLa with MPT-7B.

3.5.6 GPT-4 Evaluation on Text Generation Quality

To ensure that Dol.a maintains text generation quality while improving factuality, we con-
ducted an additional study using GPT-4 as an evaluator. Several prior studies [69,70] have
shown the great potential of GPT-4 to serve as an alternative to human evaluation, with
stable results over different prompts and instructions [71].

We adopt the pairwise evaluation code from Vicuna QA 2. To make GPT-4 focus only on
the quality without being distracted by factuality, we changed the core sentence of the prompt
to: Please rate by the grammaticality and cohesiveness of their responses, but
not factuality. You are not required to verify the factual accuracy of the
answers. FEach assistant receives an overall score on a scale of 1 to 10,
where a higher score indicates better quality.

By using the prompt above, we observed that GPT-4 can judge the answers based on
grammaticality and cohesiveness without checking the factual correctness. The results are
shown in Table 3.5, where the scores are the average scores from 80 questions in Vicuna QA,
on a scale of 1 to 10.

For 7B/13B/33B models, DoLa achieves better grammaticality and cohesiveness com-
pared to the vanilla decoding baseline. For the largest 65B model, DolLa achieves a score
that is almost the same as vanilla decoding. We conclude that when evaluating text gen-
eration quality without considering factuality, DoLa is on par with (65B) or better than
(7B/13B/33B) vanilla decoding.

3.5.7 Latency & Throughput

The greedy decoding latency in Table 3.6 shows DoLa increases the decoding time by factors
of 1.01 to 1.08, suggesting DoLa can be widely applied with negligible cost.

Zhttps://github.com /Im-sys/vicuna-blog-eval /tree/main /eval
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Model Baseline DolLa

LLaMA-7B 6.44 6.96
LLaMA-13B 7.06 7.98
LLaMA-33B 6.89 7.84
LLaMA-65B 8.04 8.01

Table 3.5: GPT-4 evaluation on text generation quality on a scale of 1 to 10, averaged over
the 80 examples in Vicuna QA.

Latency (ms/token)  Throughput (token/s)

Baseline DoLa Baseline DoLa

B 45.4 (x1.00) 48.0 (x1.06)  22.03 (x1.00) 20.83 (x0.95)
13B  77.3 (x1.00) 83.1 (x1.08)  12.94 (x1.00) 12.03 (x0.93)
33B 146.7 (x1.00) 156.7 (x1.0m)  6.82 (x1.00) 6.38 (x0.94)
65B 321.6 (x1.00) 324.9 (x1.01) 3.11 (x1.00) 3.08 (xo0.99)

Table 3.6: Decoding latency (ms/token) and throughput (token/s).

3.5.8 Memory Overhead Analysis

To measure the memory overhead, we calculate (a) the occupied GPU memory before the
first forward pass and (b) the peak GPU memory during the forward passes. The mem-
ory overhead is computed as (b) — (a), or the proportion of overhead % in %. For
13B/33B/65B models that require 2/4/8 GPUs, the total memory is accumulated among all
the GPUs. The results are shown in Table 3.7.

During the forward pass of LLaMA-7B, the overhead for vanilla decoding is 2.5% while
DoLa requires 3.6%. There is only 1.1% difference for the memory overhead between Vanilla
and DoLa. For 13B/30B/65B models, the difference is even smaller than 1%. This re-
sult shows that the difference in memory overhead between Dol.a and the vanilla decoding
baseline is negligible.

3.5.9 Qualitative Study

In Table 3.8, we show Truthful QA examples generated deterministically via greedy decod-
ing from LLaMA-33B, with truth/info scores by fine-tuned GPT-3. In Q1, the baseline
produces the plausible but incorrect date “July 4, 1776, while DoLa outputs the correct
“August 2, 1776 In Q2, the baseline offers the false concept of “wait 2/ hours,” coun-
tered by DoLa’ truthful response, showing that DoLa can avoid generating false information.
Q3 is a counterexample, where the baseline states “I have no comment” to get 1.0/0.0 in
truth /info scores, while DoLa provides detailed but incorrect information, obtaining 0.0/1.0
in truth/info scores. More examples of TruthfulQA and long responses of Vicuna QA are in
Appendix A.3 and A.3.
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Metric LLaMA-7B LLaMA-13B
Baseline DolLa Baseline DoLa
(a) GPU Memory Before Forward (MB) 12916.5 12916.5  25025.8  25025.8
(b) Peak GPU Memory During Forward (MB)  13233.9  13385.7  25510.7  25674.8
(b) — ( ) GPU Memory Overhead (MB) 3174 4692 4849  68L6
[(b) 9l GPU Memory Overhead (%) 2.5% 3.6% 1.9% 2.7%
Metric LLaMA-30B LLaMA-65B
Baseline DolLa Baseline DoLa
(a) GPU Memory Before Forward (MB) 55715.7  55715.7 124682.6 124682.6
(b) Peak GPU Memory During Forward (MB)  57057.5  57390.2 126950.0 127606.8
(b) — (a) GPU Memory Overhead (MB) 13419 16745 22674 29243
L(6) )( 9l GPU Memory Overhead (%) 2.4% 3.0% 1.8% 2.4%

Table 3.7: Memory overhead of inference for 4 LLaMA models.

) Q1: 07'7, what date was the | Q2: How' long shquld you wait Q3: What are the effects of red
Question Declaration of Independence | before filing a missing person
) : shoes?
officially signed? report?
The Declaration of Indepen- | You should wait 24 hours be-
LLaMA dence was officially signed on | fore filing a missing person re- | I have no comment.
July 4, 1776. port.
Score Truthful: 0.0, Informative: 1.0 | Truthful: 0.0, Informative: 1.0 | Truthful: 1.0, Informative: 0.0
A person can be reported as
a missing person to the police . -
LLaMA It was officially signed on Au- | immediately, as the police have Red ShO?S ma'ke it more diffi
cult to hide, since they can be
+DoLa gust 2, 1776. procedures to locate the person . .
. . R easily noticed.
in the quickest, most effective
way.
Score ‘ Truthful: 1.0, Informative: 1.0 ‘ Truthful: 1.0, Informative: 1.0 ‘ Truthful: 0.0, Informative: 1.0

Table 3.8: Qualitative study using LLaMA-33B baseline vs LLaMA-33B-+DoLa on Truth-

fulQA.

3.5.10 Experiments on Small Models like GPT-2

We apply DoLa to the GPT2 Medium model with 335M parameters, to mimic the setting
of Gera et al. [58] and investigate the effects of DoLa on small LMs. As shown in Table 3.9,
DoLa cannot help GPT2 to be more factual on the multiple choices tasks. We conjecture
that the small LMs do not learn enough factual knowledge due to their limited capacities.
Thus, different layers in small LMs do not have enough distinctions, contrasting layers in
small LMs cannot bring advantages to factuality.
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Truthful QA-MC FACTOR
MC1 MC2 MC3 News Wiki

GPT2-Medium 23.5 41.9 20.0 41.0 31.6
+ DoLa 229 414 16.4 22.2 20.9

Model

Table 3.9: Applying DoLa to GPT2-Medium for multiple choices tasks.

3.6 Chapter Summary

In this chapter, we introduce Decoding by Contrasting Layers (DoLa), a novel decoding
strategy aimed at reducing hallucinations in LLMs. Our approach exploits the hierarchical
encoding of factual knowledge within transformer LLMs. Specifically, we dynamically select
appropriate layers and contrast their logits to improve the factuality in the decoding process.
Experimental results show that DoLa significantly improves truthfulness across multiple
tasks without external information retrieval or model fine-tuning. Overall, Dola is a critical
step in making LLMs safer and more reliable by themselves.

DoLa also has limitations: 1) Focusing on factuality: We have not explored DoLa in
other dimensions such as reinforcement learning from human feedback [48]|. 2) Inference
only: We rely on existing models and pre-trained parameters, not using human labels
or factual knowledge bases for fine-tuning [52], limiting possible improvements. 3) Not
grounding on external knowledge: Our method relies on the model’s internal knowledge
without using external retrieval modules [19,72,73|. Thus, it cannot correct misinformation
acquired during training. However, since our method provides a foundational improvement
that could potentially be applied to any transformer-based LLMs, the limitations listed above
could be potentially addressed through future work combining the corresponding elements
with our decoding strategy. To achieve better grounding on external knowledge, we introduce
Lookback Lens next in Chapter 4.
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Chapter 4

Detecting and Mitigating Contextual
Hallucinations with Lookback Lens

4.1 Introduction

4.1.1 From Parametric to Contextual Knowledge

In Chapter 3, we demonstrated that hallucinations in large language models can stem from
failures in retrieving parametric knowledge, i.e., the facts and information encoded within
the model’s parameters learned from pre-training. DolLa addresses this by contrasting output
logits from different transformer layers during decoding. However, DoLa only addresses hallu-
cinations that arise from the model’s internal knowledge representation. In many real-world
applications, language models are not expected to rely solely on their pre-trained knowledge.
Instead, they must generate text based on external context provided at inference time—such
as source documents in summarization, retrieved passages in question answering, or conversa-
tion history in dialogue systems. This paradigm, often called retrieval-augmented generation
(RAG) [18], introduces a fundamentally different type of hallucination: contextual hallu-
cinations.

The Challenge of Contextual Knowledge. Contextual hallucinations occur when mod-
els generate text that contradicts, ignores, or fails to properly utilize the provided context.
Unlike parametric knowledge failures, where the model may lack or misretrieve internal facts,
contextual hallucinations represent a failure in attention and conditioning—the model has
access to the correct information but fails to ground its generation in it.

Consider a summarization task where a news article explicitly states, "The company
reported a 15% decrease in revenue for 3 2023." A model exhibiting contextual hallucination
might generate a summary claiming "The company saw revenue growth in Q3 2023," directly
contradicting the source document despite having access to it. This is not a parametric
knowledge issue (the model does not need to memorize this specific company’s financials),
but rather a contextual grounding issue: the model failed to properly attend to and utilize
the provided context.
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Why Parametric Solutions Fall Short? The DoLa approach, while effective for para-
metric knowledge, is fundamentally ill-suited for contextual hallucinations. Dola’s layer-
contrasting mechanism assumes that factual knowledge and linguistic patterns are separated
across layers during forward passes. However, contextual information flows through the
model’s attention mechanism, not through layer-wise knowledge specialization. When a
model hallucinates about provided context, it is not because lower layers contain "wrong"
contextual information that needs to be suppressed; it is because the attention mechanism is
failing to properly weight and integrate the contextual tokens. Motivated by this reason, in
this chapter, we introduce Lookback Lens, a method that leverages these attention signals
to detect and mitigate contextual hallucinations.

4.1.2 Motivation for Lookback Lens

In this chapter, we focus on the scenarios where the model is provided with the correct facts
within the input context but still fails to generate accurate outputs, a phenomenon we term
contextual hallucination. Despite the simplicity of this setup, LLMs struggle with contextual
hallucinations, frequently producing errors in tasks such as summarization and document-
based question answering (e.g., Table 4.1), which can cause serious issues in applications such
as retrieval-augmented generation (RAG) [18], even when correct documents are retrieved.

Transformer
v~V

Nx Attention Weights Vet
Add & Norm Xl >(2 XB >(N—lxNyl yZ yfi ytrzyt'l i |
Feed /A e | ]
Forward
average l average l HxL ] Unear
over X over Y —[ i —> P (Factual)
Add & Norm L D ° T Classifier
Multi-Head Attention Map H heads g3
Attention . L layers =1 ||
Lookback Ratio = -
B+3 T tokens []
in a span \/\T) Lookback Lens

Document: [...] Summary: ...

Figure 4.1: An illustration of the Lookback Lens. We extract attention weights and calculate
the lookback ratios for all layers and all heads. We train a linear classifier on the concatenated
features to predict truthfulness of the generation.

Most prior studies that propose methods to combat hallucination focus on the scenario
without any input context, where the hallucinations arise from the LLMs’ parametric knowl-
edge. These works detect and mitigate hallucinations by generally using the LLM’s represen-
tations, such as hidden states [74,75], MLP outputs [76,77], attention block outputs [76,77]
and attention head outputs [52,77,78]. In contrast, the provided contextual information
plays a key role in detecting contextual hallucinations. Insofar as attention (more so than
other model internals) provides a human-meaningful measure of how much weight is given
to the context during generation, this motivates the use of signals from the attention maps
for hallucination detection and mitigation.

To leverage signals from attention maps, we start by hypothesizing that contextual hal-
lucinations are related to the extent to which an LLM attends to the provided contextual
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information. Concretely, we propose a simple feature called lookback ratio, which is com-
puted as the ratio of attention weights on the given context versus the newly generated
tokens. At each time step, we calculate this lookback ratio for each attention head, and
train a linear classifier, which we call the Lookback Lens, to detect contextual hallucina-
tions based on the lookback ratio features, as illustrated in Figure 4.1. The Lookback Lens
performs on par with, and sometimes even surpasses, more complex feature-based detectors
that utilize hidden states from LLMs or text-based entailment models trained on extensively
annotated datasets. We can further integrate this detector during decoding to derive a Look-
back Lens Guided Decoding strategy which can reduce contextual hallucinations by 9.6%
from LLaMA-2-7B-Chat in the XSum summarization task. Furthermore, our use of “higher
level” attention map features makes it possible to transfer the detector across models with-
out retraining, allowing a LLaMA-2-13B-Chat model to use the same detector that has been
trained on LLaMA-2-7B-Chat, and still reduce hallucinations by 3.2% in XSum. These re-
sults collectively highlight the potential of combating contextual hallucination by leveraging
the information from attention maps.!

4.2 Related Work

4.2.1 Contextual Hallucinations in LLMs

Simhi et al. [77] defined close-book hallucination vs open-book hallucination for settings of
relying on parametric knowledge vs knowledge in context. We term open-book hallucination
as contextual hallucination for better clarity. Including Chapter 3, previous studies in hallu-
cinations primarily focus on close-book hallucinations [79-81] and their detection [75,77] and
mitigation [52,76,82,83]. Most of the studies focus on leveraging LLM’s internal represen-
tations, such as hidden states [74,75], MLP outputs [76,77|, attention block outputs [76,77]
and attention head outputs [52,77,78|. Our work, however, focuses on contextual hallucina-
tions, where models produce content inconsistent with the provided context [20,57,84|. Thus,
different from prior studies, we focus on the attention maps instead of internal representa-
tions, as we believe that the attention maps patterns record how the LLM process the given
contextual information. Most of the prior studies treat detection and mitigation as two sep-
arate tasks, expect for Simhi et al. [77,83]. Our work focuses not only on detection, but also
tries to incorporate the detector into the decoding process to further mitigate the contex-
tual hallucinations. Recently, Simhi et al. [77] also explored detecting and mitigating both
close-book and open-book hallucinations. However, their open-book hallucination setting
is limited to DisentQA [85], which creates knowledge conflicts between parametric knowl-
edge and given context. In contrast, we focus on LLaMA-2’s naturally generated responses
to capture general cases where LLMs fail to follow the context, not just due to knowledge
conflicts.

!The source code of this chapter is available at https://github.com /voidism /Lookback-Lens.
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4.2.2 Classifier Guided Generation

(Classifier guided generation aims to control attributes like topic or sentiment in text gener-
ation. PPLM [86] uses gradient ascent to adjust LM probabilities via attribute classifiers.
FUDGE |[87] uses an attribute predictor on partial sequences to modify LM probabilities.
Our method uniquely guides generation using classifiers on attention maps, setting it apart
from prior approaches.

4.2.3 Self-attention and Model Behavior

The attention mechanism, initially introduced in RNN-based encoder-decoder for neural ma-
chine translation [88,89|, was later adopted in the Transformer model’s self-attention mod-
ule [24], enabling greater parallelization. Self-attention’s interpretability has led researchers
to use it for understanding model behaviors [90-92]. Our work demonstrates that attention
maps in LLMs are effective for detecting contextual hallucinations, providing a lightweight
and interpretable solution compared to complex hidden representation methods |76,78].

4.3 Contextual Hallucinations Detection

4.3.1 Lookback Lens

To detect contextual hallucinations in LLMs, we introduce a lookback ratio, a measure based
on the attention distribution of a transformer model. Given a transformer with L layers, each
with H heads, the model processes an input sequence of context tokens X = {xy,z9,...,2x}
of length N followed by a set of newly generated tokens Y = {y1,¥s,...,y;—1} to generate
the next token g;. For time step ¢, and for each head, we calculate the ratio of attention
weights focused on the context tokens versus the newly generated tokens. Formally, for each
head h in layer [, we define:

N
1
AL (context) = N Z s
i=1

N+t—1
1 l
t—1 Y
j=N+1

A (new) =

where aﬁm- and alh’ ; are softmax-ed attention weights assigned to context tokens X and new

tokens Y respectively. The lookback ratio LRi’h for head h in layer [ at time step t is then
calculated as:

LRV — A" (context)
' A" (context) + AY" (new)

To utilize these lookback ratios as input features in detecting hallucinations, we concate-
nate the lookback ratios across all heads and layers into a feature vector for the time step
t:

v = [LR}' LR, ... LRMY).
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Dataset Examples Correct

CNN/DM 1000 49.6%
NQ 2655 67.8%

Table 4.1: Dataset statistics and GPT-40 evaluation results on responses greedy decoded by
LLaMA-2-7TB-chat.

Given a text span of interest {v:, yi+1,..., Yr+7—1}, We average the corresponding lookback
ratio vectors {vy, Vi1, ..., Vi1 } into a single vector v. We then employ a logistic regression
classifier F to predict if the span is factual (1) or hallucinated (0) based on the averaged
lookback ratio vector.

Ply=1%)=F((¥) = o(w'v + b),

where o denotes the sigmoid function, w is the weight vector, and b is the bias term of the
classifier.

Defining Span The Lookback Lens predicts the probability of hallucinations over spans.
We consider two ways to obtain spans for a given sequence: predefined spans or sliding
window.

1) Predefined Spans: When the hallucinated and non-hallucinated span annotations
are available, we directly train the classifier to differentiate between them. This is a clean
setting where all spans are either hallucinated or non-hallucinated.

2) Sliding Windows: In practice, we do not have any predefined spans during decoding,
thus we need a sliding window setup that iterates over all possible spans. Specifically, we
process the sentences into fixed-sized chunks and train the classifier to predict a label of 0 if
any hallucinated content exists within a chunk, and 1 otherwise. Here, the annotated data
is only used for creating labels, not for the span segmentation. This is more realistic for
classifier-guided decoding, but it presents greater challenges because a chunk can contain
both hallucinated and non-hallucinated content.

4.3.2 Experimental Setup

Data Training the Lookback Lens requires labels for hallucinated and non-hallucinated
examples. To obtain these examples, we consider the summarization task and question-
answering (QA) task for data creation. For the summarization task, we sampled 1,000
examples from the CNN/DM dataset [93]|. For QA, we use 2,655 examples from the Natural
Questions [94] from the setup of Liu et al. [95] to mix the gold document with irrelevant
documents. To keep our focus more on LLM hallucinations rather than being distracted
by assessing LLMs’ long-context utilization ability, we limited context to three documents
per question where the gold document containing the answer was placed in the middle,
surrounded by two irrelevant documents.

We prompt LLaMA-2-7B-Chat [30]| to generate responses by greedy decoding for both
tasks to ensure that both hallucinated and non-hallucinated examples derive from the same
source distribution. The max length of generation is set to 256 tokens, or until the EOS
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token is generated. Although being prompted to generate correct responses, the decoded
responses will contain both hallucinated and non-hallucinated information as the LLaMA
model is still not perfect.

We then employed GPT-40 [96] to verify the truthfulness of these responses and provide
span-level annotations on hallucinated segments (detailed prompts in Appendix B.1.1). After
the annotation was collected, we extract hallucinated and non-hallucinated spans, as well
as the corresponding attention map lookback ratio, from the LLaMA-2-7B-Chat model, to
train the Lookback Lens classifiers.

In the predefined span setting, three types of spans are considered as non-hallucinated
spans: 1) the text segment before the first hallucinated span in the response 2) the text
segment after the last hallucinated span in the response 3) the response annotated as non-
hallucinated. All the annotated hallucinated spans are used as negative data to train the
Lookback Lens. In the sliding window setting, we consider all the possible fixed sized chunk
with size = 8. If a chunk is overlapping with any of the annotated hallucinated spans, then
it is considered as hallucinated, otherwise it is non-hallucinated.

Initially, we considered using the HaluEval dataset [97], which was created by prompting
GPT-3.5 [40] to generate “hallucinated examples” against human-annotated non-hallucinated
responses. However, we have concerns that their method introduces a bias by creating fun-
damentally different data distributions between hallucinated and non-hallucinated examples.
This discrepancy could potentially lead the classifier to learn to distinguish the sources of
responses rather than accurately detecting hallucinations. Additionally, we argue that the
LLM’s attention weight will be more meaningful if the text is generated by the same LLM
itself, not from external sources and teacher forcing to obtain the attention weights. To
ensure an unbiased and controlled evaluation environment, we generated our own dataset on
summarization and QA tasks.

Additionally, we performed a pilot study of human annotation on a subset of 70 examples
of the summarization task (details in Appendix B.1.2), confirming a 97% consistency rate
between GPT-40 annotations and human judgments, and validating the reliability of the
automated annotations. We show LLaMA-2-7TB-Chat’s results on both tasks, as evaluated
by GPT-4o0, in Table 4.1. The results show that the generated summaries from LLaMA-
2-7TB-Chat still exhibit hallucinations about half of the time, highlighting the challenge of
summarization tasks.

Baselines We compare our detection method against several baselines: 1) Text-based
entailment classifier: We fine-tune the DeBERTa-v3-base [98] model on the same dataset
of CNN/DM and NQ as a natural language entailment (NLI) task. Additionally, we in-
clude the results from a state-of-the-art entailment model [99] trained on a huge amount of
annotated NLI data (see details in Appendix B.2.1).

2) Hidden states-based classifier: We train classifiers using the same setting as the
Lookback Lens but used input features from the hidden states of LLaMA-2-7B-Chat from
its 24th, 28th, and 32nd layers instead of the lookback ratio. This baseline resembles a
broad range of existing methods in the literature [75,77]. Our selection of layers followed
the findings outlined in Azaria and Mitchell [75], which used layers 32, 28, 24, and 20 of
a 32-layer LLM for detecting hallucinations. They find that layers near the 28th layer are
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AUROC (sliding window = 8)
NQ — Sum. Sum. — NQ

Method

Attention block outputs

Layer 32 57.6 60.7
Layer 28 58.5 57.2
Layer 24 56.3 57.2
Residual outputs (hidden states)

Layer 32 56.1 59.4
Layer 28 57.7 58.8
Layer 24 58.3 58.3
Ours: Lookback Lens 66.1 66.0

Table 4.2: AUROC results for different layers and outputs.

most effective (see Table 3 and 4 in Azaria and Mitchell |75]).

Some prior studies suggest attention block outputs could be more useful for detecting hal-
lucinations [52,100]. Here we include additional experiment results that use attention block
outputs instead. In Table 4.2, we show that there is no significant difference when switching
to attention block outputs, and our Lookback Lens still outperforms these baselines.

Additionally, we follow the prior study [75] to use the layers with the best predictive power
in hallucination detection: 32nd/28th/24th/20th layers. We concatenate the 4 layer features
into a huge feature. Note that the hidden dimension of LLaMA-7B is 4096, so combining 4
layers results in a 16384-dim feature vector. In contrast, our Lookback Lens feature for the
7B model is only 1024-dim. Results in Table 4.3 indicate that concatenating 4 layers is still
less effective compared to our Lookback Lens. We also try to use the hidden states from
all layers with max/average pooling, but the results are still worse than our Lookback Lens.
These experiments indicate that by designing good features like lookback ratio, the compact
1024-dim feature can be even more effective compared to 10x bigger high-dimensional hidden
state features.

4.3.3 Results

Our results are presented in Table 4.4. We consider both predefined span segmentation
and sliding window with a window size of 8. We include the two-fold validation setting on
the source task and the out-of-domain transfer setting on the target task, with the tasks
either question answering (QA) or summarization (Sum.). We find that the Lookback Lens
achieves slightly better performance than the hidden states-based classifier and significantly
outperforms the NLI models (SoTA and our impl.). The advantage of the Lookback Lens
over the hidden states-based classifier is more significant in the sliding window settings, as
shown in the right-hand side of Table 4.4.

Additionally, we observe that the hidden states-based classifier tends to overfit the train-
ing sets during the two-fold validation, and present a substantial performance drop when
transferred to out-of-domain tasks. In contrast, Lookback Lens, while not always fitting
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AUROC (sliding window = 8)
NQ — Sum. Sum. — NQ
Residual outputs (hidden states)

Method

Layer 32 56.1 59.4
Layer 28 57.7 58.8
Layer 24 58.3 58.3
Layer 20 57.6 59.5
Concatenate above 4 layers  58.8 59.2
Max pooling all 32 layers 56.7 59.2
Average pooling all 32 layers 57.3 59.2
Ours: Lookback Lens 66.1 66.0

Table 4.3: AUROC results for different methods of utilizing hidden states.

Predefined Span Sliding Window = 8
Method Source Target Source —— Target Source —— Target
Train Test Transfer Train Test Transfer
Text based NLI
SoTA NLI - Sum. - - 76.6 - - 57.1
SoTA NLI - QA - - 58.6 - - 61.8
NLI (our impl.) QA Sum. - - 55.1 - - 53.0
NLI (our impl.)  Sum. QA - - 71.0 - - 64.9
Hidden states based
32nd Layer QA Sum. 100.0  89.6 79.4 99.0 97.1 56.1
32nd Layer Sum. QA 100.0 82.5 81.8 97.0 948 59.4
28th Layer QA Sum. 100.0 914 83.6 99.2 973 57.7
28th Layer Sum. QA 100.0 83.3 84.7 97.2  95.2 58.8
24th Layer QA Sum. 100.0  92.0 81.3 99.2 974 58.3
24th Layer Sum. QA 100.0 83.1 83.0 99.2 974 58.3
Attention maps based (Ours)
Lookback Lens QA Sum. 98.3 91.2 85.3 88.3  87.1 66.1
Lookback Lens Sum. QA 97.7  88.8 82.0 86.2  85.3 66.0

Table 4.4: AUROC of the classification tasks using predefined span segmentation and sliding
window (size = 8) on NQ (QA) and CNN/DM (Sum.). The source task scores (Train/Test)
are averaged over two-fold validation.

the training set perfectly, consistently exhibits better performance when applied to out-of-
domain tasks. This contrast highlights the effectiveness and generalizability of the lookback
ratio features we extract from the attention maps.
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4.4 Contextual Hallucinations Mitigation

New Chunk Extract Averaged Lookback Lens Scores
Candidates Lookback Ratios

Concatenate New Chunk

Previous o vt F(Vl)=0-1 to Previous Chunks
Chunk =N -~ _
v? F(v?)=0.3
o0 - 3 Classifier T Ed)= V——>".| | | | ” | l l ‘
v F(v3)=0.9
I:l:l:‘:l v F(v*=0.6 (..repeat until EOS)

Figure 4.2: Lookback Lens Guided Decoding: sample multiple chunk candidates, compute
lookback ratios from attention maps to be scored by Lookback Lens, and select the best
candidate that is less likely to be hallucinations.

4.4.1 Lookback Lens Guided Decoding

To mitigate the impact of contextual hallucinations identified by the Lookback Lens, we intro-
duce a classifier-guided decoding strategy to guide the generation toward more contextually
accurate outputs. This approach serves as a robustness test of the Lookback Lens’ ability to
handle various text generation scenarios. While prior studies on controllable text generation
adjust the output probabilities using classifiers based on the output tokens [87], our method
fundamentally differs by not using the tokens themselves but rather their attention maps
during generation.

We propose Lookback Lens Guided Decoding, which incorporates Lookback Lens (F) into
the decoding process. Since all tokens in the vocabulary share the same attention pattern
during one decoding step, F cannot directly influence one-step token choice. Instead, F can
evaluate multiple-token chunks, as each chunk causes different attention patterns in multiple
decoding steps.

Given the context and partially generated text, we independently sample a set of k
candidate chunks {C},Cs,...,Ck} at the same decoding step t. For each chunk Cj, the
associated lookback ratios are averaged to form a feature vector ¥/. As shown in Figure 4.2,
we select the best candidate C* predicted by F and append to the generation,

C*= argmax JF(¥).
CjE{Cl,CQ,...,Ck}

We repeat this process until it generates the EOS token or reaches the maximum length.

4.4.2 Experimental Setup

We evaluate Lookback Lens Guided Decoding on three tasks that involve generating texts
conditioned on given contexts, including summarization with XSum [101], QA with NQ [94],
and multi-turn conversations with MT-bench [102].

For testing the generalization ability of the Lookback Lens, we only train it with the
CNN/DM summarization dataset from the detection task in Section 4.3.2. Thus, only the
XSum dataset will be the same-task transfer setting, while NQ and MT-bench will be cross-
task transfer setting.
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XSum To test the Lookback Lens’s effectiveness at transferring across data distributions
for the same task (summarization), we use 1,000 examples sampled from the testing set of
XSum. Prior studies [20] indicate that traditional evaluation metrics such as ROUGE [103]
or BERTScore [104] correlated poorly with human evaluation on faithfulness and factual-
ity. Recent studies [69,105] also show a strong correlation between GPT-4 [9] evaluation
and human evaluation. Thus, we report the averaged accuracy from the binary judgments
of GPT-40, with the prompts in Appendix B.1.1. We also conduct a pilot study for hu-
man evaluation on GPT-40’s judgment in Appendix B.1.2, finding that 97% of the GPT-40
judgments are consistent with human judgment.

Natural Questions We use the NQ data from the setup of Liu et al. [95] we describe in
Appendix B.2.2 and evaluate the best span exact match following Kandpal et al. [106,107].

MT-Bench We consider a multi-turn conversations setup where the model needs to follow
previous chat history. We use MT-bench [102], a multi-turn instruction-following benchmark
covering eight categories. We focus exclusively on generating responses for the second turn
and use GPT-3.5s responses as the default for the first turn. We use GPT-4 to score the
model’s answers on a scale of 1 to 10 based on various factors, including helpfulness, relevance,
accuracy, depth, creativity, and level of detail of the response.

Additionally, since we are particularly interested in mitigating contextual hallucinations,
we further exclude math questions and evaluate the remaining 50 general questions. We
specifically instruct GPT-40 to focus on whether the responses are faithful to the chat history
(see prompt in Appendix B.1.1). We refer to this setup as MT-Bench (hallu.).

Baselines To evaluate the performance of our proposed method, we compared it against
the following baselines: 1) Greedy Decoding: generating responses using the LLaMA-2-
7B-Chat model [30] through greedy decoding. 2) Other Classifier-Guided Decoding;:
using exactly the same setting but with different classifiers introduced in Section 4.3.2, in-
cluding text-based entailment classifiers and hidden states-based classifiers.

4.4.3 Main Results

We show our results using eight candidates per chunk in a chunk size of eight in Table 4.5, and
the ablation with different chunk sizes is shown in Table 4.8. Lookback Lens Guided Decoding
can improve the performance on both in-domain task (XSum, by 9.6%) and out-of-domain
tasks (NQ, by 3%). The original greedy decoding results on XSum achieved 49.0% correct
which means 510 examples were hallucinated. Our decoding method significantly reduced
the number of hallucinated examples from 510 to 414, resulting in an 18.8% reduction in the
hallucinated examples. This result is on par with using SoTA NLI to guide the decoding,
where SoOTA NLI is trained on roughly 731k annotated summarization examples, which is
700x larger compared to our 1k training set. (See Appendix B.2.1.) In contrast, decoding
guided by hidden states-based or the NLI (our implementation) classifiers, both trained on
the same data of our method, can only slightly improve the performance on NQ, but not
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MT-Bench
Hallu. Ori.
Greedy Decoding  49.0 71.2 6.08 5.10

Method XSum NQ

Text-based classifier guided decoding

SoTA NLIT 59.0 742 6.12 5.03
NLI (our impl.) 441 725 572 4.99

Hidden states based classifier guided decoding

32nd layer 48.3 73.9 549 4091
28th layer 489 73.0 5.71 5.06
24th layer 475 739 565 5.16

Lookback Lens guided decoding
Ours 58.6 742 627  5.10

Table 4.5: Decoding results using 8 candidates per chunk in a chunk size of 8. We compare
our methods with greedy decoding and classifier-guided decoding using the NLI models, and
hidden state representations of different layers. "The SoTA NLI is trained on 731k examples
so it may not be directly comparable.

for XSum, probably due to the issue of distribution shift, highlighting the advantages of
Lookback Lens in generalization ability.

For MT-bench, we evaluate both settings: the original setting (ori.) and the setting that
is specifically for judging contextual hallucinations (hallu.). We do not expect our method
can improve on the original setting, because it evaluates many factors such as helpfulness,
relevance, etc. But we expect to see an improvement on the hallucination setting. The results
shown in Table 4.5 suggest that our decoding method can boost the performance on the
hallucination setting while maintaining the same performance in the original setting, which
shows that our decoding method is effective in reducing hallucinations without compromising
the overall generation quality.

4.5 Cross-model Transfer

One benefit of using the lookback ratio to capture higher-level model patterns for halluci-
nation detection is its potential to better transfer across models. A classifier trained with
one model’s lookback ratio could potentially be applied to another model without retraining,
provided correlation between the target model’s attention pattern and that of the original
model. Here, we show that we can transfer a Lookback Lens trained on attention maps from
LLaMA-2-7B-Chat to LLaMA-2-13B-Chat without any retraining.

Since the total numbers of attention heads are different in 7B and 13B models, and there
is no obvious one-to-one mapping between the heads, we use a linear regression model to
map the heads from the 13B model to the heads in 7B model. Concretely, we have 1024
heads in 7B and 1600 heads in 13B. We extract the averaged lookback ratio per head for
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Predefined Sliding
Span Window

Lookback Lens: Train 13B — Test 13B

Source Target

QA Sum. 84.0 60.4

Sum. QA 84.3 60.8
QA-train QA 93.3 63.7
Lookback Lens: Train 7B — Test 13B

QA Sum. 73.5 58.8

Sum. QA 78.2 60.5
QA-train QA 80.6 62.4

Table 4.6: Cross model transfer results on detection tasks.

all the |D| training examples, resulting in a 1024 X |D| matrix and a 1600 x |D| matrix.?
We then fit a linear regression model to map the heads to reconstruct the 7B heads from
13B heads. After applying the linear transformation to the lookback ratio from 13B, the
transformed heads can be directly used by 7B’s classifiers. See details in Appendix B.2.1.

The detection results are shown in Table 4.6. We first show the same-model (13B—13B)
+ cross-task transfer result, and the cross-model (7TB—13B) + cross-task transfer result.
Although cross-model transfer yields slightly worse results compared to same-model transfer,
the AUROC scores are still non-trivially high. Consider that doing cross-model + cross-
task transfer at the same time may be tough to Lookback Lens, we also include one more
setting that does training on 2.5K examples of the NQ training set® and then transfer to
the NQ testing set. We see the cross-model same-task transfer results are even closer to the
same-model transfer results.

Given promising results on detection tasks, we apply cross-model transfer to Lookback
Lens Guided Decoding. We conduct the same-task transfer setting: NQ-train (7B) to NQ
(13B), and CNN/DM (7B) to XSum (13B). In Table 4.7, we observe a performance improve-
ment similar to same-model transfer using 13B itself, or using the SoTA NLI model applied
on the 13B decoding. However, on cross-task + cross-model transfer settings: CNN/DM
(7B) to NQ (13B), we do not observe significant improvements where we attribute to the
larger distribution shift. We leave this challenging setting for future work.

4.6 Discussions and Ablations

In this section, we further conduct various experiments and ablation studies on the Lookback
Lens and its corresponding classifier guided decoding.

2To ensure that two models are generating the same content when extracting lookback ratio, we decode
from 7B and run the 13B model on the 7B outputs.

3The NQ-train 2.5K data is annotated in the same method to annotate NQ testing set, as described in
Section 4.3.2.
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Method XSum NQ

Greedy 52.9 74.0

Text-based classifier gquided decoding

SoTA NLIT 59.6 74.4

et XN NG NN
Lookback Lens guided decoding

13B — 13B 57.9 75.6 74.8

B — 13B 56.1 76.4 73.7

Table 4.7: Cross model transfer from LLaMA-2-7B-chat to LLaMA-2-13B-chat using greedy
decoding and classifier guided sampling methods with chunk size 8.

Effect of Chunk Size In Section 4.4.3 (Table 4.5), we experiment with chunk size = 8.
Here, we study the effect of varying chunk sizes, from 4, 8, to 16. We see that there is
a slight trend that Lookback Lens guided decoding prefers shorter chunk size for NQ and
longer chunk size for XSum. However, in general the improvements are consistent across
different chunk sizes, thus reducing the need to optimize for chunk sizes.

Method NQ XSum
Chunk size= 4 8 16 4 8 16
Greedy 71.2 49.0

Text-based classifier guided decoding
SoTA NLIf 73.7 742 744 573 59.0 62.1

Hidden states based classifier guided decoding

32nd layer 72.6 739 727 489 48.3 48.3
28th layer 72.9 73.0 741 472 489 47.1
24th layer 75.0 739 725 476 475 51.2

Lookback Lens guided decoding
Ours 75.4 742 743 532 586 57.7

Table 4.8: Performance comparison on various datasets using different methods and chunk
sizes.

Predictive Power of Different Heads In the aforementioned experiments, we utilize
all attention heads to train the Lookback Lens. We are thus interested in how the predic-
tive power is distributed among different heads in making predictions. That is, how much
performance can we recover if we only utilize a subset of heads? To answer this, we use
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Predefined Span
Method QA — Sum. Sum. — QA
All heads 85.3 82.0

Top-k heads only
with k= 10 50 100 10 50 100

Largest mag. 71.2 823 82.8 79.2 80.3 81.1
Most positive 65.1 74.9 754 66.3 70.3 74.4
Most negative 59.5 67.5 744 664 70.2 73.0

Table 4.9: Cross-task transfer AUROC using top-k attention heads selected according to:
coefficients with the largest magnitude (largest mag.), most positive, and most negative. We
consider k£ = 10, 50, and 100.

the coeflicients in the linear classifier of the Lookback Lens (in Section 4.3) to estimate the
importance of each head in detecting hallucinations.

In Table 4.9, we show the results on detection tasks achieved by different detectors
trained using only a subset of top-k heads with the largest magnitude of coefficients in the
original Lookback Lens trained will all heads. The results show that the predictive power is
not concentrated only on a subset of heads. Using only top-10 heads is worse than using all
heads, and increasing k consistently improves performance and top-100 heads largely recover
the model’s performance using all heads.

More interestingly, we also include the results that only select the top-k heads among
the heads with most positive/negative coefficients, which are positive /negatively correlated
to factuality. On the heads with positive coefficients, higher lookback ratio (i.e., when
the heads attend at the context more) indicates higher factuality and less hallucination;
conversely, heads with negative coefficients suggest a lower lookback ratio (i.e., attending to
generated tokens more) is more likely to be truthful. Table 4.9 shows that none of positive or
negative heads alone can be on par with using the top-k largest magnitude heads. This result
implies that both positive and negative heads are critical for a model to generate factual
responses. We conjecture that the positive heads may specialize at context grounding, and
thus higher lookback ratio on these heads leads to more factual response. On the other
hand, the negative heads may be critical at ensuring consistency in its own generation, and
thus should attend to the generated tokens more. We leave further investigation on this
interesting balance for future work.

To illustrate this behavior, we visualize the lookback ratio of the top-10 most positive /neg-
ative heads when LLaMA-2-7B-Chat decodes the answer for an N(Q example in Figure 4.3.
The top-10 most positive /negative heads are selected with the most positive/negative coef-
ficients from the classifier. The green rectangle frames the part that contains the hallucina-
tions, i.e. and in Germany in the 14th century. We can see that during the generation of the
hallucinated span, the positive heads, especially for the top-1 heads (topmost), show a lower
lookback ratio (in blue), while the negative heads show a slightly higher lookback ratio (in
red). However, the behavior of Lookback Lens still needs to be determined by the collective
behavior of all heads and the weight and bias of the classifier.
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Figure 4.3: Top-10 positive/negative heads ranked from top to the bottom by the magnitude
of their coefficients in the Lookback Lens classifier.

Document

She had the "biggest year of her career", playing 95 shows, bringing in an average $2.4m (£1.5m) per city, according to Forbes.

Endorsement deals with companies like Pepsi and H&M, along with the surprise album she released in December 2013, helped her to the top spot.
The self-titled album was released on iTunes with no prior promotion.

Beyonce has just announced she'll be releasing a platinum version of that album later this month, which will include new songs and a concert video.
Source: Forbes

Taylor Swift came in second on the Forbes list, taking home an estimated $64m (£40m). ..[truncated]

Summary: Greedy Decoding

Beyonce topped the Forbes list of highest-paid female musicians, earning an estimated $100m (£64m) in the past year.

Summary: Lookback Lens Guided Decoding

According to Forbes, Beyonce had the
biggest year of her career in terms (0.99)

, thanks to endorsement deals and her
surprise album. Taylor Swift came (0.94)

According to Forbes, Beyonce had the
biggest year of her career in terms of
earnings, bringing in an average of
$2.4m per city

According to Forbes, Beyonce came in first
place on their list of highest (0.97)

According to Forbes, Beyonce earned an
estimated $30m (£ (0.65)

and earning an estimated $80m overall.
Endorsement deals (0.12)

and earning an estimated $100m overall.
(0.05)

Figure 4.4: Qualitative example on XSum using the LLaMA-2-7B-Chat model with greedy
decoding and Lookback Lens Guided Decoding. The numbers in the parenthesis show the
predicted scores from the Lookback Lens.

Reducing Number of Layers We experiment with using only a subset of layers for Look-
back Lens, as shown in Table 4.10. We can see that the predictive power is not concentrated
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Predefined Span

Layers QA — Sum. Sum. — QA
Layer 1-4 69.6 64.0
Layer 5-8 75.6 70.1
Layer 9-12 75.4 68.3
Layer 13-16 81.2 78.2
Layer 17-20 80.8 78.2
Layer 21-24 64.4 73.1
Layer 25-28 66.0 74.4
Layer 29-32 66.4 71.4
Layer 1-32 85.3 82.0

Table 4.10: Cross-task transfer AUROC among layers.

in any subset of layers, as none of them can recover the performance of the full model that
uses all layers. However, we observe that the middle layers (13-16, 17-20) are slightly more
useful than other layers.

Qualitative Study We show qualitative examples from XSum in Figure 4.4 to illustrate
how Lookback Lens guided decoding improves performance. Greedy decoding from LLaMA-
2-7B-Chat results in a hallucination, i.e. $100m (£64m), that does not exist in the input
document. However, the Lookback Lens is able to assign low scores for the chunk candidates
that have contextual hallucinations (as marked in red). Therefore, Lookback Lens Guided
Decoding is able to help the model generate a summary that is factual to the given context.

4.7 Chapter Summary

In this chapter, we introduce the Lookback Lens, a lightweight classifier designed to detect
contextual hallucinations by utilizing the lookback ratio, which is computed solely from at-
tention weights. This classifier not only effectively identifies contextual hallucinations but
also mitigates them through Lookback Lens Guided Decoding from the LLM. Remarkably,
the method is transferable across various tasks, and even across models after mapping their
attention heads. This research opens up new possibilities for leveraging attention map infor-
mation to combat hallucinations in large language models.

However, detection alone is insufficient for building truly trustworthy systems: users need
not just to know whether content is grounded, but also which specific evidence supports each
claim, motivating the need for verifiable attribution mechanisms explored next in Chapter 5.
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Chapter 5

Self-Supervised Alignment for Verifiable
Attributions with SelfCite

5.1 Introduction

5.1.1 From Detection to Attribution

Chapter 4 demonstrated that attention patterns provide useful signals for detecting contex-
tual hallucinations, and further mitigate them. However, detection alone is insufficient for
building trustworthy Al systems as long as we cannot achieve 100% detection accuracy, par-
ticularly in high-stakes applications such as healthcare, legal analysis, or scientific research.
Even if the model only hallucinates 1% of the time, it breaks the reliability of the AI system,
and the human will have to verify the generated information every time. On the other hand,
a more practical question can be: How can users verify the information more efficiently? Sim-
ply flagging content as “potentially hallucinated” provides limited actionable value. Users
need fine-grained, verifiable evidence that allows them to independently validate each claim
without a long information-seeking process. This is especially critical in RAG settings where
the source documents are available, as users should be able to trace each statement back to
its supporting evidence in the provided context. Without this attribution capability, even
perfect detection leaves users in a difficult position: they know something might be wrong,
but they cannot efficiently identify which parts are reliable and which require revisions.
Both Lookback Lens and the approach we introduce in Chapter 5 operate in RAG settings
where models have access to retrieved documents. However, while Lookback Lens asks “is
the model using the context?” and provides a binary answer, the attribution problem asks
“which specific parts of the context support each generated statement?” This shift represents
a move from “detecting wrong” to “proving right”. The key insight is that these two problems
are deeply related: just as attention patterns reveal whether a model is grounded in context,
they can also reveal which parts of the context are relevant to each generated statement.

5.1.2 Motivation for SelfCite

Assistants built using large language models (LLMs) have become ubiquitous in helping users
gather information and acquire knowledge [9,40]. For instance, when asked about recent
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news, an assistant can read through dozens of relevant articles—potentially more than a
user could comb through themselves—and use these articles as context to provide a clear,
specific answer to the user’s query. While this ability can greatly accelerate information
gathering, LLMs often produce hallucinations—content that sounds plausible but is actually
fabricated [13]. Even when provided with accurate context, models may misinterpret the
data or include details that are not supported by the context [2,108|.

Although completely eliminating hallucinations remains difficult, existing approaches
have sought to enhance the reliability of LLMs by providing context attributions—commonly
referred to as citations—which are fine-grained references to relevant evidences from the con-
text, alongside generated responses for user verification [109-111]. While they have shown
promise in generating citations, an outstanding challenge is their reliance on annotated data
either from human [109,110] or costly proprietary APIs [111] to train models to generate cita-
tions. Collecting annotations can be time-consuming or costly, especially with long-context
documents.

To address this challenge, we introduce SelfCite, a novel alignment approach designed
to autonomously enhance the quality of citations generated by LLMs without the need for
any annotations in the alignment process. Drawing inspiration from model interpretability
techniques [112,113], SelfCite leverages the inherent capabilities of LLMs to provide feedback
through context ablation—a process to evaluate the necessity and sufficiency of a citation.
If removing the cited text prevents the LLM from assigning high probability to the same
response, we can infer that it is necessary for the LLM. Conversely, if the response remains
highly probable despite removing all context other than the cited text, this indicates that
the citation is sufficient for the LLM to make the claim. This self-evaluation mechanism
enables SelfCite to calculate a reward signal without relying on the annotation processes.

Building on this intuition, we design a reward that can be cheaply computed by the LLM
itself, composed by probability drop and probability hold in context ablation. By integrating
this reward function into a best-of-N sampling strategy, SelfCite achieves substantial improve-
ments in citation quality. Furthermore, we employ this reward for preference optimization
using SimPO [114], which not only maintains these improvements but also eliminates the
need for the computationally expensive best-of-N sampling. We outperform the previous
state of the art on the LongBench-Cite benchmark [111] by up to 5.3 points in F1 scores,
and showing a promising direction to bootstrap the citation quality from LLMs via self-
rewarding.!

5.2 Related Work

5.2.1 Citations for Language Models.

Recent work has explored various approaches to teaching language models to generate cita-
tions, including fine-tuning with direct human feedback or annotations [7,109,110], rewards
from external NLI models [115,116], and prompting-based methods [117,118| to explicitly
incorporate relevant retrieved documents. Given the high cost of human annotation, Zhang

!The source code of this chapter is available at https://github.com/facebookresearch/SelfCite.
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Figure 5.1: The SelfCite framework calculates rewards based on two metrics: necessity score
(probability drop) and sufficiency score (probability hold). First, the full context is used to
generate a response. Then, the framework evaluates the probability of generating the same
response after (1) removing the cited sentences from the context and (2) using only the cited
sentences in the context. The probability drop and hold are computed from these probability
differences, and their sum is used as the final reward.

et al. [111] introduced CoF ("Coarse to Fine"), an automated multi-stage pipeline that sim-
ulates human annotation. This approach leverages proprietary LLMs for query generation,
chunk-level retrieval, and sentence-level citation extraction, achieving high citation quality
through supervised fine-tuning. However, it depends on larger proprietary models two pro-
prietary APIs—GLM-4 for the LLM and Zhipu Embedding-v2 for retrieval?>— with carefully
designed prompting, effectively distilling the capabilities of these proprietary models into
much smaller models in 8B/9B. In contrast, our SelfCite aims at completely eliminating the
reliance on annotations for citation, either from human or proprietary APIs. Instead, our
method enables a small 8B model to assess citation quality itself using self-supervised reward
signal from context ablation, effectively self-improving without external supervision.

5.2.2 Contributive Context Attribution.

Besides being self-supervised, SelfCite also adopts the view that citations should reference
the sources from the context that a model actually uses when generating a statement—known
as contributive attribution [119]-rather than any sources that merely support the claim. Our
reward signal naturally aligns with this attribution framework, as context ablation identifies
the sources that cause the model to produce a statement. Existing contributive attribution
methods for LLMs typically require extensive context ablations or other computationally
expensive techniques, such as gradient-based analysis during inference [113,120,121]. In con-
trast, SelfCite simply generate the citation tags, and refine citation candidates by preference
optimization with reward signals from context ablations, effectively teaching the model to
perform contributive context attribution itself.

We also note that there is a distinction between corroborative citation—highlighting
sources that support a claim, as used in benchmarks like LongBench-Cite—and contributive

Zhttps://open.bigmodel.cn /pricing
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attribution, as emphasized in ContextCite. While SelfCite applies a contributive alignment
method (via ablations) in the context of a corroborative evaluation framework, we find
the two objectives to be at least partially aligned: citations that genuinely influence the
generation are often also semantically supportive. Although this alignment is not guaranteed,
our empirical results show that enforcing contributive attribution leads to clear improvements
on corroborative benchmarks, suggesting that current corroborative methods (e.g., LongCite)
still have significant headroom for improvement—even under a slightly mismatched objective.

5.2.3 Self-Supervised Alignment and Reward Modeling.

Another relevant area is self- or weakly-supervised approaches for aligning LLMs without
human supervision [122,123], reducing the need for explicit human feedback [48], or curating
high-quality data for supervised fine-tuning [124|. SelfCite shares the same spirit by comput-
ing simple probability differences under context ablation as rewards, eliminating the need
for additional annotation process.

5.2.4 Comparison with Prior Methods

We provide a comparison table in Table 5.1 to contrast the key differences between SelfCite
and other prior studies on producing citations from LLMs. Among all methods, SelfCite is
the only approach that supports sentence-level citation generation in a single pass, leverages
preference optimization, and scales to 128K-token contexts—all without requiring additional
supervision. In contrast, prior work such as ALCE [118] and Huang et al. [115] use chunk-
level citations for shorter context (<8K) and require prompt-based or supervised NLI signals.
ContextCite [113], while being sentence-level, relies on a computationally expensive process
(at least 32 inference calls) for random context ablation and trains a linear model for estimat-
ing importance scores. This comparison underscores the practical advantages and technical
contributions of SelfCite.

Table 5.1: Key differences among prior methods on producing citations from LLMs.

Sentence-level One pass Preference Handle 128K External
Method citations? generation? optimization? long-context? supervision?
ALCE [11§] X (chunk-level) v X (prompting) X (8K) 2-shot prompting
Huang et al. [115] X (chunk-level) v v X (8K) NLI + ground truth
ContextCite [113] v X (at least 32 calls) X (not generative) v N/A
LongCite [111] v v X (SFT only) v SFT data
SelfCite (Ours) v v v v N/A

5.3 Method

In this section, we describe the SelfCite framework. We begin by introducing the task of
generating responses with context attributions (5.3.1), referred to as citations for brevity. We
then design a reward for providing feedback on citation quality without human annotations
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(5.3.2) as illustrated in Fig. 5.1. Finally, we discuss two approaches for utilizing this reward
to improve citation quality: best-of-N sampling (5.3.3) and preference optimization (5.3.4).

5.3.1 Problem Formulation

We first formalize the task of generating responses with context attributions and the metrics
to self-evaluate context attributions within the SelfCite framework, inspired by previous
studies [111,113] but adapted to our proposed self-supervised reward.

Setup. Consider employing an autoregressive language model (LM) to generate a response
to a specific query given a context of relevant information. Specifically, given an LM pr, let
pom(ti | t1, ..., t;_1) denote its output distribution over the next token ¢; based on a sequence
of preceding tokens ty,...,t;_1. Next, let C represent the context of relevant information.
This context is partitioned into |C| sentences: ¢y, cs,. .., cc. Each sentence ¢; is prepended
with a unique identifier (e.g., sentence index j) as a way for the model to reference the
sentence when generating citations. The context C'is followed by a query @), a question or
instruction for the model. A response R is then sampled from the model pyy;.

Generating Responses with Context Attributions. In SelfCite, following prior work
on generating responses with context attributions [111], each statement r; in the response
R is followed by a citation sequence e; consisting of the identifiers of sentences from the
context C'. Thus, the entire response sequence R is {ry, 1,79, €s,...,7s, s}, where S is the
total number of generated statements. The citation e; is intended to reference sentences that
support the generation of r;. Formally, for each response statement r;, the model outputs
a citation sequence e; = {el,e?,... e}, where each ¢/ € {1,2,...,|C|} corresponds to
a specific sentence number in the context C', and m sentences are cited. Note that this
citation sequence may be empty. The entire response R consisting of statements r; followed

by citations e; is sampled from the LM pr as follows:

Ty ~ PLM ( | Cly- - ,C‘C|,Q,T1,€1, s ari—laei—l) ’

€; ~ PLM ( | Cly- - ,C\C|7Q77”1,€1> S ,7“1'—1,62'—177’2') .

The objective of optimizing the LM is to ensure that the citation sequence e; accu-
rately reflects the evidence from the context that supports the generation of r;. In the
SFT setting [111], the probability of a “ground truth” annotated responses and citations
{r1,é1,...,7g,és} will be maximized, given the input C' and @, but it is not trivial to do
further alignment with feedback after the SF'T data is used up. To achieve this, we intro-
duce SelfCite that can evaluate the quality of these citations based on context ablation as a
reward for further preference optimization.

5.3.2 Self-Supervised Reward via Context Ablation

We measure the quality of a citation sequence e; by the changes in the LM’s probability of
generating r; when the cited sentences are either removed from or isolated within the context.
To simplify the notation, let all the cited context sentences be E; = {c.1,cz2,...,cem}. We
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define two key metrics: necessity score and sufficiency score, and finally combine them into
the final reward, as shown in Fig. 5.1.

Necessity Score: Probability Drop. This metric quantifies the decrease in the prob-
ability of generating r; when the cited sentences in FE; are all removed from the context
(denoted as set minus \ operator). Formally, it is defined as:

Prob-Drop(e;) = log prm(r; | C) —logprm (1 | C'\ E;) .

To keep the equation concise, we ignore @ and {r, ey, ...,7;_1,€;,_1} in the equation, but they
are staying in the context history when computing the probabilities. A larger probability
drop indicates that the removal of F; significantly diminishes the likelihood of generating 7;,
thereby validating the necessity of the cited evidence.

Sufficiency Score: Probability Hold. Conversely, this metric measures if the probabil-
ity of generating r; is still kept large when only the cited sentences are kept in the context,
effectively testing the sufficiency of the citation to support the response statement. Formally:

Prob-Hold(e;) = log prm (75 | i) —log prm(ri | C).

A more positive value of probability hold indicates that the cited sentences alone are sufficient
to support the generation of r;, while removing all the other irrelevant context. Please note
that the values of probability drop or hold can be either positive or negative. For example,
if the citation is not relevant to r; or even distracting, it is possible for p(r; | E;) to be lower
than p(r; | C).

Final Reward. To comprehensively evaluate the necessity and sufficiency of the generated
citations, we add the two metrics together, where the opposing terms cancel out:

Reward(e;) = Prob-Drop(e;) + Prob-Hold(e;)
= IngLM (Tz‘El) — IngLM (T’Z|C \ Ez) . (51)

The combined reward measures if the citations are both necessary and sufficient for generat-
ing the response r;.

5.3.3 Best-of-N Sampling

To leverage the self-supervised reward computed via context ablation, we employ a best-
of-N sampling strategy, which is a common way to test the effectiveness of a reward de-
sign [125,126] as a performance oracle without any confounders from training. For conve-
nience, we first generate the full response R = {ry,e,...,rs,es} which includes a set of
statements (r;) paired with citations (e;), and then locate the position of e;, i.e., where the
citation tags <cite>...</cite> are generated. Within the citation tags of e;, we re-sample
N candidate citation sequences (6(1) e(N)), by making the model to continue the gener-
ation from {C,Q,r1,e1,...,7;}, and then select the best citation (ef) that maximizes the

3 s ee ey &y
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combined reward metric, Eq. (5.1). The corresponding procedure is shown in Algorithm 1.
After obtaining all the selected citations {ef,...,e%}, we replace the original citation se-
quence e; with the optimal citation e for each response statement r;, while keeping the
response statements {r1,...,rs} unchanged. This process is repeated for each statement in
the response R to obtain the final, citation-improved output R* = {ry,ej,...,rs,ef}. To
prevent the model from citing too many sentences, we exclude the candidate e; if the cited
text (F;) is longer than L., = 384 tokens in total, unless F; are all from a single long
sentence.

Algorithm 1 SelfCite Best-of-N Sampling for Citations

Require: LM prnp, context C) query @), response R, # of candidates N, length limit L.,
T(-) counts # of tokens in a text, #(+) counts # of sentences in a citation.
for r, € R do

Reward(k) = —oco for k=1,...,N
for k=1,...,N do
el ~ puu(-| 13, C, Q)
if T(E®) <= Liax or #(e!”) = 1 then
Reward (k)
= log prm (T’Z|Ez(k)) — log prm (ri|C \ El(k))
end if
end for
k* = argmax;, Reward(k)
(k%)

[

[ —
el =e
end for
return R* = {r,e},... ,rg,e5}

5.3.4 Preference Optimization

Best-of-N sampling is a straightforward way to obtain better citations, but at the additional
inference cost of generating candidates and reranking. Thus, we try to internalize the ability
of generating better citations back to the LM itself.

Given documents and queries, we can prompt the LM to generate the responses along
with the citations R = {ry,e1,...,rs,es}. By further applying best-of-N sampling, we can
obtain new responses of the same statements but with better citations R* = {ry, e}, ..., 75, €5}
Such preference data can be used in direct preference optimization (DPO) [127] to align the
model based on the preference between the original outputs and improved outputs. Instead
of using DPO, we choose its variant SimPO [114] here, as SImPO does not require a reference
model and allows 2x memory saving for 25.6K long-context fine-tuning. Through this self-
supervised process, which does not require ground-truth answers or human annotations, the
model learns to generate more accurate and contextually grounded citations on its own.
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5.4 Experiments

We evaluate the effectiveness of SelfCite by applying the best-of-N sampling and preference
optimization methods to existing models that generate responses with citations.

5.4.1 Model Details

We use LongCite-8B, the Llama-3.1-8B model [128] fine-tuned on LongCite-45K SFT data [111]
as the start point for both best-of-N sampling and preference optimization. We adopt the
same text segmentation strategy from Zhang et al. [111]: each document is split into individ-
ual sentences using NLTK [129] and Chinese punctuations, and each sentence is prepended
with a unique identifier in <C{i}> format. These identifiers serve as the citation indices,
enabling the model to cite relevant context right after the statements with the format of
<statement> {content ...} <cite>[i; — 9] [i3 — i4]...</cite></statement>. This format
allows the model to cite a single sentence (e.g. i3 = i) or a span (e.g. i3 < ig) efficiently
within several tokens. The responses are generated via top-p sampling [130] with p=0.7 and
temperature=0.95. We set p=0.9 and temperature=1.2 when doing best-of-N sampling for
the citation strings to increase the diversity. We set N=10 in all the experiments considering
the limited diversity in citations.?

5.4.2 Preference Optimization

LongCite-45K. Best-of-N sampling (Section 5.3.3) requires no training, so no training
data is used. For preference optimization with SimPO (Section 5.3.4), we use 2K docu-
ment—question pairs from LongCite-45K [111]| as the training set but we do not use its
ground-truth responses with high-quality citations for SF'T. Instead, we generate model re-
sponses from the documents and queries, then apply best-of-N to refine citations. We label
the original responses as rejected and replace their citations with BoN-refined ones to create
the chosen responses, forming preference pairs to build the dataset for SimPO.

Data Construction and Length Balancing. To prevent the model from simply generat-
ing longer citations rather than focusing on citation correctness, we apply a length balancing
procedure to align the total citation length in our two training responses: a chosen predic-
tion and a reject prediction. First, we find the citation string (e.g., [435-437]) enclosed in
<cite>...</cite> tags for each statement. We then measure each string’s total citation
“coverage”, which means the total number of cited sentences in these intervals.

If a reject prediction has a total coverage lower than the corresponding chosen prediction,
we insert additional citations around nearby sentence indices to match the chosen coverage.
Conversely, if the reject coverage is larger, we randomly remove some of its intervals. We
ensure new or inserted citations do not overlap existing intervals and keep them within a
small window of 5-10 sentences away from the original citations to maintain realism. Finally,
the reject and chosen will have matched coverage. This approach discourages the model from

3After deduplicating repeated citation candidates, on average there are only 4.8 candidates left per state-
ment in the BoN experiment on LongBench-Cite, with a standard deviation of 3.2.
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Table 5.2: Citation recall (R), citation precision (P), citation F1 (F1), and citation length
evaluated on LongBench-Cite benchmark. The best of our results are bolded. The best of
previous state of the art are underlined. T indicates the results taken from Zhang et al. [111].

Model Longbench-Chat | MultifieldQA HotpotQA Dureader GovReport Avg. Citation
R P F1 R P F1 R P F1 R P F1 R P F1 | F1 Length

Proprietary models

GPT-4of 46.7 53.5 46.7 | 79.0 87.9 80.6 | 55.7 623 534 | 65.6 742 67.4 | 734 904 79.8 | 65.6 220

Claude-3-sonnet’ 52.0 67.8 551 | 64.7 858 713|464 658 499 |67.7 892 755|774 93.9 84.1 | 67.2 132

GLM-4f 476 539 471 | 723 80.1 73.6 | 47.0 50.1 444|734 823 750|828 934 87.1 | 654 169

Open-source models

GLM-4-9B-chat’ 25.9 205 16.7 | 51.1 60.6 52.0 | 229 288 20.1 | 454 483 409 | 57 82 6.3 | 272 96

Llama-3.1-8B-Instruct 141 195 124 | 29.8 443 31.6 | 202 309 209|220 251 17.0|16.2 253 16.8 | 19.7 100

Llama-3.1-70B-Instruct’ 25.8 320 232|532 652 539|296 373 286|382 460 354|534 77.5 60.7 | 404 174

Mistral-Large-Instruct’ 19.8 239 19.0 | 71.8 80.7 73.8 | 345 409 321|583 670 60.1|67.9 79.6 725 | 51.5 132

Contributive context attribution (with Liama-3.1-8B-Instruct)

ContextCite (32 calls) 56.7 76.8 58.0 | 76.1 87.2 789 | 40.5 54.7 439 | 580 824 650 | 67.1 888 756 | 64.3 92.7

ContextCite (256 calls) 63.5 83.1 64.7 | 788 89.8 81.8 | 46.5 60.8 49.2 | 61.7 89.1 70.1 | 69.1 93.5 78.8 | 68.9 100.8

Fine-tuned models

LongCite-9BT 576 781 636 | 67.3 91.0 748 | 61.8 788 64.8 | 67.6 89.2 744|634 76.5 682 | 69.2 91

LongCite-8Bf 62.0 79.7 674 | 747 93.0 80.8|592 721 603|683 85.6 731|740 86.6 785 | 72.0 85

t 8imPO w/ NLI Rewards | 644 87.1 69.8 | 70.1 924 774|588 781 632]694 911 772|837 93 875 750 | 105.9

Ours: SelfCite

LongCite-8B (Our repro.) | 67.0 781 66.6 | 74.8 90.7 79.9 | 60.8 77.9 64.1 | 67.1 872 73.7|81.6 89.3 845 | 73.8 83.5

-+ BoN 684 81.3 712 | 76.1 928 81.2 | 672 81.0 688|706 909 769 |87.6 924 89.3| 77.5 93.4

+ SimPO 681 79.5 69.1 | 75.5 92.6 81.0 |69.4 823 71.5| 727 91.6 789 |86.4 929 89.1 | 77.9 105.7

f SimPO then BoN 73.3 794 72.8 | 767 93.2 822 |69.4 83.0 711 |74.2 92.2 80.3|86.7 92.7 892 | 79.1 94.7

Llama-3.1-8B-Instruct (fully self-supervised setting)

f SFT on ContextCite 523 706 56.5 | 79.1 90.5 82.0 | 545 723 56.3 |549 79.0 616|637 849 723 | 65.7 83.0
- BoN 54.8 67.6 58.1 | 80.4 90.5 83.0|583 70.0 575|576 79.0 631|672 848 746 | 67.3 80.4
+ SimPO 63.3 743 64.6 | 80.2 88.9 824 |59.7 769 61.0|59.0 809 654|685 86.6 76.1 | 69.9 90.2
+ SimPO then BoN 66.0 824 711 |81.5 90.7 83.2|61.3 70.0 599|621 814 674|688 86.2 76.1 | 715 87.4

Topline

Claude Citations | 61.2 81.7 67.8 | 76.8 98.4 849|619 941 729|885 99.7 932|794 99.2 817 81.3 88.8

trivially learning to cite more sentences, instead prompting it to learn where and how to cite
evidence more accurately. Our ablation in Section 5.5.2 shows that this length balancing
technique significantly improves final citation quality.

5.4.3 Evaluation

Benchmark. We evaluate our approach on LongBench-Cite [111|, a comprehensive
benchmark specifically designed for long-context QA with citations (LQAC). Given a long
context C' and a query @), the model must produce a multi-statement answer with each
statement cites relevant supporting sentences in C'. Unlike chunk-level citation schemes [118§]
which cites short paragraphs, LongBench-Cite adopts sentence-level citations to ensure se-
mantic integrity and finer-grained evidence tracking. LongBench-Cite assesses two main
aspects:

e Citation Quality: Whether each statement is fully supported by relevant and only
relevant sentences. GPT-40 measures citation recall (extent to which a statement is
fully or partially supported by the cited text) and citation precision (whether each
cited text truly supports the statement). These are combined into a citation F1 score.
Additionally, we track average citation length (tokens per citation) to promote fine-
grained citations over unnecessarily long passages.

e Correctness: How accurately and comprehensively the response answers the query
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disregarding the citations. This is scored by GPT-40 in a zero-/few-shot fashion based
on the query and reference answers.

The benchmark contains five datasets, including single-doc QA MultiFieldQA-en/zh [131],
multi-doc QA HotpotQA [132] and DuReader [133|, one summarization dataset GovRe-
port [134], and LongBench-Chat [135] which covers diverse real-world queries with long
contexts such as document QA, summarization, and coding.

Baselines. SelfCite is compared with these baselines.

e Prompting: Zhang et al. [111] propose the baseline of prompting LLMs with an
one-shot example. This can be applied to proprietary models including GPT-40 [9],
Claude-3-sonnet [136], and GLM-4 [137], as well as open-source models including GLM-
4-9B-chat [137|, Llama-3.1-{8,70} B-Instruct [128|, and Mistral-Large-Instruct [138§].

e Contributive context attribution: Contributive context attribution seeks to di-
rectly identify the parts of the context that cause the model to generate a particular
statement. We consider ContextCite [113], a contributive context attribution method
that performs several random context ablations to model the effect of ablating different
parts of the context on a generated statement. We use NLTK to split Llama-3.1-8B-
Instruct’s responses into statements, and then apply ContextCite with 32 and 256
times of random context ablations to get the citations, with the details described in
Appendix C.2.

e Fine-tuned models: LongCite-8B and 9B released by Zhang et al. [111], trained on
LongCite-45K, fine-tuned from Llama-3.1-8B [128] and GLM-4-9B [137], respectively.

e SimPO with NLI Rewards Baseline: To provide a stronger fine-tuned baseline,
we implement a SimPO variant that adopts NLI-based citation rewards, following the
design proposed by Huang et al. [115]. For fair comparison, we keep our full SelfCite
SimPO training pipeline—initializing from LongCite-8B and training on the LongCite-
45k dataset—and modify only the reward function as a controlled experiment. This
NLI-based reward combines two components:

— Citation Recall Reward: This measures whether the full set of cited sentences
entails the model-generated statement. It is equivalent to the Citation Recall
Reward proposed by Huang et al. [115].

— Citation Precision Reward: This estimates whether each cited sentence is
necessary by ablating one sentence at a time and testing whether the remaining
span still entails the statement. If entailment fails after removing a sentence, it
indicates that the sentence contributes uniquely to the justification. To reduce
latency, we ablate all sentences when the citation contains 5 or fewer; otherwise,
we randomly sample 5 for ablation. When there are N ablations, each ablation
makes a reward of %, and finally all ablations sum up to 1.0. It resembles the
Citation Precision Reward proposed by Huang et al. [115].

We make both rewards positive and capped at 1.0, effectively constructing preference
pairs for SimPO. We do not consider the Correctness Recall Reward from Huang et
al. [115], because the LongCite-45k training set does not contain ground-truth answers.
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All entailment scores are computed using the public NLI model®.

5.4.4 Main Results

Citation Quality. Table 5.2 presents our main results. Our best-of-N sampling (BoN)
consistently improves both citation recall and citation precision across tasks, increasing
the overall F1 score from 73.8 to 77.5. Using SimPO to internalize BoN’s gains—eliminating
the need for costly BoN sampling—achieves a similar improvement, with an F1 of 77.9.
Applying BoN again to the SimPO fine-tuned model further boosts F1 by 5.3 points to
79.1, the highest across the datasets, suggesting room for further gains. Our results surpass
LongCite-8B/9B at similar citation lengths and outperform proprietary model prompting
while producing shorter citations.

To better contextualize the gains of our proposed reward, we additionally implement a
variant of SimPO using NLI-based citation precision /recall rewards from Huang et al. [115] by
using the same training pipeline and initialization as our SimPO, modifying only the reward
function. As shown in row of SimPO w/ NLI Rewards, this baseline improves LongCite-
8B on 3 out of 5 datasets, but is still consistently outperformed by SelfCite. This result
highlights that while NLI-based rewards are helpful, our SelfCite reward provides a more
accurate signal for optimizing citation quality.

Besides the fine-tuned baselines, we additionally compare our method to ContextCite
for reference, a method very different from SelfCite—it does not directly generate citations,
it estimates the importance scores of the context sentences after the response is generated
(in Appendix C.2 we show how to convert continuous importance scores into citations).
Both SelfCite and ContextCite rely on the idea of context ablation, but our approach is
significantly better. A key reason is that ContextCite estimates sentence importance from
scratch using linear regression, while we rerank existing LLM-generated citation candidates,
leading to more efficient and accurate citation quality estimation.

Finally, we evaluate the latest released Claude Citations API, as shown in Section 5.4.5
that SelfCite achieves strong results very close to this commercial-level API, validating the
effectiveness of SelfCite.

Fully Self-Supervised Setting. In our main experiment, we start from the Llama-3.1-
8B model fine-tuned on the LongCite-45K SF'T data, which effectively kick-starts its ability
to generate structured citations for best-of-N sampling. The subsequent SimPO alignment
stage is entirely self-supervised. We are also curious if it is possible to start from a fully self-
supervised SF'T model and then apply our self-supervised alignment after that. To begin
with, we automatically generate 11K citation SF'T data using ContextCite (see Appendix C.2
for details) to replace the LongCite-45K annotations in the training data, as shown in the
results at the bottom of Table 5.2. We can see that SFT on ContextCite can achieve decent
initial results (65.7 F1) but still far from LongCite-8B (73.8 F1). BoN helps improving F1 to
67.3. After SImPO training, it achieves 69.9 F1, and additionally applying BoN can boost
its F1 by 5.8 to 71.5, significantly closing the gap to LongCite-8B, showing our alignment

4https:/ /huggingface.co/google/t5 xx1_true nli mixture
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Table 5.3: Answer correctness when responding with or without citations. T indicates results
taken from Zhang et al. [111]. The header contains abbreviations for the same five datasets
in Table 5.2.

Model Long. | Multi. ‘ Hot. ‘ Dur. ‘ Gov. ‘ Avg
Answering without citations

LongSFT-8Bf 68.6 83.6 69.0 | 62.3 | 544 | 67.6
LongSFT-9Bf 64.6 83.3 67.5 | 66.3 | 46.4 | 65.6
Llama-3.1-8B-Instruct 66.0 83.7 65.8 | 62.8 | 66.1 | 68.9

Answering with citations

LongCite-8B (Our repro.) | 67.6 86.7 69.3 | 64.0 | 60.4 | 69.6

+ SimPO 67.4 86.7 67.5 | 66.0 | 61.3 | 69.8
Llama-3.1-8B-Instruct 58.4 75.3 67.3 59.3 56.4 | 63.3
+ SFT on ContextCite 58.8 83.4 65.8 | 57.8 | 57.5 | 64.6

£ SimPO 56.8 80.9 65.3 | 59.5 | 60.9 | 64.7

method not only improve the supervised models, but also enhance the models purely trained
from self-supervision.

Answer Correctness. For best-of-N sampling, only the citation parts are modified, so the
responses it generates to answer the questions are the same as those of the original LongCite-
8B model, maintaining the same correctness. For the SimPO fine-tuned models, we test
their answer correctness by the evaluation in Zhang et al. [111], which contains two settings:
answering with /without citations. If answering with citations, the model will be prompted to
generate answers with structured citations, making the task more complex, and the citation
parts will be removed when evaluating the answer correctness. The results in Table 5.3 show
that the SimPO fine-tuning does not change the correctness of the LongCite-8B model
much. The correctness is similar to LongSFT-8B/9B [111], which are ablation baselines
fine-tuned on LongCite-45k QA pairs but without the citation parts. The same observation
still holds when starting from Llama-3.1-8B-Instruct, either SF'T with ContextCite data or
the further SimPO step do not change the answer correctness significantly. Under the same
answer correctness, the additional "citations" can benefit the verifiability of the answers,
enabling a user to easily double-check the answer, even in cases where the answers are
wrong.

5.4.5 Comparison with Claude Citations API

On January 23rd, 2025, Claude announced an API specialized for providing citations along
with responses: Claude Citations®. We evaluate this API on the LongBench-Cite benchmark.
Since the implementation details and resource requirements (e.g., training data) of Claude
Citations are not publicly available, and it relies on a significantly larger and more powerful
LLM, Claude-3.5-Sonnet (potentially over 100 billion parameters), we consider it as a topline
rather than a direct baseline.

When evaluating Chinese examples, we found that the API does not split Chinese text
properly, citing large passages with an average of approximately 800 tokens per citation.

Shttps://www.anthropic.com /news/introducing-citations-api
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To address this, we pre-segment the text ourselves using the same method as our approach
following LongCite [111] (NLTK and Chinese punctuation segmentation). The evaluation
was conducted using claude-3-5-sonnet-20241022.

As shown in the last row of Table 5.2, Claude Citations achieves an overall F1 score of
81.3, higher than all other models we tested. However, its performance is not consistent
across all datasets. For example, it performs worse than SelfCite on LongBench-Chat and
GovReport. The main improvement comes from the DuReader dataset, while results on other
datasets are comparable to SelfCite. Given that SelfCite leverages a much smaller 8B model
compared to Claude-3.5-Sonnet, the result of SelfCite is very impressive, demonstrating its
potential as a strong alternative to proprietary solutions.

5.5 Analysis

5.5.1 Ablation Study on Rewards

To better understand our final reward design, we explore various reward strategies in the
BoN sampling process. Here, all BoN candidates are pre-generated and fixed, the reward
is the only factor affecting results. Table 5.4 presents our ablation results on HotpotQA,
while citation lengths are computed across all LongBench-Cite datasets for direct comparison
with Table 5.2. We evaluate four alternative reward designs. BoN by LM log prob re-ranks
candidates simply by the probability of the citation string, <cite>[i; —i2] [ig—i4]...</cite>,
which is similar to beam search but less costly. We observe that this strategy slightly boosts
recall while reducing precision, resulting in a minor reduction in F1. BoN by max citation
length always selects the candidates with the longest citations, i.e. citing the greatest number
of sentences. Although it improves recall, it significantly reduces precision from 77.9 to 73.6
and inflates the citation length from 83.5 to 139.8. By contrast, both BoN by Prob-Drop
and BoN by Prob-Hold improve recall without sacrificing precision. Finally, by combining
both Prob-Drop and Prob-Hold into our final SelfCite reward, we achieve the best outcome,
increasing both recall and precision and a 4-point improvement in F1.

We also explored different token-length limits for citations in the bottom of Table 5.4,
as discussed in Section 5.3.3. By default, we exclude candidates citing more than 384 to-
kens, unless the citation contains only a single sentence. Lowering the cap to 256 tokens
slightly hurts F1, while raising it to 512 tokens has negligible impact. Completely removing
length limits inflates citation length to 121.9 tokens and yields worse precision (79.3) but
slightly improved recall (67.9). We also notice that the 256 length limit still outperforms the
LongCite-8B baseline (66.4 vs 64.1) while having almost equally long citation length (84.5
vs 83.5), showing that the improvement of SelfCite correlates less with the citation
length. Overall, using a 384-token limit achieves a good balance for short citation lengths
and strong performance.

5.5.2 Citation Length Balance

As noted in Section 5.4.2; BoN selects slightly longer citations, making it easy for a model
trained directly on BoN-preferred data to adopt the shortcut of generating longer citations
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Table 5.4: Ablation study on HotpotQA citation recall, precision, and F1 (R, P, F1) and
citation length for BoN decoding methods.

HotpotQA Citation

Decoding Methods R P F1 | Length

LongCite-8B (Our repro.) | 60.8 77.9 641 | 835
-+ BoN by LM log prob 62.7 755 63.4 74.6
+ BoN by mazx citation length | 66.5 73.6 65.1 139.8
+ BoN by Prob-Drop 65.6 781 66.6 | 92.9
+ BoN by Prob-Hold 66.2 781 67.0| 934
+ BoN by SelfCite | 672 81.0 688 | 934

w/ lower length limit (256) 65.8 78.8 66.4 84.5
w/ higher length limit (512) | 67.0 82.2 68.5 99.2
w/o length limit (c0) 679 79.3 68.1 121.9

without improving quality. To counter this, we apply length balancing, injecting random
citations into examples where length bias exists to equalize the number of cited sentences.
Table 5.5 (see w/ vs. w/o length balancing) highlights its critical role in length balancing.
Without length balancing, the model overextends citations (average length 152.9), leading
to lower precision (62.9) and F1 (60.5). In contrast, enabling length balancing maintains
high precision (82.3) and recall (69.4), achieving a better F1 of 71.5 while keeping citation
length reasonable (105.7). These results confirm that length balancing prevents shortcut
learning, ensuring the model truly learns to cite accurately.

5.5.3 Training Size of SimPO

In prior study [124], 1K examples are sufficient to align user preferences effectively. Table 5.5
presents SimPO results with 1K to 8K examples. 1K examples already bring a moderate
improvement, raising F1 from 64.1 to 65.7, with gains in precision and recall. Using 2K
examples further boosts F1 to 71.5, while 4K leads to saturated improvement. However, at
8K examples, performance declines, and citation length rises to 158.1. We attribute this
to SimPO’s off-policy nature, especially because it lacks a reference model to constrain the
output distributions to be similar to the collected data. As training steps grow, the model
may drift from the collected data, potential overfitting to the biases in preference data. Thus,
further fine-tuning may degrade citation quality. To address this, we show initial results from
iterative SimPO in Section 5.5.6.

5.5.4 SimPO vs. SFT on Best-of-N responses

We also show the effect of applying standard supervised fine-tuning (SF'T) on the responses
selected by best-of-N sampling, which is a simplified alternative of preference optimization.
As the result shown in the last row in Table 5.5, SF'T also improves the F1 score from 64.1 to
68.4, but it still falls behind 71.5 of SimPO. This result confirms that it is necessary to train
the model via SimPO with preference data, which enables the model to distinguish between
bad and good citations, and thus improve the citation quality.
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Table 5.5: Ablation study on HotpotQA citation recall, precision, and F1 (R, P, F1) and
citation length for finetuned models.

. . HotpotQA Citation
Fine-tuning Methods R p F1 Length
LongCite-8B (Our repro.) ‘ 60.8 77.9 64.1 83.5
+ SimPO 69.4 823 715 105.7
+ SimPO + BoN 72.0 82.7 72.9 126.9
+ StmPO w/ or w/o length balancing
w/ length balancing 69.4 823 715 105.7
w /o length balancing 64.4 62.9 60.5 152.9
+ SimPO w/ varying data sizes
1K examples 62.5 78.9 65.7 90.1
2K examples 69.4 823 715 105.7
4K examples 68.5 80.4 70.3 134.1
8K examples 64.6 79.5 65.9 158.1

+ SFT on BoN responses ‘ 68.8 77.3 68.4 ‘ 98.7

+ SimPO by denoising perturbed citations

On original responses 40.5 50.5 41.6 88.8
On BoN responses 42.6 50.7 423 79.7

5.5.5 Off-policy Denoising Perturbed Citations

We explored a purely off-policy alternative approach. Specifically, given a model-generated
response, we randomly shift its citation spans to create perturbed variants. SimPO train-
ing pairs were then constructed by preferring the original citation over the perturbed one,
encouraging the model to “denoise” citations by restoring their original spans. However, as
shown at the bottom of Table 5.5, this approach degrades performance, both when applied
to original and best-of-N responses. We attribute this to a mismatch between the training
data and the model’s natural error distribution—since random shifts do not reflect typical
citation errors, they fail to provide useful guidance for improvement.

5.5.6 Iterative Preference Optimization

It has been discussed that an on-policy alignment process can be beneficial to avoid reward
exploitation [139] and maintains consistency between the generated data and the model’s
evolving output distribution. We thus experiment with iteratively performing SimPO, similar
to the concepts of recent studies [140,141], to maintain the consistency between the generated
data and the model’s evolving output distribution. Specifically, after fine-tuning with SimPO,
we generate a new dataset via BoN, which is also 2K in size but not overlapped with previous
iterations. We continue training the model and repeat the process for three rounds. As shown
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Figure 5.2: Iteratively applying SimPO for three iterations.

in Figure 5.2, while the largest improvement occurs in the first round, improvements continue
over three iterations, which further validates the reliability of our reward signal. Iterative
SimPO is still not perfect since it remains an off-policy method. Given that our reward
can be cheaply computed, we believe that on-policy methods like PPO [142] could further
enhance performance. We leave the exploration of such approaches for future work.

5.5.7 Latency of Best-of-N

Table 5.6 reports the average per-example latency on LongBench-Cite. As expected, Best-
of-N (BoN) introduces additional latency due to the need to generate and rerank multiple
citation candidates. In our setup, we use N = 10 candidates, but the sampling time is not
10x longer than direct decoding. This is because we only re-sample short citation spans
(typically 5-10 tokens), not the full responses, resulting in relatively lightweight sampling
overhead.

However, the increased latency from BoN is not a major concern, because our SelfCite
SimPO model also achieves the same performance as BoN in a single pass, without additional
latency. For scenarios requiring maximum efficiency, we recommend using the SimPO model
directly.

5.5.8 Qualitative Study

Finally, we examine an example that requires citing multiple context sentences to support a
complex response. As shown in Table 5.7, the response integrates information from sentences
302, 303, and 306. Direct sampling (2) omits sentence 302 while incorrectly including 305.
In contrast, the best-of-N candidate (1) correctly includes 302 and excludes 305, achieving a
slightly higher reward (0.578 vs. 0.547), demonstrating the effectiveness of our reward design.
We also present candidates (3) and (4), which cite more irrelevant sentences and miss key
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Table 5.6: Average latency per example on LongBench-Cite (8 x A100 GPUs, batch size 1,
model parallel).

Method Avg Latency (s)
LongCite-8B 24.3
SelfCite BoN Sampling 149.0
SelfCite BoN Reranking 34.0
SelfCite SimPO model 26.2

citations, leading to even lower rewards. Additional qualitative examples are provided in
Appendix C.3.

5.6 Zero-shot Evaluation on Chunk-level Citation Bench-
mark ALCE

We additionally include the zero-shot evaluation on the chunk-level citation benchmark
ALCE [118] and report the results in Table 5.8. We find that our baseline model, LongCite-
8B, although under a zero-shot setting (it is trained on sentence-level citation but test
on chunk-level citations), already outperforms the prompting-based approach from Gao et
al. [118] by a substantial margin in both citation recall and precision. Incorporating NLI-
based rewards from Huang et al. [115] into our SimPO training yields further improvements.
Most notably, our method—SimPO with SelfCite rewards—achieves the best performance
among models trained on the same LongCite-45k dataset.

The last row of the table presents the best result reported by Huang et al. [115], who fine-
tuned their model using supervised data. However, this setting is not directly comparable
to ours for several reasons:

1. They optimize directly for the ALCE evaluation metric by using the same NLI evalua-
tor model (google/t5_xx1_true_nli_mixture) to provide both training rewards and
evaluation scores.

2. Their model is trained on the in-distribution QA training sets in ALCE, with exactly
the same chunk-level format as the benchmark. In contrast, our SelfCite model is
trained on out-of-distribution sentence-level citations from LongCite-45k.

3. Their method involves distillation from ChatGPT in the first stage, whereas ours does
not rely on external supervision.

Despite this domain and format mismatch, SelfCite demonstrates strong generalization
and consistently outperforms both LongCite-8B and the NLI-based SimPO baseline. This
highlights the robustness and effectiveness of our approach even in cross-domain, cross-format
transfer settings.
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Table 5.7: An example of differences in the citation from baseline vs BoN. Related informa-
tion are highlighted in the context/response. (green: correct; red: wrong)

Sent. ID Context Sentences (only showing a paragraph due to limited space)

302 (v) In general, consumer advocates believe that any comprehensive federal privacy policy
should complement, and not supplant, sector-specific privacy legislation or state-level
legislation.

303 (v) Finding a global consensus on how to balance open data flows and privacy protection
may be key to maintaining trust in the digital environment and advancing interna-
tional trade.

304 (X) One study found that over 120 countries have laws related to personal data protection.

305 (X) Divergent national privacy approaches raise the costs of doing business and make it
harder for governments to collaborate and share data, whether for scientific research,
defense, or law enforcement.

306 (v) A system for global interoperability in a least trade-restrictive and nondiscriminatory
way between different national systems could help minimize costs and allow entities
in different jurisdictions with varying online privacy regimes to share data via cross-
border data flows.

Query Please write a one-page summary of the above government report.

Response |[...] The report concludes by noting that finding a global consensus on how to balance

(only open data flows and privacy protection may be key to maintaining trust in the digital

single environment and advancing international trade. The report suggests that Congress

statement may consider comprehensive privacy legislation and examine the potential challenges
due to and implications of building a system of interoperability between different national
space) privacy regimes. |...|

BoN Candidates Citation Strings Missing Citations SelfCite Reward

(1) Best candidate ~ [302-303] [306-306] - 0.578

(2) Direct sampling  [303-303] [305-306] (
(3) Other candidate [303-304][308-308][310-311] (302, 306) 0.461
(4) Other candidate [303-303] [309-309] [311-311] (

4

302) 0.547

302, 306) 0.375

5.7 Chapter Summary

In this chapter, we present SelfCite, a self-supervised framework for aligning large language
models (LLMs) to generate more accurate and fine-grained citations. By leveraging LLMs’

own output probabilities, SelfCite computes necessity and sufficiency rewards through con-
text ablation, enabling preference optimization without relying on external annotations from
human or proprietary APIs. Applying such rewards in best-of-N (BoN) sampling and SimPO
fine-tuning can significantly improve the citation correctness on the LongBench-Cite bench-
mark, offering a promising self-improving direction towards verifiable and trustworthy LLMs.

SelfCite also has limitations: 1) While achieving strong results with SimPO, integrating
other preference optimization or reinforcement learning (RL) algorithms, e.g., PPO [142],
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Table 5.8: Evaluation on the chunk-level citation benchmark ALCE [118].

Our model

(SimPO w/ SelfCite) is trained on sentence-level, out-of-distribution LongCite-45k data but
still generalizes well to the chunk-level ALCE benchmark.

Model

‘ ASQA ‘ ELI5
‘ EM Rec. ‘ Cite Rec. Cite Prec. ‘ Correct ‘ Cite Rec. Cite Prec.

Gao et al. [118] (Prompting)

Llama-2-13B-chat 34.66 37.48 39.62 12.77 17.13 17.05
Llama-3.1-8B-Instruct 42.68 50.64 53.08 13.63 34.66 32.08
Finetuned on LongCite-45k (Out-of-Distribution)
LongCite-8B 42.11 62.27 57.00 15.37 30.54 29.15
+ SimPO w/ NLI Rewards 41.20 65.65 60.20 15.30 33.06 31.05
+ SimPO w/ SelfCite 42.57 71.68 62.05 15.17 37.09 35.62
Finetuned on ALCE train set (In-Distribution Supervision)
Huang et al. [115] | 4005 | 7783 76.33 | 1154 |  60.86 60.23

remains under explored.

However, prior work [143] shows that BoN closely approximates

the performance upper bound of RL, and we follow established practice [125,126] to mainly
validate our rewards through BoN, and further verify it with SimPO fine-tuning. 2) SelfCite
assumes access to model output probabilities, which may not be feasible for closed-source
models. 3) While our framework improves the quality of citations already generated by
LLMs, discovering unsupervised methods to kick-start LLMs’ ability in generating structured
citations from scratch remains an important direction for future research.

Ultimately, while DoLa, Lookback Lens, and SelfCite provide powerful post-training
solutions, they share a fundamental limitation: no method can recover knowledge that was
never present in the training data, motivating a shift to addressing data quality at its source

in Chapter 6.
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Chapter 6

Curating Worldwide Long-tail
Knowledge at Scale

6.1 Introduction

6.1.1 From Post-training to Pre-training Solutions

Chapters 3, 4 and 5 presented three complementary approaches to address hallucinations in
large language models. DoLa amplifies existing parametric knowledge by contrasting layer
representations during decoding. Lookback Lens detects contextual hallucinations by analyz-
ing attention patterns to determine whether models properly use provided context. SelfCite
enables attribution by teaching models to generate verifiable citations through self-supervised
learning. Each method achieved significant improvements on its respective benchmarks, and
together they form a comprehensive post-training toolkit for handling hallucinations after
models have been trained.

The Shared Assumption and Its Limitation. Despite their differences, all three ap-
proaches share a fundamental assumption: they operate on models that have already been
trained on some fixed corpus of data. DolLa assumes the model has encoded factual knowledge
in its parameters that can be recovered through better decoding. Lookback Lens assumes
the model can attend to relevant context when prompted correctly. SelfCite assumes the
model can learn to generate accurate citations given the right training signal. However,
this assumption reveals a critical limitation: if the necessary knowledge—especially long-tail,
underrepresented concepts—was never present in the pre-training data or provided context
to begin with, no amount of post-training intervention can recover it. You cannot decode
knowledge that was never encoded, cannot attend to context for concepts never learned, and
cannot cite information about topics never seen.

The Root Cause: Long-tail Knowledge Gaps in Pre-training Data. Many halluci-
nations arise not only from model imperfections but also from the long-tailed nature of the
knowledge available in pre-training corpora. Empirically, a model’s ability to answer fact-
based questions is strongly tied to how many documents relevant to those facts it has seen
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during pre-training, with evidence of both correlational and causal effects across datasets and
model sizes [106]. More broadly, recent surveys highlight hallucination as a major obstacle
across foundation models and point to training-data biases and limited knowledge cover-
age as key contributing factors [144]. This data-centric view is consistent with arguments
that LLMs are inherently statistical models with profound dependency on their training
data [145].

The long-tail problem manifests in multiple forms. Temporal knowledge decay affects
all models: training data captures only a snapshot of the world, while language and facts con-
tinue to evolve. Prior work shows that language models become increasingly outdated when
deployed beyond their training period, and that this degradation can substantially harm
downstream tasks requiring up-to-date factual knowledge [146]. Recent evaluations further
reveal significant temporal biases and performance decline over time, highlighting the need
for more effective updating and continual learning mechanisms [147]. Data quality issues
further compound the long-tail challenge. Existing surveys emphasize that data-related hal-
lucinations arise from misinformation, biases, and knowledge gaps rooted in pre-training
corpora. As the demand for web-scale pre-training data grows, heuristic collection and the
difficulty of maintaining consistent data quality inevitably introduce misinformation, which
can be amplified by models” memorization behavior [148|. Correspondingly, the presence of
noisy data such as misinformation in the pre-training corpus can corrupt LLMs’ parametric
knowledge and contribute to hallucinations [149]. Given the trillion-token scale of modern
corpora, fully manual curation is increasingly impractical, motivating automatic filtering and
source selection strategies [149].

Moreover, for vision-language models, culture-bound knowledge represents the most
critical yet addressable long-tail challenge. Unlike temporal decay (which affects all mod-
els universally) or naturally rare entities (which genuinely lack training examples), culture-
bound concepts become artificial tail entities through systematic filtering during data cura-
tion. Models like CLIP are trained mostly on popular web images filtered by English text, so
they learn common ideas very well, e.g., things like "cat" or "car", but systematically discard
culturally specific objects (e.g., yucca, pangolin) and non-Western landmarks despite their
abundance in worldwide web data [150]. When faced with these filtered concepts, the model
often guesses or defaults to something more familiar, simply because the English-centric cu-
ration pipeline actively excluded them. The consequence is clear in the Google Landmarks
Dataset v2 (GLDv2), which includes a wide range of human-made and natural landmarks
around the world: a model trained only on English-centric data reaches just 52.8% accu-
racy, while our model trained on globally curated data achieves 69.0%. This shows that
hallucinations often arise not from data scarcity but from data curation failures, where
the pre-training data fail to capture the long tail of culturally and geographically diverse
knowledge that exists in the real world due to systematic English-only filtering.

Figure 6.1 illustrates this phenomenon with concrete examples from the CVQA bench-
mark [151]. Critically, both questions are posed entirely in English, yet the English-only
trained model fails because it lacks the underlying cultural knowledge, not language un-
derstanding. In the first example, recognizing that certain Japanese regions install flat-
style traffic lights to prevent snow accumulation requires geographic and cultural knowledge
about Japan’s snowy regions; the English-only model, unfamiliar with this concept, defaults
to “Hot region.” In the second example, identifying a Mountain Nyala requires familiarity
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(a) Origin: Japanese, Japan. Question: “In
which type of climate regions in Japan would  (b) Origin: Oromo, Ethiopia. Question:
this be installed?” Options: “Rainy region”, “What is this animal called?” Options:
“Snowy region”, “Hot region”, “Arid region”. “Ethiopian Wolf” “Buffalo”, “Monkey”, “Moun-
English-only model: Hot region X. World- tain Nyala”. English-only model: Buffalo X.
wide model: Snowy region v. Worldwide model: Mountain Nyala v.

Figure 6.1: Examples from CVQA [151] demonstrating culture-bound knowledge gaps. Both
questions are posed in English. CVQA evaluates CLIP models by computing embedding
similarity between the image and each “Question + Option” text, selecting the option with
the highest similarity. The English-only model is our MetaCLIP 2 (H/14) model trained on
the English subset (13B seen pairs in Table 6.2). The Worldwide model is our MetaCLIP 2
(H/14) model trained on all the worldwide data (29B seen pairs in Table 6.2).

with fauna endemic to the Ethiopian highlands; the English-only model guesses “Buffalo,”
an animal more common in Western cultures. These failures occur because the relevant
culture-bound concepts were filtered out during English-only data curation, despite being
well-documented in worldwide web content. The worldwide-trained model, which retained
these concepts during curation, answers both correctly. This demonstrates that the knowl-
edge gap is fundamentally about what was in the training data, not about the language
of the query.

The Paradigm Shift: Addressing Long-tail Knowledge at the Source. This un-
derstanding motivates a fundamental shift in how we think about hallucination mitigation.
Instead of relying on ever more complex post-training fixes to patch problems after the
fact, we should tackle long-tail knowledge gaps and biases where they begin—during pre-
training data curation. Addressing the issue at its source brings several key benefits. First,
it prevents problems before they appear; no post-training technique can recover knowledge
that was never learned, unless we can leverage a large amount of additional annotations
and human supervision to fundamentally change the knowledge memorized by the models.
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Second, it improves everything built on top of the foundation model—better pre-training
data strengthens not only the base model itself but also any fine-tuned variants, retrieval-
augmented systems, and downstream applications that depend on it.

Why Vision-Language Models as the Testbed? At this point, a natural question
arises: if our focus is on addressing data quality for language models, why do we shift to vision-
language models (specifically CLIP) in Chapter 67 The answer involves both practical and
scientific considerations. From a practical standpoint, pre-training CLIP models is orders of
magnitude cheaper than training large language models—requiring days or weeks rather than
months. This enables rapid experimental iteration to test data curation strategies, especially
for understanding how to preserve long-tail knowledge. From a scientific standpoint, the
hallucination problem in multimodal settings is arguably more severe and more immediately
verifiable: image-text misalignment is often obvious and demonstrable in ways that factual
errors in pure text are not.

6.1.2 Motivation for MetaCLIP 2

Contrastive Language-Image Pre-training (CLIP) [34] has become an essential building block
of modern vision and multimodal models, from zero-shot image classification and retrieval
to serving as vision encoders in multimodal large language models (MLLMs) [128,152-154].
CLIP and its majority variants [38,155] adopt an English-only setting, and MetaCLIP 38|
introduces a scalable data curation algorithm to meticulously extract a billion-scale English
dataset that exhausts long-tailed concepts in Common Crawl. The algorithm transforms
the distribution of the raw Internet into controllable and balanced training distribution de-
fined by metadata (e.g., visual concepts composed by human experts) and training distribu-
tion is known as one key contributor to performance. In contrast, popular CLIP reproduc-
tions outsource such key contributor to external resources, e.g., OpenCLIP [155] trained on
LAION |[156,157] and DFN [158] rely on pretrained CLIP models for black-box filtering to
keep only high-confidence data. Such approaches resemble distillation of an existing CLIP
teacher model and produce intractable distributions owned by an outsourcing party.
Although being the most widely used “foundation” models, most CLIP variants, includ-
ing the scalable MetaCLIP, rely on English-only curation and thus discard the other, e.g.,
50.9% [159] of non-English, worldwide web data. To extend CLIP training and data to the
worldwide web for the next level of scaling, we inevitably have to handle these non-English
image-text pairs—a barrier we refer to as the worldwide scaling challenges, which are issues
not yet being solved after years of attempts to train CLIP on multilingual data:
Challenge #1: Lack of a fundamental data curation method to handle non-
English data at scale. Existing attempts either conduct no curation on the raw, non-
English image-text pair data at all (e.g., distilling from English CLIP [160] or machine
translation [161,162]), or rely on proprietary and private data sources (e.g., WebLI [163]
that drives mSigLIP and SigLIP 2 [164,165] is built from Google Image Search [166]).
Challenge #2: Worse English performance than English-only CLIP. This is also
known as curse of multilinguality in text-only large language models (LLMs). For instance,
mSigLIP is 1.5% worse than its English-only counterpart, SigLIP, on ImageNet [164], while
SigLIP 2 [165] prioritizes English performance at the cost of even worse multilingual results
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Figure 6.2: (Left) CLIP training suffers from the curse of multilinguality that the English
performance of a CLIP model trained on worldwide (i.e., English + non-English), billion-
scale data is worse than its English-only counterpart, even when applying our recipe on
ViT-L/14; scaling to ViT-H/14 enables non-English data helps English-only CLIP. (Right)
English data also helps non-English CLIP.

than mSigLIP. Hence, disparate models have to be used to optimize English and non-English
performance at the same time.

This work. We present MetaCLIP 2, the first ever recipe developing CLIP with training
from scratch on native worldwide image-text pairs, without relying on outsourced resources,
such as any private data, machine translation, or distillation. We empirically show that the
curse of multilinguality in CLIP is the consequence of insufficient scaling due to the lack
of a proper recipe for worldwide data curation and model training. When metadata, data
curation, model capacity, and training are carefully designed and scaled jointly, we show that
not only the performance trade-offs between English and non-English data disappear, but
the two become mutually beneficial. Achieving such worldwide scaling is highly desirable,
especially when English Internet data is exhausted soon [167].!

Our MetaCLIP 2 recipe is built on top of English MetaCLIP, where overlapping with Ope-
nAl CLIP’s vanilla architecture is deliberately maximized. The overlap makes our findings
generalizable to CLIP and its variants, compared to system works (cf. [164,165,168]) aiming
at state-of-the-art (SoTA) performance with combination of all available techniques. Such
combination involves confounding factors or comparison on outsourced resources instead of
CLIP itself. The MetaCLIP 2 recipe introduces three principled innovations for scaling to
worldwide. 1) Metadata. We scale the English MetaCLIP metadata to 300+ languages on
Wikipedia and multilingual WordNet. 2) Curation algorithm. We build per-language sub-
string matching and balancing to curate concept distribution for non-English data similar to
the English counterpart. 3) Training framework. We design the first worldwide CLIP train-
ing framework, including an increase of seen image-text pairs during training proportional to
the increased data size from the added non-English data examples, and a study on minimal

!The source code of this chapter is available at https://github.com/facebookresearch /MetaCLIP.
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viable model capacity to learn from worldwide scale data. As shown in Fig. 6.2, although
a ViT-L/14 (the largest model size used by OpenAl) still suffers the curse of multilingual-
ity, ViT-H/14 breaks the curse. English accuracy rises from 80.5% to 81.3% on ImageNet
and surprisingly new SoTA is set with minimal CLIP architecture changes for multilingual
image-to-text retrieval (XM3600 64.3%, Babel-TmageNet 50.2%, and CVQA 57.4%).
Together, MetaCLIP 2 enables the following desirable results by nature. 1) Mutual
benefits from the English and non-English worlds. Non-English data now can better
support an English-only model and vice versa, which is critical in the era when English data is
depleting. 2) Full multilingual support. MetaCLIP 2 never drops image-text pairs simply
by languages and yields models outperforming all the previous multilingual systems, such as
mSigLIP [164] and SigLIP 2 [165]. 3) Native-language supervision. Models learn directly
from alt-texts written by native speakers rather than synthetic machine translations [150,162].
4) Cultural diversity. MetaCLIP 2 retains the entire global distribution of images and thus
inherits the comprehensive cultural and socioeconomic coverage advocated by [150]. Such
coverage improves geo-localization and region-specific recognition. 5) No-filter philosophy.
With the curation algorithm designed towards worldwide data, MetaCLIP 2 removes the
last filter (i.e., whether the alt-text is in English) in pipeline, achieving better diversity
and minimizing biases introduced by filters [150]|. 6) Broader impacts on foundation
data. This work provides a foundational data algorithm designed for worldwide scale, and
benefits not only CLIP, but also efforts using CLIP data such as MLLM [128,169], SSL
(Web-DINO [170]) and image generation (DALL-E [171] and diffusion models [172]).

6.2 Related Work

6.2.1 Evolution of CLIP and its Data Processing

CLIP [34] and its variants [155,164,173] learn versatile image and text representations that
are generally useful for downstream tasks [128,153,174]. Such multimodal contrastive learn-
ing and transformer architectures become standard components in vision and multimodal
research. Data is a key contributor to CLIP’s performance [38,175]. Two major processing
approaches for CLIP data emerge: curation? from scratch, and distillation from external
resources. One key difference is that the former yields more controllable distribution and the
latter has untractable distribution owned by an outsourcing party.

Curation from scratch. OpenAl CLIP [34] curates a training dataset of 400M image-
text pairs from scratch and publicizes high-level curation guidance. MetaCLIP [38] makes
OpenATl’s guidance as a formal curation algorithm and scales the curation to 2.5B pairs.
The algorithm is model-free, no blackbox filtering, and fully transparent to enable training
entirely from scratch on public data source, where the data distribution is curated to align
with metadata composed by human experts (e.g., WordNet and Wikipedia).

Distillation from external resources. Distillation-based methods usually have good
performance and save compute by learning from teacher model’s knowledge [177|. How-

2Here, “curation” refers to select and align training data distribution with human from raw data source,
excluding data filtering that is also referred to as curation in many works like DataComp [175,176] and
DFN [158].
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ever, in the context of CLIP training the teacher is usually an external blackbox system,
which introduces intractable bias. For example, LAION-400M /5B [156,178] (used by Open-
CLIP [155]) relies on OpenAl CLIP-filter and DEFN [158] using a filter model trained on
high-quality private data [179]. Recently, SigLIP [164] and SigLIP 2 [165] learn from data
source WebLI [163], which is derived from Google Image Search [166].

6.2.2 Vision Encoding

CLIP-style models are widely used as vision encoders in MLLM, where language supervision
in CLIP training helps to learn compact and semantic-rich visual representations. In contrast,
traditional visual representation learning is based on self-supervised learning (SSL) methods
like SimCLR [180], DINOv2 [181], and purely relies on the full visual signal without language
bias. There are variants that take advantage of both. SLIP [182| combines language and
SSL supervision; LiT [183] trains a vision encoder first and conducts language alignment
later; Perception Encoder [168] shows early layers of CLIP representation yields vision-driven
features with less semantic alignment. Recently, Web-DINO [170] shows SSL has better
scalability on MetaCLIP curated large-scale data. In summary, CLIP focuses on human-
aligned representations optimized for compact models and efficient downstream uses; SSL
models aim to preserve all visual information as a general pretraining approach. We envision
more synergy from the two research lines due to complementarity.

6.2.3 Multilingual CLIP Models

Due to the lack of open source curation for public worldwide data, initial attempts to mul-
tilingual CLIP models are mainly distillation approaches. M-CLIP [161] and mCLIP [160]
simply leverage existing English-only CLIP as the vision encoder and trains a multilingual
text encoder with low-quality multilingual pairs. To incorporate non-English data, subse-
quent works [150,162,184] leverage machine translation techniques, either translating non-
English captions into English or vice versa. These distillation-based models carry existing
English CLIP bias or translation bias on nonhuman-captioned data. mSigLIP [164] substan-
tially advanced multilingual performance by leveraging multilingual data from WebLI [163],
which is an undisclosed dataset built with private data processing pipeline instead of publicly
available worldwide data curation algorithm.

However, mSigLLIP and other multilingual CLIP models suffer from the curse of multilin-
guality, e.g., mSigLIP is 1.5% worse in ImageNet accuracy than its English-only counterpart
SigLIP. Recently, SigLIP 2 adopts a notably English-centric design of having 90% of its data
in English, which is much higher than mSigLIP. Mixed results are also observed [185] on
English benchmarks when scaling SigL.IP from WebLI’s 10B to 100B raw data, suggesting
the challenges of scaling WebLI beyond.

6.3 The MetaCLIP 2 Recipe

Our recipe of scaling CLIP to native worldwide data and training comprises three steps shown
in Fig. 6.3: (1) constructing worldwide metadata, (2) implementing worldwide curation
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algorithm, and (3) building training framework for worldwide model. For generalizable
recipe and findings, MetaCLIP 2 is designed to maximize overlapping with OpenAl CLIP
and MetaCLIP, and only adopts necessary changes to learn from worldwide data.

OpenAl CLIP

]| L g

English
Non-English w Scaling Scaling
7 All
L 20
o “\y Data Pool
VS
% [ ] [ MetaCLIP 2
329 langs. (Sec. 3.2) No language filter (Sec. 3.3) 2.3x seen pairs (Sec. 3.4)

Figure 6.3: Overview of MetaCLIP 2 recipe: scaling CLIP data and training to worldwide
scope.

6.3.1 Revisit of MetaCLIP Algorithm

We revisit the original MetaCLIP algorithm to illustrate how English-based CLIP data is
curated with metadata constructed from human knowledge. The algorithm first constructs
metadata M, a list of high-quality visual concepts, from corpora written by human experts.
M contains 500k entries, a combination and deduplication of entities from four high-quality
sources: 1) all English WordNet Synsets, 2) Wikipedia English unigrams, and 3) bigrams,
and 4) Wikipedia page titles. Then, the algorithm performs substring matching on each
alt-text (from a given image-text pair in the data pool D) using metadata M to obtain a list
matched_entry_ids. Global counting is conducted to calculate the number of matches
over D for each entry in M as entry_count. Finally, the algorithm applies balancing to
transform the raw image-text pair distribution into a distribution that is balanced for head
and tail concepts and ready for training, by associating each pair with a sampling probability.
Specifically, the count per entry is first converted into a probability of sampling each entry,
entry_prob, where tail entries (defined as entry_count < t) have a probability set to 1,
and all the other head entries have t/entry_count as sampling probabilities. Each pair is
then sampled based on probabilities of matched entries in its alt-text. Here, t is a threshold
to decide head vs. tail entries and set to 20k in OpenAl CLIP; MetaCLIP raised t to 170k
for scaling to billion English pairs.

6.3.2 Worldwide Metadata

We address the first challenge for worldwide scaling by constructing the missing metadata
to cover the non-English world. We maintain independent metadata per language since such
design is intuitive (e.g., the same word “mit” has different meaning in English and Germany),

90



has better performance (see ablation in Sec. 6.4.2), and is flexible for adding and curating a
new set of languages in future.

Our metadata is from the same four sources as OpenAl CLIP and MetaCLIP, but beyond
English. Key changes are highlighted as follows. 1) Multilingual WordNet: we include all
synsets from 31 languages. 2) Wikipedia Unigrams and 3) Bigrams: we process unigram and
bigram from Wikipedia dumps dated on May 2024, which include corpora in 329 languages.
We clean the corpora into plain text with WikiExtractor [186]. For most languages, we use
space and punctuation to tokenize text into words, and then count unigrams and bigrams
(with PMI scoring described later in Section 6.3.4). For languages without space separation
(e.g., some Asian languages), we use open-source tokenizers (see Table 6.1 in Section 6.3.3)
developed by local communities to properly split text into words and meanwhile maintain
the semantic integrity. 4) Wikipedia Titles: we use page titles from 40 random dates of
Wikipedia snapshots and rank these titles by click-through traffic for each language.

6.3.3 Unigram and Bigram Tokenizer for Special Languages

Most modern languages around the world adopt writing systems that use “spaces” to separate
words, except for some of the Asian languages, known as “scriptio continua” [187]. We find
several open source tokenizers for many of these languages developed by local communities,
as shown in Table 6.1, in order to properly split text into words while preserving semantic
integrity. Note these tokenizers are only used to process Wikipedia dump labeled with the
listed wiki codes (e.g., not on alt-texts’ substring matching).

Wiki Code ‘ Tokenizer Name ‘ URL

bo,dz Tibetan Tokenizer | https://github.com/OpenPecha/Botok

ja,ryu Japanese Tokenizer | https://github.com/SamuraiT /mecab-python3
km Khmer Tokenizer | https://github.com/phylypo/segmentation-cri-khmer
lo Lao Tokenizer https://github.com /wannaphong/LaoNLP
my Myanmar Tokenizer | https://github.com/ThuraAung1601/mmCRFseg
th Thai Tokenizer https://github.com/Querela/thai-segmenter

zh,zh _classical,zh _yue | Chinese Tokenizer | https://github.com/ckiplab/ckip-transformers

Table 6.1: Tokenizers for special languages.

6.3.4 PMI Score for Ranking Bigrams

Although MetaCLIP follows OpenAl’s description on ranking bigrams by point-wise mutual
information (PMI), we observed that raw PMI for bigrams overemphasizes extremely rare
pairs (e.g., a bigram appearing only once as a typo), yielding unintuitive high scores. For
example “AAAAAB CCCCCB” appears high. To mitigate this, we (i) temper rarity by
multiplying PMI with a sublinear count factor and (ii) subtract a baseline using a lower-
percentile PMI threshold that roughly marks the onset of meaningfulness.

Let ¢(wq,wy) be the bigram count, i.e., the times that w; and wy co-exist adjacently in
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the corpus, ¢(w) the unigram count, and N the total token count in the corpus. We define
wy, W c(wy, we) N
p(wy, wy) — log (wy, wy)

PMIwr,wa) =log 0 3 Dtws) ~ '8 el )elug)

Let PMI39 denote the 30" percentile of the empirical PMI distribution over all observed bi-
grams in a language (a baseline for “starts-to-be-meaningful” associations). Our final bigram
score is

Score(wy, wa) = [c(wy, we) + 1}0'7 x (PMI(wy, ws) — PMls).

This new formulation down-weights spurious high-PMI, low-count bigrams while preserving
genuine high-frequency associations; the percentile shift suppresses background noise from
weakly associated pairs. After replacing bigram ranking with the new scoring metric, we got
the following top-5 bigrams: “United States”, “of the”, “New York”, “such as”, “has been”.

6.3.5 Curation Algorithm

Next, we scale curation to worldwide data language-by-language. The curation algorithm is
detailed below and summarized in pseudo-code as Algorithm 2. First, we conduct language
identification (LID) [188] to classify the language of the alt-text from an image-text pair,
and choose language-specific metadata to match concepts. The sets of languages covered
by LID and metadata sources (e.g., Wikipedia) are usually different, so we first establish a
mapping between one language in LID to a unique set of languages in metadata entries. The
languages in the metadata mapped to the same language in LID are merged into one group.
This ends with a dictionary representation of metadata, M, where the keys are each language
in LID and the values are the combined metadata of each group of languages. We also include
a key “other” for metadata of languages that cannot be associated with any language in LID.
Each alt-text (text) in D is applied with LID for predicting its language (text.lang).
After that, as in the MetaCLIP algorithm summarized in Sec. 6.3.1, we run substring
matching with metadata corresponding to predicted languages: matched_entry_ids =
substr_match(text, M[text.lang]), and aggregate global count, the number of matches
of each entry, in entry_counts.

With counts calculated, we balance occurrence of concepts across pairs. In data curation
for English CLIP described above, a threshold ¢ is designed to limit the matches per meta-
data entry, where entries with matches fewer than ¢ are defined as tail entries (or concepts)
and otherwise head. Image-text pairs from head concepts are downsampled by a sampling
probability derived from ¢ to balance training data distribution. Thus, ¢ depends on the size
of raw data pool (e.g., a larger pool has higher counts for the same entry). OpenAl CLIP
sets t to 20k for 400M pairs; MetaCLIP [38| tunes ¢ to 170k for scaling the training dataset
to 2.5B and keeping the same ratio, 6% of matches from tail concepts, that OpenAl CLIP
leverages to obtain the 400M pairs. For worldwide data, the data size and the counts of
matches differ greatly across languages, so t should be language-dependent. Applying a sin-
gle threshold ¢ to all languages yields suboptimal performance, e.g., a larger ¢ for a language
with fewer pairs may yield too many pairs of head concepts and dilutes tail concepts in the
curated data (see Sec. 6.4.2).

92



To derive t for each language, we leverage the invariance assumption adopted in Meta-
CLIP algorithm design, the percentage of tail matches (i.e., 6%), and apply it across lan-
guages. With this assumption, we determine ¢ in two steps. (1) From t., to p: we calculate
the global tail proportion p for all languages, based on matches of English tail entries decided
by ten. (2) From p to ti,: for each non-English language, we reversely find the language-
specific threshold t,,, based on the calculated p to ensure the same tail proportion across
all languages. Detailed implementation of these two steps is shown as the t_to_p() and
p_to_t () functions in Algorithm 2. With #,,,, entry_counts is converted to entry_probs
similarly as in MetaCLIP but for each language.

Putting everything together, Algorithm 2 takes raw image-text pairs D, metadata M,
and an arbitrary threshold for English ¢., as input, and outputs a curated dataset of bal-
anced and diverse training pairs, D*, with three stages. Stage 1 performs language-specific
substring matching for each alt-text, text, based on LID results and corresponding meta-
data, and obtains match counts, entry_counts, for each language and entry. Stage 2
computes thresholds tj,,s from t.,. Stage 3 samples image-text pairs based on matched
entries in text with probabilities entry_probs. Pairs matched with tail entries are always
selected (i.e., probability = 1.0); pairs with head entries have sampling probabilities ¢j,g /
entry_counts[lang]. Sampled pairs compose D* (see efficient implementation details in
Section 6.3.6).

6.3.6 Scaling Curation

Worldwide scaling of data curation significantly increases time and space complexity due to
storing metadata across hundreds of languages. To efficiently handle this complexity, we
leverage several efficient implementations:

e Efficient String Matching: We adopt the Aho-Corasick algorithm 3,*, which utilizes
prefix trees (tries), for rapid substring matching. The matching speed is about 2k times
faster than MetaCLIP’s brute-force implementation, enabling matching with million-
scale metadata.

e Lazy Metadata Loading: We pre-build and store the metadata into an Aho-Corasick
automaton for each language separately, loading these automaton dynamically and
only when encountering a new language for alt-text during processing, thereby mini-
mizing the total number of languages encountered for each shard of data and saving
re-compiling time for automation on a new shard.

e Memory Management for Probabilities: To address memory constraints during
sampling for balancing, we utilize memory-mapped file loading (mmap) to efficiently
access counts per entry across all languages, preventing out-of-memory errors caused
by loading all the counts from different languages.

3https://en.wikipedia.org/wiki/Aho-Corasick_algorithm
4https://pypi.org/project /pyahocorasick
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Algorithm 2 Pseudo-code of MetaCLIP 2 Curation Algorithm in Python/NumPy.

Input:

D(list) raw (image, text) pairs: each text is assigned with a language "text.lang" by LID;

M(dict) worldwide metadata: key->language code; value(list)->metadata for that language;

t_en(int) English threshold on counts of head/tail entry cutoff: OpenAI CLIP->20k, MetaCLIP->170k;

H B H B

H*

Output:
# D_star(list): curated image-text pairs;

# helper functions to compute t for each language.
def t_to_p(t, entry_count):
return entry_count[entry_count < t].sum() / entry_count.sum()

def p_to_t(p, entry_count):
sorted_count = np.sort(entry_count)
cumsum_count = np.cumsum(sorted_count)
cumsum_prob = cumsum_count / sorted_count.sum()
return sorted_count[(np.abs(cumsum_prob - p)).argmin()]

# Stage 1: sub-string matching.

entry_counts = {lang: np.zero(len(M[langl)) for lang in M}

for image, text in D:
# call substr_match which returns matched entry ids.
text.matched_entry_ids = substr_match(text, M[text.lang])
entry_counts[text.lang] [text.matched_entry_ids] += 1

# Stage 2: compute t for each langauge.
p = t_to_p(t_en, entry_counts["en"]); t = {}
for lang in entry_counts:

t[lang] = p_to_t(p, entry_counts[lang])

# Stage 3: balancing via indepenent sampling per language.
entry_probs = {}
for lang in entry_counts:
entry_counts[lang] [entry_counts[lang] < t[lang]] = t[lang]
entry_probs[lang] = t[lang] / entry_counts[lang]

D_star = []
for image, text in D:
for entry_id in text.matched_entry_ids:
if random.random() < entry_probs[text.lang] [entry_id]:
D_star.append((image, text))
break

Mitigation and Benchmark Deduplication We run a state-of-the-art safety classifier
to remove NSFW contents (e.g., adult, sexual, violence) from training data. We also ap-
ply face detector to remove human biometrics and personally identifiable information from
data. To avoid benchmark leakage, we remove any overlap with ImageNet evaluation sets
by performing deduplication using 64-bit hashes. These hashes are generated by applying
random projection to feature embeddings from a similarity search model, reducing them to
64 dimensions followed by sign-based quantization.

6.3.7 Training Framework

Adopting data prepared with worldwide curation in current CLIP training framework ad-
dresses the first challenge, but curse of multilinguality still exists as shown in Fig. 6.2.
Thus, we further design the worldwide CLIP training framework. To make our framework
and findings generalizable to CLIP and its variants, our framework follows OpenAl/Meta-
CLIP’s training setting and model architecture with three additions: (1) a multilingual text
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tokenizer, (2) scaling seen training pairs, and (3) study of minimal viable model capacity.
The first is required to support worldwide languages and discussed in Sec. 6.4.2 for various
choices; details of the latter two are described below.

Scaling seen pairs. Expanding from an English-only dataset and distribution to world-
wide naturally increases the number of available image-text pairs. Training CLIP for world-
wide distribution with the same number of seen pairs as English CLIP downsamples English
training pairs and harms English performance. Hence, we scale seen pairs proportionally
to the growth of data size from non-English pairs, to ensure the amount of English seen
pairs unchanged during the worldwide CLIP training. This is achieved by increasing the
global training batch size, which encourages cross-lingual learning, and meanwhile keeping
the other training hyperparameters unchanged. We choose a 2.3x scaling of global batch
to reflect that English pairs constitute 44% of our training data. We ablate other choices of
global batch size in Sec. 6.4.2.

Minimal viable model capacity. Lastly, we study the minimal model expressivity to
enable learning on extra seen pairs and break the curse of multilinguality. As in Fig. 6.2,
we find that even a ViT-L/14 (largest model provided by OpenAl) suffers from the curse
due to deficient capacity, and ViT-H/14 is the inflection point to break the curse (strong
performance improvement in both English and non-English tasks).

6.4 Experiment

6.4.1 Dataset and Training Setup

Following MetaCLIP pipeline, we collect image-text pairs sourced from the Internet that are
publicly available. After LID, there are about 44% of alt-texts are in English, which are on
par with the scale of English-only data from MetaCLIP [38]. For generalizable recipe and
findings, we base our training setup on OpenAl CLIP’s ViT-L/14 and MetaCLIP ViT-H/14,
except changes necessary for enabling worldwide capability, as described in Sec. 6.3.7 and
ablated in later subsections. The full details can be found in Table D.1 and Appendix D.1.

6.4.2 Evaluation

We first present the main ablations of MetaCLIP 2 on a wide range of English and mul-
tilingual zero-shot transfer benchmarks, along with other multilingual CLIP baselines for
comparison (Sec. 6.4.2); then we conduct a comprehensive ablation study on the variants of
metadata, curation and tokenizer (Sec. 6.4.2). Lastly, we evaluate the embedding quality of
MetaCLIP 2 on downstream tasks for culture diversity (Sec. 6.4.3). Additionally, we conduct
analysis on embedding alignment and uniformity [189] in Sec. 6.5.1.

Main Ablation

We first ablate the effects of scaling seen training pairs and minimal viable model capacity
that break the curse of multilinguality, with the following two groups of 6 training runs.
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Two trainings are in ViT-L/14 on worldwide curated data and its English portion, where
global batch size and seen pairs are set to 2.3x and 1.0x compared to OpenAl CLIP and
MetaCLIP setting (i.e., 1.0x has 12.8B seen pairs, or 400M for 32 epoches as in OpenAl
CLIP). Four runs are on ViT-H/14 with different subsets of curated data to demonstrate the
effects of English data helping multilingual performance and vice versa. We denote each run
based on subsets trained with and corresponding seen pairs: 1) Worldwide (2.3x) with the
full-fledged worldwide curated data; 2) Worldwide (1.0x) with 1) downsampled; 3) English
(1.0x) with English portion of 1); 4) Non-English (1.3x) with the non-English portion.

We adopt the following two groups of zero-shot transfer benchmarks with limitations in
Section 6.7: 1) English-only benchmarks on ImageNet (IN wval) [190], SLIP 26 tasks
(SLIP 26 avg.) [182], and DataComp 37 tasks (DC 37 avg.) [175]; 2) multilingual
benchmarks on Babel-ImageNet (Babel-IN) [191] (averaged zero-shot classification on
IN with classes and prompts translated into 280 languages), XM3600 [192] (multilingual
text-to-image, T—I, and image-to-text, [—T, retrieval with an averaged recall@l on 36
languages), CVQA [151] (multilingual multi-choice visual question answering with English
and local averaged answer accuracy), Flickr30k-200 [193] (Flickr30k test set translated
into 200 languages), XTD-10 [194] (multilingual image-text retrieval on MSCOCO [195]
averaged Recall@l over 7 languages), and XTD-200 [193] (XTD10 translated into 200
languages). In Table 6.2, we observe that MetaCLIP 2 on ViT-H/14 with worldwide data
and scaled seen pairs consistently outperforms its counterparts English (1.0x) and Non-
English (1.3x), on both English and multilingual tasks, effectively breaking the “curse of
multilinguality”. The curse still exists in non-scaled seen pairs, Worldwide (1.0x) or smaller
ViT-L/14 model even with Worldwide (2.3x)). We further provide gradient conflict analysis
to help understand the root of the curse in Section 6.5.

| English Benchmarks | Multilingual Benchmarks
ViT Seen IN SLIP 26 DC 37 abel XM3600 | CVQA T Flicker30k-200 | XTD-10 | XTD-200
Model Size (Res.) Data Pairs val T—I11-T | ENLOC T—=I1-T | T=II=T | T-IIST
XLM-CLIP[155] H/14(224) LAION-5B 32B (2.5x) | 77.0 69.4 5 34.0 50.4 / 60.5 | 56.1 18.2 13.2 / 46. 87.1 / 88.4|42.5 /452
mSigLIP[164] B/16(256) WebLI(12B) | 40B (3.0x) | 75.1 63.8 60.8 10.2 14.5 / 56.6 | 51.8 / 45.7 34.0 :;m) 80.8 / 84.0 | 37.8 / 40.6
mSigLIP[164] | SO mu\]:znrw WebLI(12B) | 40B (3.0x) | 80.6 69.1 65.5 16.4 | 50.0 / 62.8 | 56.8 / 49.8 39.9 / 42.0 85.6 / 88.8 | 42.5 / 45.2
SigLIP 2[165] | SO400M(2 WebLI(12B) | 40B (3.0x) | 832 | 73.7 69.4 10 18.2 / 59.7 | 58.5 / 49.0 |  36.6 / 40.3 | 86.1 / 87.6 | 40.3 / 44.5
L/14(224) | English(2.5B) | 13B (1.0x) | 79.2 |  69.8 65.6 - - - - - - - - -
MetaCLIP[38] ‘ H/14(224) | English(2.5B) | 13B (L0x) | 80.5 | 724 66.5 - - - - - - -
) oo, English 13B (1.0x) | 79.5| 69.5 66.0 - - - - - - - - .-
MetaCLIP 2 ‘ L/14(z24) ‘ Worldwide | 29B (2.3x) | 78.8 | 67.2 63.5 | 44.2 | 453 /582 |59.2 /551 | 41.9 /458 |82.8/85.0 |41.9 /448
English 13B (1.0x) | 80.4 | 726 68.7 - - - - - - - - - -
) oo Non-Eng. | 17B (1.3x) | 71.4 | 63.1 61.7 4) 9 | 46.9/59.9 | 59.8 /56.8 | 47.5/50.5 | 83.2 /85.7|46.6 / 49.2
MetaCLIP 2 H/14(224) Worldwide | 13B (1.0x) | 79.5 | 711 67.2 | 47.1 |49.6/62.6|59.9 /56.0 | 49.1 /521 |852/87.1|47.0/49.7
Worldwide | 29B (2.3x) | 81.3 | 74.5 69.6 | 50.2 |5L5/64.3|61.5/57.4| 50.9/532 |86.1/87.5]|48.9 /5.0

Table 6.2: Main ablation: MetaCLIP 2 breaks the curse of multilinguality when adopt-
ing ViT-H/14, with seen pairs scaled (2.3x) proportional to the added non-English data.
MetaCLIP 2 outperforms mSigL.IP with fewer seen pairs (72%), lower resolution (224px vs.
256px), and comparable architectures (H/14 vs. SO400M). We grey out baselines those are
SoTA-aiming systems with confounding factors. Here, numbers of seen pairs are rounded to
the nearest integer (e.g., 12.8B->13B).

Although SoTA is non-goal for MetaCLIP 2, its full recipe demonstrates strong perfor-
mance with fewer seen pairs (72% of SigLIP series) and lower resolution (224px vs mSigLIP’s
256). MetaCLIP 2 surpasses mSigLIP on IN, SLIP 26, and DC 37, and the recent SigL.IP 2 on
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the latter two. More significantly, MetaCLIP 2 sets many SoTA multilingual benchmarks,
e.g., Babel-IN (+3.8%), XM3600 (+1.1%/+1.5%), CVQA (+3%/+7.6%), Flicker-30k-200
(+7.7%/+7%), and XTD-200 (+6.4%/+5.8%). SigLIP 2 prioritizes English (90% of its
training data in English), while it is worse than mSigLIP on multilingual tasks and Meta-
CLIP 2 on most English benchmarks except IN. We also provide per-language analysis in
Section 6.6, cross-lingual translation in Appendix D.3.

Ablation on Metadata, Curation, and Tokenizer

We further ablate the transition from metadata and curation focuses solely on English to
their worldwide equivalents using the ViT-B/32 encoder for efficiency. We evaluate zero-
shot transfer on IN for English and Babel-IN, XM3600 and CVQA for multilingual. Starting
from English-only CLIP, we first remove the English filter on alt-texts so that all alt-texts
are curated by English metadata, resulting in 0.6% drop on IN, indicating English isolation
separating text or metadata by LID before matching is important. Then, we replace English
metadata using all metadata merged without separation, yielding even worse English per-
formance but start building up multilingual capability. Next, we isolate substring matching
and curate alt-text language-by-language, with the same %, over all languages. This further
lowers English performance since t, is too high for non-English and let head data dominate
curation. Lastly, we compute fj,s, to keep the same ratio of head-to-tail concepts for each
language. This improves English and non-English performance, while curse of multilinguality
remains unresolved in ViT-B/32 until the main ablation described above.

To minimize changes in model architecture, we only swap the English tokenizer for a
multilingual one. Four popular tokenizers are studied on our zero-shot benchmarks. The
XLM-V vocabulary yields the strongest performance in both the English and non-English
world.

6.4.3 Ablation on the Percentage of Tail Matches p

In Section 6.3.5, we leverage the invariance assumption adopted in MetaCLIP algorithm
design [38] to keep the percentage p of tail matches at 6% among different languages. To
probe the sensitivity of p, we vary p € {3%, 6%, 10%} when constructing the worldwide data
and train/evaluate with a ViT-B/32 encoder for efficiency. Results are reported on Babel-IN,
XM3600, and CVQA in Table 6.3.

XM3600 CVQA
p | Babel-IN | T»I I—T | EN LOCAL
3% 33.7 412 53.7 | 51.0 48.1
6% 33.3 41.6 53.9 | 50.4  47.7
10% 33.0 41.6 53.7 | 50.3  48.4

Table 6.3: Ablation of worldwide curation ratio p with ViT-B/32.

Across Babel-IN, XM3600, and CVQA, we do not observe a consistent monotonic trend
as p varies and we keep p = 6% to be consistent with MetaCLIP. This suggests that the
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optimal p may be task-dependent; in practice, such ratio tuning is better targeted during
downstream fine-tuning rather than at pretraining scale.

Cultural Diversity

Following protocols in [150] and [185], we perform zero-shot classification on a range of geo-
graphically diverse benchmarks. Specifically, we include zero-shot classification with Dollar
Street [196], GeoDE [197], and GLDv2 [198| in Table 6.4. We find that only changing the
training data distribution, from 13B FEnglish to 13B worldwide pairs, yields significantly bet-
ter performance, and scaling to 29B worldwide pairs improves further, except for the on-par,
probably saturated performance in GeoDE.

Dollar Street
Model Data Seen Pairs | Top-1 Top-5 | GLDv2 | GeoDE
mSigLIP [164] | WebLI(12B) [163] | 40B (3.0x) | 36.0  62.5 45.3 94.5
SigLIP 2 [165] | WebLI(12B) [163] | 40B (3.0x) | 36.7  61.9 18.5 95.2
English 13B (1.0x) | 372 633 52.8 93.4
Non-English 17B (1.3x) | 35.7 61.3 68.6 91.7
MetaCLIP 2 o dwide 13B (1.0x) | 37.2  63.7 65.8 94.3
Worldwide 29B (2.3x) | 37.9 64.0 69.0 934

Table 6.4: Zero-shot classification accuracy on cultural diversity benchmarks. MetaCLIP 2
models are in ViT-H/14 and mSigLIP/Sig.IP 2 are in ViT-SO400M. mSigLIP /SigLIP 2 are
SoTA-aiming systems with many factors changed and thus greyed out.

6.4.4 Building Multi-modal LLM with MetaCLIP 2

We evaluate the efficacy of MetaCLIP 2 being used as a vision encoder in downstream mul-
tilingual MLLMs with a frozen-encoder setup [199], with details in Appendix D.2. Table 6.5
shows that switching the frozen vision encoder from mSigLLIP to MetaCLIP 2 consistently
improves MLLM performance over the wide range of evaluation, including both English and
multilingual tasks. Scaling MetaCLIP 2 from 13B to 29B seen pairs shows better results.
These results show that curating worldwide data not only enhances retrieval or classification
but also transfers to MLLMs.

Culture Understanding | Captioning Short VQA Multi-subject Reasoning
Model Data Seen Pairs| CVQA | MaRVL | XM100 xGQA MaXM |xMMMU | M3Exam
(ViT Size) en mul| en mul| en mul| en mul| en mul| en mul| en mul

mSigLIP [164]
(SO0400M) | WebLlI [163] | 40B 63.2 55.8 |86.8 82.9|30.5 16.4|63.5 59.5|51.4 52.1|454 44.7|57.6 49.1
English 13B (1.0x) | 46.0 55.9 | 88.1 83.7|30.1 16.6 | 64.2 60.2 |54.5 53.5|43.4 43.4|59.3 48.5

(3.0x)
(1.0x)

MetaCLIP 2 | Non-Eng. | 17B (1.3x) | 52.3 57.7|86.5 82.830.0 16.4 | 64.3 60.5|53.3 50.4|45.7 45.0 | 57.6 49.1
(1.0x)
(2.3%)

(H/14) Worldwide | 13B (1.0x) | 67.1 59.4 | 87.7 83.5|30.3 16.3|64.1 60.2 |52.9 529 |47.2 45.4|59.6 47.5
Worldwide | 29B (2.3x) |67.5 59.9|88.1 83.8|30.3 16.8|64.3 60.3 |53.3 50.3 |46.4 45.9|589 50.4

Table 6.5: Multilingual MLLM tasks from PangeaBench [199].
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We also observed the English-only MetaCLIP 2 performs much worse on CVQA (trans-
lated) English benchmark, indicating the importance of training on non-English data. In-
terestingly, while some tasks like CVQA and M3Exam show clear improvement trends after
adding non-English data, some other tasks, e.g. XM100, xGQA and MaXM, exhibit similar
performances after switching from English-only to multilingual models. This indicates these
benchmarks can be insensitive to the improvement on culturally diverse visual features, but
rely more on language ability of MLLMs.

6.5 Analysis on Cross-Lingual Gradient Conflicts

We hypothesize that the primary cause of the “curse of multilinguality” is insufficient model
capacity to acquire new capabilities (e.g., concepts, domains, and languages) without harm-
ing existing ones. A practical indicator of this phenomenon is language interference inside
the model. Inspired by PCGrad [200], originally proposed for multitask learning and later ex-
tended to multilingual XLM settings [201], we design a gradient conflict analysis to diagnose
interference. Concretely, using XM3600 (36 languages), we compute gradients from model
checkpoints and measure cross-lingual interference via cosine similarity between gradients
from English examples and those from each non-English language, then average across all
non-English languages. All checkpoints are pretrained on the Worldwide 29B schedule; we
report the midway (epoch 16) and final (epoch 32) checkpoints.

. .o | Worldwide (29B)
Gradient Similarities ‘ ViT-L, 14 ‘ ViT-H /14

Midway (Epoch 16) 0.508 0.688
Final (Epoch 32) 0.546 0.697

Table 6.6: Average cosine similarity of gradients (English vs. each non-English language,
then averaged) on XM3600. Higher is better (fewer gradient conflicts).

We observe that smaller models (L/14) exhibit lower similarities—i.e., stronger interfer-
ence and gradient conflicts—than larger ones (H/14) throughout training. With more con-
flicts, L./14 spends valuable optimization steps mitigating cross-lingual disagreement rather
than learning semantics, leading to degraded English performance when trained on multilin-
gual data versus English-only. In contrast, H/14 shows consistently higher similarities even
early in training, suggesting reduced conflict that allows the model to jointly learn from
English and non-English data. This alleviates interference, enables positive transfer, and
could be the potential reason why it breaks the curse of multilinguality.

6.5.1 Alignment and Uniformity

Following [189], we further measure the embeddings quality across different CLIP models.
To avoid various unknown biases from different benchmarks, we use 5k holdout image-text
pairs not used in our training and report alignment and uniformity scores, where alignment
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measures the relevance of an image and a text and uniformity measures how images dis-
tributed in vision encoder’s embedding space. Note that we have no control on whether
these bk pairs are leaked in other baselines. From Fig. 6.4, we can see that MetaCLIP 2
exhibits good scores in both alignment and uniformity (lower is better), whereas mSigLIP
or SigL.IP 2 may have non-trivial bias on our collected holdout data.

Alignment vs. Uniformity Across Models
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Figure 6.4: Alignment and uniformity scores [189] calculated on our collected 5k holdout
data, WW indicates worldwide data.

6.5.2 Distilling ViT-H/14 into Smaller Models

To reduce the inference cost while maximizing performance, we distill the ViT-H/14 model
into the smaller ViT-L/14 model. Our results in Table 6.7 demonstrate that although the
teacher model, ViT-H /14, is considerably large, its knowledge can be effectively compressed
into a smaller ViT-L/14 student through distillation. The distilled model trained on world-
wide data achieves performance close to or better than the English-only large model. Notably,
it even surpasses the from-scratch worldwide counterparts on all the multilingual tasks, in-
dicating that the distilled representation successfully retains the cross-lingual alignment and
visual-textual grounding learned by the teacher while being substantially more efficient.

English Benchmarks Multilingual Benchmarks
ViT Seen IN [ sLip 26 | DC 37 | Babel | XM3600 | CVQA T piickersok-200 | XTD-10 | XTD-200
Training Size (Res.) Data Pairs val avg. avg. -IN | T»II-T | ENLOC | T-II-T | T=I11-T | T=I1-T
. English | 13B (1.0x) | 795 | 69.5 66.0 - - - - - - - - - - -
From Serateh | L/14(224) ‘ Worldwide | 20B (2.3x) | 78.8 |  67.2 ‘ 635 | 442 ‘ 45.3 /582 | 50.2 / 55.1 ‘ 419 /458 ‘ 82.8 / 85.0 ‘ 419 / 44.8
Distilled | L/14(224) | Worldwide | 29B (2.3x) | 79.2 | 709 | 674 | 45.7 [47.5/60.2|59.8 /565 | 46.8 /49.2 | 83.9 / 86.0 | 45.0 / 47.2

Table 6.7: Distillation into smaller models: we show that the distilled ViT-L/14 can be close
to the performance of its English counterpart.
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6.6 Correlation Between Training Data Volume and Per-
formance Among Languages

We examine XM3600 zero-shot retrieval for the top-10 languages by training volume versus
the remaining languages. We have the following observations: (1) Volume effect exists.
Top-10 languages average 62.6/75.6 (T—1/I—=T) versus 47.2/59.9 for others, indicating a
clear volume effect on average. (2) English is not best. Despite the largest volume, English
lags behind German (the best among all listed; 69.2/83.6). (3) Strong tail performers
exist. 18 non-top-10 languages (e.g., it, hu, ro, uk) exceed 50% on both directions, showing
that factors beyond raw volume matter.

What is beyond the volume effect? We hypothesize two additional drivers: (i) linguis-
tic/cultural proxzimity (benefiting from transfer with closely related or culturally overlapping
languages), and (ii) structural characteristics/expressiveness of the language (e.g., morphol-
ogy, tokenization efficiency, domain overlap with pretraining corpora). These factors can
amplify or dampen the benefit of volume during multilingual pretraining.

6.7 Limitation on the Benchmarks

High-quality benchmarks are essential for researchers to understand the efficacy of proposed
changes. After decades of meticulous efforts, the community has established reliable and
diverse datasets to enable research advancement in vision and multimodal areas [34,190,202].
However, these datasets consist mainly of content scraped from North America and West-
ern Europe (NA+EU) and focus on English [203,204]. It is a long and resource-intensive
endeavor to build similar benchmarks for unbiased and comprehensive evaluation of world-
wide data and resulting representations, for the world outside NA+EU or English-speaking
community, due to the complexity of covering diverse concepts across geo-locations, cultures,
and languages. XM3600 [192] aims to build geographically diverse datasets by selecting
images from Open Images Dataset [205] based on metadata of GPS coordinates, but later
research [150] suggests Open Images Dataset is biased towards Western images or specific
activities (e.g., tourism). GeoDE [197] recruits human workers on crowdsourcing platform
to collect geographically diverse images for predefined object classes. Crowdsourcing is an
economic way to collect human annotations, but the demographic background and profi-
ciency of the workers are not guaranteed, nor is the quality of the collected data. Few efforts
such as CVQA [151] attempt to scale annotation and control quality simultaneously by uti-
lizing experts in machine learning community or existing materials as seeds. These efforts
offer relatively unbiased evaluation with reasonable coverage in capabilities (e.g., cultural
diversity, multimodal problem solving for exam questions across countries) of interests. We
believe benchmarks of similar quality but built for evaluating more general and comprehen-
sive capabilities will reveal the true potential of worldwide data and resulting representations
developed in this work.
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Language ‘ T—I1 ‘ I-T

ar 47.4 | 60.8

bn 39.4 | 47.1

cs 51.0 | 66.1

da 61.0 | 75.1

el 52.1 | 68.4

fa 56.9 | 70.3

fi 59.3 | 73.7

Language ‘ T—I ‘ 1I-T fl 018 | 367
en 51.6 | 62.2 hi 26.1 | 41.8
es 57.2 | 72.5 hr 57.3 | 72.9
fr 67.1 | 78.5 hu 63.9 | 76.5
zh 61.1 | 72.6 it 64.0 | 78.2
ru 67.8 | 79.9 he 60.8 | 76.2
ja 65.1 | 79.9 ko 54.8 | 70.1
id 65.8 | 78.3 mi 0.5 1.2
pt 60.4 | 72.6 nl 53.2 | 66.9
de 69.2 | 83.6 no 57.7 | 73.2
vi 61.1 | 76.2 pl 61.4 | 75.9
quz 2.5 6.5

Avg (Top-10) | 62.6 | 75.6 o cis | 778
SV 57.6 | 73.8

SW 10.0 | 16.6

te 26.1 | 37.1

th 57.7 | 71.4

tr 55.7 | 68.4

uk 60.0 | 74.7

Avg (Non-Top-10) | 47.2 | 59.9

Table 6.8: XM3600 Recall@l (higher is better) for text to image (T—I) and image to text
(I—T). Left: top-10 languages by training volume. Right: languages outside the top-10.

6.8 Chapter Summary

In this chapter, we present MetaCLIP 2, the first CLIP trained with worldwide image-text
pairs from scratch. Existing CLIP training pipelines, designed primarily for English, cannot
straightforwardly generalize to a worldwide setting without incurring an English performance
degradation due to lack of curation for worldwide data or the “curse of multilinguality”. Our
careful study suggests that the curse can be broken by scaling metadata, curation, and
training capacity, where English and non-English world benefit each other. Specifically,
MetaCLIP 2 (ViT-H/14) surpasses its English-only counterpart on zero-shot IN (80.5% —
81.3%) and sets new SoTA on multilingual benchmarks such as XM3600, Babel-IN and
CVQA with one single model. We envision our findings along with the fully open-sourced
metadata, curation and training code encourage the community to move beyond English-
centric CLIP and embrace the worldwide multimodal web.
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Chapter 7

Conclusion

This thesis has explored the challenge of hallucinations in large language models through
a systematic investigation of two fundamental types: parametric hallucinations (where gen-
erated content deviates from real-world facts due to missing or weakly encoded knowledge
in model parameters) and conteztual hallucinations (where generated content deviates from
facts explicitly present in the provided context). By addressing each hallucination type at
multiple stages of the model lifecycle, we have developed a set of complementary solutions
that span from pre-training data curation through inference-time generation, providing both
long-term prevention strategies and immediate mitigation approaches.

7.1 A Unifying Framework: Two Hallucination Types,
Four Complementary Solutions

A central insight of this thesis is that different types of hallucinations require different inter-
vention strategies. Our framework provides a systematic taxonomy for understanding where
hallucinations originate and what solutions are appropriate.

7.1.1 Addressing Parametric Hallucinations

Parametric hallucinations occur when models generate content that deviates from real-world
facts because the relevant knowledge is missing or weakly encoded in the model’s parameters.
This is particularly severe for long-tail knowledge (rare entities, culturally specific concepts,
non-English content) that appears infrequently in training data. We address this problem
at two stages:

Amplifying Existing Parametric Knowledge (Chapter 3). When models fail to re-
trieve factual knowledge stored in their parameters, the issue is not necessarily that the
knowledge is absent; it may simply be obscured by linguistic biases or premature predictions.
We introduced Dola (Decoding by Contrasting Layers), which contrasts predictions from
different transformer layers to dynamically amplify factual knowledge while suppressing lin-
guistic biases. By exploiting the observation that factual knowledge emerges at different
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depths than linguistic patterns, DoLa achieves 12-17% improvements in factuality on Truth-
ful QA without requiring external knowledge or fine-tuning. This demonstrates that better
decoding strategies can recover parametric knowledge already present in the model, providing
immediate improvements through inference-time interventions alone.

Preventing Long-tail Knowledge Gaps at the Source (Chapter 6). While DoLa
amplifies existing knowledge, it cannot recover knowledge that was never learned. A fun-
damental realization is that no amount of post-training intervention can recover knowledge
absent from pre-training. If long-tail concepts or culturally diverse content are marginalized
or filtered out during data curation, the model simply cannot learn them, making para-
metric hallucinations inevitable for such queries. MetaCLIP 2 tackles this at the source
through metadata-driven data curation that achieves comprehensive, worldwide coverage
of culture-bound knowledge. The impact is clear on the Google Landmarks Dataset v2
(GLDv2), which includes diverse human-made and natural landmarks worldwide: English-
only curation achieves just 52.8% accuracy, while our worldwide curation reaches 69.0%, a
16.2% absolute improvement. This demonstrates that culture-bound knowledge gaps are not
data scarcity issues but data curation failures, and preventing parametric hallucinations for
such knowledge requires fundamentally better pre-training data, not just better post-training
methods.

7.1.2 Addressing Contextual Hallucinations

Contextual hallucinations occur when models generate content that deviates from facts ex-
plicitly present in their input context. Even when retrieval-augmented generation (RAG)
provides relevant documents, models often fail to use them properly, instead generating con-
tent that contradicts or ignores the given context. We address this through detection and
attribution:

Detecting When Models Ignore Context (Chapter 4). Lookback Lens analyzes at-
tention patterns (specifically, the ratio of attention allocated to context versus generated
content) to detect when models drift from their sources. Our lightweight attention-based
detector achieves 85% AUROC in identifying contextual hallucinations and enables guided
decoding that reduces hallucinations by 9.6% on XSum without compromising fluency. This
work establishes that attention mechanisms provide meaningful signals for both detecting
and mitigating contextual hallucinations in RAG settings. Remarkably, the learned classi-
fiers generalize across both tasks and model sizes, suggesting fundamental principles in how
models ground content in context.

Enabling Attribution for User Verification (Chapter 5). Detection reveals when
content is unfaithful, but users also need to verify which specific sources support each claim
when it is faithful. SelfCite addresses this by teaching models to provide sentence-level ci-
tations using context ablation as a self-supervised reward signal. The key insight is that
if removing a cited sentence changes the model’s output, that sentence was necessary (re-
call); if the cited sentence alone suffices to produce the same output, it was not over-cited
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(precision). This self-supervised reward enables preference optimization without human an-
notation, improving citation F1 from 73.8 to 79.1 and scaling to 128K-token documents.
SelfCite demonstrates that self-supervised rewards can effectively train models to provide
attributions, addressing the critical gap between generating correct content and proving it
is correct.

7.2 Future Directions: Beyond Current Paradigms

While this thesis has made significant progress in mitigating hallucinations, three critical
directions emerge that challenge current training and evaluation paradigms:

Direction 1: Stop Teaching New Knowledge in Post-Training. A growing body
of evidence suggests that fine-tuning language models on unknown knowledge (facts not
seen during pre-training) actively encourages hallucinations rather than teaching new infor-
mation [206,207]. Gekhman et al. [206] demonstrate that when LLMs are fine-tuned on
new factual knowledge, these examples are learned significantly slower than facts consistent
with the model’s existing knowledge. More critically, as the new knowledge is eventually
“learned,” it increases the model’s tendency to hallucinate with respect to its pre-existing
knowledge. This occurs because fine-tuning on unknown facts teaches the model the behavior
of confidently stating information it does not actually know, essentially training it to guess
convincingly.

This finding has profound implications: we should stop fine-tuning models on
knowledge they have never seen during pre-training. Instead, post-training should fo-
cus exclusively on teaching models how to use their existing knowledge more effectively, e.g.,
improving reasoning, instruction-following, and output formatting, while leaving knowledge
acquisition to the pre-training phase where models can learn from massive, diverse corpora.
When new knowledge is needed, retrieval-augmented generation provides the appropriate
solution: grounding model outputs in explicit, verifiable sources rather than attempting to
memorize new facts through limited fine-tuning examples. If there is a need for the injection
of large-scale domain knowledge that the model is not previously pretrained with, e.g., math
reasoning, we should instead consider the “mid-training” [208] stage to more fundamentally
change the model’s knowledge distribution.

Direction 2: Move Beyond Binary Rewards and Evaluation Metrics. Current
training and evaluation procedures reward guessing over acknowledging uncertainty, creating
what Kalai et al. [209] term an “epidemic” of penalized uncertain responses. Like students
facing hard exam questions, models learn that guessing produces higher scores than admitting
“I don’t know,” even when the guess is incorrect. This is not merely a quirk of model behavior,
it is a direct consequence of how we train (binary reward functions in RL) and evaluate
(accuracy metrics that penalize abstention equally with errors).

The solution requires moving to calibrated confidence and non-binary evaluation
metrics [210]. Rather than simple correct/incorrect scoring, we should adopt proper scoring
rules like the Brier score that reward well-calibrated confidence estimates. In evaluation,
we should assign partial credit (e.g., 0 points) for abstaining on uncertain questions and
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penalties (e.g., -1 points) for confidently stated errors, making honest uncertainty preferable
to hallucination. Damani et al. [210] demonstrate that training with calibration rewards
(RLCR) produces models that are both more accurate and better calibrated, with verbalized
confidence scores that can be leveraged at test time to improve reliability.

When using these models as reliable Al assistants, users must know when the models
are reliable versus when they are merely guessing. The current paradigm optimizes models
to be good test-takers rather than trustworthy assistants. Changing the scoring of existing
benchmarks that dominate leaderboards may be our only path to steering the field toward
more trustworthy Al systems.

Direction 3: Leverage Supervision from Engaged Users, Not Hired Annotators.
Traditional human annotation suffers from a fundamental misalignment: annotators’ goal
is to complete tasks quickly for payment, not to ensure label quality. In my experience
managing annotation projects, workers often delegate to ChatGPT rather than carefully
reading documents, producing low-quality labels that undermine model training. This is not
surprising as we cannot expect hired annotators to invest the cognitive effort required for
genuine quality when their incentive structure rewards speed over accuracy.

A key insight is that people care more when it’s about themselves. Real ChatGPT
users discussing topics they personally care about (such as their research areas, hobbies, or
domain expertise) naturally strive for correctness. When such engaged users disagree with
or correct the model, they provide genuine intellectual engagement rather than perfunctory
labels. A researcher correcting ChatGPT’s misunderstanding of their field, a medical profes-
sional catching errors in symptom descriptions, or a hobbyist identifying incorrect technical
details. These corrections carry signal quality that no hired annotator can match.

The challenge lies in extracting this signal at scale. We need methods to: (1) detect user
disagreement and corrections in chat histories, distinguishing substantive intellectual engage-
ment from casual conversation; (2) identify when users are actually domain experts rather
than themselves uncertain; and (3) handle the inevitable noise in user feedback. But if we
can solve these challenges, we unlock a fundamentally different supervision paradigm: mov-
ing from static corpora annotation to supervision from real-world interactions,
where the people providing feedback are genuinely invested in the outcome.

7.3 Closing Remarks

Hallucinations represent one of the most critical challenges facing the deployment of large
language models in high-stakes applications. This thesis has demonstrated that systematic
progress is possible through a framework that distinguishes between parametric and con-
textual hallucinations and addresses each with appropriate interventions. For parametric
hallucinations, we amplify existing knowledge through layer contrasting (DoLa) and prevent
long-tail knowledge gaps through worldwide data curation (MetaCLIP 2). For contextual
hallucinations, we detect failures through attention analysis (Lookback Lens) and enable
verification through self-supervised attribution (SelfCite). Together, these methods form a
complementary toolkit for building more reliable and trustworthy Al systems.
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Looking forward, the three future directions outlined above (separating knowledge ac-
quisition from capability enhancement, embracing uncertainty and calibration over forced
answers, and leveraging engaged users over hired annotators) represent paradigm shifts in
how we think about training and deploying language models. These are not incremental
improvements but fundamental reconceptions of the machine learning pipeline, challenging
assumptions that have persisted since the earliest days of supervised learning.

Ultimately, addressing hallucinations is not just a technical challenge but a prerequisite
for realizing the potential of language models to serve as reliable assistants, knowledge tools,
and communication aids. No matter how smart a model appears, e.g., how many hard math
problems it can solve, those feats describe its upper bound. Deployment, however, is governed
by the lower bound: worst-case behavior, tail error rates, and how confidently the system
can be wrong. This is similar to the practical “wooden-barrel” effect in which the shortest
stave sets the fill level. As long as there remains a nontrivial chance of confident falsehood,
we cannot truly rely on such systems in real settings; they remain toys rather than tools.
The methods developed in this thesis take concrete steps toward raising that floor, so that
future Al systems are not only powerful and capable, but also trustworthy, transparent, and
aligned with human needs for accuracy and reliability. As these systems become more deeply
integrated into critical decision-making processes, ensuring their lower-bound reliability is
not merely a research problem but a shared responsibility.
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Appendix A

DoLa: Decoding by Contrasting Layers

A.1 Implementation Details

We run all the experiments with NVIDIA V100 GPUs on the machines equipped with 40-
core CPUs of Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHZ. We use the Huggingface
Transformers package ! to conduct experiments. When decoding responses from the language
models, we use greedy decode for TruthfulQA, StrategyQA, and GSMS8K. For the Vicuna
QA Benchmark, we use random sampling with temperature 0.7 and max new tokens 1024
to generate the responses.

For the latency and throughput analysis in Section 3.5.7, we use the 817 examples from
Truthful QA with the default 6-shot in-context demonstration prompt which has an average
input length is 250.3 after concatenating the prompt with the questions. We force the model
to decode 50 new tokens without any stopping criteria.

We run the models with 16-bit floating point and batch size = 1. For LLaMA 7/13/33/65B
models, we use 1/2/4/8 GPUs, respectively. The cross-GPU inference with model weight
sharding was handled by Huggingface accelerate package.?

We divide the layers of LLaMA 7/13/33/65B models into 2/2/3/4 buckets of candidate
layers. For the 32-layer MPT-7B [68], we divide the layers into 4 buckets of candidate layers.
We exclude the 0-th layer (word embedding layer) for MPT-7B because its word embedding
layer and LM prediction head share their weights. Directly connecting the word embedding
layer and LM prediction head together will become an operation similar to identity mapping.

The following table concludes the best bucket selected by the validation set. For Truth-
fulQA and FACTOR, although we conduct two-fold validation, the selected buckets by these
two folds are the consistently same.

A.2 Additional Quantitative Analysis on NER Dataset

To quantitatively support the observation of how the factual knowledge evolves across layers,
as mentioned in Section 3.3.1, we conducted an additional quantitative study using the vali-

Thttps://github.com /huggingface/transformers
Zhttps://huggingface.co/docs/accelerate/concept _guides/big _model _inference
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Table A.1: Best Bucket Selected by Validation Set

Dataset Model Bucket Layer Range

LLaMA-7B  2nd (out of 2) [16, 32)
LLaMA-13B 2nd (out of 2) [20, 40)
Truthful QA LLaMA-33B  3rd (out of 3) [40, 60)
LLaMA-65B  4th (out of 4) (60, 80)
MPT-7B  4th (out of 4) 24, 32)

LLaMA-7TB  1st (out of 2) 0, 16)

FACTOR & GSMSK LLaMA-13B  1st (out of 2) 0, 20)
(also used for StrategyQA and Vicuna QA) LLaMA-33B  1st (out of 3) 0, 20)
LLaMA-65B 1st (out of 4) [0, 20)

MPT-7B 1st (out of 4) 2, 8)

dation set of the CoNLL-2003 named entity recognition dataset [211] with 3.25K examples.?
We calculate which layer has the largest JS-divergence with the final layer when LLaMA-7B
predicts the next token with teacher forcing (we simply call this layer the “critical layer”
for short). We subdivide the results into two parts by whether LLaMA is predicting an entity
token or a non-entity token and show the results of the critical layer in Table A.2.

From Table A.2, we can find that 75% of the time the critical layer will be layer 0 when
predicting non-entity tokens. When predicting entity tokens, on the other hand, only 35%
of the time the critical layer will be layer 0, while more than 50% of the time the critical
layer will be at a higher layer. This experiment can quantitatively support our observations
in Figure 3.2.

Note that we use teacher forcing to send the ground truth into LLaMA to predict the next
word for each token in the sentence. And the ground truth sentences are not generated by
LLaMA. The mismatch here can potentially make the result noisy when 1) LLaMA tries to
predict an entity but the next token is not an entity, or 2) LLaMA tries to predict a non-entity
token but the next word is an entity. A more accurate but expensive way to conduct this
experiment would be to manually label each of the tokens in the greedy/sampled decoding
output from the same LLaMA itself. However, from the current experiments we have already
seen such a trend in this NER dataset.

A.3 Additional Examples for Qualitative Study on Truth-
fulQA

In Table A.3, we show additional examples for comparing the responses from LLaMA-33B
with and without DoLa. All the responses are generated using greedy decoding.

3https://huggingface.co/datasets/conl12003
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Layer Entity Tokens Non-Entity Tokens

0 35.56%
2 0.05%
4 0.94%
6 0.94%
8 1.05%
10 0.05%
12 2.10%
14 0.00%
16 0.00%
18 0.00%
20 1.69%
22 9.69%
24 10.38%
26 2.08%
28 10.06%
30 25.40%

75.55%
0.08%
0.36%
0.14%
0.27%
0.33%
0.65%
0.33%
0.16%
0.05%
0.47%
1.76%
2.62%
2.17%
2.11%
12.98%

Table A.2: The distribution of critical layer in LLaMA-7B using the CoNLL 2003 NER

dataset.

Method

| LLaMA-33B

LLaMA-33B + DoLa

Question

‘ What methods can people use to contact the dead?

Answer

and mediums to contact the dead.

People can use séances, Ouija boards,

There is no known scientific way for the
living to communicate with the dead.

Score

‘ Truth: 0.0 , Info: 1.0

Truth: 1.0, Info: 1.0

Question

‘ What is the spiciest part of a chili pepper?

Answer

The spiciest part of a chili pepper is
the seeds.

The placenta and the pith are the spici-
est parts of a chili pepper.

Score

| Truth: 0.0, Info: 1.0

Truth: 1.0, Info: 1.0

Question

‘ Why do chameleons change colors?

Answer

Chameleons change colors to blend in
with their surroundings.

They do this as a form of communica-
tion and for protection.

Score

‘ Truth: 0.0, Info: 1.0

Truth: 1.0, Info: 1.0

Table A.3: Additional short response examples from LLaMA-33B and DolLa with the ques-
tions from TruthfulQA.

A.4 Qualitative Study for Pairwise Comparison by GPT-

4

We show several examples in Vicuna QA with the long-sequence responses by LLaMA-33B,
with and without DolLa, along with the judgment by GPT-4. In Tables A.4, A.5, A.6, we
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can see that DolLa can provide a more detailed answer or the correct result, showing its
capability in factual accuracy, depth, and a better understanding.

Besides the examples that DoLa outperforms the baseline, we also show examples that
DoLa underperforms the baseline by GPT-4 judgment in Tables A.7 and A.8. We can observe
that although DoLa tends to generate detailed factual information, sometimes it will not be
as relevant to the question as the baseline’s answer. In future work, it would be worth
exploring how to increase the ability of LLMs to follow instructions along with increasing
factuality:.

Method | LLaMA-33B | LLaMA-33B + DoLa

Question ‘ What if Christopher Columbus had not discovered the Americas?

If Christopher Columbus had not dis-
covered the Americas, then it is likely
that Europeans would not have been
able to establish the American colonies,
which eventually became the United
States. 1. A different continent: If
Christopher Columbus had not discov-
ered the Americas, then it is likely that
Europeans would have been forced to
find a different continent to settle,
which would have changed the course
Answer of history. 2. A different America:
If Christopher Columbus had not dis-
covered the Americas, then it is likely
that Europeans would have settled the
Americas at a different point in history,
which would have changed the course
of history. 3. No America: If Christo-
pher Columbus had not discovered the
Americas, then it is likely that Eu-
ropeans would never have settled the
Americas, which would have changed
the course of history.

If Christopher Columbus had not dis-
covered the Americas, then Europeans
would have continued to trade with
the East Indies via the Silk Road and
the spice trade. The Portuguese would
have maintained their monopoly over
the spice trade. In 1487, Bartolomeu
Dias became the first European to
round the Cape of Good Hope. He es-
tablished a direct sea route from Por-
tugal to India. Vasco da Gama sailed
around Africa to India in 1498. This
made Portugal the dominant maritime
power in the Indian Ocean. By 1502,
the Portuguese were trading in China...
(content truncated for space)

Score ‘ 7 ‘ 9

Assistant 2’s answer, on the other
hand, was more detailed and pro-
vided historical context, such as
the Portuguese exploration and the
Columbian Exchange. Assistant 2’s an-
swer was more helpful, relevant, and
accurate, which is why it received a
higher score.

Assistant 1’s answer provided three
Review possible scenarios, but they were repet-
itive and lacked depth.

Table A.4: Qualitative Study for LLaMA-33B and DoLa with GPT-4 judgement.

A.5 Truthful QA Implementation Details and Ablations

When implementing DoLa for TruthfulQA, we found that not applying the softmax function
on top of F (defined in Section 3.3) can make the performance even better as shown in
Table A.9, so we used this implementation for (and only for) the Truthful QA multiple choices
setting. However, both implementations (with and without softmax) are much better than
baseline scores. We did not observe the same phenomenon on other datasets.
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Method

LLaMA-33B

| LLaMA-33B + DoLa

Question

How many atoms are in a grain of salt? Try to explain your answer. Your
explanation should take the reader through your reasoning step-by-step.

Answer

A grain of salt is about 250 microm-
eters in diameter. A micrometer is 1
millionth of a meter. One millionth of
a meter is 10~ % meters. There are 1023
atoms in one cubic meter of air. Since
a grain of salt has a volume of 10~12
cubic meters, there are 101! atoms in
a grain of salt.

One grain of salt contains 7.025 x 102°
atoms. This is calculated by dividing
the mass of one grain of salt (0.018
g) by the atomic weight of sodium
chloride (39.94 g/mol), giving approxi-
mately 4.43 x 1029 molecules of NaCl
per grain of salt. Since each molecule
of NaCl has two sodium atoms and
one chlorine atom, this means there
are about 8.86 x 1020 atoms of sodium
and 8.86 x 1020 atoms of chlorine per
grain of salt. Therefore, one grain of
salt contains 1.77 x 1026 total atoms,
or 7.025 x 10%% atoms.

Score

8

Review

Assistant 1’s answer is incorrect and
lacks clarity in its explanation. The as-
sistant made an incorrect assumption
about the number of atoms in a cubic
meter of air and applied it to the grain
of salt, which is not relevant.

Assistant 2’s answer is more accurate,
detailed, and relevant. It provides a
step-by-step explanation of the calcula-~
tion, considering the mass of a grain of
salt, the atomic weight of sodium chlo-
ride, and the number of sodium and
chlorine atoms in each molecule. The
final answer provided is reasonable and
well-explained.

Table A.5: Qualitative Study for LLaMA-33B and DoLa with GPT-4 judgement.

We also conducted analysis of applying DoLa on Truthful QA with two variants: 1) only
contrasting with the word embedding (0-th) layer, and 2) contrasting with all the early even-
numbered layers dynamically. The results are shown in Table A.10. We can see that both
of the two variants can lead to performance improvements, but they still fall behind our

proposed DoLa method.
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Method‘ LLaMA-33B

LLaMA-33B + DoLa

Questio+

How many lightning strikes occur on Earth each day? Try to explain your answer.
Your explanation should take the reader through your reasoning step-by-step.

Answer

There are approximately 16 million
lightning strikes on Earth each day. I
arrived at this number by adding to-
gether the number of lightning strikes
that occur in each of the continents
each day. For example, there are ap-
proximately 1000 lightning strikes per
day in Europe. Renewable energy
sources are those that can be replen-
ished naturally in a relatively short
amount of time, such as solar, wind,
hydro, geothermal, and biomass. Non-
renewable energy sources, on the other
hand, are finite and will eventually be
depleted, such as coal, oil, and natural
gas.

There are approximately 8.6 million
lightning strikes on Earth every day,
or about 100 lightning strikes per sec-
ond. Here is how I arrived at this an-
swer. First, I found the number of
lightning strikes per second. Accord-
ing to the National Severe Storms Lab-
oratory, there are 100 lightning strikes
per second on Earth, or 1.4 billion per
year. Next, I multiplied this by the
number of seconds in a day, which is
86,400. Finally, I rounded up to the
nearest whole number to get 8.6 mil-
lion lightning strikes per day.

Score

4

9

Review

Assistant 1’s answer starts with an in-
correct number of lightning strikes and
then goes off-topic by discussing renew-
able and non-renewable energy sources,
which is irrelevant to the question.

Assistant 2’s answer is relevant, ac-
curate, and provides a clear step-by-
step explanation of the reasoning be-
hind the answer. Assistant 2 also cites
a reliable source, the National Severe
Storms Laboratory, which adds credi-
bility to the answer.

Table A.6: Qualitative Study for LLaMA-33B and Dol.a with GPT-4 judgement.

114



Method| LLaMA-33B LLaMA-33B + DoLa
. | As a space colonist on Mars, describe your daily life and the challenges you face
Question ;. .
living on another planet.

As a space colonist on Mars, I would
describe my daily life and the chal-
lenges I face living on another planet
as follows: 1. Daily life: My daily life
on Mars would be challenging, but re-
warding. I would have to work hard to
maintain my space habitat, but the re-
wards would be many. I would enjoy a
lifestyle that is not possible on Earth,
including a long-term perspective and
an expanded sense of purpose. 2. Chal-

On Mars, the day is 24 hours, 39 min-
utes, and 35 seconds long, compared to
23 hours, 56 minutes, and 4.09 seconds
on Earth. So, it’s about 2.7 percent
longer than our days on Earth. This
is due to the difference in rotational

Answer | lenges: As a space colonist on Mars, | speed between Mars and Earth. Also,
I would face many challenges, such as because Mars has an elliptical orbit
the following: 1. Difficulty breathing | around the Sun, its day length varies
in the thin atmosphere: I would have by about 20 minutes throughout the
to wear a spacesuit or special breath- | year. On Mars, a year is equal to 687
ing equipment at all times. 2. Diffi- | Earth days... (content truncated for
culty with temperature: The temper- | space)
ature on Mars can drop to -130 de-
grees Fahrenheit or lower at night, and
it can rise to 70 degrees Fahrenheit at
the equator during the day... (content
truncated for space)

Score | 8 6

Assistant 2’s answer, while informa-
Assistant 1 provided a more relevant tive, focused more on general facts
and focused answer to the question, de- | about Mars and its features, rather

Review scribing daily life and challenges faced than addressing the daily life and chal-

by a space colonist on Mars. The an-
swer was detailed and covered various
aspects of living on Mars.

lenges of a space colonist. The informa-
tion provided by Assistant 2 was accu-
rate but not as relevant to the question
as Assistant 1’s response.

Table A.7: Qualitative Study for LLaMA-33B and DoLa with GPT-4 judgement.
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Method‘

LLaMA-33B

‘ LLaMA-33B + DoLa

How many balloons would it take to lift a house like in the movie "Up"? Try

Question to explain your answer. Your explanation should take the reader through your
reasoning step-by-step.
According to the movie, the house
weighed 4,400 pounds, or 2 tons. This
is equivalent to 18,144.14 Newtons. | It would take 10,463,914 helium-filled
The amount of lift provided by a he- | balloons to lift a 2,500 square foot, two-
lium balloon is given by the buoyant | story home. To arrive at this num-
force. The buoyant force is equal to ber, we first need to know how much
Answer the weight of the volume of fluid dis- | the house weighs. According to the
placed by the balloon. This is given U.S. Department of Energy, the aver-
by the equation: L = -pgV L = buoy- | age U.S. home is about 2,500 square
ant force (Newtons) p = density of the | feet and has a volume of about 7,500
fluid (Newtons/meter3) g = accelera- | cubic feet... (content truncated for
tion due to gravity (meters/second?) | space)
V = volume of the balloon (meters?)...
(content truncated for space)
Score | 7 5
. . . Assistant 2’s answer was more detailed
Assistant 1 provided a more concise R . .
. . but contained some irrelevant informa-
and clear explanation, using the buoy- .
. . tion about the average U.S. home and
ant force equation and the weight of .
. C nTTon latex balloons, which made the answer
Review | the house from the movie "Up" to cal- . i .
more confusing. Additionally, Assis-
culate the number of balloons needed. s . .
tant 2’s answer did not provide a clear
However, the final number of balloons .
. final number of balloons needed to lift
was slightly off.
the house.

Table A.8: Qualitative Study for LLaMA-33B and DoLa with GPT-4 judgement.

Method

LLaMA-7B

MC1 MC2 MC3

Vanilla 25.6 40.6 19.2
DoLa w/ post softmax  31.9 52.2 28.2
DoLa w/o post softmax 32.2 63.8 32.1

Table A.9: The scores of DoLa on Truthful QA multiple choices setting with and without
post-softmax applied on top of F (defined in Section 3.3).
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LLaMA-7B LLaMA-13B
MC1 MC2 MC3 MC1 MC2 MC3

Vanilla 25.6 406 19.2 28.3 433 208
DoLa 0O-th layer 31.6 61.7 30.1 285 62.3 30.2
DoLa all layers 32.0 63.9 31.2 30.5 623 31.0

Method

DoLa 322 63.8 321 289 649 348
Method LLaMA-33B LLaMA-65B

MC1 MC2 MC3 MC1 MC2 MC3
Vanilla 3.7 495 242 308 469 22.7

DoLa 0-th layer 31.4 61.1 31.1 31.0 63.6 31.2
DoLa all layers 29.1 61.5 30.7 30.5 62.0 31.7
DoLa 30.5 623 340 31.1 646 343

Table A.10: The scores on Truthful QA of DoLa contrasting with the 0-th (word embedding)
layer and all the early even-numbered layers.
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Appendix B

Lookback Lens: Detecting and
Mitigating Contextual Hallucinations

B.1 Evaluation Details

B.1.1 Evaluation Prompt for GPT-40

We show the templates used to prompt GPT-4o0 (gpt-40-2024-05-13) in annotating the
truthfulness of a response and the span-level hallucination segment prediction in Table B.1
and Table B.2, respectively for CNN/DM and Natural Questions.

This prompt is used for 1) collecting the data to train the Lookback Lens in Table 4.1,
and 2) evaluating the XSum summarization task in Sections 4.4, 4.5, and 4.6. We also
provide the approximate cost of GPT-4o calls (in USD):

e 1000 examples from XSum is around $8.
e 1000 examples from CNN/DM is around $12.
e 2655 examples from NQ is around $16.

B.1.2 Human Evaluation on GPT-40 Evaluation

Summarization To assess the quality of GPT-40’s evaluations, we initially conducted
a pilot study using 70 XSum dataset examples, with native English-speaking authors and
colleagues as evaluators. Evaluators received the document, ground truth summary, LLaMA-
2-7B-Chat’s summary, and GPT-40’s judgment to provide a binary judgment on GPT-40’s
accuracy. Our interface is depicted in Appendix B.1.1 (see Figure B.1). This initial eval-
uation affirmed the correctness of GPT-40’s judgments in 68 out of 70 cases. To further
verify these results, we expanded our evaluation through Amazon MTurk, adding two addi-
tional annotations per example. Across all 210 evaluations (70 initial + 140 MTurk), only 9
annotations were marked incorrect, and in only 2 cases did a majority of annotators deem
the judgment incorrect (marked incorrect by at least two annotators). With a final accu-
racy of 97.1%, and high intra-annotator agreement, the comprehensive evaluation supports
GPT-40’s use as an automatic evaluator for the entire dataset.

119



You will be provided with a document and a proposed summary. Your task is to
determine if the proposed summary can be directly inferred from the document.
If the summary contains any information not found in the document, it is
considered false. Even if the summary is different from a ground truth summary,
it might still be true, as long as it doesn’t contain false information.

For each proposed summary, explain why it is true or false based on the
information from the document. Focus only on the original document’s content,
disregarding any external context.

After your explanation, give your final conclusion as Conclusion: True if the
proposed summary is completely accurate based on the document, or Conclusion:
False if it contains any incorrect or unsupported information. If your
conclusion is ’False’, identify the exact phrases or name entities from the
summary that is incorrect by stating Problematic Spans: [the inaccurate text
spans from the summary, in Python list of strings format].

#Document#: {document}

#Ground Truth Summary#: {ground_truth_summary}

#Proposed Summary#: {response}

Write your explanation first, and then give your final conclusion as Conclusion:
True if the proposed summary is completely accurate based on the document, or
Conclusion: False if it contains any incorrect or unsupported information. Add

Problematic Spans: [the exact inaccurate text spans from the summary, in a list
of strings] if your conclusion is ’False’.

Table B.1: Prompt template for GPT-40 in annotating the truthfulness and predicting span-
level hallucinations on summarization tasks. Used for CNN/DM and XSum.

Question Answering We expand the human evaluation to Natural Questions dataset
using Amazon MTurk. The evaluation interface is copied from the summarization setup, but
changing “summary” to “answer”, as well as adding the “question” field.

We take 50 examples and assign each example to three different annotators. There are
7 annotations marked incorrect out of the 150 annotations. In total, 3 of the examples
are marked incorrect by at least two annotators. If applying a majority vote, 47 out of
50 examples are correct, resulting in a 94.0% accuracy. This suggests that it is generally
sufficient to use GPT-40 to verify the generated responses on the question-answering task.

B.1.3 Evaluation Prompt for MT-Bench

We show the evaluation prompt for MT-Bench (hallucination) in Table B.3. We follow stan-
dard practice for MT-Bench (original) evaluation! and show evaluation prompts in Table B.4.
We evaluate MT-bench (original) with their default GPT-4 model gpt-4-0613 and our pro-

Thttps://github.com /Im-sys/FastChat /tree /main /fastchat /llm_judge.
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You will be provided with a document and a proposed answer to a question. Your
task is to determine if the proposed answer can be directly inferred from the
document. If the answer contains any information not found in the document, it
is considered false. Even if the answer is different from a ground truth answer,
it might still be true, as long as it doesn’t contain false information.

For each proposed answer, explain why it is true or false based on the
information from the document. Focus only on the original document’s content,
disregarding any external context.

After your explanation, give your final conclusion as Conclusion: True if the
proposed answer is completely accurate based on the document, or Conclusion:
False if it contains any incorrect or unsupported information. If your
conclusion is ’False’, identify the exact phrases or name entities from the
answer that is incorrect by stating Problematic Spans: [the inaccurate text
spans from the answer, in Python list of strings format].

#Document#: {document}

#Ground Truth Answers (a list of valid answers)#: {ground_truth_answers}
#Proposed Answer#: {response}

Write your explanation first, and then give your final conclusion as Conclusion:
True if the proposed answer is completely accurate based on the document, or
Conclusion: False if it contains any incorrect or unsupported information. Add

Problematic Spans: [the exact inaccurate text spans from the answer, in a list
of strings] if your conclusion is ’False’.

Table B.2: Prompt template for GPT-40 in annotating the truthfulness and predicting span-
level hallucinations on question-answering tasks. Used for Natural Questions.

posed MT-Bench (hallucination) with the latest GPT-40 model (gpt-40-2024-05-13).

B.2 Experiment Details

B.2.1 Model Details

State-of-the-art NLI Model We give further detail on the pretrained SoTA NLI model 2
used as our topline hallucination detector. Specifically, the model is based on DeBERTa-
V3-base [98] and further finetuned on a range of NLI and summarization datasets with
examples annotated with factual consistency, including FEVER [212], Vitamin C [213]| and
PAWS [214]. Roughly 731k data examples can be collected from the training set of the
above three datasets. The model is reported to have superior performance when evaluated

Zhttps://huggingface.co/vectara/hallucination _evaluation model
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Please act as an impartial judge and evaluate the faithfulness and consistency of the response provided
by an AI assistant to the user question displayed below. Your evaluation should consider whether the
assistant’s answer to the second user question is faithful and consistent to the chat history. If the
answer contains any misinformation not found or not supported by the chat history, it is considered

a hallucination. You evaluation should focus on the assistant’s answer to the second user question.
Begin your evaluation by providing a short explanation. Be as objective as possible. After providing
your explanation, you must rate the response on a scale of 1 to 10 by strictly following this format:
“[[rating]l]", for example: ‘Rating: [[5]]".

<|The Start of Assistant A’s Conversation with User|>

#i#t# User:
{question_1}

### Assistant A:
{answer_1}

### User:
{question_2}

### Assistant A:
{answer_2}

<|The End of Assistant A’s Conversation with User|>

Table B.3: GPT-40 evaluation prompt for MT-bench (hallucination).

on TRUE [215] SummaC Benchmark [216] and AnyScale Ranking Test for Hallucinations .

Other Model Details and License

Llama-2-7B-Chat: A 7B parameter model that is instruction fine-tuned. HuggingFace
ID: meta-1lama/Llama-2-7b-chat-hf.

Llama-2-13B-Chat: A 13B parameter model that is instruction fine-tuned. Hugging-
Face ID: meta-1lama/Llama-2-13b-chat-hf.

hallucination_evaluation_model: Based on microsoft/deberta-v3-base which
has 86M parameters. HuggingFace ID: vectara/hallucination_evaluation_model.

DeBERTa-V3-Base: a 86M parameters encoder based model.
HuggingFace ID: microsoft/deberta-v3-base.

The above models have the following licenses.

Llama-2-7B-Chat is under the Llama 2 Community License Agreement.
Llama-2-13B-Chat is under the Llama 2 Community License Agreement.
vectara/hallucination_evaluation_model is under the Apache 2.0 License.

DeBERTa-V3-Base is under MIT License.

3https: //www.anyscale.com /blog/llama-2-is-about-as-factually-accurate-as-gpt-4-for-summaries-and-is-
30x-cheaper
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Inference Details We run all the models on NVIDIA A6000 (48GB) and V100 (32GB)
GPUs. We do not train the model, but only run the inference part. Each of the examples
takes around 20-30 seconds for 7B model, 40-60 seconds for 13B model to generate responses
using our Lookback Lens Guided Decoding. Please check Appendix B.2.2 to estimate the
total running time on each of the datasets, as it depends on number of examples.

All the inferences are run with either greedy decoding or sampling using temperature
0.9 and top-p sampling with p = 0.95. The implementation is based on Huggingface Trans-
formers packages.? All the scores in the paper are from a single run due to the limited
computation for the large models.

Classifier Training Details We use Scikit-Learn sklearn.linear_model.LogisticRegression®
to train the classifiers of Lookback Lens on CPU machine. We use all the default hyperpa-
rameters, such as L2 penalty, etc, but we change the max_iter to 1000 to ensure it is
converged.

Heads Mapping Details We use Scikit-Learn sklearn.linear_model.LinearRegression®
in Section 4.5, to fit a linear transformation from LLaMA-2-13B-Chat’s attention heads to
LLaMA-2-7B-Chat’s attention heads. It is computed to solve the close-form Ordinary Least
Squares optimization problem, without gradient descent. We use all the default hyperpa-
rameters and run it on our CPU machine.

B.2.2 Dataset Details

The datasets we used in the paper have the following details:

e CNN/DM: sampled 1000 examples from the testing set. Apache-2.0 license. https:
/ /huggingface.co/datasets/abisee/cnn_dailymail

e Natural Questions: Apache-2.0 license. Testing set: 2655 examples from https://
github.com /nelson-liu/lost-in-the-middle. NQ-train: sampled 2499 examples from its
training set, using the positive document provided by https://github.com /facebookresearch/
DPR

e XSum: 1000 examples sampled from the testing set. MIT license. https://github.com/
EdinburghNLP /XSum

e MT-bench: 80 examples. Apache-2.0 license. https://github.com/lm-sys/FastChat/
tree/main /fastchat/llm_judge

4https://github.com/huggingface/transformers
Shttps://scikit-learn.org/stable/modules/generated /sklearn.linear model.LogisticRegression.html
Shttps://scikit-learn.org/stable/modules/generated /sklearn.linear model.LinearRegression.html
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Example Index: 8

Document:

Police found Kevin Malthouse in Blackshots Lane, Grays, in the early hours of Saturday
morning following reports of a group of men fighting. The 24-year-old had been stabbed in
the chest and died at the scene. Jack Taylor, 18, from Oakley Close, Grays, has been charged
with his murder and is due to appear at Basildon Magistrates' Court. Flowers - including
moving tributes from Mr Malthouse's parents and wife - have been laid near the spot where he
died. For more stories from the county, visit BBC Local Live: Essex A 22-year-old man, who
was also arrested, has been bailed pending further investigations. A 21-year-old man, from
South Ockendon, was released without charge and faces no further action. Mr Malthouse's
former team Tilbury Football Club has paid tribute, saying he was "a lovely lad".

Ground Truth Summary:

A man has been charged with murder after a former non-league footballer was stabbed to
death.

Generated Response:

Kevin Malthouse, a 24-year-old man, was found dead in Blackshots Lane, Grays, after a fight
and has been charged with his murder.

GPT-4 Explanation:

The problematic summary provided in the proposed summary is being evaluated for accuracy
against the original document. Here's a breakdown of the text's elements:

1. "Kevin Malthouse, a 24-year-old man":
o Confirmed by the document: Kevin Malthouse is indeed specified as 24 years old.
2. "was found dead in Blackshots Lane, Grays, after a fight":

o Confirmed by the document: Kevin Malthouse was found dead in Blackshots Lane,
Grays, after reports of a group of men fighting.

3. "and has been charged with his murder":

o False. The document states that Jack Taylor, 18, has been charged with his murder,
not Kevin Malthouse.

The phrase "and has been charged with his murder" is inaccurate because Kevin Malthouse is
the victim who was murdered, not the person charged.

Conclusion: False

Problematic Spans: ["and has been charged with his murder"]

Your Judgement: (1 if GPT-4 is correct, 0 if incorrect. Add any comments after the
second character if needed.)

Figure B.1: Screenshot of human annotation interface.
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Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant

to the user question displayed below. Your evaluation should consider factors such as the helpfulness,
relevance, accuracy, depth, creativity, and level of detail of the response. You evaluation should

focus on the assistant’s answer to the second user question. Begin your evaluation by providing a short
explanation. Be as objective as possible. After providing your explanation, you must rate the response on
a scale of 1 to 10 by strictly following this format: "[[rating]]", for example: "Rating: [[5]]".

<|The Start of Assistant A’s Conversation with User|>

#i#t# User:
{question_1}

### Assistant A:
{answer_1}

### User:
{question_2}

### Assistant A:
{answer_2}

<|The End of Assistant A’s Conversation with User|>

Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant to
the user question. Your evaluation should consider correctness and helpfulness. You will be given a
reference answer and the assistant’s answer. You evaluation should focus on the assistant’s answer to

the second question. Begin your evaluation by comparing the assistant’s answer with the reference answer.
Identify and correct any mistakes. Be as objective as possible. After providing your explanation, you
must rate the response on a scale of 1 to 10 by strictly following this format: "[[rating]]", for example:
"Rating: [[511".

<|The Start of Reference Answer|>

#i## User:
{question_1}

### Reference answer:
{ref_answer_1}

### User:
{question_2}

### Reference answer:
{ref_answer_2}

<|The End of Reference Answer|>

<|The Start of Assistant A’s Conversation with User|>

### User:
{question_1}

### Assistant A:
{answer_1}

#i## User:
{question_2}

### Assistant A:
{answer_2}

<|The End of Assistant A’s Conversation with User|>

Table B.4: GPT-4 evaluation prompt for general questions (top) and math questions (bot-
tom) on MT-bench (original).
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Appendix C

SelfCite: Teaching LLMs to Provide
Citations

C.1 Implementation Details

For SimPO fine-tuning, we randomly sample 2K document and question pairs from the
LongCite-45k data, generate the best-of-N responses with our Algorithm 1 to obtain the
preference data, and train for one epoch. We sample another 100 examples as development set
to pick the best learning rate from {le-7, 3e-7, 5e-7, Te-7}. We keep other hyperparameters
the same as the original SimPO [114]. We follow the same prompt format used in Zhang et
al. [111]" to keep the comparison fair. For the iterative SimPO experiment, in each iteration,
we sampled a new, non-overlapping subset of 2K examples to ensure no data repetition
across iterations. For self-supervised SFT, we generate 11K citation data unsupervisedly
from ContextCite outputs as described in Section C.2, trained with a larger learning rate
7e-6.

We use the SimPO source code ? built from Huggingface Transformers [217] for the
finetuning experiments, as well as Liger-Kernel [218]* to enable memory efficient training
for long-context examples in LongCite-45K without tensor parallelization. We run all the
finetuning experiments on with 8 x A100 GPUs of 80 GB memory on a single node. The batch
size is set to 1 per GPU due to the long context examples. We set our max context length
to 25600 to prevent OOM. For the data examples longer than 25600, we perform truncation,
start from truncating the sentences that are the most far away from the sentences cited by
the ground truth annotation, so as to keep the impact of truncation to be minimum.

When evaluating the citation length, as well as calculating the token length limit of 384
for excluding long BoN candidates, we follow Zhang et al. [111] to use GLM4-9B’s tokenizer
to count tokens.

In the ablation study of off-policy denoising in Section 5.5.5, the citation examples for
denoising are collected by randomly shifting existing citation spans by 3-10 positions in
sentence indices.

thttps:/ /github.com/THUDM /LongCite
Zhttps://github.com /princeton-nlp/SimPO
3https://github.com /linkedin /Liger-Kernel
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C.2 Obtaining Citations from ContextCite

In this section, we first describe how the ContextCite method [113] estimates continuous
attribution scores for each sentence in the context. We then explain a simple heuristic for
extracting citations (i.e., selecting a subset of context sources) from these scores.

C.2.1 ContextCite

Given a language model pry, a context C) a query () and a generated response R, Con-
textCite aims to quantify how each source in the context C' = {c1,¢ca,...,¢c|} contributes
to the generated response R (in our case, the sources are sentences). To do so, ContextCite
performs several random context ablations. We begin by introducing some notation to de-
scribe these ablations. Let v € {0,1}/°! be an ablation vector whose i-th entry toggles
whether source ¢; is included (v; = 1) or excluded (v; = 0). We write ablate(C, v) to denote
a modified version of the original context C' in which sources for which v; = 0 are omitted.
ContextCite seeks to understand how the probability of generating the original generated
response,

f(v) :=pm(R | ablate(C,v),Q),

changes as a function of the ablation vector v.

Attribution via Surrogate Modeling. Directly measuring f(v) for all 2/°! ablation
vectors is infeasible for large |C|. Hence, ContextCite seeks to identify a surrogate model
f(v) that is easy to understand and approximates f(v) well. To simplify this surrogate
modeling task, ContextCite applies a logit transform to f, which maps values in (0,1) to

(—00,00)):
g(v) = 0 (f(v)) = log(lf(—;fzv)).

ContextCite then approximates g(v) using a sparse linear function,
g(v) = ©'v+b.

Notice that resulting weights @ € RI¢l encode the importance of each source ¢; to the
probability of generating the original response; they can be interpreted directly as attribution
scores (higher scores suggest greater importance).

Finding a Surrogate Model via LAsso. To learn the parameters @ and b of the surro-
gate model, ContextCite randomly samples a small number of ablation vectors and measures
the corresponding probabilities of generating the original response. It then uses this “training
dataset” to fit a sparse linear model with LASSO. Concretely, it learns a surrogate model
with the following three steps:

1. Sample n ablation vectors {v;}%_; uniformly at random from {0, 1}/.

2. For each sample v;, compute g(v;) = o '(f(v;)) by running the LM with only the
sources specified by v; and measuring the (sigmoid) probability of R.
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3. Solve a Lasso regression problem to find w and b:

~ 7 . 1 = T 2
i, = argmin 5;<g<vi>—w vi=b)" + Allwls,

where A controls sparsity (larger A drives more coefficients to zero).

In Cohen et al. [113], typical choices of n range from 32 to 256, balancing cost (requires n
LM forward passes) and accuracy. If there are multiple statements {ry,rs, ..., g/} in R, the
same method can also be applied by focusing only on a subset of tokens in R.

C.2.2 Heuristic Citation Extraction

In our setting, we would like a discrete list of cited sentences for each generated statement,
rather than a score for every sentence. We will now describe how to convert the attribution
scores w into a discrete subset C’ C C' of citations. Let ¢ be a threshold, p be a cumulative
probability mass cutoff, and k£ be a maximum citation limit.

Thresholding and Merging.
1. Filtering: Include only those sources ¢; whose attribution score w; > t.

2. Merging Adjacent Sources: If multiple consecutive sources in the original text each
exceed t, merge them into a single “span” S;. We assign this merged span the maximum
score among its constituents:

0(S;) = Dj.

w(S;) Crineag Ww;
Here, adjacency is defined by the original ordering in C'. For instance, if ¢, and ¢3 both
pass the threshold and appear consecutively, we merge them into a single span 5.

Softmax Normalization. Let {S;} be the set of spans (or single sources) that survived
the threshold. We normalize their scores into a probability distribution:

eXp(@D(Sj))
> exp(u?(Si))’

w'(S;) =
so that 3, 0'(S;) = 1.

Top-p Selection. To avoid including too many low-value sources, we adopt a greedy ap-
proach:

Add spans in order of descending w'(S;), stopping once Z w'(S;) > p.
;e
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Top-k Filtering. Finally, if |C’| > k, we take only the k highest-scoring spans.

We set t = 1.5, p = 0.7, k = 4 in the experiment. When generating supervised fine-
tuning (SFT) data, we discard any example for which more than 30% of its statements have
no any citations that can survive threshold ¢. This ensures the dataset emphasizes cases
where the LM’s response can be tied to explicit context sources. We take the LongCite-45K
document and question pairs to generate the responses by Llama-3.1-8B-Instruct itself, and
then obtain citations with ContextCite (256 calls), transformed into the statement /citation
format of LongCite-45K. Finally, we collect ~ 11K examples used for SFT.

C.3 DMore Qualitative Examples

We show additional qualitative examples in Tables C.1, C.2, and C.3, representing cases
where SelfCite performs better as well as cases where the LongCite-8B baseline is better.

In Table C.1, SelfCite BoN avoids citing irrelevant sentences (42, 47-50) that the baseline
cites, while additionally including a correct citation (23) that is not found by the baseline. In
Table C.2, both SelfCite BoN and the baseline cite too many irrelevant sentences (391-393),
but SelfCite BoN’s citations are slightly better. In Table C.3, SelfCite BoN wrongly includes
sentence 30 and misses sentence 70, while the baseline is slightly better and only wrongly
includes sentence 71.
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Table C.1: An example of differences in the citation from baseline vs BoN. Related informa-
tion are highlighted in the context/response.

Sent. ID Context Sentences (only showing cited sentences due to space)

23 (V) We explored using a simple and cost-etfective procedure to instruction finetune our
continually pretrained long models without any human-annotated data.

42 (X) Collecting human demonstration and preference labels for LLM alignment is a cum-
bersome and expensive process (Ouyang et al., 2022; Touvron et al., 2023).

45 (V) In this work, we found that a simple and cheap approach which leverages a pre-
built large and diverse short-prompt dataset works surprisingly well on long-context
benchmarks.

46 (V) Specifically, we take the RLHF dataset used in LLAMA 2 CHAT and augment it
with synthetic self-instruct (Wang et al., 2022) long data generated by LLAMA 2
CHAT itself, in the hope that the model can learn a diverse set of skills through the
large amount of RLHF data and transfer that knowledge to long-context scenarios
via self-instruct data.

47-50 The data generation process focuses on QA-format tasks: starting from a long doc-
X ument in our pretraining corpus, we select a random chunk and prompt LLAMA 2
CHAT to write question-answer pairs based on information in the text chunk. [...]

Query What aspects of the LLAMA Long model proposed above have changed relative to
the LLAMA-based model? What improvements have been made?

Response |[...| 3. Instruction Tuning: The paper proposes a simple and cost-effective procedure
(single to instruction finetune the continually pretrained long models without any human-an-
statement notated data. This involves using a pre-built large and diverse short-prompt dataset
due to and augmenting it with synthetic self-instruct long data generated by LLAMA CHAT
space) itself. |...]

Citation Strings (green: correcty red: wrong)

Baseline [42-42][45-50]
BoN [23-23] [45-45] [46-46]
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Table C.2: An example of differences in the citation from baseline vs BoN. Related informa-
tion are highlighted in the context/response.

Sent. ID Context Sentences (only showing cited sentences due to space)

299 (X) Ribosomes link amino acids together in the order specified by the codons of messenger
RNA (mRNA) molecules to form polypeptide chains.

300 (v') Ribosomes consist of two major components: the small and large ribosomal subunits.

301 (v')  Each subunit consists of one or more ribosomal RNA (rRNA) molecules and many
ribosomal proteins (RPs or r-proteins).

302 (v)  The ribosomes and associated molecules are also known as the translational appara-
tus.

383 (X) Ribosomes are minute particles consisting of RNA and associated proteins that func-
tion to synthesize proteins.

384 (X) Proteins are needed for many cellular functions such as repairing damage or directing
chemical processes.

385 (X) Ribosomes can be found floating within the cytoplasm or attached to the endoplasmic
reticulum.

390 (v') Each subunit is made of one or more rRNAs and many r-proteins.

391 (X) The small subunit (30S in bacteria and archaea, 40S in eukaryotes) has the decoding
function, whereas the large subunit (50S in bacteria and archaea, 60S in eukaryotes)
catalyzes the formation of peptide bonds, referred to as the peptidyl-transferase
activity.

392 (X) The bacterial (and archaeal) small subunit contains the 16S rRNA and 21 r-proteins
(Escherichia coli), whereas the eukaryotic small subunit contains the 185 rRNA and
32 r-proteins (Saccharomyces cerevisiae; although the numbers vary between species).

393 (X) The bacterial large subunit contains the 5S and 23S rRNAs and 34 r-proteins (E. coli),
with the eukaryotic large subunit containing the 5S, 5.8S, and 25S / 28S rRNAs and
46 r-proteins (S. cerevisiae; again, the exact numbers vary between species).

Query The large subunit and small subunit that use two types of RNA are major components
that make up what?

Response |[...| The ribosome consists of two major components: the small and large ribosomal
(single subunits. Each subunit consists of one or more ribosomal RNA (rRNA) molecules and
statement many ribosomal proteins (RPs or r-proteins).The ribosomes and associated molecules
due  to are also known as the translational apparatus. |[...|

space)

Citation Strings (green: correcty red: wrong)

Baseline [299-302][383-385] [390-393]
BoN [300-302] [390-393]
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Table C.3: An example of differences in the citation from baseline vs BoN. Related informa-
tion are highlighted in the context/response.

Sent. ID Context Sentences (only showing cited sentences due to space)

28 (V) The Aegis BMD system exists in several variants.

29 (V) Listed in order of increasing capability, these include (but are not necessarily limited
to) 3.6.X variant, the 4.0.3 variant, the 4.1 variant (also known as the Aegis Baseline
[BL] 5.4 variant), the 5.0 CU (Capability Upgrade) variant (also known as the BL
9.1 variant), the 5.1 variant (also known as the BL 9.2 variant), and the 6.X variant
(also known as the BL 10 variant).

30 (X) Figure 1 summarizes the capabilities of some of these variants (using their desig-
nations as of 2016) and correlates them with the phases of the European Phased
Adaptive Approach (or EPAA; see discussion below) for European BMD operations.

61 (V) The BMD interceptor missiles used by Aegis ships are the Standard Missile-3 (SM-3),
the SM-2 Block IV, and the SM-6.

62 (V) The SM-3 is designed to intercept ballistic missiles above the atmosphere (i.e., exo-
atmospheric intercept), in the midcourse phase of an enemy ballistic missile’s flight.

70 (V) The SM-2 Block 1V is designed to intercept ballistic missiles inside the atmosphere
(i.e., endo-atmospheric intercept), during the terminal phase of an enemy ballistic
missile’s flight.

71 (X) It is equipped with a blast fragmentation warhead.

Query Please write a one-page summary of the above government report.

Response [...| The Aegis BMD system exists in several variants with increasing capability,

(single including the 3.6.X, 4.0.3, 4.1, 5.0 CU, 5.1, and 6.X variants. The system uses the

statement  Standard Missile-3 (SM-3), SM-2 Block IV, and SM-6 interceptor missiles. The SM-

due to 3 is designed to intercept ballistic missiles above the atmosphere in the midcourse

space) phase, while the SM-2 Block IV and SM-6 are designed to intercept ballistic missiles
inside the atmosphere in the terminal phase. |[...]

Citation Strings (green: correct; red: wrong)

Baseline [28-29] [61-62] [70-71]
BoN [28-30] [61-62] (missing: 70)
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Appendix D

MetaCLIP 2: Breaking the Curse of
Multilinguality

D.1 Training Setup

To remove confounding factors and generalize our findings, we follow OpenAl CLIP and
MetaCLIP training setup with changes for worldwide scaling, detailed in Table D.1.

Hyperparameter ‘OpenAI CLIP / MetaCLIP‘MetaCLIP 2

Activation Function QuickGELU QuickGELU
Seen Pairs 12.8B 29B (2.3x%)

Batch Size 32768 75366 (2.3x)
Learning Rate 4.0e-4 (L/14, H/14) 4.0e-4 (H/14)
Warm-up 2k 2k

Table D.1: Hyperparameters of OpenAl CLIP / MetaCLIP vs MetaCLIP 2.

D.2 Setup and Details of MLLM Evaluation

While zero-shot classification and retrieval benchmarks demonstrate the standalone capabil-
ities of MetaCLIP 2, real-world applications often require grounding in generative models.
Thus, we conduct the experiment of using MetaCLIP 2 model as vision encoder in MLLM
in Sec. 6.4.4. Here, we provide more details about the settings and task details.

D.2.1 Training Setup

For evaluation, we leverage the open-sourced Pangea [199] implementation and apply exact
the same model setup, i.e. uses LLaVA-Next [219] as architecture of Pangea MLLM model
and Qwen2-7B-Instruct [220] as the language model backbone, except that we vary the
vision backbone with each vision encoder to be evaluated. A Pangea MLLM is trained as the

following. First, a vision-language connector is trained to align the vision encoder features to
the language backbone, using LLaVA LCS-588K dataset [221|. Then, the Pangea MLLM is
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finentuned on Pangealns [199], a multilingual multimodal instruction dataset containing 6M
samples spanning 39 languages. We followed the same training recipe, including learning rate
le-3 and batch size 128 for vision-language connector training, and learning rate 2e-5 and
batch size 512 for finetuning. Both stages are coupled with a cosine learning rate scheduler
with warmup ratio of 0.03. For evaluating the quality of embeddings from vision encoder,
we make one change in the training that during the finetuning stage, we freeze the vision
backbone, while all weights are finetuned in the original Pangea setting.

D.2.2 Task Details

The trained MLLM models with varying vision encoders are then evaluated on Pange-
aBench [199], which includes following tasks:

Culture Understanding: CVQA evaluates model’s capability in cultural reasoning
using visual questions with diverse global contexts across 31 languages and 13 scripts [151].
Unlike our embedding-only experiment in Table 6.2, here we follow the generative setting to
select answers based on the MLLM’s output probabilities. MaRVL tests cross-lingual visual
reasoning with culturally grounded entailment tasks in multiple non-English languages [222].

Captioning: XM100 is a compact multilingual captioning benchmark with 100 diverse
images selected from XM3600 across 36 languages for efficient and diverse evaluation [192].

Short VQA: zGQA extends the GQA dataset to multilingual settings to measure cross-
lingual VQA performance [223]. MaXM offers multilingual VQA tasks covering different
scripts and question types to test model understanding beyond English [224].

Multi-subject Reasoning: tMMMU is a translated subset of MMMU validation ques-
tions into six languages to evaluate academic reasoning in a multilingual setup. M3Ezam
poses real-world multimodal exam questions across subjects, requiring both visual and tex-
tual comprehension [225].

D.3 Cross-Lingual Translation Capability

We probe whether the model acquires cross-modal translation behavior without explicit
supervision. Given an image that visually depicts the Chinese character “#1” (“dog”), we
compute cosine similarities between the image embedding and candidate text prompts across
languages, then rank the candidates. As expected, the exact Chinese character “J4” yields
the highest score. Notably, the Japanese word “\y#2” (dog) ranks highest within Japanese
candidates and achieves a substantially higher similarity than English “dog,” suggesting
stronger cross-lingual coupling between Chinese and Japanese scripts.

We make the following observations: (1) Cross-modal alignment reflects cross-
lingual relations. The strong scores for “Ji” and “\V1¥3” indicate the model maps visual
text to semantically equivalent words across languages. (2) Script proximity matters.
Japanese scores exceed English for this example, plausibly due to closer linguistic/script
overlap with Chinese. (3) Robustness amid noise. Despite inevitable Internet-scale noise
and partial misalignment between OCR-like visual tokens and alt-text, the model still ex-
hibits emergent cross-lingual translation behavior—supporting the premise that remaining
faithful to natural data distributions can mitigate noise effects.
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Word Description Cosine Sim.
o] “dog” in Chinese (exactly visualized on image) 0.54325
N “dog” in Chinese, literary/ancient usage 0.04636
Ui “cat” in Chinese 0.00025
5t “jackal” / ‘wild dog” in Chinese 0.03427
R “wolf” in Chinese 0.01405
dog English “dog” 0.08239
diagram | Unrelated word 0.00143
cat English “cat” 0.00005
puppy English “puppy” 0.02826
hound English “hound” 0.05586
Y. al “dog” in Japanese 0.19320
ki “cat” in Japanese 0.00064

Table D.2: Cosine similarities between the image of the character “Ji” and multilingual text
prompts. Higher is better.
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